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A cross-comparison of field, spectral, and

lidar estimates of forest canopy cover

Alistair M.S. Smith, Michael J. Falkowski, Andrew T. Hudak, Jeffrey S. Evans,
Andrew P. Robinson, and Caiti M. Steele

Abstract. A common challenge when comparing forest canopy cover and similar metrics across different ecosystems is that

there are many field- and landscape-level measurement methods. This research conducts a cross-comparison and evaluation

of forest canopy cover metrics produced using unmixing of reflective spectral satellite data, light detection and ranging

(lidar) data, and data collected in the field with spherical densiometers. The coincident data were collected across a

~25 000 ha mixed conifer forest in northern Idaho. The primary objective is to evaluate whether the spectral and lidar canopy

cover metrics are each statistically equivalent to the field-based metrics. The secondary objective is to evaluate whether the

lidar data can elucidate the sources of error observed in the spectral-based canopy cover metrics. The statistical equivalence

tests indicate that spectral and field data are not equivalent (slope region of equivalence = 43%). In contrast, the lidar and field

data are within the acceptable error margin of most forest inventory assessments (slope region of equivalence = 13%). The

results also show that in plots where the mean lidar plot heights are near zero, each of modeled remotely sensed estimates

continues to report canopy cover >21% for lidar and >30% for all investigated spectral methods using near-infrared bands.

This suggests these metrics are sensitive to the presence of herbaceous vegetation, shrubs, seedlings, saplings, and other

subcanopy vegetation.

Résumé. Un défi rencontré fréquemment en comparant les mesures du couvert forestier ou autres mesures semblables à

travers différents écosystèmes vient du fait qu’il existe plusieurs méthodes de mesure sur le terrain ainsi qu’au niveau du

paysage. Dans cette recherche, on compare et on évalue les mesures du couvert forestier réalisées à l’aide de trois approches

différentes, c.-à-d. le démixage des données spectrales satellitaires, les données lidar (« light detection and ranging ») et

l’acquisition de données sur le terrain avec des densitomètres sphériques. Des données simultanées ont été acquises sur

l’ensemble d’une forêt mixte de conifères de ~25 000 ha dans le nord de l’Idaho. L’objectif premier est d’évaluer si les

mesures du couvert à l’aide des données spectrales et lidar sont statistiquement équivalentes par rapport aux mesures sur le

terrain. Le second objectif est d’évaluer si les données lidar peuvent élucider les sources d’erreur observées dans les

mesures du couvert dérivées des mesures spectrales. Les tests d’équivalence statistique indiquent que les données spectrales

et de terrain ne sont pas équivalentes (région d’équivalence de la pente = 43 %). Par contre, les données lidar et de terrain se

situent à l’intérieur de la marge d’erreur acceptable de la plupart des évaluations d’inventaires forestiers (région

d’équivalence de la pente = 13 %). Les résultats montrent également que, dans les parcelles où les hauteurs lidar moyennes

sont près de zéro, chacune des estimations modélisées par télédétection continue de donner un couvert de >21 % pour le

lidar et de >30 % pour toutes les méthodes spectrales analysées en utilisant les bandes du moyen infrarouge. Ceci laisse

supposer que ces mesures sont sensibles à la présence de végétation herbacée, d’arbustes, de semis, de gaules ou d’autre

végétation présente sous le couvert.

[Traduit par la Rédaction]

Smith et al 459Introduction

Forest canopy cover (CCForest), which is commonly defined

as a projection of the vertical profile of canopy foliage onto a

horizontal plane (Fiala et al., 2006), is a useful metric for

several biophysical and natural resource management

applications (Hopkinson and Chasmer, 2009). These

application areas include the assessment of wildlife habitat

(Koy et al., 2005; Fiala et al., 2006), parameterization of fire

behavior simulation models (Finney, 1998), characterization of

carbon pools and sources (Chopping et al., 2008),

quantification of canopy light transmission (Lieffers et al.,
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1999), and ecosystem structure classification (Lovell et al.,

2003; Fiala et al., 2006; Lee and Lucas 2007), among others

(Fiala et al., 2006; Chopping et al., 2008). Furthermore, the

United Nations Food and Agriculture Organization (FAO)

definition of forest includes a canopy cover parameter, and

therefore improvement of such estimates is of global

significance, especially in areas with a high canopy cover

(FAO, 2000).

One of the challenges with comparing canopy cover

estimates across studies or ecosystems is the number of field-

and landscape-level measurement methods that exist. As

outlined in recent studies, field-based measurement of CCForest

can be obtained using a wide range of equipment, including

hemispherical photography, spherical densiometers, the

moosehorn densitometer, point counts, stem maps, and line

intercept methods (Fiala et al., 2006; Korhonen et al., 2006).

An important distinction between these field methods is that

hemispherical photographs and spherical densiometers

integrate information from the sky hemisphere over a single

point on the ground, which could be considered as a measure of

canopy closure, whereas the other field methods measure

canopy presence–absence above a spatially distributed two-

dimensional (2D) sample of points on the ground, which is a

measure of canopy cover (Jennings et al., 1999). Furthermore,

light detection and ranging (lidar) data add a third dimension to

the problem by including a distribution of points within a three-

dimensional (3D) volume of space above the ground, perhaps

making the term canopy density more appropriate. Clearly

these different terms are confusing, especially given their

slightly different interpretations, requiring a need for ease and

consistency. Therefore, throughout this paper we use the term

CCForest to describe each metric.

Landscape-level assessments of CCForest often rely on

satellite and aircraft sensor imagery or, more recently, laser

altimetry and light detection and ranging (lidar) data. From the

perspective of these landscape-level remote sensing

approaches, two types of canopy cover estimates are commonly

derived: metrics describing the 2D horizontal extent of canopy,

which is often expressed for a given cover type as a percentage

of pixels (Asner et al., 2003; Falkowski et al., 2005), subpixel

proportions (Pu et al., 2003; Xu et al., 2003; Sommers et al.,

2009), and discrete image objects (Greenberg et al., 2005;

Strand et al., 2006; 2008; Smith et al., 2008); or as 3D lidar

metrics that represent the transmission of light through the

canopy (Means et al., 1999; Chen et al., 2004; Hyde et al.,

2005; Lefsky et al., 2005; Hopkinson and Chasmer, 2009).

A range of metrics have been proposed for lidar data to

represent CCForest in forested ecosystems, including simple

binary classifications of rasterized lidar data (i.e., pixel

contains a canopy return or pixel does not contain a canopy

return) (Chen et al., 2004) and other lidar metrics that relate to

the proportion of returns penetrating the canopy (Hopkinson

and Chasmer, 2009). Previous lidar studies have also evaluated

the relationships between the mean and maximum lidar heights

at a given plot with field-derived CCForest (Thomas et al., 2006;

Hopkinson and Chasmer, 2009) to investigate the potential of

modeling CCForest at landscape scales. However, Hopkinson

and Chasmer (2009) observed poor relationships when using

lidar-derived maximum plot heights to predict CCForest. This

may be due to skewed perspectives of the overall structure of a

plot, especially if remnant, open-grown–isolated trees or single

dominant trees are present; stronger relationships have been

noted when using mean lidar plot heights (Thomas et al., 2006).

Although many studies have attempted to characterize

CCForest via spectral remote sensing, few have compared the

remotely derived CCForest estimates with coincident field

measurements (e.g., Falkowski et al., 2005). Instead, datasets

with higher spatial resolution (1–4 m pixel size) have been

employed to validate estimates of CCForest derived from coarser

resolution spectral data (Pu et al., 2003; Xu et al., 2003). In

contrast, studies deriving CCForest from lidar data often compare

lidar estimates with coincident field measurements (Magnussen

and Boudewyn, 1998; Riano et al., 2004a; 2004b; Morsdorf et

al., 2006; Hopkinson and Chasmer, 2009). This is largely due to

the desire to augment traditional forest inventories with lidar

data, which requires the collection of coincident field inventory

data.

Lidar data have proven useful for estimating CCForest;

however, because of logistical and financial constraints

associated with acquiring lidar data across large areas, lidar-

based characterizations of canopy metrics are often limited in

spatial extent. Spectral remote sensing datasets (e.g., the

Landsat series) have also been employed to estimate CCForest.

However, the insensitivity of these spectral datasets to the 3D

structure of vegetation canopies (Falkowski et al., 2005) often

degrades the relationship between CCForest and metrics

calculated from the spectral data (e.g., band ratios or vegetation

indices). A further challenge when using spectral indices is that

they will always produce poorer relationships than those

produced simply using a multiple regression of the individual

bands (Lawrence and Ripple, 1998). Nevertheless, the

affordability and large area availability of spectral datasets still

make them an attractive data source for characterizing CCForest

across large spatial extents. Prior to using any spectral dataset

to estimate CCForest across large spatial extents, the relationship

between the remotely sensed data and three-dimensional forest

structure must be quantified and understood.

In addition to conducting a spectral, lidar, and field cross-

comparison of CCForest, the research presented in this paper also

aims to quantify the relationship between spectral remotely

sensed data and the 3D structure of forest canopies. This is

primarily achieved by comparing estimates of CCForest derived

from imagery obtained using the nadir bands of the Advanced

Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) with lidar metrics describing the 3D structure of

forest canopies. Understanding the magnitude and source of

errors in CCForest metrics produced from ASTER imagery will

enable an evaluation of the potential uncertainties within

landscape- to global-level remote sensing products (e.g.,

LANDFIRE and FAO products) that use or produce similar

metrics. This study seeks to answer the following specific

questions: (1) Are CCForest estimates derived from both spectral

448 © 2009 CASI
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imagery and lidar data statistically equivalent to coincident

field measurements of CCForest? (2) Can lidar metrics

characterizing the 3D distribution of forest canopies be used to

evaluate the source of errors in CCForest estimates derived from

spectral imagery?

Methods

Study area and field measures

This study is centered on Moscow Mountain (Figure 1),

which is located northeast of the city of Moscow, Idaho, USA

(latitude 46°44′N, longitude 116°58′W). The site contains

~25 000 ha of mixed-conifer forest, with species predominately

including Pseudotsuga menziesii (Douglas-fir), Abies grandis

(grand fir), Pinus ponderosa (ponderosa pine), Thuja plicata

(western red-cedar), Pinus contorta (lodgepole pine), Larix

occidentalis (western larch), and Picea engelmannii

(Engelmann spruce). As remarked in previous studies

(Falkowski et al., 2005; 2006), this forest is an ideal location to

evaluate the remote sensing of forest structure, given that it

exhibits a wide variety of forest structure conditions arising

from both a rich history of diverse land use management

practices and topographically diverse conditions. In a previous

study, 84 forest inventory plots were located via a two-stage

(stratified systematic) sample design (Falkowski et al., 2005).

This design sampled along a leaf area index (LAI) gradient,

produced using an independent Landsat Thematic Mapper

(TM) acquisition, within elevation and solar insolation strata to

ensure that plots encompassed the full range of species

composition and forest structure in the study area (Falkowski et

al., 2005). This sampling design with the LAI gradient was

previously presented and applied in other studies (e.g.,

Pocewicz et al., 2004) and enabled a range of canopy cover and

structure conditions to be represented.

Each plot center was recorded with a Trimble ProXR global

positioning system with a minimum of 150 logged positions

that were subsequently differentially corrected and then

averaged (accuracy ±0.8 m horizontally and ±1.1 m vertically).

An intensive forest inventory was conducted at each of the 84

plots. Each plot had a fixed radius of 11.35 m, which represents

a 0.04 ha (0.1 acre) plot commonly used for forest inventory

assessment. Plot-level CCForest was estimated at each plot by

averaging four spherical densiometer measurements collected

at each corner of the forest inventory plot (north, south, east,

west). Calculation of plot-level CCForest with spherical

densiometers is a relatively simple field procedure. The

densiometer has a convex mirror with 24 etched squares, each

of which the user has to visually subdivide into four subsquares

(or imagine four dots in the center of each subsquare). The user

then holds the densiometer flat, away from their person at a

consistent height (~1.5 m in this case), and counts the number

of subsquares predominately occupied by “sky.” This number is

subtracted from the total number of subsquares (96) and

multiplied by 1.04 to produce the measure of CCForest. The

standard deviation of the four densitometer-derived canopy

cover measurements across all plots varied between 0% and

47%, with an average of 17%. In this study these CCForest

measures were considered the best available ground-truth

dataset.

ASTER imagery acquisition and preprocessing

A level 1B (registered radiance at the sensor) ASTER image

(acquired on 10 September 2002), encompassing the entire

study area (Figure 1), was used in this study. Following Rowan

and Mars (2003), who observed that the ASTER surface

reflectance product (AST_07) exhibited high errors in

topographically complex landscapes, the level 1B imagery was

converted into top-of-atmosphere (TOA) reflectance and

atmospherically corrected using the standard method of “dark

body subtraction” using the minimum band pixel values as

selected by the ENVI software package (RSI, Boulder, Colo.).

Although the application of radiosonde data or the empirical

line method of atmospheric correction would have been

preferred, we applied dark body subtraction, given the

retrospective nature of the image analysis and the ease of

replicating this methodology and because both low

atmospheric water content and clear skies were reported at the

time of acquisition (Falkowski et al., 2005). We acknowledge

that the use of this relatively simple atmospheric correction

approach may account for increased error in the spectral data.

In this study we only used the nadir-view reflective ASTER

bands. The backward-pointing oblique near-infrared band

(band 3B) was not employed in this analysis. The spatial

resolutions of the ASTER bands are 15 m for the visible to

near-infrared bands and 30 m for the longer reflective infrared

bands. In this study, all these nonthermal bands were resampled

to retain the highest spatial resolution (i.e., 15 m). The ASTER

sensor is onboard the TERRA satellite, which flies in a near-

polar sun-synchronous orbit, with orbit parameters (apart from

a 30 min flight lag time) identical to those of the Landsat-7

Enhanced Thematic Mapper (ETM) sensor (Abrams and Hook,

1998). Given the identical optics, we decided to analyze the

spectral data in the same manner as that of prior Landsat

spectral unmixing studies (Hudak et al., 2007; Smith et al.,

2007; Lentile et al., 2009).

The ASTER bands were converted to radiance using the unit

conversion coefficients from version 1 of the ASTER user

handbook (Abrams and Hook, 1998). TOA reflectance was

then calculated using a standard radiance to reflectance

equation (Chander and Markham, 2003) with the ASTER mean

solar exoatmospheric irradiances calculated for each ASTER

band by convolving the spectral response function of each

ASTER band with the world radiation center (WRC) data of the

extraterrestrial solar spectral irradiance function (WRC values

can be obtained online at http://staff.aist.go.jp/s.tsuchida/aster/

cal/info/solar) (Table 1).

CCForest was estimated from the processed ASTER image via

linear spectral unmixing (also termed mixture modeling). The

linear spectral unmixing model is expressed by the following

equation (Cochrane and Souza, 1998; Hudak et al., 2007):

© 2009 CASI 449
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R r f ei i j j i
j

n

= +
=

∑ ( ),
1

(1)

where Ri is the spectral reflectance for the ith band of a pixel, ri,j

is the spectral reflectance of endmember j in band i, fj is the

fraction of endmember j in band i, and ei is the error or

unknown noise within the pixel. The subpixel proportions are

then calculated by inverting Equation (1) and applying a least

squares solution. The full mathematical theory can be found

within the extensive linear spectral unmixing theory in the

literature (Johnson et al., 1985; Smith et al., 1985; Drake and

White, 1991; Drake et al., 1999; Theseira et al., 2003).

450 © 2009 CASI
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Figure 1. Forest fraction map derived from linear spectral unmixing of ASTER image acquired on 10 September

2002. The asterisks denote the location of the field plots. Image is adapted from Falkowski et al. (2005).

Band Bandwidth (µm)
Spatial

resolution (m)

Solar exoatmospheric irradiance of

band λ, ESUNλ
a

This studyb Thome et al., 2001c

1 0.520–0.600

(green)

15 1846 1847, 1848

2 0.630–0.690

(red)

15 1556 1553, 1549

3 0.760–0.860

(NIR)

15 1120 1118, 1114

4 1.600–1.700 30 231.3 232.5, 225.4

5 2.145–2.185 30 79.8 80.3, 86.6

6 2.185–2.225 30 75.0 74.9, 81.9

7 2.235–2.285 30 68.7 69.2, 74.9

8 2.295–2.365 30 59.7 59.8, 66.5

9 2.360–2.430 30 56.9 57.3, 59.9

10 8.125–8.475 90 na na

11 8.475–8.825 90 na na

12 8.925–9.275 90 na na

13 10.250–10.950 90 na na

14 10.950–11.650 90 na na

Note: Bands 1–9 were used in this study. na, not applicable.
aCalculated by interpolating the ASTER spectral response functions to 1 nm and convolving them with the

1 nm step WRC data.
bThis information was originally presented as part of an online ASTER conversion by the authors and has

been used in other studies (e.g., Yuksel et al. 2008).
cCalculated using spectral irradiance values derived using MODTRAN.

Table 1. ASTER specifications.



Linear spectral unmixing was performed using the four

image spectral endmembers of forest, shrub, grass–meadow,

and soil. Following Johnson et al. (1992), Theseira et al.

(2003), and others, these endmembers were obtained by

(i) resampling each ASTER visible to shortwave infrared band

to 15 m, (ii) performing principal components analysis on all

the resampled ASTER bands, (iii) producing scatterplots of the

first four principal component outputs, and (iv) matching

vertices on these scatterplots with pixels to known locations of

the four cover types within the ASTER imagery.

Spectral unmixing was performed using the algorithm

contained within IDL/ENVI version 4.2, with the “sum to 1”

constraint applied (Drake et al., 1999). This constraint requires

that proportions within a pixel add up to 1, whereas a second

constraint requires that negative and proportions exceeding

unity do not occur within a cover class. Although algorithms

exist to enforce this second constraint under certain conditions

(Shimabukuro and Smith, 1991; Settle and Drake, 1993), these

approaches remain difficult to generalize (Drake et al., 1999).

Following calculation of the forest cover fraction map

(Figure 1), the pixels associated with each field plot were

extracted and the mean forest fraction of those pixels within

each plot was used as the linear spectral unmixing estimate of

CCForest. We acknowledge that, ideally, circular ASTER pixels

would be ideal for comparison with the field and lidar data

given. Additionally, circular ASTER pixels would match the

form of the point spread function. However, given that circular

pixels either oversample the image or miss data, we used the

standard square pixels for convenience.

Lidar data acquisition and preprocessing

Lidar data (1.95 m nominal post-spacing) were acquired in

August 2003 across the entire Moscow Mountain study area

using a Leica ALS40 system (Horizons Inc., Rapid City,

S.Dak.). The lidar system operated at a wavelength of 1064 nm

and was flown 2438 m above mean terrain. Although up to

three returns per pulse were collected by the Leica ALS40

system, fewer than 10% of the returns were second and third

returns, resulting in a majority of “ground” returns also being

first returns. As such, the ground returns were classified and

canopy cover was calculated without regard to return level.

Following acquisition, to limit elevation errors due to slope, all

returns with a scan angle >18° were removed.

The lidar data were then separated into ground and

nonground returns via the multiscale curvature classification

(MCC) algorithm that uses splines to remove surface curvatures

not consistent with those seen in high-biomass areas. The MCC

algorithm was developed for high-biomass and high-relief

areas (Evans and Hudak, 2007). The root mean square errors

(RMSEs) of the interpolated digital elevation model (DEM)

have been previously reported in high and low canopy cover

environments as 0.306 and 0.166 m, respectively (Evans and

Hudak, 2007; Falkowski et al., 2008). A nearest neighbor

spatial interpolation algorithm was then used to produce a 2 m

DEM from the identified ground returns, and the height of each

nonground return was calculated by subtracting the DEM

surface from the nonground returns. The lidar canopy height

data was subset to the extent of each circular 0.25 ha (0.1 acre)

plot to match the plot data.

An estimate of CCForest was also derived from the lidar data.

In previous lidar studies, CCForest has been defined as the

percentage of “bins” containing canopy returns within a given

area (Chen et al., 2004) or as the ratio of non-ground returns

(i.e., canopy) to total returns (Lefsky et al., 2005; Hopkinson

and Chasmer, 2009). A comparison of various methods used to

define this ratio is presented in Hopkinson and Chasmer

(2009). In this study, lidar-derived canopy cover, CCL, was

calculated using all the returns coincident with each forest

inventory plot and defined as

CC
nonground returns (above set threshold)

total retur
L =

ns
(2)

(Means et al., 1999; Hyde et al., 2005; Lefsky et al., 2005;

Morsdorf et al., 2006; Solberg et al., 2006; Hopkinson and

Chasmer, 2009). Given the prior literature, the choice of the

threshold above which returns are considered to be canopy has

been arbitrary. For example, Morsdorf et al. (2006) define this

threshold to be 1.25 m as defined by the height at which their

hemispherical photographs were acquired. A threshold of

1.37 m may also be sensible, given that this is typically the

height at which tree diameter (i.e., diameter at breast height

(DBH)) is measured. One could also argue that the threshold

should be a dynamic function defined by the transition zone

between the forest understory and overstory. Higher thresholds

may be warranted in single-aged plantations or similar stands

that exhibit limited understory, where the threshold could

conceivably be the canopy base height. However, in natural

mixed-aged forests, it is likely that understory vegetation,

saplings, seedlings, and shorter suppressed trees will be

present. We evaluated a selection of different height thresholds

(0.03, 0.50, 1.00, 1.30, 1.37, 1.40, 1.50, and 2.00 m) for

calculating CCForest from the lidar data. This analysis

determined a negligible variation in correlation (r difference of

~0.0005) between the field-densitometer-derived and lidar-

derived canopy cover measures occurred when the threshold

was between 1.00 and 2.00 m; therefore, we selected an

intermediate threshold of 1.50 m.

Data analysis

Standard linear regression techniques were employed to

evaluate the relationship between field-measured estimates of

CCForest and the remotely sensed CCForest estimates (i.e.,

spectral- and lidar-based estimates).

Statistical equivalence tests were also employed (Wellek,

2003; Robinson and Froese, 2004) to assess whether CCForest

estimates derived from the different remote sensing approaches

are statistically similar (i.e., equivalent) to the field-based

estimates of CCForest. Equivalence tests, which are used

extensively in biostatistics (Wellek, 2003; Robinson et al.,

© 2009 CASI 451
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2005), are becoming an increasingly applied statistical tool to

evaluate remote sensing data (Eitel et al., 2007; Falkowski et

al., 2008; Garrity et al., 2008), presumably because remote

sensing often seeks to produce remote metrics that are

equivalent to field-based metrics. Statistical equivalence tests

are used to test the null hypothesis of “no substantial

difference” between two sample populations (H0: the sample

populations are different; H1: the sample populations are

equivalent). Following Robinson et al. (2005), we employ a

regression-based equivalence test to test for intercept equality

(i.e., the mean of remotely sensed CCForest estimates is equal to

the mean of field-based CCForest measurements) and slope

equality to 1 (i.e., if the pairwise CCForest estimates are equal,

the regression will have a slope of 1). Following this process

we calculate the minimum region of indifference (ε), or

threshold, at which the ASTER or lidar CCForest estimates

become statistically equivalent to the field-based estimates of

CCForest.

Error analysis

In an attempt to assess whether noncanopy forest

components were negatively influencing the CCForest estimates,

regressions were performed to predict CCForest from the spectral

information provided via the ASTER sensor (i.e., each band as

well as common vegetation indices). These predictions, and the

spectrally unmixed and lidar-derived CCForest estimates, were

then related to the mean lidar height at each forest inventory

plot via regression. This analysis should provide a detailed

understanding of how subcanopy vegetation components

influence estimates of CCForest derived via the remotely sensed

data.

Results

Comparison of CCForest metrics

CCForest estimates derived from linear spectral unmixing (x1)

were linearly related to field-derived (y) estimates (y = 1.222x1 –

1.112, r2 = 0.56, RMSE = 22.7%) and exhibited a slight positive

bias (3.3%) (Figure 2A). In contrast, the relationship between

lidar-derived canopy cover (x2) and field-measured canopy

cover (Figure 2B) was much stronger and more linear (y =

1.006x2 + 0.047, r2 = 0.78, RMSE = 16.1%). However, there

was a large negative bias (–11%).

The equivalence testing analysis indicates that the mean

spectral-based canopy cover and mean field-based canopy cover

estimates are statistically equivalent at the 9% equivalence level

(i.e., reject the null hypothesis of intercept inequality when the

rejection region (ε) is >9%). However, the slope equivalence test

indicates that the pairwise canopy cover estimates are not

statistically equivalent until the rejection region is greater than

43% (i.e., reject the null hypotheses of both slope and intercept

inequality when the rejection region (ε) is >43%). In terms of

lidar-derived canopy cover, the region of equivalence for the

means and slope are both 13% (i.e., reject the null hypotheses

of both slope and intercept inequality when the rejection region

(ε) is >13%).

Figure 2 provides a graphical representation of the

equivalence test results with a ±15% region of indifference. In

terms of the spectral data (Figure 2A), the equivalence plot

confirms that the mean of the spectral canopy cover estimates is

equivalent to the mean field canopy cover estimates (i.e., the

grey error bar is within the grey polygon); however, the

pairwise estimates are not equivalent (i.e., the black error bar is

not contained by the broken grey lines). The smooth curve

fitted to the data shows that the spectral data are failing to

capture the extremes. Specifically, the top quintile of the field

measures occupies the top 50% of the spectral responses, and

the bottom quintile of the field measures occupies the bottom

50% of the spectral responses. Also note the wide variability of

the points around the fitted line (Figure 2A). In terms of the

lidar data, the equivalence plot (Figure 2B) confirms that the

mean and pairwise lidar canopy cover estimates are equivalent

to the field canopy cover estimates (i.e., the grey error bar is

within the grey polygon, and the black error bar is completely

contained by the broken grey lines). The smooth curve fitted to

the data shows that the lidar data are again failing to capture the

extremes and that there is fairly wide variability of the points

around the fitted line. Overall, however, the lidar data provide

much better estimates of canopy cover than the spectral data.

Error analysis of CCForest predictions

The modeled estimates of CCForest were calculated using

each of the regression equations, and the resultant values were

compared with the mean lidar plot height (Table 2). Lidar-

derived CCForest (CCL) estimates exhibit the strongest

relationship (r2 = 0.78) and lowest error (RMSE = 16.1%) when

regressed with field-measured CCForest, and the CCForest

estimate derived via linear spectral unmixing (LSUM CC)

displays a much weaker relationship (r2 = 0.56) and 6.3%

higher error (RMSE = 22.7%). In terms of spectral reflectance

and (or) emission, most individual ASTER bands are strongly

related to field-measured CCForest (r2 = 0.68–0.75) and display

errors of less than 18.4%. However, the relationship between

field-measured CCForest and near-infrared reflectance as

measured by the ASTER sensor is very weak (r2 = 0.09) and

contains a relatively large amount of error (RMSE = 32.4%).

The relationship between field-measured CCForest and

vegetation indices incorporating near-infrared reflectance is

weaker (r2 ≤ 0.65) and has larger error (RMSE ≥ 18.9%) when

compared with the green–red vegetation index (GRVI) (r2 =

0.76, RMSE = 16.7%), which does not incorporate near-

infrared reflectance.

Comparing each of the CCForest metrics to the mean plot

height (as measured by the lidar data) demonstrates that in plots

where the mean lidar plot height is near zero each of the

modeled remotely sensed estimates continues to report canopy

covers of greater than 21% (Figure 3; Table 2; height of y

intercept (%)). Specifically, the lidar-derived CCForest estimate

(CCL) displays an intercept of 21% when regressed with mean

452 © 2009 CASI
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Figure 2. Canopy cover equivalence tests (ε = 15%) between each remote methodology and

the field-collected data. (A) represents the spectral unmixing and field comparison, and (B)

represents the lidar and field comparison.



lidar height, and the spectrally unmixed estimate (LSUM CC)

has an intercept of 38%. The individual ASTER bands and

associated vegetation indices all display y intercepts greater

than or equal to 30%, with the near-infrared band displaying the

highest y intercept (53%).

Comparison of the green, red, and near-infrared ASTER

reflectance bands with the lidar mean plot height demonstrates

that, although a reducing trend is apparent, the near-infrared

band is relatively insensitive to changes in mean lidar plot

height (Figure 3F). Although both the green and red bands

produce  a  good  reducing  trend  (Figures  3D, 3E),  analysis

shows that they are highly correlated and account for 97% of

the same variability, limiting their combined usage in modeling

canopy cover.

Discussion

Comparison of CCForest metrics

The differences between the cross-comparisons of lidar and

spectral measures of cover and the field-based assessment can

in part be attributed to how the different metrics are defined. In

terms of similarity, the densiometer and lidar estimates of

CCForest essentially measure light transmission through the

forest canopy. For example, lidar CCForest estimates provide a

measure of photon pulse transmission through the forest

canopy (including leaves and associated woody material), and

densiometers provide a metric of the transmission of sunlight

through the forest canopy (also including leaves and associated

woody material) from a hemispherical perspective. Conversely,

liner spectral unmixing only provides a metric of the amount of

light reflected by photosynthesizing vegetation (i.e., including

green vegetation only; woody material is excluded).

Furthermore, since both lidar and field densiometer metrics

incorporate height thresholds (e.g., densiometer height above

ground and lidar canopy threshold), such measurements are not

typically influenced by understory vegetation. However, the

spectrally unmixed CCForest estimates will be influenced by the

presence of photosynthesizing understory vegetation,

especially when overstory canopy cover is low (i.e., understory

vegetation will not be occluded by the overstory canopy

components). According to Figure 2A, this is indeed the case;

there are a series of observations reporting field-measured

CCForest of 0%, with spectrally unmixed estimates ranging

between 20% and 40%. Since the spectrally unmixed estimates

of CCForest are indeed influenced by the forest understory, such

estimates are expected to be less similar to those produced

using lidar and the field densiometers.

Differences could also arise from the effective view angles

from which the light transmission metrics are evaluated. For

example, the lidar data were acquired using a sensor field of

view of less than 18° from nadir, whereas the field

densiometers use a hemispherical view. A further source of

error in the analysis of the ASTER data could arise from the

geolocation accuracy of the ASTER pixels with respect to the

plot location. Given that the field densitometer measurements

were acquired at the plot corners, the field measure is assumed

to represent a larger area than the 11.35 m radius circle about

the plot center. As the ASTER user guide reports the

geolocation accuracy as <15 m (Abrams and Hook, 1998), this

error, although potentially present, may be reduced.

Differences could also arise between the ASTER and lidar

assessments of CCForest given the growth of the vegetation

between the acquisitions.

454 © 2009 CASI
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Model p r2 RMSE (%)

Height of y

intercept (%)

1.006(CCL) + 0.047 0.000 0.78 16.1 21

1.222(LSUM CC) – 1.112 0.000 0.56 22.7 38

–6.02b1 + 223.58a 0.000 0.71 18.3 31

–4.86b2 + 144.32a 0.000 0.75 16.9 30

–1.54b3 + 126.27a 0.006 0.09 32.4 53

–5.51b4 + 133.61 0.000 0.71 18.4 30

–8.76b5 + 144.03 0.000 0.68 19.3 32

–8.01b6 + 136.24 0.000 0.72 17.9 30

–9.57b7 + 142.22 0.000 0.72 17.9 30

–12.39b8 + 136.47 0.000 0.72 17.8 30

–20.07b9 + 167.66 0.000 0.71 18.2 30

278.65NDVI – 96.36a 0.000 0.69 18.9 35

27.92SR – 45.77a 0.000 0.65 20.1 36

375.51GRVI + 2.29a 0.000 0.76 16.7 30

Note: All regressions are significant at the 0.99 level. Field-measured CCForest is the dependent variable.
b1–b9, bands 1–9; CCL, lidar derived CCL (= (no. of canopy returns)/(total no. of returns)); GRVI, green–red
vegetation index (= (green – red)/(green + red)); height of y intercept, y intercept determined for each
modeled estimate of CCForest when plotted against the mean lidar plot height; LSUM CC, fraction canopy
cover from linear spectral unmixing; NDVI, normalized difference vegetation index (= (NIR – red)/(NIR +
red)); SR, simple ratio (= NIR/red).

aRegression results first presented in Falkowski et al. (2005).

Table 2. CCForest regression models with coefficients and model fit statistics.
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Figure 3. Comparison of the plot mean heights from the lidar data and the spectral (A), lidar (B), and field estimates

(C) of percent canopy cover. (D–F) Comparison of plot mean height with reflectance of green (D), red (E), and near-

infrared (F) ASTER bands.



In terms of the lidar-based CCForest estimates, Figure 2B

exhibits a large variability of lidar estimates (60%–100%)

where the field measurements indicate nearly 100% cover. This

variability is likely due to the different effective resolving

powers of the lidar sensor and field densiometer. CCForest is

calculated from the densiometer by a human user, who must

visually determine if a forest canopy component is present with

each of the individual squares on the instrument. Since the

presence of forest canopy is determined in a binary manner

(i.e., “yes” there is canopy in the quarter of the individual

densiometer square, or “no” there is not) rather than via a

percent cover in each square (e.g., 50% of the individual

densiometer square contains forest canopy), the densiometers

may overestimate CCForest, especially when canopy cover

approaches 100%. In contrast, lidar data have a much higher

resolving power than spherical densiometers, and estimating

CCForest via lidar data is much less subjective. As a result, as is

often observed in height determination studies (Anderson et al.,

2005), lidar data may indeed provide more accurate

measurements of canopy cover as compared with field-based

assessments.

Error analysis of CCForest predictions

The results presented in Table 2 demonstrate that, although

relationships between CCForest and lidar data are the strongest

and have the lowest error rates, spectral-based predictions are

fairly similar in terms of relationship strength and error rate.

One caveat to this statement is the fact that the relationship

between CCForest and the near-infrared reflectance is extremely

weak (r2 = 0.09) and has a high degree of error (RMSE =

32.4%). Indeed, previous studies have made similar

observations when predicting CCForest from spectral data,

attributing the weak relationship between CCForest and the near-

infrared reflectance to the presence of senesced understory at

the time of image acquisition (Xu et al., 2003; Falkowski et al.,

2005). Since spectral-based estimates of CCForest are

comparable to the lidar-based estimates, satellite sensors may

indeed provide an efficient, accurate means to estimate CCForest

across very large spatial extents.

Comparing CCForest estimates with the mean lidar plot height

reveals that each remotely sensed estimate reports forest

canopy cover when the mean lidar height approaches zero

(Figure 3). These results suggest that noncanopy vegetation

components are influencing CCForest estimates derived from the

remote sensing data. The fact that both the field and lidar data

tend to report CCForest of 21% when mean plot height is zero

may suggest that the lidar mean height metric may be

oversensitive to canopy vegetation in sparse, open canopy

forests (e.g., forests that are characterized by open canopies and

dispersed trees). These results are a considerable improvement

over studies investigating the prediction of canopy cover from

maximum canopy height (Hopkinson and Chasmer, 2009) and

are in agreement with the prior study of Thomas et al. (2006),

who observed that mean heights were good predictors of crown

closure when using either low-density (r2 = 0.61, RMSE =

40%) or high-density (r2 = 0.75, RMSE = 32%) lidar data.

Alternatively, and perhaps more likely, this is a result of

known errors associated with field-based methods used to

measure forest canopy cover. Specifically, spherical

densiometer measurements in young open canopy forests will

exhibit a higher variability as compared with measurements

taken in older open canopy or closed canopy forests (Fiala et

al., 2006). This is because the probability of detecting low-

stature trees with a densiometer in open canopy forests is lower

than in forests with other types of canopy structure (Fiala et al.,

2006). Low-stature, open canopy forests will likely have a

mean lidar plot height near zero, despite the presence of a few

short, well-dispersed trees in the forest canopy. Although the

mean lidar height is near zero in such situations, the low-

stature, dispersed trees would indeed be incorporated into the

canopy cover calculation. This further demonstrates that lidar-

based estimates of CCForest may be more accurate than field-

based estimates, especially in forest with open canopy

structure.

The linear relationships between CCForest estimates derived

from the ASTER spectral metrics and the mean lidar height

display intercepts >30%, indicating that the spectral estimates

are sensitive to subcanopy vegetation components (Table 2). Of

particular concern is the near-infrared band (b3), which

estimates a canopy cover of 53% when mean lidar height

approaches zero. This insensitivity to the understory is

emphasized by the minimal variation in near-infrared

reflectance with changes in mean lidar plot height. This is

presumably due to the generally high near-infrared reflectance

of understory vegetation, regardless of vegetation type or

degree of senescence (Elvidge, 1990).

Conclusions

The comparison of lidar-based canopy cover to a field-based

metric agrees with comparable lidar canopy cover studies

(Morsdorf et al., 2006; Hopkinson and Chasmer, 2009) and

supports the utility of lidar in the development of landscape-

scale estimates of forest canopy cover. The results presented

herein and in previous studies indicate that the lidar metric of

forest canopy cover (CCForest) accounts for approximately 78%

of the variability in field-based canopy cover metrics (Table 2).

The unaccounted for 22% is likely due to the challenges

identified earlier in this study and elsewhere regarding sensor

limitations or plots that are shrub dominated, exhibit a high

degree of ladder fuels, or have canopy gaps and larger openings

(Hopkinson and Chasmer, 2009). A further source of error

when comparing lidar metrics with the field data could have

arisen from the highly variable spherical densiometer method

used in this study. Future research is clearly warranted to

evaluate the positioning of the densiometer measurements

when evaluating plot canopy assessments.

Based on the results of this study, it is clear that CCForest

predictions incorporating near-infrared reflectance could

456 © 2009 CASI

Vol. 35, No. 5, October/octobre 2009



grossly overestimate CCForest in open canopy forests when a

large amount of understory vegetation is present. These results

suggest that CCForest estimates that use spectral datasets should

avoid using bands with near-infrared wavelengths. Given the

widespread implications of this finding to existing landscape-

scale data products, further research is clearly warranted to

reassess this conclusion in other forest types. The results of the

canopy cover and mean plot height regressions suggest that, after

accounting for the bias due to the understory, potential exists in

these mixed conifer forests to form predictive relationships

between plot-based mean tree height and the remote sensing

derived canopy cover. A similar methodology should be

attempted in a hardwood forest to evaluate the utility of lidar

mean height for the prediction of CCForest in those forest types.
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