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Structural damage identification is a scientific field that has attracted a lot of interest in the scientific community during the
recent years.+ere have beenmany studies intending to find a reliable method to identify damage in structural elements both in
location and extent. Most damage identification methods are based on the changes of dynamic characteristics and static
responses, but the incompleteness of the test data is a great obstacle for both. In this paper, a structural damage identification
method based on the finite element model updating is proposed, in order to provide the location and the extent of structural
damage using incomplete modal data of a damaged structure. +e structural damage identification problem is treated as an
unconstrained optimization problem which is solved using the differential evolution search algorithm. +e objective function
used in the optimization process is based on a combination of two modal correlation criteria, providing a measure of
consistency and correlation between estimations of mode shape vectors. +e performance and robustness of the proposed
approach are evaluated with two numerical examples: a simply supported concrete beam and a concrete frame under several
damage scenarios. +e obtained results exhibit high efficiency of the proposed approach for accurately identifying the location
and extent of structural damage.

1. Introduction

Structural damage identification has drawn increasing aca-
demic interest, as witnessed by the significant number of
relevant journal and conference papers, during the recent
years [1–5]. +e necessity of detecting and repairing struc-
tural damage at its early stage has become imperative, and
considerable effort has been devoted to developing non-
destructive testing and evaluation (NDT&E) techniques [6].
Among theNDT&E techniques that have received significant
attention in the computational mechanics field are those
based on vibration signature analysis in order to obtain global
information about the condition or state of health of the
structural models using measured dynamic data. Such
techniques use vibration characteristics of the structures

including frequency response functions, natural frequencies,
mode shapes, modal curvatures, and modal flexibilities to
identify the occurrence of the structural damage.

Generally speaking, the existing methods of damage
identification techniques based on modal testing can be clas-
sified into two major categories: direct and inverse methods.
+edirectmethodsutilize thechange inmodalmeasurement to
instantly detect structural damagewithout the need of iterative
computational procedures. In contrast, the second category of
damage identification techniques poses thewhole process as an
inverseproblem, inwhich the structuraldamage is identifiedby
optimizing the correlation between the theoretical and the
experimentalmodalparametric change.+elevelofcorrelation
between themeasured and the predictedmodal characteristics
is quantified using the modal correlation criteria that form
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useful mathematical tools identifying also the location and the
extent of structural damage.

A class of damage identification methods belonging to
the second category is based on the modification of struc-
tural model properties such as mass, stiffness, and damping
to reproduce as closely as possible the measured static and
dynamic responses corresponding to the experimental data
[4].+ese methods update the physical parameters of a finite
element model of the structure by minimizing an objective
function expressing the difference between finite element
predicted and experimentally identified structural dynamic
properties that are sensitive to damage such as natural
frequencies and natural mode shapes. A thorough study of
the finite element model updating approach was conducted
by Friswell and Mottershead [7, 8]. Many successful ap-
plications of damage identification for detecting multiple
structural damages based on the latter approach have been
reported in the literature, implementing modern optimi-
zation techniques such as the evolutionary algorithms,
among others [9–14].

In the present study, a structural damage identification
method based on the finite element model updating is
proposed, in order to provide the location and the extent of
structural damage using incomplete modal data of a dam-
aged structure. +e problem of damage identification in
structures is treated as an unconstrained single-objective
optimization problem. +e objective function of the
problem to be minimized utilizes two modal correlation
criteria, namely, the modal flexibility assurance criterion
(MACFLEX) and the modified total modal assurance cri-
terion (MTMAC). +e combined criterion showed a supe-
rior performance in comparison to the performance of the
individual criteria [15]. +e performance and robustness of
the proposed approach are evaluated with two numerical
examples: a simply supported concrete beam and a concrete
frame in several damage scenarios. +e obtained results
exhibit the high efficiency of the proposed approach for
accurately identifying the location and extent of structural
damage.

2. Structural Damage Identification

+e problem of damage identification can be classified into
four levels [16]: (A) detection, (B) localization, (C) quan-
tification, and (D) prediction of future damage (damage
prognosis). At the level of damage detection (Level A), the
existence of damage can be detected, while its location and
severity remain unknown. Information about location of
the damage can be provided by localization techniques
(Level B). At the damage quantification level (Level C), both
the location and severity of damage are estimated. Finally, at
the prediction level (Level D), the remaining life of the
structure is estimated based on the (identified) current
damage state and future loads as well as predicted damage
propagation. +is study reaches the third level of damage
identification, which means it investigates the ability to
detect, localize, and estimate the severity of damage in
structures.

2.1. Damage Identification Model. It is proven that changes
in the vibration characteristics of a structure are related to
damage occurrence. Specifically, changes in the modal pa-
rameters, for example, natural frequencies and mode shapes,
can provide an accurate indication of the presence of damage
in a structure. Since modal parameters are dependent on the
physical properties of the structure, that is, stiffness and
mass, the finite element method (FEM) can be used as a tool
for locating and quantifying damaged elements in a struc-
ture through an updating procedure of modal parameters,
even for large-scale structures.

Mathematically speaking, structural damage affects the
stiffness and physically the dynamic properties of the
structure, such as natural frequencies and mode shapes [17].
It can be assumed that the global mass matrix remains the
same in both the undamaged and the damaged state of the
structure. +is assumption can be considered quite accurate
for the majority of practical applications. +e eigenvalue
problem of a structure with n active degrees of freedom
(DOFs) can be written as follows:

K−ω2
(i)M( ) φ

(i){ } � 0, i � 1, 2, . . . , m{ }, (1)

where K is the global stiffness matrix of the structure
([n× n]), M is the global mass matrix ([n × n]), φ(i){ } is the
i-th natural mode vector of the structure ([n × 1]) corre-
sponding to the ω(i) natural frequency, and m is the total
number of natural modes to be obtained (m≤ n).

For a damaged structure, (1) takes the following form,
respectively:

KD −ω2
D(i)M( ) φ

(i)
D{ } � 0, i � 1, 2, . . . , m{ }, (2)

where KD is the global stiffness matrix of the damaged
structure ([n× n]) and φ(i)D{ } is the i-th natural mode vector
of the damaged structure ([n× 1]) corresponding to the ωD(i)

natural frequency. Equation (2) forms the basis of the
damage identification method used in the present study.

2.2. Modal Correlation Criteria. We consider two structures
A and B with n active DOFs each, with eigenvalues λA(i) �
ω2
A(i) and λB(i) � ω2

B(i) and natural frequencies ωA(i) and
ωB(i), (i � 1, 2, . . . , m), where m is the total number of
natural modes obtained (m≤ n). +e corresponding mode
shape vectors are φ(i){ } and ψ(i){ } ([n× 1] each) for struc-
tures A and B, respectively. In order to compare two sets of
values for the two structures, the use of modal correlation
criteria is imperative, providing a measure of consistency
and correlation between estimations of mode shape vectors.

2.2.1. 2e Modal Assurance Criterion (MAC). +e modal
assurance criterion (MAC) [18, 19] is one of the most
popular tools for the quantitative comparison of mode shape
vectors. +e purpose of this criterion is to indicate the
correlation between two sets of natural modes. Considering
two mode shape vectors φ(i){ } ([n× 1]) and ψ(j){ } ([n× 1]),
for structures A and B, respectively, the element MACij of
the MAC matrix ([m×m]) is given by
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MACij �
∑n

k�1
φ(i)k ψ

(j)
k( )2

∑n

k�1
φ(i)k( )2[ ] ·∑n

k�1
ψ
(j)
k( )2[ ],

i, j � 1, 2, . . . , m{ }.

(3)

MACij takes values from zero, representing no consis-
tent correspondence, to one, representing a consistent
correspondence between the two mode shape vectors under
consideration. In this manner, if the mode shape vectors
φ(i){ } and ψ(j){ } truly exhibit a consistent relationship, the
modal assurance criterion element MACij approaches unity.
By calculating MACij for all i, j � 1, 2, . . . , m{ }, we obtain
the MAC matrix. In addition, we define MÂC ([1×m]) as
the vector holding the diagonal terms ofMACmatrix which
can be easily calculated by setting i � j in (3) [15].

2.2.2. 2eModified Total Modal Assurance Criterion (MTMAC).
One limitation of the MAC criterion is that it takes into
account only the eigenvectors (mode shapes) and not the
eigenvalues of the structures. +is means that, in the case of
uniform-like damage, the MAC criterion will not be able to
detect almost any change; as in this case, the structure
becomes more flexible (i.e., the eigenperiod increases), but
there is no significant difference in the eigenvectors which
remain almost unchanged. +e natural frequencies provide
global information of the structure, and they can be accu-
rately identified through dynamic measurements.

+e modified total modal assurance criterion (MTMAC)
[20] is based on the MAC criterion but it also takes the
corresponding eigenvalues into account. +e MTMAC
vector MTM̂AC ([1×m]) is defined as follows:

MTM̂ACi �
MÂCi

1 + ω2
A(i) −ω2

B(i)( )/ ω2
A(i) + ω2

B(i)( )∣∣∣∣∣ ∣∣∣∣∣,
i � 1, 2, . . . , m{ },

(4)

where MÂCi is the i-th component of the MÂC vector. It
should be noted that the MTMAC can be easily defined also
as a matrix ([m×m]), whose diagonal is again theMTM̂AC
vector, as was the case with MAC. MTM̂AC is a row vector
with as many values as the number of natural modes
considered (m). By multiplying the m individual values of
the MTM̂AC vector, we obtain the MTMAC scalar value as
follows:

MTMAC �∏m
i�1

MTM̂ACi (5)

2.2.3. 2e Modal Flexibility Assurance Criterion (MACFLEX).
It is well known that damage affects the stiffness matrix
of the structure and more specifically it reduces the stiffness
of the individual damaged elements. In other words, a re-
duction in the stiffness is equivalent to an increase in the
structural flexibility. In structural health monitoring [21], it

is advantageous to use changes in flexibility as an indicator
of damage rather than using stiffness perturbations. +is is
due to the following reasons [22]:

(i) +e flexibility matrix is dominated by the lower
modes, and so good approximations can be obtained
even when only a few lower modes are employed.

(ii) +e flexibility matrices are directly attainable
through the modes and mode shapes determined by
the system identification process.

(iii) Iterative algorithms usually converge the fastest to
high eigenvalues.

(iv) In flexibility-based methods, these eigenvalues
correspond to the dominant low-frequency com-
ponents in structural vibrations.

+erefore, the dynamically measured flexibility matrix
which is calculated from the identifiedmodal parameters can
be used as a damage identification measure [14]. +e flex-
ibility matrix FA ([n× n]) for the structure A is given by

FA � Φ · Λ
−1
A ·Φ

Τ, (6)

where Φ is a matrix ([n×m]) containing all the m mode
shape vectors φ(i){ } ([n× 1] each) and ΛA is a diagonal ma-
trix ([m×m]) which holds the eigenvalues λA(i) � ω2

A(i), (i �
1, 2, . . . , m) on its diagonal.+e elements of matrix FA can be
also obtained separately using the following formula:

FA,ij �∑m
k�1

1

ω2
(k)

φ(i)k φ
(j)
k . (7)

Each column of the flexibility matrix represents the
displacement pattern of a structure associated with a unit
force applied to the associated degree of freedom. As shown
in (7), as the value of frequency decreases (i.e., the eigen-
period increases), the modal contribution to the flexibility
matrix also increases. As a result, a good estimate of the
flexibility matrix can be calculated even with a small number
of the first low-frequency modes [15].

In order to compare the values of the flexibility matrix
of the two structures A and B, the modal flexibility as-
surance criterion (MACFLEX) is applied. +e i-th com-
ponent of theMACF̂LEX vector ([1 × n]) can be calculated
as follows:

MACF̂LEXi �
F̂
(i)T

A F̂
(i)

B( )2
F̂
(i)T

A F̂
(i)

A( ) F̂
(i)T

B F̂
(i)

B( ), (8)

where F̂
(i)

A and F̂
(i)

B are the i-th column vectors ([n× 1]) of the
flexibility matrices FA and FB, for structures A and B, re-
spectively.MACF̂LEX is a vector with as many values as the
number of columns in the flexibility matrices. Again, we
could consider a full MACFLEX matrix by taking different
vectors into account, instead of the i-th vector for both
structures, but there is no point in that as again the diagonal
terms of the MACFLEX matrix are the important ones. By
multiplying the n individual values of theMACF̂LEX vector,
we obtain the MACFLEX scalar value as follows:

Advances in Civil Engineering 3



MACFLEX �∏n
i�1

MACF̂LEXi (9)

3. Damage Identification as an
Optimization Problem

3.1. Problem Formulation. +e structural damage identifi-
cation problem is treated as an unconstrained optimization
problem.+e objective functionF to beminimized utilizes the
two modal correlation criteria (MACFLEX and MTMAC),
while the design variable di describes the extent of damage of
the i-th element of the structure. In this sense, the number of
design variables is equal to the number of elements (ne) in the
structure.

In this study, the standard beam finite elements are used
to represent the structures of the numerical examples. It has
been assumed that no alteration of the mass occurs before
and after damage, which is acceptable for most engineering
applications. +erefore, the parameterization of the damage
is represented by a reduction factor or damage index of the
element bending stiffness. +is damage index, di, for
a damaged element i represents the relative variation of the
damaged element bending stiffness, (EI)i,D to the initial
(undamaged) bending stiffness (EI)i, as follows:

di � 1 − (EI)i,D
(EI)i

(10)

+is definition of the damage index for each element of
the structure allows estimating not only the damage extent
but also the damage location since the damage identification
is carried out at the individual element level. +e damage
index can take values between 0 (no damage) and 1 (100%
damage), although for numerical stability purposes, in the
present study, the maximum damage has been limited to
a value slightly below unity (i.e., 0.999), otherwise the
structure will become a mechanism that cannot be analyzed
and numerical instabilities will occur.

Taking into account all of the above, the mathematical
formulation of the structural damage identification problem
takes the following form:

min F di( )
subject to 0< di < 0.999

i � 1, 2, . . . , ne{ } (11)

3.2.2eObjective Function. Setting up an objective function,
selecting the updating parameters, and using robust opti-
mization algorithms are three crucial steps in structural
identification.+ey require deep physical insight and usually
also trial-and-error procedures. +e objective function has
to reflect the deviation between the numerical prediction
and the real behavior of the structure. For this reason, an
objective function may be formulated in terms of the dis-
crepancy between the finite element model and experimental
quantities.

In this study, a combined objective function has been
implemented, which takes into account the values of two

differentmodal correlation criteria (MTMAC and MACFLEX)
that express the relationship between the real (experimen-
tally measured) damage and the damage which is numer-
ically predicted by the finite element model. In particular,
the objective function of the optimization problem is the
following:

F �
�������
F21 + F

2
2

√
, (12)

where F1 and F2 are the values of the corresponding in-
dividual objective functions

F1 � 1−MTMAC

F2 � 1−MACFLEX .
(13)

+e minimum value (target value) for the objective
function F is zero, which is also the case for the individual
objective functions F1 and F2.

3.3. Noise Simulation for Experimental Data. In a real-life
scenario, the vibration characteristics (eigenvalues and
eigenmodes) of the real damaged structure would have to
be determined (measured) by experiment. In our case, for
practical reasons and due to lack of appropriate experi-
mental data, these properties are also calculated numeri-
cally using a finite element “real damage” model. +is
approach is acceptable for the purposes of the present
study and does not cause any limitations to the proposed
methodology. +us, in the present study, the term “ex-
perimental data” has nothing to do with a real experiment
but rather corresponds to simulated numerical data of the
“damaged” structure. At this point, it needs to be clarified
that although the real damage information is used in order
to generate the “damaged” model and obtain the “experi-
mental” data, this information is not made available to the
optimization algorithm. +e optimization algorithm only
considers the “experimental” modal data and tries to find the
damage based only on them.

Real experimental data acquired from experiments can
never be perfectly accurate. During modal testing, it is usual
to assume that the frequencies of vibration are accurately
determined and that is in the determination of the ampli-
tudes of the mode shapes that the experimental errors will
occur.+is assumption is usually valid since the frequency of
shakers, even at resonance, can be quite accurately con-
trolled. In order to simulate this phenomenon and be more
compatible with real experimental values of modal pa-
rameters, the “experimental data” in the present study have
been “enriched” by adding an artificial noise into them using
the following equation [23]:

φ
(j,exp)
i � φ

(j,cal)
i · (1 + NR · ξ), (14)

where φ
(j,exp)
i is the i-th component of the j-th experimental

mode shape vector, φ
(j,cal)
i is the i-th component of the j-th

calculated mode shape vector, NR (noise ratio) is the per-
centage of noise added to the calculated data (usually 0–
10%), and ξ is a uniformly distributed random number in
the range of (−1, 1).
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3.4. 2e Differential Evolution Algorithm. Choosing the
proper search algorithm for solving an optimization prob-
lem is not a straightforward procedure. In the past, a number
of studies have been published where structural optimiza-
tion problems have been solved using metaheuristic search
algorithms and especially those based on adopting Dar-
winian principles of evolutionary process. +ese algorithms
achieve efficient performance for a wide range of combi-
natorial optimization problems. Among the plethora of such
algorithms, the differential evolution (DE) algorithm is
adopted in this study to solve the structural damage iden-
tification problem of Section 3.1. DE is considered a fast and
efficient metaheuristic having gained increased popularity in
the engineering optimization community, with numerous
applications in various research fields [24].

Differential evolution (DE) is a stochastic population-
based evolutionary algorithm for global optimization, in-
troduced by Storn and Price [25]. It follows the standard
evolutionary algorithm flow with some significant differ-
ences in the mutation and selection processes.+e simplicity
of DE algorithm is based on only three tunable parameters:
the mutation factor Fm ∈ [0, 2], the crossover probability
CR ∈ [0, 1], and the total number of particles (population
size) NP. +e fundamental idea behind DE is the use of
vector differences by choosing randomly selected vectors
and then taking their difference as a means to perturb the
parent vector with a special kind operator and probe the
search space. Several variants of DE have been proposed so
far [26], but the present study is focused on the nominal
approach (DE/rand/1/bin). According to this, each of the
members of the population undergoes mutation and
crossover. Once crossover occurs, the offspring is compared
to the parent and the one with the best fitness between the
two moves to the next generation (selection process).

In more detail, we consider an optimization problem
with D dimensions. First, all individuals x of the population
are initialized at random positions in the search space. After
initialization, each member of the population x undergoes
mutation and a donor vector v is generated such as

v � a + Fm · (b− c), (15)

where a, b, and c are three individuals from the population at
random, which must be distinct from each other and from
individual x(x ≠ a≠ b≠ c).

In the next step, the crossover operator is applied by
generating the trial vector u. +e i-th component of u is
defined either from the i-th component (vi) of v or the i-th
component (xi) of x, with probability CR as follows:

ui �
vi if ri ≤CR or i � R

xi otherwise
i � 1, 2, . . . , D{ },{ (16)

where ri is a random number with uniform distribution,
ri ∈ U[0, 1], and R is a random integer in [1, 2, . . .,D], which
ensures that, in any case, after the crossover operation at
least one component is changed and thus u≠ x. +e last step
of the generation procedure is the implementation of the
selection operator where the target vector x is compared to
the trial vector u. If the trial vector u has a better fitness value

than x, then the individual x is replaced in the population
with the trial vector u as follows:

x′ �
u if f(u)<f(x)
x otherwise

{ , (17)

where f is the objective function to be minimized and x′ is the
new design vector for the next generation. If any component of
the vector v obtained from (15) is out of the given bounds, then
the specific component is reset by assigning a random value to
it within the given bounds. +is ensures that the final vector x′
from (17) will always have all values within the given range.

+e optimization procedure is finished when a desirable
convergence criterion has been satisfied. In the present study,
the termination criterion is met when the maximum number
of generations has been reached and no other convergence
criterion has been used, for reasons of uniformity.

4. Numerical Examples

Two different structures have been investigated to show the
effectiveness of the proposed methodology for identifying
the location and extent of damage in structures. +e first
structure is a simply supported concrete beam, while the
second is a concrete frame.+e finite element model for both
examples is based on an Euler–Bernoulli assumption of
the planar elements with three degrees of freedom per node
(two translational and one rotational). +e mutation factor
f and the crossover probability CR of the DE algorithm
are common in both problems with values Fm � 0.6 and
CR� 0.9, respectively.+emaximum number of generations
is also common for both problems, with value 3000. Due to
the different numbers of design variables between the two
problems, the population size is different, taken as NP� 40
for the beam problem and NP� 100 for the computationally
more intensive frame problem.

To check the robustness of the proposed methodology,
one to four vibration modes are considered, and due to the
limited number of sensors, the mode shape vector and the
vertical displacements are supposed to be only read at a
limited number of locations corresponding to the vertical
degrees of freedom of the structures (monitored DOFs).+is
means that the eigenmode information (displacements) that
corresponds to the experimental data is obtained for these
DOFs only. +e discretization of the model is an important
issue that can affect the results, to some extent, but if a dense
FE mesh is used, then the damage location can be ap-
proximated with enough accuracy.

A network of sensors is needed to record the eigen-
vectors and eigenvalues of the damaged structure. In the
present study, the DOF locations correspond to the locations
of the sensors, but this does not have to be the case in
general.+e recorded locations do not have to be the same as
the DOFs of the finite element model and can be completely
different, although when compared, the two systems have to
be consistent with each other (comparison at the same lo-
cations). +is means that, for example, the FEMmesh can be
denser than the network of sensors but the comparison has
to be made at the same predefined locations.
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Furthermore, in order to assess the performance of the
optimization procedure, we introduce a metric which in-
dicates how well the optimization algorithmmanages to find
the real damage, by means of a single scalar value. �e
prediction error between real damage vector xreal and the
predicted damage vector xcurrent of the best individual of the
current generation step is defined using the Euclidean norm
as follows:

Norm � xreal − xcurrent
�

�

�

�

�

�

�

�

. (18)

�e smaller the value of the Norm, the better the pre-
diction. In case of a perfect prediction (xreal � xcurrent), the
Norm takes the value of zero.

4.1. Simply Supported Beam. A simply supported beam
[15, 27] is analyzed in this section to illustrate the effectiveness
of the proposed methodology and the performance of the
different objective functions (F1, F2, and F). �e geometry,
boundary conditions, and the finite elementmesh of the beam
are shown in Figure 1.�e beam has a total length of 6m, and
it is discretized by 10 equal length beam elements of rect-
angular cross section b (width)× h (height)� 0.25m× 0.20m.
�e beam is considered to have Young’s modulus E equal to
30GPa and a density ρ equal to 2500 kg/m3. �e number of
monitored DOFs is 9, and the first four eigenmodes of the
undamaged structure are shown in Figure 2.

Four different damage scenarios are considered: (a) a
single-element damage scenario; (b) a two-element damage
scenario; (c) a three-element damage scenario; and (d) a
uniform damage scenario, as shown in Figure 3.

�e same optimization algorithm has been applied to all
damage scenarios. For each damage scenario, the combined
criterion has been used for the formulation of the objective
function. For each criterion, the number of known eigen-
modes varies from one to four. First, the problem is solved
assuming no noise for the data, then noise is added with
noise ratio NR� 5% and NR� 10%.

4.1.1. No Noise

(1) Combined Criterion Results. �e performance and the
corresponding results of the two individual objective func-
tions F1 and F2 that F is based on have been already in-
vestigated by the authors, and details can be found in [15]. In
light of this, in the present study, for this numerical example,
we will focus on the new combined criterion only. �e opti-
mized values of the design variables for the combined objective
function F are shown in Figure 4, for all damage scenarios.�e
results are presented in bar charts, where the target damage
(real damage) is always denoted in red and the other colored
bars denote the damage estimation by the optimization al-
gorithm, for different numbers of known eigenmodes.

Table 1 shows the value of the norm of (18) for each case.
Norm values near zero mean perfect match between the
computed and the real structural damage. In all the ex-
amined cases with no noise, the optimization algorithm
manages to give good results and the real damage is

estimated even with a small number of known eigenmodes.
�e fourth damage scenario (uniform damage) appears to be
the most difficult case where a higher number of eigenmodes
are needed. �e estimation in the case of uniform damage is
not 100% accurate even with four known eigenmodes, as
shown in Figure 4(d) and the last column of Table 1.

(2) Combined Criterion versus the Individual Criteria. We
investigate the performance of the combined objective
function F in comparison to the performance of the two
individual objective functions F1 and F2 that have already
been studied by the authors in [15]. Figure 5 shows the norm
value for each of the three objective functions versus the
number of generations, as the optimization problem pro-
ceeds, for the second and the third damage scenarios, with
three known eigenmodes. �e x-axis is in logarithmic scale
for better clarity of the results.

�e combined objective function (red line) manages to
converge faster and more accurately to the solution of the
problem for both damage scenarios. Due to space limita-
tions, here, we present only the results of scenarios 2 and 3
with three known eigenmodes. But the same trend has been
observed in all the cases that were examined, for all four
damage scenarios and with any number of known eigen-
modes (1, 2, 3, or 4).

(3) Influence of the Number of Known Eigenmodes. It is
interesting to investigate how the different number of known
eigenmodes affects the results of the optimization procedure.
It is expected that richer modal information (i.e., more known
eigenmodes) should lead to more accurate results for the
optimization procedure. Figure 6 presents the norm values for
the combined objective function versus the number of gen-
erations for damage scenarios 2 and 3, where the different
lines represent the different numbers of known eigenmodes
(1 to 4). It is clear that the best results are obtained with four
known eigenmodes and that the richer modal information
leads to better results in general. �is was a general obser-
vation also with other damage scenarios and also for any
objective function (F, F1, and F2).

4.1.2. Noise 5%: Combined Criterion. In the next part of the
investigation, noise is added to the experimental data, with
noise ratio NR� 5%. In Figure 7, the optimized values of the
design variables are presented for the combined objective
function F, for all damage scenarios, for different numbers of
known eigenmodes (from one to four).

As shown in Figure 7 and Table 2, when noise 5% is
considered, more eigenmodes are needed in order to achieve
good results. In particular, when only one eigenmode is
known, the results appear not to be so good (min

41 2 3 85 6 7 9 10

6 m

Figure 1: �e beam structure under investigation.
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norm� 0.137, max norm� 0.425), while in cases with two or
more known eigenmodes, the algorithm manages to con-
verge to good or at least acceptable results (min norm� 0,
max norm� 0.313).

4.1.3. Noise 10%: Combined Criterion. Next, noise is added
to the experimental data, with a higher noise ratio NR� 10%.
In Figure 8, the optimized values of the design variables are
presented for the combined objective function F, for all
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Figure 3: Beam example: the four different damage scenarios. (a) Scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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Figure 2: Beam example: first four eigenmodes of the undamaged structure. (a) Eigenmode 1 (T1� 0.115 s), (b) eigenmode 2 (T2� 0.029 s),
(c) eigenmode 3 (T3� 0.013 s), and (d) eigenmode 4 (T4� 0.007 s).
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damage scenarios, for different numbers of known eigen-
modes (from one to four).

�e case with severely distorted noisy data (NR� 10%) is
even more difficult, as shown in Figure 8 and Table 3, but

even in this case, the optimization algorithmmanages to give
acceptable results and the real damage is estimated even
with a small number of known eigenmodes (two or more).
�e case of only one known eigenmode is still problematic
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Figure 4: Beam example: damage prediction of the combined criterion for the four different damage scenarios (no noise). (a) Scenario 1,
(b) scenario 2, (c) scenario 3, and (d) scenario 4.

Table 1: Beam example: norm values for different damage scenarios and 1 to 4 known modes (no noise).

Known modes
Damage scenario

1 2 3 4

1 mode 0.014 0.033 0.106 0.229
2 modes 0.068 0.293 0.223 0.143
3 modes 0.000 0.000 0.011 0.102
4 modes 0.000 0.000 0.000 0.061
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(min norm� 0.259, max norm� 0.651). Again, the fourth
damage scenario appears to be the most difficult one (min
norm� 0.222 for four known modes, max norm� 0.518 for
one mode).

4.2. Single-Span Concrete Frame. �e second structure that
is examined is a concrete frame with a span of 6m and
a height of 4m. Both supports are supposed to be fixed. �e

geometry and the finite element mesh of the frame are
shown in Figure 9.

�e frame is discretized with 28 equal length beam finite
elements (12 elements for the beam and 8 elements for each
column). �e length of each element is 0.50m. �e total
number of nodes is 29, while the total number of DOFs is 87,
of which 81 are active and 6 are constrained (fixed supports).
�e horizontal elements (beam) have a square cross section
0.25m× 0.25m, while the vertical elements (columns) have
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Figure 5: Beam example: norm values for the three objective functions versus generations, for three known eigenmodes, for damage
scenarios 2 and 3 (no noise). (a) Scenario 2 and (b) scenario 3.
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a rectangular cross section of 0.25m× 0.30m with an ori-
entation in favor of inplane bending (the principal moment
of inertia 5.625·10−4m4 applies to in-plane bending). �e

material has Young’s modulus E equal to 30GPa and
a density ρ equal to 2500 kg/m3, which applies to the whole
structure (beam and columns).
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Figure 7: Beam example: performance of the combined criterion for different damage scenarios (noise 5%). (a) Scenario 1, (b) scenario 2,
(c) scenario 3, and (d) scenario 4.

Table 2: Beam example: norm values for different damage scenarios and 1 to 4 known modes (noise 5%).

Known modes
Damage scenario

1 2 3 4

1 mode 0.137 0.370 0.425 0.307
2 modes 0.137 0.087 0.093 0.313
3 modes 0.000 0.000 0.025 0.128
4 modes 0.000 0.000 0.000 0.098
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�e monitored DOFs are all the horizontal DOFs of the
two columns, excluding the supports (8 DOFs for each
column), and all vertical DOFs of the beam, excluding the

corner DOFs (11 DOFs for the beam). �e total number of
monitored DOFs is thus 27, and the first four eigenmodes of
the undamaged structure are shown in Figure 10.
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Figure 8: Beam example: performance of the combined criterion for different damage scenarios (noise 10%). (a) Scenario 1, (b) scenario 2,
(c) scenario 3, and (d) scenario 4.

Table 3: Beam example: norm values for different damage scenarios and 1 to 4 known modes (noise 10%).

Known modes
Damage scenario

1 2 3 4

1 mode 0.259 0.571 0.651 0.518
2 modes 0.119 0.059 0.110 0.353
3 modes 0.000 0.000 0.072 0.122
4 modes 0.000 0.000 0.000 0.222
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Four different damage scenarios are considered: (a)
a single-element damage scenario, (b) a five-element damage
scenario along a location on the beam, (c) a five-element

damage scenario along a location at the left beam-column
connection, and (d) a nine-element damage scenario with
unsymmetrical damages at the two corners, as shown
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Figure 9: �e frame structure under investigation.
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Figure 10: Frame example: first four eigenmodes of the undamaged structure. (a) Eigenmode 1 (T1� 0.128 s), (b) eigenmode 2 (T2� 0.053 s),
(c) eigenmode 3 (T3� 0.021 s), and (d) eigenmode 4 (T4� 0.019 s).
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in Figure 11. In this numerical example, all individual
criteria, F1 (based on MTMAC), F2 (based on MACFLEX),
and F (combined), are examined and compared to each
other.

4.2.1. No Noise

(1) MTMAC Criterion Results (F1). We investigate the
performance of the MTMAC criterion for all four damage
scenarios. �e optimized values of the design variables for
the objective function F1 are shown in Figure 12, for each
damage scenario.

As shown in Figure 12, even in the case of four known
eigenmodes, using only the MTMAC criterion does not lead
to results of good quality.

(2) MACFLEX Criterion Results (F2). We investigate the
performance of the MACFLEX criterion for all four damage
cases. �e optimized values of the design variables for the

objective function F2 are shown in Figure 13, for each
damage scenario.

(3) Combined Criterion Results (F). Next, we investigate the
performance of the combined criterion for all four damage
scenarios. �e optimized values of the design variables for
the objective function F are shown in Figure 14, for each
damage scenario.

Due to the complexity of the specific problem (optimi-
zation problem with 28 design variables), it is very difficult to
find the exact solution, even in the case of four known ei-
genmodes. In any case, as shown in Figure 14, using the
combined criterion, the optimizer manages to give very good
predictions of the location and extent of damage, especially
when a larger number of eigenmodes are known.

(4) Combined Criterion versus the Individual Criteria.
Figure 15 shows the norm value for each of the three objective
functions versus the number of generations, as the optimi-
zation problem proceeds, for the second and the third damage
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Figure 11: Frame example: the four different damage scenarios. (a) Scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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scenarios, with three known eigenmodes. �e x-axis is in
logarithmic scale for better clarity of the results.

�e MACFLEX criterion (F2) exhibits the worst per-
formance. Although the performance of the MTMAC cri-
terion (F1) is good [15], it is shown that the combined
criterion (F) exhibits the best performance among the three
with faster convergence and more accurate final result for
both damage scenarios. Due to space limitations, only the
results of scenarios 2 and 3 with three known eigenmodes
are presented here, but the trend is the same in all other cases
also. �is is better highlighted in Table 4, where the norm of
the final result is shown for each criterion and each damage

scenario (three known eigenmodes). It is clear that the
combined criterion shows superior performance managing
to converge to the lowest values in each single case.

(5) Influence of the Number of Known Eigenmodes. Figure 16
presents the norm values for the combined objective
function F versus the number of generations for damage
scenarios 2 and 3, where the different lines represent the
different numbers of known eigenmodes (from one to four).
Again, the best results are obtained with 4 known eigen-
modes, while it is shown that richer modal information leads
to better results in general. �is was a general observation
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Figure 12: Frame example: damage prediction of the MTMAC criterion for the four damage scenarios (no noise). (a) Scenario 1,
(b) scenario 2, (c) scenario 3, and (d) scenario 4.
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with other damage scenarios also and for any objective
function (F, F1, and F2).

4.2.2. Noise 5%: Combined Criterion. Noise is added to the
experimental data, with noise ratio NR� 5%. In Figure 17,
the results of the combined criteria are presented, for all
damage scenarios, for different numbers of known eigen-
modes (from one to four).

Adding 5% noise leads to deteriorated results, but
again, the optimization procedure manages to give good

estimations of the real damage, especially when a higher
number of eigenmodes are known.

4.2.3. Noise 10%: Combined Criterion. At this stage, a dif-
ferent level of noise is added to the experimental data, this time
with an increased noise ratioNR� 10%. Figure 18 presents the
results of the combined criterion, for all damage scenario cases,
for different numbers of known eigenmodes.

Again, noise plays a significant role and deteriorates the
quality of the damage prediction. Even with four known
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Figure 13: Frame example: damage prediction of the MACFLEX criterion for the four damage scenarios (no noise). Again, the results using
the individual MACFLEX criterion are not good, even with four known eigenmodes, let alone cases with less known eigenmodes (1 to 3).
(a) Scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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eigenmodes, the optimizer cannot guarantee great accu-
racy of the results, except may be for the case of damage
scenario 1, where the performance is still very good. �is is
normal, taking into account the increased noise ratio in
this investigation.

4.2.4. Investigation on the Influence of Noise. Table 5 shows
the influence of noise on the final optimization results,
where the norm of the final result is shown for each damage
scenario without noise and with noise ratios 5% and 10%

(for three known eigenmodes). It is clear that, for all damage
cases, increased noise leads to deteriorated final results.

5. Conclusions

In this paper, a new modal correlation criterion is proposed
for structural damage identification, which combines two
well-known modal correlation criteria, namely, the modal
flexibility assurance criterion and the modified total modal
assurance criterion. �ese two criteria take into account
vibration characteristics of the structure such as the natural
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Figure 14: Frame example: damage prediction of the combined criterion for the four damage scenarios (no noise). (a) Scenario 1,
(b) scenario 2, (c) scenario 3, and (d) scenario 4.
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Figure 15: Frame example: norm values for the three objective functions versus generations, for three known eigenmodes, for damage
scenarios 2 and 3 (no noise). (a) Scenario 2 and (b) scenario 3.

Table 4: Frame example: norm values for different criteria and damage scenarios (no noise, 3 known eigenmodes).

Criterion
Damage scenario

1 2 3 4

MTMAC(F1) 0.090 0.305 0.142 0.183
MACFLEX(F2) 0.918 0.720 0.712 0.843
Combined (F) 0.004 0.073 0.052 0.123
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Figure 16: Frame example: norm values for the combined criterion, for different numbers of known eigenmodes, for damage scenarios 2
and 3 (no noise). (a) Scenario 2 and (b) scenario 3.
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frequencies, the mode shapes, and the modal flexibilities. It
was shown that the new combined criterion exhibits optimal
performance when compared to the performance of any of
the two individual criteria, managing to identify damage in
structural elements both in location and extent with very
good accuracy.

Due to lack of experimental data, various damage sce-
narios were assumed in order to simulate possible damage
states of the structures considered. Furthermore, to simulate
real measured experimental values of modal parameters,
artificial noise has been added to the experimental data. In the
cases where noisymodal data were considered, the combined

criterion also showed an acceptable performance, especially
in cases where a higher number of eigenmodes (three or four)
were taken into account.

�e structural damage identification problemwas treated
as an optimization problem which was solved using the
differential evolution algorithm.�e optimization algorithm
proved to be very efficient and robust, managing to give
results of good quality in the numerical examples considered,
especially in cases without the presence of noise.

Some damage scenarios proved to be more difficult than
others. Even for the most difficult damage scenarios (i.e., the
fourth scenario in both numerical examples), the combined
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Figure 17: Frame example: performance of the combined criterion for different damage scenarios (noise 5%). (a) Scenario 1, (b) scenario 2,
(c) scenario 3, and (d) scenario 4.
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criterionmanaged to give a very good estimation of the extent
and location of damage. However, in these cases, a higher
number of eigenmodes were needed in order to achieve a so-
lution of acceptable quality, especially when noise was present.

�e presence of noise can affect the performance of the
damage identification procedure, especially with increasing
noise intensities and, therefore, it is a way of evaluating the
robustness of the proposed methodology. It is impressive
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Figure 18: Frame example: performance of the combined criterion for different damage scenarios (noise 10%). (a) Scenario 1, (b) scenario 2,
(c) scenario 3, and (d) scenario 4.

Table 5: Frame example: norm values for the combined criterion and different damage scenarios (three known eigenmodes).

Criterion
Damage scenario

1 2 3 4

No noise 0.004 0.073 0.052 0.123
Noise 5% 0.024 0.220 0.091 0.165
Noise 10% 0.047 0.344 0.121 0.199
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that the combined criterion exhibits better performance
than any of the two individual criteria, even when there is no
noise for them, in comparison to the combined criterion
with noisy data.
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