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Abstract In this paper, we propose a Dai–Liao (DL) conjugate gradient method for solving large-scale system
of nonlinear equations. The method incorporates an extended secant equation developed from modified secant
equations proposed by Zhang et al. (J Optim Theory Appl 102(1):147–157, 1999) and Wei et al. (Appl Math
Comput 175(2):1156–1188, 2006) in the DL approach. It is shown that the proposed scheme satisfies the
sufficient descent condition. The global convergence of the method is established under mild conditions, and
computational experiments on some benchmark test problems show that the method is efficient and robust.

Mathematics Subject Classification 90C30 · 65K05 · 90C53

1 Introduction

A typical system of nonlinear equations has the general form

F (x) = 0, (1)

where F : Rn → Rn is a nonlinear mapping assumed to be continuously differentiable in a neighborhood of
Rn . Systems of nonlinear equations play important role in sciences and engineering fields; therefore, solving
(1) has become a subject of interest to researchers in the aforementioned areas. Numerous algorithms or
schemes have been developed for solving these systems of equations. Notable among them are the Newton and
quasi-Newton schemes [14,22,34,52], which converge rapidly from sufficiently good starting point. However,
the requirement for computation and storage of the Jacobian matrix or an approximation of it at each iteration
makes the two methods unattractive for large-scale nonlinear systems [51].

The ideal method for solving large-scale systems is the conjugate gradient (CG) method, which forms an
important class of algorithms used in solving large-scale unconstrained optimization problems. The method
is popular with mathematicians and engineers engaged in large-scale problems because of it low memory
requirement and strong global convergence properties [19]. Generally, the nonlinear conjugate gradient method
is used to solve large-scale problems in the following form;

min f (x) , x ∈ Rn, (2)
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where f : Rn → R is a continuously differentiable function that is bounded from below and its gradient is
available. The method generates a sequence of iterates xk from an initial point x0 ∈ Rn using the iterative
formula

xk+1 = xk + sk, sk = αkdk, k = 0, 1, . . . , (3)

where xk is the current iterate, αk > 0 is a step length computed using suitable line search technique, and dk

is the CG search direction defined by

dk =

(

−Fk, if k = 0,

−Fk + βkdk−1, if k ≥ 1,
(4)

where βk is a scalar known as the CG update parameter, and Fk = ∇ f (xk). It is worth noting that a crucial
element in any CG algorithm is the formula definition of the update parameter βk [4], which is why different
CG algorithms corresponding to different choices of βk in (4) have been proposed (see [8,10–14,17,33,50,
51,53,65]).

Also, some of the CG methods for unconstrained optimization are not globally convergent, so efforts have
been made by researchers to develop CG methods that are not only globally convergent but also are numerically
efficient. These new methods are based on secant equations. For nonlinear conjugate gradient methods, the
conjugacy condition is given by

dT
k yk−1 = 0. (5)

Perry [44] extended (5) by exploiting the following secant condition of quasi-Newton schemes:

Bksk−1 = yk−1, (6)

and quasi-Newton search direction dk given by

Bkdk = −Fk, (7)

where Bk is a square matrix, which approximates the Hessian ∇2 f (x). By using (6) and (7), Perry gave an
extension of (5) as:

dT
k yk−1 = −FT

k sk−1, (8)

and using (4), the Perry search direction is given as

dk =

(

−Fk, if k = 0,

−Pk Fk = −Fk + β P
k dk−1, if k ≥ 1,

(9)

where

B P
k =

(yk−1 − sk−1)
T

sT
k−1 yk−1

Fk, (10)

and

Pk = I −
sk−1(yk−1 − sk−1)

T

sT
k−1 yk−1

. (11)

Following Perry’s approach, Dai and Liao [18] incorporated a nonnegative parameter t to propose the following
extension of (8):

dT
k yk−1 = −t FT

k sk−1. (12)

It is noted that for t = 0, (12) reduces to (5), and if t = 1, we obtain Perry’s condition (8). Consequently, by
substituting (4) into (12), Dai and Liao [18] proposed the following CG update parameter:

B DL
k =

(yk−1 − tsk−1)
T Fk

dT
k−1 yk−1

, t ≥ 0. (13)

Numerical results have shown that the DL method is effective; however, it is much dependent on the nonnegative
parameter t for which there is no optimal value [4], and it may not necessarily generate descent directions [8].
That is, the method may not satisfy the descent condition

FT
k dk < 0, ∀k, (14)
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or the sufficient descent condition, namely there exists a constant λ > 0 such that

FT
k dk ≤ −λ ‖ Fk ‖2, ∀k. (15)

Based on the DL conjugacy condition (12), conjugate gradient methods have been proposed over the years
using modified secant equations. For example, Babaie-Kafaki et al. [13] and Yabe and Takano [55] proposed
CG methods by applying a revised form of the modified secant equation proposed by Zhang and Xu [63] and
Zhang et al.[64] and the modified secant equation proposed by Li and Fukushima [36]. Li et al.[37] applied
the modified secant equation proposed by Wei et al. [54], while Ford et al. [26] employed the multi-step quasi-
Newton conditions proposed by Ford and Moghrabi [27,28]. CG methods based on modified secant equations
have also been studied by Narushima and Yabe [57] and Reza Arazm et al. [7]. These methods have been
found to be numerically efficient and globally convergent under suitable conditions, but like the DL method,
they also fail to ensure sufficient descent.

Recently, by employing Perry’s idea [44], efficient CG methods with descent directions have been proposed.
Liu and Shang [39] proposed a Perry conjugate gradient method, which provides prototypes for developing
other special form of the Perry method like the HS method and the DL method [18]. Liu and Xu [40] presented
a new Perry CG method with sufficient descent properties, which is independent of any line search. Also,
based on the self-scaling memoryless BFGS update, Andrei [6] proposed an accelerated adaptive class of
Perry conjugate gradient algorithms, whose search direction is determined by symmetrization of the scaled
Perry CG direction [44].

CG methods for systems of nonlinear equations are rare as most of the methods are for unconstrained
optimization. However, over the years, the method has been extended to large-scale nonlinear systems of equa-
tions by researchers. Using a combination of the Polak–Ribieré–Polyak (PRP) conjugate gradient method for
unconstrained optimization [45,47] and the hyperplane projection method of Solodov and Svaiter [48], Cheng
[16] proposed a PRP-type method for systems of monotone equations. Yu [58,59] extended the PRP method
[45] to solve large-scale nonlinear systems with monotone line search strategies, which are modifications of
the Grippo–Lampariello–Lucidi [29] and Li–Fukushima [35] schemes. As a further research of the Perry’s
conjugate gradient method, Dai et al. [21] combined the modified Perry conjugate gradient method [41] and the
hyperplane projection technique of Solodov and Svaiter [48] to propose a derivative-free method for solving
large-scale nonlinear monotone equations. By combining the descent Dai–Liao CG method by Babaie-Kafaki
and Ghanbari [54] and the projection method in [48], Abubakar and Pumam [2] proposed a descent Dai–Liao
CG method for nonlinear equations. Numerical results show the method to be efficient. Based on the pro-
jection strategy [48], Liu and Feng [38] proposed a derivative-free iterative method for large-scale nonlinear
monotone equations, which can be used to solved large-scale non-smooth problems due to its lower storage
and derivative-free information. Abubakar and Kumam [1] proposed an improved three-term derivative-free
method for solving large-scale nonlinear equations. The method is based on a modified HS method with the
projection technique of Solodov and Svaiter [48]. Abubakar et al. [3] proposed a descent Dai–Liao CG method
for solving nonlinear convex constraint monotone equations. The method is an extension of the method in [2].
By using a convex combination of two different positive spectral coefficients, Mohammed and Abubakar [42]
proposed a combination of positive spectral gradient-like method and projection method for solving nonlinear
monotone equations. Awwal et al. [43] proposed a hybrid spectral gradient algorithm for system of nonlinear
monotone equations with convex constraints. The scheme is combination of a convex combination of two
different positive spectral parameters and the projection technique.

Here, based on the work of Babaie-Kafaki and Ghanbari [9], and the Dai–Liao (DL) [18] approach, we
propose a Dai–Liao conjugate gradient method for system of nonlinear equations by incorporating an extended
secant equation in the classical DL update.

Throughout this work, we use ‖ . ‖ to denote the Euclidean norm of vectors, yk−1 = Fk − Fk−1, sk−1 =
xk − xk−1 and Fk = F (xk). We also assume that problem (1) is Lipschitz continuous and f in (2) is specified
by

f (x) :=
1

2
‖ F (x) ‖2 . (16)

The paper is organized as follows: in Sect. 2, we present details of the method. Convergence analysis is
presented in Sect. 3. Numerical results of the method are presented in Sect. 4. Finally, conclusions are made
in Sect. 5.
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2 Proposed method and its algorithm

Following the Dai–Liao approach, Babaie-Kafaki and Ghanbari [9] proposed the following extension of the
PRP update parameter

βEPRP
k = βPRP

k − t
FT

k dk−1

‖ Fk−1 ‖2
, (17)

where β P R P
k is the classical PRP parameter and t is a nonnegative parameter, whose values were determined by

carrying out eigenvalue analysis. Motivated by this, and employing similar approach, we propose a modification
of the classical DL update parameter. In what follows, we suggest an extension of some previously modified
secant equations.

By expanding (6), Zhang et al. [64] proposed the following modified secant equation

Bksk−1 = ŷk−1, ŷk−1 = yk−1 +

(

θk−1

sT
k−1μk−1

)

μk−1, (18)

where
θk−1 = 6 ( fk−1 − fk) + 3sT

k−1 (Fk−1 + Fk) , (19)

where μk−1 ∈ Rn is a vector parameter such that sT
k−1μk−1 	= 0 (see [64]).

Similarly, Wei et al. [54] gave the following modified secant equation

Bksk−1 = ȳk−1, ȳk−1 = yk−1 +

(

ϑk−1

sT
k−1μk−1

)

μk−1, (20)

with
ϑk−1 = 2 ( fk−1 − fk) + sT

k−1 (Fk−1 + Fk) , (21)

where μk−1 ∈ Rn is a vector parameter such that sT
k−1μk−1 	= 0 (see [60]). Also, in (18) and (20), the vector

parameter μk−1 = sk−1 [55].
Here, we propose the following secant equation as an extension of (6), (18), and (20):

Bksk−1 = uk−1 = yk−1 + 2φ
ϑk−1

sT
k−1μk−1

μk−1, (22)

where φ is a nonnegative parameter, ϑk−1 is defined by (21) and sT
k−1μk−1 	= 0. We observe that for φ = 0,

(22) becomes the standard secant equation defined by (6), and if φ = 3
2

, (22) reduces to (19). Also, for φ = 1
2

,
we see that (22) reduces to the modified secant equation proposed by Zhang et al. [64]. Substituting uk−1 in
(22) for yk−1 in (13), we obtain the following version of the DL update parameter:

β̄ADL
k =

(uk−1 − tsk−1)
T Fk

dT
k−1uk−1

, t ≥ 0. (23)

Observe that, in general, the denominator, dT
k−1uk−1 may not be nonzero since ϑk−1 as defined in (22) may be

non-positive. Therefore, we redefine uk−1 and obtain its revised form as

zk−1 = yk−1 + 2φ
max {ϑk−1, 0}

sT
k−1μk−1

μk−1. (24)

Consequently, we get the revised form of (23) as

β̂ADL
k =

zT
k−1 Fk

dT
k−1zk−1

− t
sT

k−1 Fk

dT
k−1zk−1

. (25)

Andrei [4] noted that the parameter t has no optimal choice and so, to obtain descent directions for our proposed
method, we proceed to obtain appropriate values for t . From (4), and after some algebra, our search direction
becomes:

dk = −Fk +

(

sk−1zT
k−1 − tsk−1sT

k−1

sT
k−1zk−1

)

Fk . (26)
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Following Perry’s approach [44], search direction of our proposed method can be written as

dk = −Hk Fk, k ≥ 1, (27)

where Hk , called the search direction matrix is given by

Hk = I −
sk−1zT

k−1

sT
k−1zk−1

+ t
sk−1sT

k−1

sT
k−1zk−1

, (28)

and zk−1 is as defined by (24). And from (27) we can write

dT
k Fk = −FT

k H T
k Fk = dT

k Fk = −FT
k

H T
k + Hk

2
Fk, (29)

where

H̄k =
H T

k + Hk

2

= I −
1

2

sk−1zT
k−1 + zk−1sT

k−1

sT
k−1zk−1

+ t
sk−1sT

k−1

sT
k−1zk−1

(30)

Proposition 2.1 The matrix H̄k defined by (30) is a symmetric matrix.

Proof Using direct computation, we see that H̄k = H̄ T
k . Hence, H̄k is symmetric.

And so, to analyze the descent property of our method, we need to find eigenvalues of H̄k and their
structure. ⊓⊔

Theorem 2.2 Let the matrix H̄k be defined by (30). Then, the eigenvalues of H̄k consist of 1 with (n − 2
multiplicity), λ+

k and λ−
k , where

λ+
k =

1

2

[

(1 + ak) +
√

(ak − 1)2 + bk − 1
]

(31)

λ−
k =

1

2

[

(1 + ak) −
√

(ak − 1)2 + bk − 1
]

(32)

and ak = t
‖sk−1‖

2

sT
k−1zk−1

, bk =
‖sk−1‖

2‖zk−1‖
2

(sT
k−1zk−1)

2
.

Furthermore, all eigenvalues of H̄k are positive real numbers.

Proof Since dT
k−1zk−1 	= 0, then sT

k−1zk−1 	= 0. And so, sk−1 	= 0 and zk−1 	= 0, which implies that the
vectors sk−1 and zk−1 are nonzero vectors. Suppose V is the vector space spanned by {sk−1, zk−1}. Then
dim (V ) ≤ 2 and dim

(

V ⊥
)

≥ n − 2, where V ⊥ is the orthogonal complement of V . Therefore, there exists

a set of mutually orthogonal vectors {τ i
k−1}

n−2
i=1 ⊂ V ⊥ satisfying

sT
k−1τ

i
k−1 = zT

k−1τ
i
k−1 = 0. (33)

By multiplying both sides of (30) by τ i
k−1, we obtain

H̄kτ
i
k−1 = τ i

k−1, i = 1, . . . , n − 2, (34)

which can be viewed as an eigenvector equation. So, τ i
k−1, for i = 1, . . . , n − 2 are the eigenvectors of H̄k

with eigenvalue 1 each. Let λ+
k and λ−

k be the remaining two eigenvalues, respectively. Observe that (30) can
be written as

H̄k = I −
sk−1(zk−1 − 2tsk−1)

T

2sT
k−1zk−1

−
zk−1sT

k−1

2sT
k−1zk−1

. (35)

Clearly, H̄k represents a rank-two update, so from the fundamental algebra formula (see inequality (1.2.70))

of [49]
det (I + u1uT

2 + u3uT
4 ) = (1 + uT

1 u2)(1 + uT
3 u4) − (uT

1 u4)(u
T
2 u3), (36)
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where

u1 = −
sk−1

2sT
k−1zk−1

, u2 = (zk−1 − 2tsk−1) , u3 = −
zk−1

2sT
k−1zk−1

, u4 = sk−1

det
(

H̄k

)

=
1

4
+ t

‖ sk−1 ‖2

sT
k−1zk−1

−
1

4

‖ sk−1 ‖2‖ zk−1 ‖2

(sT
k−1zk−1)2

. (37)

Since sum of the eigenvalues of a square symmetric matrix equals to its trace, from (30), we have

trace
(

H̄k

)

= n − 1 + t
‖ sk−1 ‖2

sT
k−1zk−1

= 1 + · · · + 1
︸ ︷︷ ︸

(n−2)times

+λ+
k + λ−

k , (38)

for which we obtain

λ+
k + λ−

k = 1 + t
‖ sk−1 ‖2

sT
k−1zk−1

. (39)

Using the relationship between trace and determinant of a matrix and its eigenvalues, we can obtain λ+
k and

λ−
k as roots of the following quadratic polynomial:

λ2 −

(

1 + t
‖ sk−1 ‖2

sT
k−1zk−1

)

λ +
1

4
+ t

‖ sk−1 ‖2

sT
k−1zk−1

−
1

4

‖ sk−1 ‖2‖ zk−1 ‖2

(sT
k−1zk−1)2

= 0. (40)

So, the remaining two eigenvalues are obtained from (40). And applying the quadratic formula with some
rearrangements, we obtain

λ±
k =

1

2

⎡

⎢
⎣1 + t

‖ sk−1 ‖2

sT
k−1zk−1

±

√
√
√
√

(

t
‖ sk−1 ‖2

sT
k−1zk−1

− 1

)2

+
‖ sk−1 ‖2‖ zk−1 ‖2

(sT
k−1zk−1)2

− 1

⎤

⎥
⎦ (41)

We can write (41) as

λ±
k =

1

2

[

(1 + ak) ±
√

(ak − 1)2 + bk − 1
]

, (42)

which proves (31) and (32).
To obtain λ+

k and λ−
k as real numbers, we must have 	 = (ak − 1)2 + bk−1 ≥ 0.

From Cauchy inequality, bk =
‖sk−1‖

2‖zk−1‖
2

(sT
k−1zk−1)

2
≥ 1, so, 	 > 0. Consequently, both eigenvalues are real

numbers and λ+
k > 0 since (1 + ak) is nonnegative. And to obtain λ−

k > 0, the following must be satisfied:

1

2

⎡

⎢
⎣1 + t

‖ sk−1 ‖2

sT
k−1zk−1

−

√
√
√
√

(

t
‖ sk−1 ‖2

sT
k−1zk−1

− 1

)2

+
‖ sk−1 ‖2‖ zk−1 ‖2

(sT
k−1zk−1)2

− 1

⎤

⎥
⎦ > 0. (43)

After some algebra, we obtain the following estimation for the parameter t , which satisfies (43):

t >
1

4

(

‖ zk−1 ‖2

sT
k−1zk−1

−
sT

k−1zk−1

‖ sk−1 ‖2

)

. (44)

So, λ−
k > 0 if (44) is satisfied. In addition, for t satisfying (44), H̄k is nonsingular.

Therefore, all the eigenvalues of the symmetric matrix H̄k are positive real numbers, which ensures that it
is a positive-definite matrix. Moreover, using (42) and (44), we obtain the following estimation for λ+

k and λ−
k :

λ+
k ≥

(

3(sT
k−1zk−1)

2+ ‖ zk−1 ‖2‖ sk−1 ‖2

(sT
k−1zk−1)2

)

, λ−
k > 0. (45)

123



Arab. J. Math. (2020) 9:443–457 449

And the proof is complete. Hence, from (29), we have

dT
k Fk = −FT

k H̄k Fk ≤ −λ−
k ‖ Fk ‖2< 0, (46)

which shows that the descent condition is satisfied. We, therefore, propose the following formula for the
parameter t in the modified DL method:

tADL = ξ
‖ zk−1 ‖2

sT
k−1zk−1

− γ
sT

k−1zk−1

‖ sk−1 ‖2
, (47)

where ξ > 1
4

and γ < 1
4
. ⊓⊔

Remark 2.3 Since the DL parameter t is nonnegative, we restrict the values of the parameter γ in (47) to be
negative so as to avoid a numerically unreasonable approximation [32]. So, based on the above remark, we
can write the modified DL update parameter as

βADL
k =

FT
k zk−1

dT
k−1zk−1

− tADL FT
k sk−1

dT
k−1zk−1

, (48)

with ξ ≥ 1
4

and γ < 0 satisfying (47) and guaranteeing the descent condition. We also write the search
direction for the proposed method as

dADL
k = −Fk +

(

(zk−1 − tADL
k sk−1)

T Fk

dT
k−1zk−1

)

dk−1. (49)

We use the derivative-free line search proposed by Li and Fukushima [34] to compute our step length αk .

Let σ1 > 0, σ2 > 0 and r ∈ (0, 1) be constants and let {ηk} be a given positive sequence such that

∞
∑

k=0

ηk < η < ∞, (50)

and

‖ Fk+1 ‖2 − ‖ Fk ‖2≤ −σ1 ‖ αk Fk ‖2 −σ2 ‖ αkdk ‖2 +ηk ‖ Fk ‖2 . (51)

Let ik be the smallest non-negative integer i such that (51) holds for α = r i . Let αk = r ik .

Now, we describe the algorithm of the proposed method as follows:

Algorithm 2.4 A Dai–Liao CG method (ADLCG)

Step 1 Given ε > 0, choose an initial point x0 ∈ Rn , a positive sequence {ηk} satisfying (50), and constants

r ∈ (0, 1) , σ1, σ2 > 0, ξ ≥ 1
4
, γ < 0. Compute d0 = −F0 and set k = 0.

Step 2 Compute F (xk). If ‖ F (xk) ‖≤ ε, stop. Otherwise, compute the search direction dk by (49).
Step 3 Compute αk via the line search in (51).
Step 4 Set xk+1 = xk + αkdk .
Step 5 Set k := k + 1 and go to Step 2.

3 Convergence analysis

The following assumptions are required to analyze the convergence of the ADLCG algorithm.

Assumption 3.1 The level set

� = {x |F (x) ≤ F (x0)} (52)

is bounded.

Assumption 3.2 (1) The solution set of problem (1) is not empty.
(2) F is continuously differentiable on an open convex set �1 containing �.
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(3) F is Lipschitz continuous in some neighborhood N of �; namely, there exists a positive constant L > 0
such that,

‖ F (x) − F (y) ‖≤ L ‖ x − y ‖, (53)

for all x, y ∈ N .

Assumption (3.1) and condition (3) imply that there exists a positive constant ω such that

‖ F (xk) ‖≤ ω, (54)

for all x ∈ �, (see Proposition 1.3 of [13]).
(4) The Jacobian of F is bounded, symmetric and positive-definite on �1, which implies that there exist

constants m2 ≥ m1 > 0 such that
‖ F ′ (x) ‖≤ m2, ∀x ∈ �1, (55)

and
m1 ‖ d ‖2≤ dT F ′ (x) d, ∀x ∈ �1, d ∈ Rn . (56)

Lemma 3.3 Let {xk} be generated by the Algorithm 2.4. Then dk is a descent direction for F (xk) at xk . i.e.,

F(x)T dk < 0. (57)

Proof By (46), the Lemma is true and we can deduce that the norm function f (xk) is a descent along the
direction dk . i.e., ‖ F (xk+1) ‖≤‖ F (xk) ‖ is true ∀k. ⊓⊔

Lemma 3.4 Suppose Assumptions 3.1 and 3.2 hold. Let {xk} be generated by the Algorithm 2.4. Then {xk} ⊂ �.

Moreover, ‖ Fk ‖} converges.

Proof By Lemma 3.3, we have {‖ F (xk+1) ‖≤‖ F (xk) ‖. So, by Lemma 3.3 in [20], we conclude that
{‖ Fk ‖} converges. Moreover, for all k, we have

‖ F (xk+1) ‖≤‖ F (xk) ‖≤‖ F (xk−1) ‖ · · · ≤‖ F (x0) ‖ . (58)

This implies that {xk} ⊂ � ⊓⊔

Lemma 3.5 Suppose Assumption 3.1 and 3.2 hold. Let {xk} be generated by the Algorithm 2.4. Then

lim
k→∞

‖ αkdk ‖= lim
k→∞

‖ sk ‖= 0, (59)

and

lim
k→∞

‖ αk F (xk) ‖= 0. (60)

Proof From the line search (51) and for all k > 0, we obtain

σ2 ‖ αkdk ‖2 ≤ σ1 ‖ αk Fk ‖2 +σ2 ‖ αkdk ‖2

≤ ‖ Fk ‖2 − ‖ Fk+1 ‖2 +ηk ‖ Fk ‖2 . (61)

And by summing up the above k inequality, we obtain

σ2

k
∑

i=0

‖ αkdk ‖2 ≤

k
∑

i=0

(

‖ F (xi ) ‖2 − ‖ F (xi+1) ‖2
)

+

k
∑

i=0

ηi ‖ F (xi ) ‖2

= ‖ F (x0) ‖2 − ‖ F (xk+1) ‖2 +

k
∑

i=0

ηi ‖ F (xi ) ‖2

≤ ‖ F (x0) ‖2 + ‖ F (x0) ‖2
k
∑

i=0

ηi

≤ ‖ F (x0) ‖2 + ‖ F (x0) ‖2
∞
∑

i=0

ηi . (62)

Therefore, by (52) and since {ηi } satisfies (50), then the series
∑k

i=0 ‖ αkdk ‖2 is convergent, which implies

that (59) holds. Using the same argument as above, with σ1 ‖ αk F (xk) ‖2 on the left-hand sides, we obtain
(60). ⊓⊔
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Lemma 3.6 [62] Suppose Assumptions 3.1 and 3.2 hold and {xk} be generated by Algorithm 2.4. Then, there

exists a constant m > 0 such that,

yT
k sk ≥ m ‖ sk ‖2> 0, ∀k ≥ 1. (63)

Proof By mean-value theorem, we have

yT
k sk = sT

k (F (xk+1) − F (xk)) = sT
k F ′′, (64)

where ϕ = λxk + (1 − λ) xk+1, for some λ ∈ (0, 1). We obtain the last inequality from (56). Letting m1 = m,
the proof is established. ⊓⊔

Lemma 3.7 Suppose Assumptions 3.1 and 3.2 hold. Let the sequence {xk} be generated by Algorithm 2.4 with

update parameter βADL
k . Then, there exists M > 0 such that

‖ dADL
k ‖≤ M, ∀k. (65)

Proof Using (24) and (64), we get

sT
k−1zk−1 = sT

k−1 yk−1 + 2φ
max {ϑk−1, 0}

sT
k−1μk−1

sT
k−1μk−1 ≥ sT

k−1 yk−1 ≥ m ‖ sk−1 ‖2 . (66)

Applying the mean-value theorem, we have

|ϑk−1| = |2 ( fk − fk+1) + (Fk−1 + Fk)
T sk−1|

= |(−2∇ f (ϕ) + ∇ f (xk) + ∇ f (xk+1))
T sk−1|, (67)

where ϕ = λxk + (1 − λ) xk+1, for some λ ∈ (0, 1).
Hence from (53), we have

|ϑk−1| ≤ (‖ ∇ f (xk) − ∇ f (ϕ) ‖ + ‖ ∇ f (xk+1 − ∇ f (ϕ) ‖) ‖ sk−1 ‖

≤ (L (1 − λ) ‖ sk−1 ‖ +Lλ ‖ sk−1 ‖) ‖ sk−1 ‖

= L ‖ sk−1 ‖2 . (68)

Utilizing (24), (53), (68), and setting μk−1 = sk−1, we obtain

‖ zk−1 ‖ ≤ ‖ yk−1 ‖ +2φ
|ϑk−1|

∣
∣sT

k−1sk−1

∣
∣

‖ sk−1 ‖

≤ L ‖ sk−1 ‖ +2φL
‖ sk−1 ‖2

‖ sk−1 ‖2
‖ sk−1 ‖

= (L + 2φL) ‖ sk−1 ‖ . (69)

And using (47), (53) and (69), we get

∣
∣tADL

∣
∣ =

∣
∣
∣
∣
∣
ξ
‖ zk−1 ‖2

sT
k−1zk−1

− γ
sT

k−1zk−1

‖ sk−1 ‖2

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
ξ
‖ zk−1 ‖2

sT
k−1zk−1

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
γ

sT
k−1zk−1

‖ sk−1 ‖2

∣
∣
∣
∣
∣

≤ ξ
((L + 2φL) ‖ sk−1 ‖)2

m ‖ sk−1 ‖2
+ |γ |

m ‖ sk−1 ‖2

‖ sk−1 ‖2

= ξ
(L + 2φL)2

m
+ m |γ | . (70)

By utilizing (4), (47), (48), (69) and (70) we obtain,
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‖dADL
k ‖ = ‖ − F(xk) + βADL

k dk − 1‖

≤ ‖F(xk)‖ + |βADL
k |‖dk − 1‖

= ‖F(xk)‖ +
‖F(xk)‖‖zk−1‖

sT
k−1zk−1

‖sk−1‖ + |tADL|
‖F(xk)‖‖sk−1‖

sT
k−1zk−1

‖sk−1‖

≤ ‖F(xk)‖ +
‖F(xk)‖‖(L + 2φL)

m
+

(

ξ
(L + 2φL)2

m
+ m|γ |

)
‖F(xk)‖

m

=

(

1 +
(L + 2φL)

m
+

(

ξ
(L + 2φL)2

m2
+ |γ |

))

‖F(xk)‖

=
(m2 + m(L + 2φL) + ((L + 2φL)2ξ + |γ |))‖F(xk)‖

m2

=
c1‖F(xk)‖

m2
, (71)

where c1 = (m2 + m (L + 2φL) +
((

L + 2φL)2ξ + |γ |
))

.

Setting M := c1‖F(xk )‖

m2 , we obtain the required result.

In the next, we prove the global convergence of the ADLCG method. ⊓⊔

Theorem 3.8 Suppose Assumption 3.1 and 3.2 hold and that the sequence {xk} is generated by Algorithm 2.4.

Also, assume that for all k > 0

αk ≥ c
|F(xk)

T dk |

‖ dk ‖2
, (72)

where c is some positive constant. Then, {xk} converges globally to a solution of problem (1); i.e,

lim
k→∞

‖ F (xk) ‖= 0. (73)

Proof By (59) and the boundedness of {‖ dk ‖}, we have

lim
k→∞

αk ‖ dk ‖2= 0. (74)

From (72) and (74), we have
lim

k→∞
|F(xk)

T dk | = 0. (75)

On the other hand, from (46), and (45), we have

F(xk)
T dk = −λ−

k ‖ F (xk) ‖2

‖ F (xk) ‖2 =

∥
∥
∥
∥
∥
−

1

λ−
k

F(xk)
T dk

∥
∥
∥
∥
∥

≤ |F(xk)
T dk |

∣
∣
∣
∣
∣

1

λ−
k

∣
∣
∣
∣
∣
. (76)

But from (45), we have
λ+

k > λ−
k > 0, ∀k. (77)

Thus, from (76) and applying the sandwich theorem, we obtain

0 ≤‖ F (xk) ‖2≤ |F(xk)
T dk |

(

1

λ−
k

)

→ 0. (78)

Therefore,
lim

k→∞
‖ F (xk) ‖= 0. (79)

And the proof is completed. ⊓⊔
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4 Numerical result

In this section, we test the efficiency and robustness of our proposed approach using the following method in
the literature:

A new derivative-free conjugate gradient method for solving large-scale nonlinear systems of equations
(NDFCG) [24]. All the codes used were written in MATLAB R2014a environment and run on a personal
computer (2.20GHZ CPU, 8GB RAM). Also, the two algorithms used in the experiment were implemented
with the same line search procedure, and the parameters are set to σ1 = σ2 = 10−4, α0 = 0.1, r = 0.2 and

ηk = 1
(k+1)2 . In addition, we set ξ = 0.5, γ = −0.5 and μk−1 = sk−1 for the ADLCG method. Also, the

iteration was set to terminate if it exceeds 2000 or the inequality ‖ Fk ‖≤ 10−10 is satisfied (Table 1).
The two algorithms were tested using the following test problems with various sizes:

Problem 4.1 [2] The elements of the function F (x) are given by:

Fi (x) = 2xi − sin |xi | , i = 1, . . . , n.

Problem 4.2 [2] The elements of the function F (x) are given by:

Fi (x) = log (xi + 1) −
xi

n
, i = 2, . . . , n.

Problem 4.3 [67] The elements of the function F (x) are given by:

F1 (x) = 2x1 + sin (x1) − 1,

Fi (x) = −2xi−1 + 2xi + sin (xi ) − 1, i = 2, . . . , n − 1,

Fn (x) = 2xn + sin (xn) − 1.

Problem 4.4 [56] The elements of the function F (x) are given by:

Fi (x) = xi −
1

n
x2

i +
1

n

n
∑

i=1

xi + i, i = 1, 2, . . . , n..

Problem 4.5 [38] The elements of the function F (x) are given by:

Fi (x) = 2xi − sin (xi ) , i = 1, 2, . . . , n.

Problem 4.6 [51] The function F (x) is given by

F (x) = Ax + b1,

where b1 = (ex
1 − 1, . . . , ex

n − 1)T , and

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Problem 4.7 [61] The elements of the function F (x) are given by:

Fi (x) =
√

10−5 (xi − 1) ,

Fn (x) =
1

4n

n
∑

j=1

x2
j −

1

4
, i = 2, 3, . . . , n − 1.

Problem 4.8 [2] The elements of the function F (x) are given by:

Fi (x) = exi − 1, i = 1, 2, . . . , n.
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Table 1 Initial starting points used for the test problems

Initial point Value

x1 (1, 1, . . . , 1)T

x2 (− 1
4
, 1

4
, . . . , (−1)n 1

4
)T

x3 ( 1
n
, 2

n
, . . . , 1)T

x4 (1, 1
4
, . . . 1

n2 )T

x5 ( 1
2
, 1

22 , . . . , 1
2n )T

x6 ( 1
3
, 1

32 , . . . , 1
3n )T

x7 (1, 1
2
, 1

n
)T

x8 (1, 0, , ( 2
n
) − 1)T

x9 (1, 22

23 , n2

n3 )T

Table 2 Number of problems and percentage for which each method is a winner with respect to iterations and CPU time

Method Iter Percentage CPU time Percentage

ADLCG 76 95 58 72.5
NDFCG 3 3.75 22 27.5
Undecided 1 1.25 0 0

Problem 4.9 [2] The elements of the function F (x) are given by:

F1 (x) = x1

(

x2
1 + x2

2

)

− 1,

Fi (x) = xi

(

x2
i−1 + 2x2

i + x2
i+1

)

− 1, i = 2, 3, . . . , n − 1,

Fn (x) = xn

(

x2
n−1 + x2

n

)

.

Problem 4.10 [2] The elements of the function F (x) are given by:

F1 (x) = x1 − e

(

cos
x1 + x2

n + 1

)

,

Fi (x) = xi − e

(

cos
x1−1 + xi + xi+1

n + 1

)

, i = 2, 3, . . . , n − 1,

Fn (x) = xn − e

(

cos
xn−1 + xn

n + 1

)

.

Using the performance profile of Dolan and More [23], we generate Figs. 1 and 2 to show the performance
and efficiency of each of the two methods. To better illustrate the performance of the two methods, a summary
of the results is presented in Table 2. The summarized data show the number of problems for which each method
is a winner in terms of number of iterations and CPU time, respectively. The corresponding percentages of
number of problems solved are also indicated

In Figs. 1 and 2, we observed that the curve representing the ADLCG method is above the curve representing
the NDFCG method. This is a measure of the efficiency of the ADLCG method compared to the NDFCG
scheme.

Similarly, the summary reported in Table 2 indicated that the ADLCG method is a winner with respect
to number of iterations and CPU time. The table shows that the ADLCG method solves 95% (76 out of 80)
of the problems with less number of iterations compared to the NDFCG method, which solves only 3.75%
(3 out of 80). The summarized result also shows that both methods solve 1 problem with the same number
of iteration, which translates to 1.25% and is reported as undecided. Also, the summary indicated that the
ADLCG method outperforms the NDFCG scheme as it solves 72.5% (58 out of 80) of the problems with less
CPU time compared to 27.5% (22 out of 80) solved by the NDFCG. Therefore, it is clear from Figs. 1 and 2
and the summarized result in Table 2 that our method is more efficient than the NDFCG method and better for
large-scale nonlinear systems.
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Fig. 1 Performance profile for number of iterations
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Fig. 2 Performance profile for the CPU time

5 Conclusion

In this work, we proposed a Dai–Liao conjugate gradient method via modified secant equation for systems
of nonlinear equations. This was achieved by finding appropriate values for the nonnegative parameter in the
DL method using of an extended secant equation developed from the work of Zhang et al. [64] and Wei et al
[54]. Numerical comparisons with some existing methods and Global convergence show that the method is
efficient.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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