
Under consideration for publication in Theory and Practice of Logic Programming 1

A Constructive Semantic Characterization of
Aggregates in Answer Set Programming

TRAN CAO SON and ENRICO PONTELLI
Department of Computer Science

New Mexico State University
{tson,epontell}@cs.nmsu.edu

submitted 17 June 2005 ; revised 27 October 2005; accepted 13 January 2006

Abstract

This technical note describes a monotone and continuous fixpoint operator to compute
the answer sets of programs with aggregates. The fixpoint operator relies on the notion
of aggregate solution. Under certain conditions, this operator behaves identically to the
three-valued immediate consequence operator Φaggr

P for aggregate programs, independently
proposed in (Pelov 2004; Pelov et al. 2004). This operator allows us to closely tie the
computational complexity of the answer set checking and answer sets existence problems
to the cost of checking a solution of the aggregates in the program. Finally, we relate
the semantics described by the operator to other proposals for logic programming with
aggregates.

KEYWORDS: Aggregates, answer set programming, semantics

1 Introduction

Several semantic characterizations of answer sets of logic programs with aggregates
have been proposed over the years (e.g., (Kemp and Stuckey 1991; Mumick et al.
1990; Gelfond 2002; Faber et al. 2004; Pelov et al. 2004)). Most of these proposals
have their roots in the answer set semantics of normal logic programs without aggre-
gates (Gelfond and Lifschitz 1988). Nevertheless, it is known that a straightforward
generalization of the definition of answer sets to programs with aggregates may
yield non-minimal and/or unintuitive answer sets. Consider the following example.

Example 1
Let P be the program

p(1) ← p(2) ← p(3) ←
p(5) ← q q ← Sum({X | p(X)}) > 10

The aggregate Sum({X | p(X)}) > 10 is satisfied by any interpretation M of P
where the sum of X such that p(X) is true in M is greater than 10.

A straightforward extension of the original definition of answer sets (Gelfond and
Lifschitz 1988) defines M to be an answer set of P if and only if M is the minimal
model of the reduct PM , where PM is the program obtained by (i) removing from

2 Tran Cao Son and Enrico Pontelli

P all the rules containing in their body at least an aggregate or a negation-as-failure
literal which is false in M ; and (ii) removing all the aggregates and negation-as-
failure literals from the remaining rules. Effectively, this definition treats aggregates
in the same fashion as negation-as-failure literals.

It is easy to see that for A = {p(1), p(2), p(3)} and B = {p(1), p(2), p(3), p(5), q},

PA =

p(1) ←
p(2) ←
p(3) ←
p(5) ← q

PB =

p(1) ←
p(2) ←
p(3) ←
p(5) ← q
q ←

and A and B are minimal model of PA and PB respectively. Thus, both A and
B are answer sets of P . As we can see, treating aggregates like negation-as-failure
literals yields non-minimal answer sets. Accepting B as an answer set seems counter-
intuitive, since p(5) “supports” itself through the aggregate. ¤

Different approaches have been proposed to deal with this problem. Early works
concentrate on finding syntactic (e.g., stratification (Mumick et al. 1990; Kemp and
Stuckey 1991)) and semantic (e.g., monotonic aggregates (Ross and Sagiv 1997;
Kemp and Stuckey 1991)) restrictions on aggregates which guarantee minimality,
and often uniqueness, of answer sets.

In this technical note, we present a fixpoint operator that allows us to compute
answer sets of normal logic programs with arbitrary aggregates. It is a straightfor-
ward extension of the Gelfond-Lifschitz definition, making use of the same notion
of reduct as in (Gelfond and Lifschitz 1988), and relying on a continuous fixpoint
operator for computing selected minimal models of the reduct (corresponding to
our notion of answer sets). This fixpoint operator is a natural extension of the tra-
ditional immediate consequence operator TP to programs with aggregates. It takes
into consideration the provisional answer set while trying to verify that it is an
answer set. This fixpoint operator makes use of the notion of aggregate solutions,
and it captures the unfolding semantics for normal logic programs with aggregates,
originally proposed in (Elkabani et al. 2004) and completely developed in (Son
et al. 2005). This semantics builds on the principle of unfolding of intensional set
constructions, as developed in (Dovier et al. 2001). This operator corresponds to
the Φaggr

P operator proposed in (Pelov et al. 2004; Pelov 2004), when ultimate ap-
proximating aggregates are employed and 2-valued stable models are considered. In
particular, the two operators are identical when they are applied to the construction
of a correct answer set M .

The proposed fixpoint operator allows us also to easily demonstrate the existence
of a large class of logic programs with aggregates (which includes recursively de-
fined aggregates and non-monotone aggregates) for which the problems of answer
set checking and of determining the existence of an answer set is in P and NP re-
spectively. Finally, we relate our work to recently proposed semantics for programs
with aggregates (Faber et al. 2004; Pelov et al. 2004; Son et al. 2005).

A Constructive Semantic Characterization of Aggregates in ASP 3

2 Preliminary Definitions

2.1 Language Syntax

Let us consider a signature ΣL = 〈FL ∪ FAgg ,V ∪ Vl , ΠL〉, where FL is a collection
of constants, FAgg is a collection of unary function symbols, V∪Vl is a denumerable
collection of variables (such that V ∩ Vl = ∅), and ΠL is a collection of predicate
symbols. In the rest of this paper, we will always assume that the set Z of the
integers is a subset of FL—i.e., there are distinct constants representing the integer
numbers. We will refer to ΣL as the ASP signature. We will also refer to ΣP =
〈FP ,V ∪ Vl ,ΠP 〉 as the program signature, where FP ⊆ FL, ΠP ⊆ ΠL, and FP is
finite. We will denote with HP the ΣP -Herbrand universe, containing the ground
terms built using symbols of FP , and with BP the corresponding ΣP -Herbrand
base. An ASP-atom is an atom of the form p(t1, . . . , tn), where ti ∈ FP ∪ V and
p ∈ ΠP ; an ASP-literal is either an ASP-atom or the negation as failure (not A)
of an ASP-atom. We will use the traditional notation {t1, . . . , tk} to denote an
extensional set of terms, and the notation {{t1, . . . , tk}} to denote an extensional
multiset (or bag) of terms.

Definition 1 (Intensional Sets and Multisets)
An intensional set is a set of the form {X | p(X1, . . . ,Xk)} where X ∈ Vl , Xi ’s are
variables or constants (in FP), {X1, . . . ,Xk}∩Vl = {X }, and p is a k -ary predicate
in ΠP . Similarly, an intensional multiset is a multiset of the form

{{X | ∃Z1, . . . ,Zr . p(Y1, . . . ,Ym)}}
where {X ,Z1, . . . ,Zr} ⊆ Vl , Yi are variables or constants (of FP), {Y1, . . . ,Ym} ∩
Vl = {X ,Z1, . . . ,Zr}, and X /∈ {Z1, . . . ,Zr}. We call X the grouped variable,
Z1, . . . ,Zr the local variables, and p the grouped predicate of the intensional set/multiset.

Intuitively, in an intensional multiset, we collect the values of X for which p(Y1, . . . ,Ym)
is true, under the assumptions that the variables Z1, . . . ,Zr are locally, existentially
quantified. Multiple occurrences of the same value of X can appear. For exam-
ple, if p(X ,Z) is true for X = 1,Z = 2 and X = 1,Z = 3, then the multiset
{{X | ∃Z · p(X ,Z)}} will correspond to {{1, 1}}. Definition 1 can be easily extended
to allow more complex types of sets, e.g., sets with a tuple as the grouped variable
and sets with conjunctions of atoms as property of the intensional construction.

Observe that the variables from Vl are used exclusively as grouped or local vari-
ables in defining intensional sets/multisets, and they cannot occur anywhere else.

We write X̄ to denote X1, . . . ,Xn .

Definition 2 (Aggregate Terms/Atoms)
• An aggregate term is of the form aggr(s), where s is an intensional set/multiset,

and aggr ∈ FAgg (called the aggregate function).
• An aggregate atom has the form aggr(s) op Result , where op is a relational

operator in the set {=, 6=, <,>,≤,≥} and Result ∈ V ∪ (Z ∩ FP)—i.e., it is
either a variable or a numeric constant.

In our examples, we will focus on the traditional aggregate functions, e.g., Count,

Sum, Min. For an aggregate atom ` of the form aggr(s) op Result , we refer to the

4 Tran Cao Son and Enrico Pontelli

grouped variable and predicate of s as the grouped variable and predicate of `. The
set of ASP-atoms constructed from the grouped predicate of ` and the terms in HP

is denoted by H(`).

Definition 3 (ASPA Rule/Program)
• An ASPA rule is of the form

A ← C1, . . . ,Cm ,A1, . . . ,An ,not B1, . . . ,not Bk (1)

where A, A1, . . ., An , B1, . . ., Bk are ASP-atoms, while C1, . . . ,Cm are ag-
gregate atoms (m ≥ 0, n ≥ 0, k ≥ 0).

• An ASPA program is a finite collection of ASPA rules.

For an ASPA rule r of the form (1), head(r), agg(r), pos(r), and neg(r) denote re-
spectively A, {C1, . . . ,Cm}, {A1, . . . ,An}, and {B1, . . . ,Bk}. Furthermore, body(r)
denotes the right-hand side of the rule r .

Observe that grouped and local variables in an aggregate atom ` have a scope
limited to `. As such, given an ASPA rule, it is always possible to rename such
variables occurring in the aggregate atoms C1, . . . ,Cm apart, so that they are pair-
wise different. Observe also that the grouped and local variables represent the only
occurrences of variables from Vl , thus they will not occur in A, A1, . . ., An , B1, . . .,
Bk . For this reason, without loss of generality, whenever we refer to an ASPA rule
r , we will assume that the grouped and local variables of its aggregate atoms are
pairwise different and do not appear in the rest of the rule.

Given a term, literal, aggregate atom, rule α, let us denote with fvars(α) the set
of variables from V present in α. The entity α is ground if fvars(α) = ∅.

A ground substitution σ is a set {X1/c1, . . . ,Xn/cn} where Xi ’s are distinct
variables from V and ci ’s are constants in FP . For an ASP-atom p (an aggregate
atom `), pσ (`σ) denotes the ASP-atom (the aggregate atom) which is obtained
from p (`) by simultaneously replacing every occurrence of Xi with ci .

Let r be a rule of the form (1) and {X1, . . . ,Xt} be the set of free variables occur-
ring in A, C1, . . . ,Cm , A1, . . . ,An , and B1, . . . ,Bk—i.e., fvars(r) = {X1, . . . ,Xt}.
Let σ be a ground substitution {X1/c1, . . . ,Xt/ct}. The ground instance of r w.r.t.
σ, denoted by rσ, is the ground rule obtained from r by simultaneously replacing
every occurrence of Xi with ci .

By ground(r) we denote the set of all ground instances of the rule r . For a
program P , the set of all ground instances of the rules in P , denoted by ground(P),
is called the ground instance of P , i.e., ground(P) =

⋃
r∈P ground(r).

2.2 Aggregate Solutions

In this subsection we provide the basic definitions of satisfaction and solution of an
aggregate atom.

Definition 4 (Interpretation Domain and Interpretation)
The domain of our interpretations is the set D = HP ∪2HP ∪M(HP), where 2HP is
the set of (finite) subsets of HP and M(HP) is the set of finite multisets of elements

A Constructive Semantic Characterization of Aggregates in ASP 5

from HP . An interpretation I is a pair 〈D, (·)I 〉, where (·)I is a function that maps
ground terms to elements of D and ground atoms to truth values.

Definition 5 (Interpretation Function)
Given a constant c, its interpretation cI is equal to c.

Given a ground intensional set s of the form {X | p(X̄)}, its interpretation sI is
the set {a1, . . . , an} ⊆ HP , where (p(X̄)){X /ai}I is equal to true for 1 ≤ i ≤ n,
and no other value for X has such property.

Given a ground intensional multiset s of the form {{X | ∃Z̄ .p(X̄ , Z̄)}}, its interpre-
tation sI is the multiset {{a1, . . . , ak}} ∈ M(HP) where, for each 1 ≤ i ≤ k , there
is a ground substitution ηi for Z̄ such that p(X̄ , Z̄)γI

i is true for γi = ηi ∪ {X /ai},
and no other elements satisfy this property.

Given the aggregate term aggr(s), its interpretation is aggr I (sI), where

aggr I : 2HP ∪M(HP) → Z·

Given a ground ASPA atom p(t1, . . . , tn), its interpretation is pI (tI1 , . . . , t In), where
pI : Dn → {true, false}.
Given a ground aggregate atom ` of the form aggr(s) op Result , its interpretation
`I is true if opI (aggr(s)I ,ResultI) is true, where opI : Z× Z→ {true, false}.
We will assume that the traditional aggregate functions are interpreted in the usual
way. E.g., SumI is the function that maps a set/multiset of numbers to its sum,
and CountI is the function that maps a set/multiset of constants to its cardinal-
ity. Similarly, we assume that the traditional relational operators (e.g., ≤, 6=) are
interpreted according to their traditional meaning.

Given a literal not p, its interpretation (not p)I is true (false) iff pI is false (true).
Given an atom, literal, or aggregate atom `, we will denote with I |= ` the fact

that `I is true.

Definition 6 (Rule Satisfaction)
I satisfies the body of a ground rule r (denoted by I |= body(r)), if

(i) pos(r) ⊆ I ;
(ii) neg(r) ∩ I = ∅;
(iii) I |= c for every c ∈ agg(r).
I satisfies a ground rule r if I |= head(r) or I 6|= body(r).

Having specified when an interpretation satisfies an aggregate atom or a ASPA

rule, we can define the notion of model of a program.

Definition 7 (Model)
Let P be an ASPA program. An interpretation M is a model of P if M satisfies
every rule in ground(P).

In our view of interpretations, we assume that the interpretation of the aggregate
functions and relational operators is fixed. In this perspective, we will still be able
to keep the traditional view of interpretations as subsets of BP .

6 Tran Cao Son and Enrico Pontelli

Definition 8
M is a minimal model of P if M is a model of P and there is no proper subset of
M which is also a model of P .

We will now define a notion called aggregate solution. Observe that the satisfac-
tion of an ASP-atom a is monotonic, in the sense that if I |= a and I ⊆ I ′ then we
have that I ′ |= a. On the other hand, the satisfaction of an aggregate atom is possi-
bly non-monotonic, i.e., I |= ` and I ⊆ I ′ do not necessarily imply I ′ |= `. For exam-
ple, {p(1)} |= Sum({X | p(X)}) 6= 0 but {p(1), p(−1)} 6|= Sum({X | p(X)}) 6= 0.
The notion of aggregate solution allows us to define an operator where the mono-
tonicity of satisfaction of aggregate atoms is used in verifying an answer set.

Definition 9 (Aggregate Solution)
Let ` be a ground aggregate atom. An aggregate solution of ` is a pair 〈S1,S2〉 of
disjoint subsets ofH(`) such that, for every interpretation I , if S1 ⊆ I and S2∩I = ∅
then I |= `. SOLN (`) is the set of all the solutions of `.

It is obvious that if I |= ` then 〈I ∩H(`),H(`)\I 〉 is a solution of `. Let S = 〈S1,S2〉
be an aggregate solution of an aggregate atom; we denote with S.p and S.n the
two components S1 and S2 of the solution.

Example 2
Consider the aggregate atom Sum({X | p(X)}) > 10 from the program in Example
1. This atom has a unique solution: 〈{p(1), p(2), p(3), p(5)}, ∅〉. On the other hand,
the aggregate atom Sum({X | p(X)}) > 6 has the following solutions:

〈{p(3), p(5)}, ∅〉 〈{p(3), p(5)}, {p(1), p(2)}〉
〈{p(3), p(5)}, {p(1)}〉 〈{p(3), p(5)}, {p(2)}〉
〈{p(2), p(5)}, ∅〉 〈{p(2), p(5)}, {p(1), p(3)}〉
〈{p(2), p(5)}, {p(1)}〉 〈{p(2), p(5)}, {p(3)}〉
〈{p(1), p(2), p(5)}, ∅〉 〈{p(1), p(2), p(5)}, {p(3)}〉
〈{p(1), p(3), p(5)}, ∅〉 〈{p(1), p(3), p(5)}, {p(2)}〉
〈{p(1), p(2), p(3), p(5)}, ∅〉 〈{p(2), p(3), p(5)}, ∅〉
〈{p(2), p(3), p(5)}, {p(1)}〉

¤

3 A Fixpoint Operator based on Aggregate Solutions

In this section, we construct the semantics for ASPA programs, through the use
of a monotone and continuous fixpoint operator. For the sake of simplicity, we
will assume that programs, ASP-atoms, and aggregate atoms referred to in this
section are ground1. As we will show in Section 4.3, this fixpoint operator behaves
as the 3-valued immediate consequence operator of (Pelov et al. 2004) under certain
conditions (e.g., use of ultimate approximating aggregates).

1 A program P with variables can be viewed as a shorthand for ground(P).

A Constructive Semantic Characterization of Aggregates in ASP 7

Definition 10 (Reduct for ASPA Programs)
Let P be an ASPA program and let M be an interpretation. The reduct of P with
respect to M , denoted by MP , is defined as

MP = {head(r) ← pos(r), agg(r) | r ∈ ground(P), M ∩ neg(r) = ∅}
Observe that, for a program P without aggregates, the process of checking whether
M is an answer set (Gelfond and Lifschitz 1988) requires first computing the
Gelfond-Lifschitz reduct of P w.r.t. M (PM), and then verifying that M is the
least model of PM . This second step is performed by using the van Emden-Kowalski
operator TPM to regenerate M , by computing the least fixpoint of TPM . I.e., we
compute the sequence M0,M1,M2, . . . where M0 = ∅ and Mi+1 = TPM

(Mi). In
every step of regenerating M , an atom a is added to Mi+1 iff there is a rule in PM

whose head is a and whose body is contained in Mi . This process is monotonic, in
the sense that, if a is added to Mi , then a will belong to Mj for all j ≥ i .

Our intention is to define a TP -like operator for programs with aggregates. Specif-
ically, we would like to verify that M is an answer set of P by generating a monotone
sequence of interpretations M0 ⊆ M1 ⊆ . . . ⊆ Mn ⊆ . . . = M . To do so, we need
to specify when a rule of MP can be used, i.e., when an ASP/aggregate atom is
considered satisfied by Mi . We also need to ensure that, at each step i + 1, Mi+1

will still satisfy all ASP-atoms and the aggregate atoms that are satisfied by Mi .
This observation leads us to define the notion of conditional satisfaction of an

atom (ASP-atom or aggregate atom) over a pair of sets of atoms (I ,M)—where I
is an interpretation generated at some step of the verification process, and M is the
answer set that needs to be verified.

Definition 11 (Conditional Satisfaction)
Let ` be an ASP-atom or an aggregate atom, and I , M be two interpretations2. We
define the conditional satisfaction of ` w.r.t. I and M , denoted by (I ,M) |= `, as:
• if ` is ASP-atom, then (I ,M) |= ` ⇔ I |= `

• if ` is an aggregate atom, then
(I ,M) |= l ⇔ 〈I ∩M ∩H(`), H(`) \M 〉 is a solution of `

The first bullet says that an ASP-atom is satisfied by a pair (I ,M) if it is satisfied by
I . The second bullet states that I contains enough information of M to guarantee
that any successive expansion of I towards M will satisfy the aggregate. Conditional
satisfaction is naturally extended to conjunctions of atoms. The following lemma
trivially holds.

Lemma 1
Let ` be an ASP-atom or an aggregate atom and I , J ,M be interpretations such
that I ⊆ J . Then, (I ,M) |= ` implies (J ,M) |= `.

We are now ready to define the consequence operator for ASPA programs.

2 Recall that an interpretation is a set of atoms in BP .

8 Tran Cao Son and Enrico Pontelli

Definition 12 (Consequence Operator)
Let P be an ASPA program and M be an interpretation. We define the consequence
operator on P and M , called KP

M , as

KP
M (I) = { head(r) | r ∈ MP ∧ (I ,M) |= body(r) }

for every interpretation I of P .

By definition, we have that KP
M (I) = TP (I) for definite programs without aggregate

atoms. Thus, KP
M can be viewed as an extension of TP to the class of programs

with aggregates. The following lemma is a consequence of Lemma 1.

Lemma 2
Let P be a program and M be an interpretation. Then, KP

M is monotone and
continuous over the lattice 〈2BP ,⊆〉.
The above lemma allows us to conclude that the least fixpoint of KP

M , denoted by
lfp(KP

M), exists and it is equal to KP
M ↑ ω. Here, KP

M ↑ n denotes

KP
M (KP

M (. . . (KP
M︸ ︷︷ ︸

n−times KP
M

(∅) . . .)))

and KP
M ↑ ω denotes limn→∞KP

M ↑ n. We are now ready to define the concept of
answer set of an ASPA program.

Definition 13 (Fixpoint Answer Set)
Let P be an ASPA program and let M be an interpretation. M is a fixpoint answer

set of P iff M = lfp(KP
M).

Whenever it is clear from the context, we will simply talk about answer sets of P
instead of fixpoint answer sets.

Example 3
Let us continue with the program P from Example 1. Since P does not con-
tain negation-as-failure literals, MP = P for any interpretation M of P . Any
answer set of P must contain p(1), p(2), and p(3). We will now show that A =
{p(1), p(2), p(3)} is the unique fixpoint answer set of P . It is easy to see that

KP
A ↑ 0 = ∅

KP
A ↑ 1 = KP

A (KP
A ↑ 0) = {p(1), p(2), p(3)}

KP
A ↑ 2 = {p(1), p(2), p(3)} = KP

A ↑ 1

Thus, A is indeed a fixpoint answer set of P .
Let us consider B = {p(1), p(2), p(3), p(5), q}. We have that BP = P and it

is easy to verify that lfp(KP
B) = {p(1), p(2), p(3)}. Therefore, B is not a fixpoint

answer set of P . It is easy to check that no proper superset of A is a fixpoint answer
set of P , i.e., A is the unique answer set of P . ¤

In the next example, we show how this definition works when the programs contain
negation-as-failure literals.

A Constructive Semantic Characterization of Aggregates in ASP 9

Example 4
Let P be the program3:

p(a) ← Count({X | p(X)}) > 0
p(b) ← not q
q ← not p(b)

We will show now that the program has two answer sets A = {q} and B =
{p(b), p(a)}. We have that

• AP consists of the first rule and the fact q . The verification that A is an answer
set of P is shown next.

KP
A ↑ 0 = ∅

KP
A ↑ 1 = KP

A (KP
A ↑ 0) = {q}

KP
A ↑ 2 = {q} = KP

A ↑ 1

p(a) cannot belong to KP
A ↑ 1 since 〈∅, ∅〉 is not a solution of the aggregate

atom Count({X | p(X)}) > 0.
• BP consists of the first rule and the fact p(b).

KP
B ↑ 0 = ∅

KP
B ↑ 1 = KP

B (KP
B ↑ 0) = {p(b)}

KP
B ↑ 2 = {p(b), p(a)}

KP
B ↑ 3 = {p(b), p(a)} = KP

B ↑ 2

p(a) belongs to KP
B ↑ 2 since 〈{p(b)}, ∅〉 is a solution of the aggregate atom

Count({X | p(X)}) > 0.

It is easy to see that P does not have any other answer sets. ¤

4 Related Work and Discussion

In this section, we will relate our proposal to the unfolding semantics presented in
(Son et al. 2005) and to two other recently proposed semantics for programs with
aggregates4—i.e., the ultimate stable model semantics (Pelov et al. 2003; Pelov
et al. 2004; Pelov 2004) and the minimal answer set semantics (Faber et al. 2004).
We will also investigate some of the computational complexity issues related to
determining the fixpoint answer sets of ASPA programs.

4.1 Equivalence of Fixpoint Semantics and Unfolding Semantics

We will show that the notion of fixpoint answer set corresponds to the unfolding

semantics presented in (Son et al. 2005). To make this note self-contained, let us

3 We would like to thank Vladimir Lifschitz for providing us this example.
4 A detailed comparison between the semantics in (Son et al. 2005) and earlier proposals for

programs with aggregates can be found in the same report.

10 Tran Cao Son and Enrico Pontelli

recall the basic definition of the unfolding semantics. For a ground aggregate atom
c and an interpretation M , let

S(c,M) = {Sc | Sc ∈ SOLN (c), Sc.p ⊆ M , Sc.n ∩M = ∅}
Intuitively, S(c,M) is the set of solutions of c which are satisfied by M . For a solu-
tion Sc ∈ S(c,M), the unfolding of c in M w.r.t. Sc is the conjunction

∧
a∈Sc.p a.

We say that c′ is an unfolding of c with respect to M if c′ is an unfolding of c in
M with respect to some Sc ∈ S(c,M). When S(c,M) = ∅, we say that false is the
unfolding of c in M . The unfolding of a rule r ∈ ground(P) with respect to M is
the set of rules unfolding(r ,M) defined as follows:

1. If neg(r)∩M 6= ∅ or there is some c ∈ agg(r) such that false is the unfolding
of c in M then unfolding(r ,M) = ∅;

2. If neg(r) ∩M = ∅ and false is not the unfolding of c for every c ∈ agg(r),
then r ′ ∈ unfolding(r ,M) where

(a) head(r ′) = head(r)
(b) neg(r ′) = neg(r)
(c) there is a sequence of aggregate solutions 〈Sc〉c∈agg(r) for the aggregates

in agg(r), such that Sc ∈ S(c,M) for every c ∈ agg(r) and pos(r ′) =
pos(r) ∪⋃

c∈agg(r) Sc.p.

For a program P , unfolding(P ,M) denotes the set of unfolding rules of ground(P)
w.r.t. M . M is an ASPA-answer set of P iff M is an answer set of unfolding(P ,M).

This notion of unfolding derives from the work on unfolding of intensional sets (Dovier
et al. 2001), and has been independently described in (Pelov et al. 2003).

Lemma 3
Let c be an aggregate atom, let M be an interpretation, and let Sc be a solution
of c such that Sc ∈ S(c,M). Then, 〈Sc.p,H(c) \M 〉 is a solution of c.

Proof
Let us consider an interpretation I such that Sc.p ⊆ I and I ∩ (H(c) \M) = ∅.
Because Sc.n ⊆ H(c) \M , I ∩ Sc.n = ∅. Since Sc is a solution, I |= c. Since this
holds for every interpretation I satisfying Sc.p ⊆ I and I ∩ (H(c) \ M) = ∅, we
have that 〈Sc.p,H(c) \M 〉 is a solution of c.

Lemma 4
Let R = unfolding(P ,M). Then TR ↑ i = KP

M ↑ i for i ≥ 0.

Proof
Let us prove the result by induction on i .
Base: for i = 0, we have that TR ↑ 0 = ∅ = KP

M ↑ 0, and the result is obviously
true. Let us consider the case i = 1.

• Let p ∈ TR ↑ 1 = {` | (` ←) ∈ R}. If p ← is a fact in P , then it is also a fact in
MP . This means that p ← is an element of MP , and thus p is in KP

M ↑ 1. Otherwise,
there is a rule r in P , such that

A Constructive Semantic Characterization of Aggregates in ASP 11

- head(r) = p;
- pos(r) = ∅;
- neg(r) ∩M = ∅; and
- for each ` ∈ agg(r) we have that there exists a solution of ` of the form 〈∅, J 〉
such that M ∩ J = ∅.

The rule p ← agg(r) is a rule in MP . From Lemma 3 we can conclude that (∅,M) |=
agg(r), thus ensuring that p ∈ KP

M ↑ 1.
• Let p ∈ KP

M ↑ 1. Thus, there exists a rule r ′ ∈ MP such that (∅,M) |= body(r) and
head(r ′) = p. This means that there is a rule r ∈ P such that

- head(r) = head(r ′) = p;
- M ∩ neg(r) = ∅;
- pos(r) = ∅; and
- agg(r) = agg(r ′).

Since (∅,M) |= agg(r), we have that, for each c ∈ agg(r), 〈∅,H(c)\M 〉 is a solution
of c. This means that the rule p ← is in unfolding(P ,M). This also means that
p ∈ TR ↑ 1.

Step: Let us assume that the result holds for i ≤ k and consider the iteration k +1.
• Let p ∈ TR ↑ (k + 1) and p 6∈ TR ↑ k . Thus, there is a rule r ′ in R such that

- head(r ′) = p; and
- pos(r ′) ⊆ TR ↑ k .

This implies that there is a rule r ∈ P such that
- head(r) = p;
- pos(r) ⊆ TR ↑ k ;
- M ∩ neg(r) = ∅; and
- for each c ∈ agg(r), there is a solution Sc s.t. Sc.p ⊆ TR ↑ k and M ∩
Sc.n = ∅.

This also means that p ← pos(r), agg(r) is a rule in MP .
We already know that pos(r) ⊆ KP

M ↑ k . Now we wish to show that (KP
M ↑

k ,M) |= agg(r). Lemma 3 shows that, for each c ∈ agg(r), 〈Sc.p,H(c) \M 〉 is a
solution of c. This allows us to conclude that p ∈ KP

M ↑ (k + 1).
• Let p ∈ KP

M ↑ (k +1) and p 6∈ KP
M ↑ k . This means that there is a rule r ′ in MP

such that
- head(r ′) = p;
- pos(r ′) ⊆ KP

M ↑ k ; and
- (KP

M ↑ k ,M) |= body(r ′)
This also means that there is a rule r in P such that

- head(r) = head(r ′) = p;
- agg(r) = agg(r ′);
- pos(r) = pos(r ′);
- neg(r) ∩M = ∅; and
- for each c ∈ agg(r), Sc = 〈KP

M ↑ k ∩M ∩H(c),H(c) \M 〉 is a solution of
c.

12 Tran Cao Son and Enrico Pontelli

This means that there is a rule r ′′ in unfolding(P ,M) such that:
- head(r ′′) = p
- pos(r ′′) = pos(r) ∪⋃

c∈aggr Sc.p
Since each Sc.p ⊆ KP

M ↑ k = TR ↑ k for each c ∈ agg(r) and pos(r) ⊆ KP
M ↑ k =

TR ↑ k , we have that p ∈ TR ↑ (k + 1).

Theorem 1
Let P be a program with aggregates. M is an answer set of unfolding(P ,M) iff M
is a fixpoint answer set of P .

Proof
Let R = unfolding(P ,M). We have that M is an answer set of P iff M = TR ↑ ω

iff M = KP
M ↑ ω (Lemma 4).

The results from (Son et al. 2005) and Theorem 1 provide us a direct connection
between fixpoint answer sets and other semantics for logic programs with aggre-
gates.

4.2 Faber et al.’s Minimal Model Semantics

The notion of answer set proposed in (Faber et al. 2004) is based on a new notion
of reduct, defined as follows. Given a program P and a set of ASP-atoms M ,
the reduct of P with respect to M, denoted by Γ(M ,P), is obtained by removing
from ground(P) those rules whose body cannot be satisfied by M . In other words,
Γ(M ,P) = {r | r ∈ ground(P),M |= body(r)}.
Definition 14 (FLP-answer set, (Faber et al. 2004))
For a program P , M is an FLP-answer set of P if it is a minimal model of Γ(M ,P).

The following theorem derives directly from Theorem 1 and (Son et al. 2005).

Theorem 2
Let P be a program with aggregates. If M is a fixpoint answer set, then M is an
FLP-answer set of P .

Observe that there are cases where FLP-answer sets are not fixpoint answer sets.

Example 5
Consider the program P where

p(1) ← Sum({X | p(X)}) ≥ 0
p(−1) ← p(1)
p(1) ← p(−1)

It can be checked that M = {p(1), p(−1)} is an FLP-answer set of P . It is possible
to show that Sum({X | p(X)}) ≥ 0 has the following solutions: 〈∅, {p(1), p(−1)}〉,
〈{p(1)}, {p(−1)}〉, 〈{p(1)}, ∅〉, and 〈{p(1), p(−1)}, ∅〉.

We have that KP
M (∅) = ∅ since 〈∅, ∅〉 is not a solution of Sum({X | p(X)}) ≥ 0.

This implies that lfp(KP
M) = ∅. Thus, M is not a fixpoint answer set of P . It can

be easily verified that P does not have any fixpoint answer set. ¤

A Constructive Semantic Characterization of Aggregates in ASP 13

Remark 1
If we replace in P the rule p(1) ← Sum({X | p(X)}) ≥ 0 with the intuitively
equivalent Smodels weight constraint rule

p(1) ← 0[p(1) = 1, p(−1) = −1]

we obtain a program that does not have answer sets in Smodels.

The above example shows that our characterization differs from (Faber et al.
2004). Our definition is closer to Smodels’ understanding of aggregates.

4.3 Approximation Semantics for Logic Programs with Aggregates

The work of Pelov et al. (Pelov et al. 2003; Pelov 2004; Pelov et al. 2004) contains an
elegant generalization of several semantics of logic programs to logic programs with
aggregates. The key idea in this work is the use of approximation theory in defining
several semantics for logic programs with aggregates (e.g., two-valued semantics,
ultimate three-valued stable semantics, three-valued stable model semantics). In
particular, in (Pelov et al. 2004), the authors describe a fixpoint operator, called
Φappr

P , operating on 3-valued interpretations and parameterized by the choice of
approximating aggregates.

It is possible to show the following results:

• Whenever the approximating aggregate used in Φappr
P is the ultimate approx-

imating aggregate (Pelov et al. 2004), then the fixpoint semantics defined
by the operator KP

M coincides with the two-valued stable model semantics
defined by the operator Φappr

P .
• It is possible to prove a stronger result, showing that, if I ⊆ M then KP

M (I) =
Φaggr ,1

P (I ,M), where Φaggr ,1
P (I ,M) denotes the first component of Φaggr

P (I ,M).
In other words, when ultimate approximating aggregates are employed and
M is an answer set, then the fixpoint operator of Pelov et al. and KP

M behave
identically.

We will prove next the first of these two results. The proof of the second result
(kindly contributed by one of the anonymous reviewers) can be found in Appendix
A. We will make use of the translation of logic programs with aggregates to normal
logic programs, denoted by tr , described in (Pelov et al. 2003). The translation
in (Pelov et al. 2003) and the unfolding described in the previous subsection are
similar5.

For the sake of completeness, we will review the translation of (Pelov et al. 2003),
presented using the notation of our paper. Given a ground logic program with
aggregates P , tr(P) denotes the ground normal logic program obtained after the
translation. The process begins with the translation of each aggregate atom ` of the

5 It should be noted that our translation builds on our previous work on semantics of logic
programming with sets and aggregates (Dovier et al. 2001; Dovier et al. 2003; Elkabani et al.
2004) and was independently developed w.r.t. the work in (Pelov et al. 2003).

14 Tran Cao Son and Enrico Pontelli

form aggr(s) op Result into a disjunction tr(`) =
∨

FH(`)
(s1,s2)

, where s1 ⊆ s2 ⊆ H(`),

and each FH(`)
(s1,s2)

is a conjunction of the form
∧

l∈s1

l ∧
∧

l∈H(`)\s2
not l

The construction of tr(`) considers only the pairs (s1, s2) that satisfy the following
condition: each interpretation I such that s1 ⊆ I and H(`) \ s2 ∩ I = ∅ must satisfy
`. The translation tr(P) is then created by replacing rules with disjunction in the
body by a set of standard rules in a straightforward way. For example, the rule

a ← (b ∨ c), d

is replaced by the two rules

a ← b, d a ← c, d

From the definitions of tr(`) and of aggregate solutions, we have the following simple
lemma:

Lemma 5
For every aggregate atom ` of the form aggr(s) op Result , S is a solution of ` if
and only if FH(`)

(S.p,H(`)\S.n) is a disjunct in tr(`).

We next show that fixed point answer sets of P are answer sets of tr(P).

Lemma 6
For a program P , M is a fixpoint answer set of P iff M is an answer set of tr(P).

Proof
Let M be an interpretation of P and R = unfolding(P ,M). We have that R is a
positive program. Furthermore, let Q denote the result of the Gelfond-Lifschitz re-
duction of tr(P) with respect to M , i.e., Q = (tr(P))M . We will prove by induction
on k that if M is an answer set of Q then TQ ↑ k = TR ↑ k for every k ≥ 0. The
equation holds trivially for k = 0. Let us consider now the case for k , assuming
that TQ ↑ l = TR ↑ l for 0 ≤ l < k .

1. Consider p ∈ TQ ↑ k . This means that there exists some rule r ′ ∈ Q such that
head(r ′) = p and body(r ′) ⊆ TQ ↑ (k−1). r ′ ∈ Q if and only if there exists some r ∈
P such that r ′ ∈ tr(r). Together with Lemma 5, we can conclude that there exists
a sequence of aggregate solutions 〈Sc〉c∈agg(r) for the aggregate atoms in body(r)
such that pos(r ′) = pos(r)∪⋃

c∈agg(r) Sc.p, and (neg(r)∪⋃
c∈agg(r) Sc.n)∩M = ∅.

This implies that r ′ ∈ R. Together with the inductive hypothesis, we can conclude
that p ∈ TR ↑ k .

2. Consider p ∈ TR ↑ k . This implies that there exists some rule r ′ ∈ R such
that head(r ′) = p and body(r ′) ⊆ TR ↑ (k − 1). From the definition of R, we
conclude that there exists some rule r ∈ ground(P) and a sequence of aggre-
gate solutions 〈Sc〉c∈agg(r) for the aggregate atoms in body(r) such that pos(r ′) =
pos(r)∪⋃

c∈agg(r) Sc.p, and (neg(r)∪⋃
c∈agg(r) Sc.n)∩M = ∅. Using Lemma 5, we

can conclude that r ′ ∈ Q . Together with the inductive hypothesis, we can conclude
that p ∈ TQ ↑ k .

A Constructive Semantic Characterization of Aggregates in ASP 15

Similar arguments can be used to show that if M is an answer set of R, TQ ↑ k =
TR ↑ k for every k ≥ 0, which means that M is an answer set of Q .

In (Pelov et al. 2003), it is shown that answer sets of tr(P) coincide with the two-

valued partial stable models of P (defined by the operator Φaggr
P). This, together

with the above lemma and Theorem 1, allows us to conclude the following theorem.

Theorem 3
For a program with aggregates P , M is an fixpoint answer set of P if and only if it
is a fixpoint of the operator Φaggr

P of (Pelov et al. 2004).

4.4 Complexity Considerations

We will now discuss the complexity of computing fixpoint answer sets. In what
follows, we will assume that the program P is given and it is a ground program
whose language is finite. By the size of a program, we mean the number of rules and
atoms present in it, as in (Faber et al. 2004). Observe that, in order to support the
computation of the iterations of the KP

M operator, we need the ability to determine
whether a given 〈I , J 〉 is a solution of an aggregate atom. For this reason, we classify
programs with aggregates by the computational complexity of its aggregates. We
define a notion, called C -decidability, where C denotes a complexity class in the
complexity hierarchy, as follows.

Definition 15
Given an aggregate atom ` and an interpretation M , we say that ` is C -decidable

if its truth value with respect to M can be decided by an oracle of the complexity
C . A program P is called C -decidable if the aggregate atoms occurring in P are
C -decidable.

It is easy to see that aggregate atoms built using the standard aggregate functions
(Sum, Min, Max, Count, Avg) and relations (=, 6=,≥, >,≤, <) are polynomially
decidable. The solution checking problem is defined as follows.

Definition 16 ((SCP) Solution Checking Problem)
Given an aggregate atom `, its language extension H(`), and a pair of disjoint sets
I , J ⊆ H(`), Determine whether 〈I , J 〉 is a solution of `.

We have the following lemma.

Lemma 7
The SCP is in co-NPC for C -decidable aggregate atoms.

Proof
We will show that the complexity of the inverse problem of the SCP is in NPC ,
i.e., determining whether 〈I , J 〉 is not a solution of ` is in NPC .

By definition, 〈I , J 〉 is not a solution of ` if there exists an interpretation M such
that I ⊆ M , J ∩ M = ∅, and M 6|= `. To answer this question, we can guess an
interpretation M and check whether ` is false in M . If it is, we conclude that 〈I , J 〉

16 Tran Cao Son and Enrico Pontelli

is not a solution of `. Because ` is C -decidable and there are at most 2|H(`)\(I∪J)|

interpretations that can be used in checking whether 〈I , J 〉 is not a solution of `,
we conclude that the complexity of the inverse problem is in NPC .

We will now address the problem of answer set checking and determining the exis-
tence of answer set.

Definition 17 ((ACP) Answer Set Checking Problem)
Given an interpretation M of P , Determine whether M is an answer set of P .

Definition 18 ((AEP) Answer Set Existence Problem)
Given a program P , Determine whether P has a fixpoint answer set.

The following theorem follows from Lemma 7.

Theorem 4
The ACP of C -decidable programs is in co-NPC .

Proof
The main tasks in checking whether M is an answer set of P are (i) computing
MP ; and (ii) computing lfp(KP

M). Obviously, MP can be constructed in time linear
in the size of P , since the reduction relies on the satisfiability test of a negation-
as-failure literal ` w.r.t. M . Computing lfp(KP

M) requires at most na iterations,
i.e., lfp(KP

M) = KP
M ↑ na, where na is the number of atoms of P , each step is in

co-NPC , due to the requirement of solution checking.

This theorem allows us to conclude the following result.

Corollary 1
The AEP for C -decidable program is in NPco-NPC

.

So far, we discussed the worst case analysis of answer set checking and determining
the existing of an answer set based on a general assumption about the complexity of
computing the aggregate functions and checking the truth value of aggregate atoms.
Next we analyze the complexity of these problems w.r.t. the class of programs whose
aggregate atoms are built using standard aggregate functions and operators.

4.4.1 Complexity of Solution Checking for Standard Aggregates

We will now focus on the class of programs defined in Section 2 with standard
aggregate functions (Sum, Min, Max, Count, Avg) and relations (=, ≥, >,
≤, <, 6=). It is easy to see that all aggregate atoms involving these functions and
relations are P-decidable. Therefore, by Lemma 7, the SCP for standard aggregates
will be at most co-NP. We will now show that it is co-NP-complete.

Theorem 5
The SCP for standard aggregates is co-NP-complete.

A Constructive Semantic Characterization of Aggregates in ASP 17

Proof
Membership follows from Lemma 7. To prove hardness, we will translate a well-
known NP-complete problem, namely the subset sum problem (Cormen et al.
2001), to the complement of the solution checking problem. An instance Q of the
subset sum problem is given by a set of non-negative integers S and an integer t ,
and the question is to determine whether there exists any non-empty subset A of
S such that

∑
x∈A x = t .

Let H(`) = {p(x) | x ∈ S} for some unary predicate p. We define an instance of
the solution checking problem, s(Q), by setting I = ∅, J = ∅, and ` = Sum({X |
p(X)}) 6= t . It is easy to see that s(Q) is equivalent to Q as follows: if 〈I , J 〉 is a
solution of ` then Q does not have an answer; if 〈I , J 〉 is not a solution to ` then
Q has an answer. This proves the desired result.

The above theorem shows that, in general, the inclusion of standard aggregates
implies that the answer set checking problem and the problem of determining the
existing of an answer set are in co-NP and NPco-NP respectively. Fortunately,
there is a large class of programs with standard aggregates for which the complexity
of these two problems are in P and NP respectively, as shown next.

Lemma 8
Let ` be an aggregate of the form Sum({X | p(X)}) = v , where v is a constant
in R. Let I , J ⊆ H(`) such that I ∩ J = ∅. Then, determining whether 〈I , J 〉 is a
solution of ` can be done in time polynomial in the size of H(`).

Proof
Let us denote with π the function that projects an element p of H(`) to the value
that p assigns to the collected variable. This value will be denoted by π(p). We
prove the lemma by providing a polynomial algorithm for determining whether
〈I , J 〉 is a solution of `.

1: function Check Solution (v , 〈I , J 〉, H(`))
2: compute s = Σp∈I π(p)
3: if s 6= v then return false
4: if H(`) \ (I ∪ J) = ∅ then return true;
5: forall (p ∈ H(`) \ (I ∪ J))
6: if π(p) 6= 0 then return false
7: endfor
8: return true

It is easy to see that the above algorithm returns true (resp. false) if and only if
〈I , J 〉 is (resp. is not) a solution of `. Furthermore, the time complexity of the above
algorithm is polynomial in the size of H(`). This proves the lemma.

The above lemma shows that the solution checking problem can be solved in
polynomial time for a special type of standard aggregate atoms. Indeed, this can
be proven for all standard aggregates but those of the form Sum 6= v and Avg 6= v .

18 Tran Cao Son and Enrico Pontelli

Lemma 9
Let ` be the aggregate agg(s) op v where agg 6∈ {Sum, Avg} or agg ∈ {Sum, Avg}
and op is not ‘ 6=’. Let I , J ⊆ H(`), I ∩ J = ∅, and v ∈ R. Then, checking if 〈I , J 〉
is a solution of ` can be done in time polynomial in the size of H(`).

Proof
The proof can be done similarly to the proof of Lemma 8: for each type of atom,
we develop an algorithm, which returns true (resp. false) if 〈I , J 〉 is (resp. is not)
a solution of `. For brevity, we only discuss the steps which need to be done. It
should be noted that each of these steps can be done in polynomial time in the size
of H(`), which implies the conclusion of the lemma.

• Sum: Let s =
∑

p∈I π(p). All cases can be handled in time O(|H(`)|). Let us
consider the various cases for op.

• The case op is ’=’ has been discussed in Lemma 8.
• For op ∈ {≥, >}, let H1 = {p | p ∈ H(`) \ (I ∪ J), π(p) < 0}. We have that
〈I , J 〉 is a solution of ` if and only if s op v and

∑
p∈H1

π(p) + s op v .
• For op ∈ {≤, <}, let H1 = {p | p ∈ H(`) \ (I ∪ J), π(p) > 0}. We have that
〈I , J 〉 is a solution of ` if and only if s op v and

∑
p∈H1

π(p) + s op v .
• Count: Let c = |I | and H1 = H(`) \ (I ∪ J). All cases can be handled in time

O(|H(`)|).
• If op ∈ {>,≥}, then 〈I , J 〉 is a solution of ` if and only if c op v .
• If op ∈ {=, <,≤}, then 〈I , J 〉 is a solution of ` if and only if c op v and
c + |H1| op v .
• If op is 6=, then 〈I , J 〉 is a solution of ` if and only if either (i) |I | > v ; or
(ii) |I | < v and |H1| < v − |I |.

• Min: Let c = min{π(p) | p ∈ I } and c1 = min{π(p) | p ∈ H(`) \ (I ∪ J)}. All cases
can be handled in time O(|H(`)|).

• If op is = then we have that 〈I , J 〉 is a solution of ` if and only if c = v and
c1 ≥ v .
• If op ∈ {≤, <} then 〈I , J 〉 is a solution of ` if and only if c op v .
• If op ∈ {≥, >} then 〈I , J 〉 is a solution of ` if and only if c op v and c1 op v .
• If op is 6= then 〈I , J 〉 is a solution of ` if and only if either (i) c < v ; or (ii)

c > v and for every p ∈ H1, π(p) 6= v .
• Max: Let c = max{π(p) | p ∈ I } and c1 = max{π(p) | p ∈ H(`) \ (I ∪ J)}. All

cases can be handled in time O(|H(`)|).
• If op is = then 〈I , J 〉 is a solution of ` if and only if c = v and c1 ≤ v .
• If op ∈ {≥, >} then 〈I , J 〉 is a solution of ` if and only if c op v .
• If op ∈ {≤, <} then 〈I , J 〉 is a solution of ` if and only if c op v and c1 op v .
• If op is 6= then 〈I , J 〉 is a solution of ` if and only if either (i) c > v ; or (ii)

c < v and for every p ∈ H1, π(p) 6= v .

• Avg: Let a =
∑

p∈I {π(p)}
|I | and H1 = H(`) \ (I ∪ J).

• If op is = then 〈I , J 〉 is a solution of ` if and only if a = v and for every
p ∈ H1, π(p) = v . This can be done in time O(|H(`)|).

A Constructive Semantic Characterization of Aggregates in ASP 19

• If op ∈ {≥, >} then let e1, . . . , er be an enumeration of H1 such that π(ei) ≤
π(ei+1) for 1 ≤ i ≤ r − 1. 〈I , J 〉 is a solution of ` if and only if a op v and
for each 0 ≤ h ≤ r ,

∑

p∈I

π(p) +
h∑

i=1

π(ei) op v · |I |+ v · h·

This can be accomplished in time O(|H(`)|2).
• If op ∈ {≤, <} then let e1, . . . , er be an enumeration of H1 such that π(ei) ≥
π(ei+1) for 1 ≤ i ≤ r − 1. 〈I , J 〉 is a solution of ` if and only if a op v and
for each 0 ≤ h ≤ r ,

∑

p∈I

π(p) +
h∑

i=1

π(ei) op v · |I |+ v · h·

This can be accomplished in time O(|H(`)|2).

The above lemma shows that there is a large class of programs with aggregates for
which the problem of checking an answer set and the problem of determining the
existence of an answer set belongs to the class P and NP respectively.

Observe that similar results can be extrapolated from the discussion in Pelov’s
doctoral dissertation (Pelov 2004).

5 Conclusions and Future Work

In this technical note, we defined KP
M , a fixpoint operator for verifying answer sets

of programs with aggregates. We showed that the semantics for programs with ag-
gregates described by this operator provides a new characterization of the semantics
of (Son et al. 2005) for logic programs with aggregates. This operator converges to
the same semantics as in (Pelov 2004) when ultimate approximating aggregates are
used. We also related this semantics to recently proposed semantics for aggregate
programs. We discussed the complexity of the answer set checking problem and the
problem of determining the existence of an answer set. We showed that, for the
class of programs with standard aggregates without the relation 6= for Sum and
Avg, the complexity of these two problems remains unchanged comparing to that
of normal logic programs. In the future, we would like to use this idea in an efficient
implementation of answer set solvers with aggregates.

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments
and for pointing out relationships with existing literature, and Dr. Hing Leung for
his suggestions.

The research has been partially supported by NSF grants HRD-0420407, CNS-
0454066, and CNS-0220590.

20 Tran Cao Son and Enrico Pontelli

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. 2001. Introduction to
Algorithms, 2nd Edition. MIT Press, Cambridge, MA.

Dovier, A., Pontelli, E., and Rossi, G. 2001. Constructive negation and constraint
logic programming with sets. New Generation Comput. 19, 3, 209–256.

Dovier, A., Pontelli, E., and Rossi, G. 2003. Intensional Sets in CLP. In International
Conference on Logic Programming, Springer, 284–299.

Elkabani, I., Pontelli, E., and Son, T. C. 2004. Smodels with CLP and its Ap-
plications: a Simple and Effective Approach to Aggregates in ASP. In International
Conference on Logic Programming, Springer, 73–89.

Faber, W., Leone, N., and Pfeifer, G. 2004. Recursive Aggregates in Disjunctive
Logic Programs: Semantics and Complexity. In JELIA, Springer, 200–212.

Gelfond, M. 2002. Representing Knowledge in A-Prolog. In Computational Logic: Logic
Programming and Beyond, Springer Verlag, 413–451.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Program-
ming. In International Conf. and Symp. on Logic Programming, MIT Press, 1070–1080.

Kemp, D. B. and Stuckey, P. J. 1991. Semantics of Logic Programs with Aggregates.
In ISLP, MIT Press, 387–401.

Lloyd, J. 1987. Foundations of Logic Programming. Springer Verlag.

Mumick, I. S., Pirahesh, H., and Ramakrishnan, R. 1990. The Magic of Duplicates
and Aggregates. In Int. Conf. on Very Large Data Bases, Morgan Kaufmann, 264–277.

Pelov, N. 2004. Semantic of Logic Programs with Aggregates. Ph.D. thesis, Katholieke
Universiteit Leuven.

Pelov, N., Denecker, M., and Bruynooghe, M. 2003. Translation of Aggregate Pro-
grams to Normal Logic Programs. In ASP: Advances in Theory and Implementation,
CEUR Workshop Proceedings. 29–42.

Pelov, N., Denecker, M., and Bruynooghe, M. 2004. Partial Stable Models for Logic
Programs with Aggregates. In LPNMR, Springer, 207–219.

Ross, K. A. and Sagiv, Y. 1997. Monotonic Aggregation in Deductive Database. J.
Comput. Syst. Sci. 54, 1, 79–97.

Son, T. C., Pontelli, E., and Elkabani, I. 2005. A Translational Semantics for Aggre-
gates in Logic Programming . Tech. Rep. CS-2005-006, New Mexico State University.
www.cs.nmsu.edu/CSWS/php/techReports.php?rpt_year=2005.

Zaniolo, C., Arni, N., and Ong, K. 1993. Negation and Aggregates in Recursive Rules:
the LDL++ Approach. In DOOD. 204–221.

Appendix A — Correspondence between KP
M and Φaggr

P

We assume that the readers are familiar with the notations and definitions intro-
duced in (Pelov et al. 2004).

The three-valued immediate consequence operator Φaggr
P of a program P in (Pelov

et al. 2004), maps 3-valued interpretations to 3-valued interpretations. But 3-valued
interpretations can be split up in pairs (I , J) of two valued interpretations such that
I ⊆ J . Hence, an operator Φaggr

P can be viewed as an operator from pairs (I , J)
to pairs Φaggr

P (I , J) = (I ′, J ′) of 2-valued interpretations. It follows that Φaggr
P

determines two component operators Φaggr ,1
P (I , J) = I ′ and Φaggr ,2

P (I , J) = J ′.
The correspondence between KP

M and Φaggr
P is shown in the following claim.

Claim. For every I ⊆ M , KP
M (I) = Φaggr ,1

P (I ,M).

A Constructive Semantic Characterization of Aggregates in ASP 21

Proof
First, let us identify the aggregate atoms agg(s) op v in this paper with aggregate
atoms R(s, v) of (Pelov et al. 2004). E.g., Max(s) = v corresponds to Max(s, v);
Max(s) ≤ v corresponds to Max≤(s, v). Now we compare the definition of KP

M

and Φaggr ,1
P in the case that I ⊆ M . For simplicity let us assume that atom a is

defined by only one ground rule, say r .
a ∈ KP

M (I) iff pos(r) is true in I , neg(r) is false in M , and for each ` ∈ aggr(r),
l has a solution (I ∩M ∩H(`),H(`) \M).

a ∈ Φaggr ,1
P (I ,M) iff pos(r) is true in I , neg(r) is false in M , and for each

` ∈ aggr(r), l evaluates to true, i.e., if U 1
R(s(I ,M))) = t . Here, U 1

R is the first
component of the three-valued aggregate, and s(I ,M) is the evaluation of the set
expression under the 3-valued interpretation (I ,M).

All that remains to be done is to show that (I ∩M ∩H(`),H(`)\M) is a solution
for l iff U 1

R(s(I ,M)) = t . Recall that we are considering the case where I ⊆ M ,
therefore the first expression simplifies to (I ∩H(`),H(`) \M).

Let us focus on set aggregates but the argument for multisets is the same. Let
us consider an aggregate atom

` = agg(s) op v

where

s = {X | p(d1, . . . , di−1,X , di+1, . . . , dn)}
and X is the only variable and d1, . . . , dn are members of the Herbrand universe.
For any I ⊆ M ,

(I ∩H(`),H(`) \M) is a solution for `

iff for each J such that I ∩H(`) ⊆ J and J ∩ (H(`) \M) = ∅, J |= `

iff for each J such that I ⊆ J ⊆ M , J |= `.

The latter equivalence is perhaps not entirely trivial but it follows easily from the
fact that J |= ` ⇔ J ′ |= ` whenever J ∩H(`) = J ′ ∩H(`).

In (Pelov et al. 2004), the value s(I ,M) is a three-valued (multi-)set, which can
be written as a pair of two valued sets (S1,S2) where

S1 = {d | I |= p(d1, . . . , di−1, d , di+1, . . . , dn)}
and

S2 = {d | M |= p(d1, . . . , di−1, d , di+1, . . . , dn)}·
By definition of U 1

R, U 1
R(s(I ,M))) = t iff for each set S such that S1 ⊆ S ⊆ S2,

R(S , v) is true. It is straightforward to see that the conditions in this paragraph
and the previous one are equivalent.

