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Abstract. Forest fires are a major environmental issue, creating ecimaband
ecological damage while endangering human lives. Fastiileteis a key ele-
ment for controlling such phenomenon. To achieve this, dieerative is to use
automatic tools based on local sensors, such as providecetgonological sta-
tions. In effect, meteorological conditions (e.g. tempane, wind) are known to
influence forest fires and several fire indexes, such as thetfBire Weather In-
dex (FWI), use such data. In this work, we explore a Data MjiidM) approach
to predict the burned area of forest fires. Five different ehniques, e.g. Sup-
port Vector Machines (SVM) and Random Forests, and fouindisteature se-
lection setups (using spatial, temporal, FWI componentsvegather attributes),
were tested on recent real-world data collected from théheast region of Por-
tugal. The best configuration uses a SVM and four meteorcédgnputs (i.e.
temperature, relative humidity, rain and wind) and it isadalp of predicting the
burned area of small fires, which are more frequent. Such laume is partic-
ularly useful for improving firefighting resource managemgng. prioritizing
targets for air tankers and ground crews).

Keywords: Data Mining Application, Fire Science, Regression, Suppector
Machines.

1 Introduction

One major environmental concern is the occurrence of féirest(also called wildfires),
which affect forest preservation, create economical amdbgical damage and cause
human suffering. Such phenomenon is due to multiple cagsgsh{uman negligence
and lightnings) and despite an increasing of state expeosestrol this disaster, each
year millions of forest hectareéq) are destroyed all around the world. In particular,
Portugal is highly affected by forest fires [7]. From 1980 @93, over 2.7 millionha

of forest area (equivalent to the Albania land area) have bestroyed. The 2003 and
2005 fire seasons were especially dramatic, affecting 416843al% of the territory,
with 21 and 18 human deaths.

Fast detection is a key element for a successful firefigh8ime traditional human
surveillance is expensive and affected by subjective factbere has been an emphasis
to develop automatic solutions. These can be grouped inée timajor categories [1]:
satellite-based, infrared/smoke scanners and local ee(esg. meteorological). Satel-
lites have acquisition costs, localization delays and #slution is not adequate for



all cases. Moreover, scanners have a high equipment andemairte costs. Weather
conditions, such as temperature and air humidity, are kniowaifect fire occurrence
[15]. Since automatic meteorological stations are oftezilable (e.g. Portugal has 162
official stations), such data can be collected in real-tiwith low costs.

In the past, meteorological data has been incorporatedinteerical indices, which
are used for prevention (e.g. warning the public of a fire @ayand to support fire man-
agement decisions (e.g. level of readiness, prioritizangédts or evaluating guidelines
for safe firefighting). In particular, the Canadian foreseRVeather Index (FWI) [24]
system was designed in the 1970s when computers were sttarsdt required only
simple calculations using look-up tables with readingsrfrmur meteorological ob-
servations (i.e. temperature, relative humidity, rain amad) that could be manually
collected in weather stations. Nevertheless, nowaday#attiex highly used not only in
Canada but also in several countries around the world (egemiina or New Zealand).
Even though Mediterranean climate differs from those inddkan the FWI system was
correlated with fire activity in southern Europe countrias|uding Portugal [26].

On the other hand, the interest in Data Mining (DM), also kn@ag Knowledge
Discovery in Databases (KDD), arose due to the advancedsafhation Technology,
leading to an exponential growth of business, scientificemgineering databases [8].
All this data holds valuable information, such as trends patterns, which can be
used to improve decision making. Yet, human experts arddonand may overlook
important details. Moreover, classical statistical asslyreaks down when such vast
and/or complex data is present. Hence, the alternativeliseéautomated DM tools to
analyze the raw data and extract high-level informatiorttierdecision-maker [10].

Indeed, several DM techniques have been applied to the fieetittn domain. For
example, Vega-Garcia et al. [25] adopted Neural Networkid)(kd predict human-
caused wildfire occurrence. Infrared scanners and NN werdbieed in [1] to reduce
forest fire false alarms with a 90% success. A spatial clugg¢FASTCiD) was adopted
by Hsu et al. [14] to detect forest fire spots in satellite ie@dn 2005 [19], satellite
images from North America forest fires were fed into a Supgector Machine (SVM),
which obtained a 75% accuracy at finding smoke at the 1.1-kel fgvel. Stojanova
et al. [23] have applied Logistic Regression, Random FdiB) and Decision Trees
(DT) to detect fire occurrence in the Slovenian forests, gibioth satellite-based and
meteorological data. The best model was obtained by a badgjiih with an overall
80% accuracy.

In contrast with these previous works, we present a novel Didst fire approach,
where the emphasis is the use of real-time and non-costklyor@bgical data. We will
use recent real-world data, collected from the northegabneof Portugal, with the aim
of predicting the burned area (or size) of forest fires. SeEvexperiments were car-
ried out by considering five DM techniques (i.e. multipleneggion, DT, RF, NN and
SVM) and four feature selection setups (i.e. using spagahporal, the FWI system
and meteorological data). The proposed solution inclusds four weather variables
(i.e. rain, wind, temperature and humidity) in conjunctwith a SVM and it is capable
of predicting the burned area of small fires, which consitbe majority of the fire oc-
currences. Such knowledge is particularly useful for firemaggement decision support
(e.g. resource planning).



The paper is organized as follows. First, we describe thestdire data in Section
2. The adopted DM methods are presented in Section 3, wigileeults are shown and
discussed in the Section 4. Finally, closing conclusiorsiaawn (Section 5).

2 Forest FireData

The forest Fire Weather Index (FWI) is the Canadian systenrdting fire danger
and it includes six components (Figure 1) [24]: Fine Fuel $fisie Code (FFMC),
Duff Moisture Code (DMC), Drought Code (DC), Initial Sprebmtlex (I1SI), Buildup
Index (BUI) and FWI. The first three are related to fuel codbe:FFMC denotes the
moisture content surface litter and influences ignition fwedspread, while the DMC
and DC represent the moisture content of shallow and degmirtayers, which affect
fire intensity. The ISl is a score that correlates with fireoeétly spread, while BUI
represents the amount of available fuel. The FWI index isdicator of fire intensity
and it combines the two previous components. Although iffescales are used for
each of the FWI elements, high values suggest more sevensguronditions. Also,
the fuel moisture codes require a memory (time lag) of pasiter conditions: 16
hours for FFMC, 12 days for DMC and 52 days for DC.

Weather Rain
observations Relative Humidity Rain
or forecasts Temperature Relative Humidity Rain
Wind Wind  Temperature Temperature
Fuel
Moisture FFMC DMC DC
Codes
Fire
Behaviour ISI BUI
Indexes
FWI

Fig. 1. The Fire Weather Index structure (adapted from [24])

This study will consider forest fire data from the Montesimaural park, from the
Tras-os-Montes northeast region of Portugal (Figure Bjs park contains a high flora
and fauna diversity. Inserted within a supra-Mediterrandinate, the average annual
temperature is within the range 8 to°I2 The data used in the experiments was col-
lected from January 2000 to December 2003 and it was buitigusio sources. The
first database was collected by the inspector that was regperfor the Montesinho
fire occurrences. At a daily basis, every time a forest fireuoed, several features



were registered, such as the time, date, spatial locatitinna 9x 9 grid (xr andy axis
of Figure 2), the type of vegetation involved, the six comgats of the FWI system
and the total burned area. The second database was collacteé Bragancga Poly-
technic Institute, containing several weather obsermati@.g. wind speed) that were
recorded with a 30 minute period by a meteorological stakbmated in the center
of the Montesinho park. The two databases were stored inaemslividual spread-
sheets, under distinct formats, and a substantial manioat efas performed to inte-
grate them into a single dataset with a total of 517 entriédés Tata is available at:
http://www.dsi.uminho.pt/“pcortez/forestfires/

Fig. 2. The map of the Montesinho natural park

Table 1 shows a description of the selected data featuresfifBhfour rows denote
the spatial and temporal attributes. Only two geographatuiees were included, the
X andY axis values where the fire occurred, since the type of vagatptesented a
low quality (i.e. more than 80% of the values were missind)eAconsulting the Mon-
tesinho fire inspector, we selected thenth andday of the week temporal variables.
Average monthly weather conditions are quite distinct Javtfie day of the week could
also influence forest fires (e.g. work days vs weekend) sinu#t fires have a human
cause. Next come the four FWI components that are affectedttyi by the weather
conditions (Figure 1, in bold). The BUI and FWI were discatdence they are depen-
dent of the previous values. From the meteorological siatetabase, we selected the
four weather attributes used by the FWI system. In contréhttive time lags used by
FWI, in this case the values denote instant records, as givéme station sensors when
the fire was detected. The exception isthim variable, which denotes the accumulated
precipitation within the previous 30 minutes.



The burnedreais shown in Figure 3, denoting a positive skew, with the nigjaf
the fires presenting a small size. It should be noted thaskew/ed trait is also present
in other countries, such as Canada [18]. Regarding the pres¢aset, there are 247
samples with a zero value. As previously stated, all entt&mte fire occurrences and
zero value means that an area lower than/100 = 100n? was burned. To reduce
skewness and improve symmetry, the logarithm funcgioa In(x + 1), which is a
common transformation that tends to improve regressiartssfor right-skewed targets
[20], was applied to tharea attribute (Figure 3). The final transformed variable will be
the output target of this work.

Table 1. The preprocessed dataset attributes

Attribute Description

X x-axis coordinate (from 1 to 9)

Y y-axis coordinate (from 1 to 9)

month  Month of the year (January to December)
day Day of the week (Monday to Sunday)

FFMC FFMC code
DMC DMC code

DC DC code

1S ISI index

temp Outside temperature (ftC)

RH Outside relative humidity (in %)
wind Outside wind speed (in km/h)
rain Outside rain (in mm/r)

area Total burned area (iha)

3 DataMining Models

A regression datasé? is made up ok € {1, ..., N} examples, each mapping an input
vector (z¥,...,z%) to a given targey,. The error is given bye, = yi, — Ji, Where
Ui, represents the predicted value for thénput pattern. The overall performance is
computed by a global metric, namely tMean Absolute Deviation (MAD§nd Root
Mean Squared (RMSENhich can be computed as [27]:

N ~
MAD =1/N x5, |vi — Uil
RMSE = /S, (y; — 50)*/N
In both metrics, lower values result in better predictivedels. However, th&R M SE
is more sensitive to high errors. Another possibility to gare regression models is

the Regression Error Characteristic (REC) curve [2], wipidits the error tolerance:{
axis), given in terms of the absolute deviation, versus #regntage of points predicted

1)
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Fig. 3. The histogram for the burned area (left) and respectiverittga transform (right)

within the tolerancey-axis). The ideal regressor should present a REC area @ose t
1.0.

Several DM algorithms, each one with its own purposes andtilfies, have been
proposed for regression tasks. This work will consider fivd Bodels. The Multi-
ple Regression (MR) model is easy to interpret and this idasapproach has been
the widely used [11]. Yet, it can only learn linear mappings.solve this drawback,
one alternative is to use methods based on tree structuidsas Decision trees (DT)
and Random Forests (RF), or nonlinear functions, such asaNsetworks (NN) and
Support Vector Machines (SVM).

The DT is a branching structure that represents a set of, @itihguishing values
in a hierarchical form [4]. This representation can trateslanto a set of IF-THEN rules,
which are easy to understand by humans. The RF [3] is an etsahty’ unpruned
DT, using random feature selection from bootstrap traisiagples. The RF predictor
is built by averaging the outputs of tlié trees. In general, RF exhibits a substantial
improvement over a single DT.

NN are connectionist models inspired by the behavior of tin@dmn brain. In par-
ticular, the multilayer perceptron is the most popular Nshitecture. It consists of a
feedforward network where processing neurons are grouyptedayers and connected
by weighted links [12]. This study will consider multilayeerceptrons with one hidden
layer of H hidden nodes and logistic activation functions and onewutpde with a
linear function [11]. Since the NN cost function is noncoxgeith multiple minima),
N R runs will be applied to each neural configuration, beingdetbthe NN with the
lowest penalized error. Under this setting, the NN perforcgawill depend on the value
of H.

SVM present theoretical advantages over NN, such as theedsd local minima
in the model optimization phase. In SVM regression, the inpg R is transformed
into a highm-dimensional feature space, by using a nonlinear mappingn theSVM



finds the best linear separating hyperplane in the featweesp
J=wo+ > wig(x) )
=1

where ¢;(z) represents a nonlinear transformation, according to tmeekdéunction
K(z,2") = 31", ¢i(z)¢i(2’). To estimate the best SVM, theinsensitive loss func-
tion (Figure 4) is often used [22]. The popular Radial Bagsisidtion kernel, which
presents less hyperparameters and numerical difficuttaas dther kernels (e.g. poly-
nomial or sigmoid), will also be adopted [13]:

K(z,2') = exp(—v||lz — 2'|[*), v > 0 ©)

The SVM performance is affected by three paramet€rs: a trade-off between the
model complexity and the amount up to which deviations lathane are tolerated;

¢ — the width of theec-insensitive zone; and — the parameter of the kernel. Since the
search space for the three parameters is highCtlaede values will be set using the

.. . . . . ~ [In(N
heuristics proposed in [5{' = 3 (for standardized inputs) ard= 35 ](V ),

andg is the standard deviation as predicted by a 3-nearest naigidporithm.

where

support vectors

> - 0 +¢

Fig.4. Example of a linear SVM regression and thésensitive loss function (adapted from
[22])

Due to their performance in terms of predictive knowledge, RN and SVM are
gaining an attention within the DM field [27]. However, thesethods require more
computation and use representations that are more diffciriterpret when compared
with the more simple MR and DT models. Nevertheless, it i stissible to provide
explanatory knowledge for RF, NN and SVM in terms of inpuergince [3][16].

4 Experimental Results

All experiments reported in this study were conducted ufiediRMiner [6], an open
source library for theR statistical environment [21] that facilitates the use of Bédh-
niques in classification and regression tasks. In partictie RMiner uses the an-
domForest (RF algorithm by L. Breiman and A. Cutlemnet (for the NN) and and
kernlab (LIBSVM tool [13]) packages.



Before fitting the models, some preprocessing was requiyeithd MR, NN and
SVM models. The nominal variables (i.e. discrete with mbenttwo non-ordered val-
ues), such as thmonth andday, were transformed into &-of-Cencoding, as advised
in [13]. Also, for the NN and SVM methods, all attributes wetandardized to a zero
mean and one standard deviation [11]. Next, the regressimfelmwere fitted. The MR
parameters were optimized using a least squares algosithite, the DT node split was
adjusted for the reduction of the sum of squares. Regartisngemaining methods, the
default parameters were adopted for the RF (E.g- 500), the NN were adjusted using
N R = 3trainings and® = 100 epochs of the BFGS algorithm and the Sequential Min-
imal Optimization algorithm was used to fit the SVM. Afterifity the DM models, the
outputs were postprocessed using the inverse of the lbgatiansform. In few cases,
this transformation may lead to negative numbers and sugditive outputs were set to
zero.

To infer about the impact of the input variables, four distifeature selection setups
were tested for each DM algorithr8T FWI — using spatial, temporal and the four FWI
componentsSTM — with the spatial, temporal and four weather variakifé®]l — using
only the four FWI components; amd — with the four weather conditions. To access the
predictive performances, thirty runs of a 10-fold [17] (itogal of 300 simulations) were
applied to each tested configuration. Regarding the NN and 8yperparameters, a
internal 10-fold grid search (i.e. using only training dat@as used to find the best
H c€{2,4,6,8,10}andy € {279,277,275 273 2711, After selecting the{/~ value,
the NN/SVM model was retrained with all training data. TaBlshows the median
values of the selecteH and~ parameters.

Table 2. The best hyperparameters for NN and SVM (median values)

Feature Selection Setup
DM Model STFWI STM FWI M
NN 4 6 4 4
SVM 275 278 273 273

The results are shown in Table 3 in terms of the mean and régpéstudent 95%
confidence intervals [9]. For benchmarking purposes, tivereverage predictor (first
row) was also added to the table. Under tffed D criterion, all DM methods outper-
form the naive benchmark. Within a given feature selectioa,SVM tends to produce
the best predictions (except for the STM setup). Anothesradting result is the non
relevance of the spatial and temporal variables, since wieoved the SVM perfor-
mance improves. In effect, the best configuration is giverth®yM setup and SVM
model and paired t-tests against all other models confirfedtatistical significance
of this result. For the SVM, it is better to use weather candi rather than FWI vari-
ables. This is interesting outcome, since the meteorcdbgariables can be acquired
directly from the weather sensors, with no need for accutadlealculations. However,
from the RM S E point of view, the best option is the naive average predidtois ap-



parent contradiction is justified by the nature of each ecriteria, i.e. theRM SE is
more sensitive to outliers than tiié AD metric.

A more detailed analysis to the quality of the predictiv@esiis given by using REC
curves (Figure 5). To simplify the visualization, only thr@odels are plotted: M—SVM,
the best\ AD configuration; M—RF, the second best meteorological basstiod (in
terms of theM AD value); and Naive, the be&M S E model. From the REC analysis,
the M—SVM is clearly the best solution, with the highest afdthough there is only a
0.22 difference in terms of the averageAD values, the M—SVM and M-RF curves
are distinct, with the former model presenting the best iptehs for an admissible
absolute error up to 2.85. For example, 46% of the examp&eaaegurately predicted
if an error of Jha is accepted and this value increases to 61% when the adhaissib
error is Zhva. Regarding the naive predictor, it is the worst method, assmg the other
alternatives only after an absolute error of 13.7.

Table 3. The predictive results in terms of thef AD errors RM SE values in parentheses;
underline— best modelbold — best within the feature selection)

DM Feature Selection Setup

Model STFWI STM FWI M

Naive 18.63t0.01(63.7+00) 18.610.01 (63.740.0) 18.61t001(63.7+00) 18.61-0.01 (63.7740.0)
MR 13.070.01(64.5%00) 13.044-0.01 (64.440.0) 13.00t0.00(64.5+00) 13.0H-0.00 (64.540.0)
DT  13.46to004(64.4+01) 13.4340.06 (64.6100) 13.24t003(64.4+00) 13.18%0.05 (64.510.0)
RF 13.3H0.02 (64.3+0.0) 13.04+001 (64.5+00) 13.38k0.05 (64.040.1) 12.93t0.01 (64.440.0)
NN 13.09%0.04 (64.5%00) 13.924060 (68.9%35) 13.08t00s (64.6+01) 13.7 069 (66.9H3.4)
SVM  13.07+004(64.00) 13.13t0.02(64.740.0) 12.86+000 (64.T00) 12.7140.01(64.70.0)
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Fig.5. The REC curves for th®1-SVM, M -RF and Naive models (left); and the real values (black
dots) and M-SVM predictions (gray dots) along theaxis output range (right)



To complement the REC analysis, another plot is presentedédV-SVM config-
uration (Figure 5). The intention is to observe how the erare distributed along the
output range. The real values (black dots) of the test set wetered {-axis) accord-
ing their burned areayfaxis). It should be noted thataxis ranges from 1 to 5130
runs = 15510. To clarify the analysis, theaxis was set within the rand@, 20ha]. The
M-SVM predictions are also shown in the figure, using a grajesthat is dependent
on the accuracy. In general, the gray dots denote predgctigthin a relative error that
ranges from 10% (darker grey) to 50% (lighter grey). The pioa is when when the
real values are belowhk. In this case, the gray scale corresponds to absolute differ
ences (from 0.4a to 0.5ha). The plot shows that the M—SVM performance is better
when predicting small fires (e.g. within thi@ 3.2ha] range).

Regarding the input relevance procedure, the whole 51#dsomere used to fit
the M—SVM model. Then, a sensitivity analysis [16] proceduwas performed by mea-
suring the variancel{,) produced by the output when a given input attributevaries
through its entire range witlh levels (here set td. = 5). Lety,,. be the average
output when the attribute, = L, and all other inputs are set to their original values
(from the dataset). TheW, = S~ (Yar, — Yar,)?/(L — 1). These variances can be
relativized, by using the expressioR;, = V,,/ Ele V; (Table 4). This procedure in-
dicates that all weather conditions affect the model, withdautside temperature being
the most important feature, followed by the accumulatedipretion (rain).

Table 4. The sensitivity analysis values for the weather inputs efh-SVM model

temp RH wind rain
V, 9.95 0.56 0.64 2.45
Rq 73.2% 4.1% 4.7% 18.0%

5 Conclusions

Forest fires cause a significant environmental damage wiiéatening human lives.
In the last two decades, a substantial effort was made td butomatic detection tools
that could assist Fire Management Systems (FMS). The thegarimends are the use
of satellite data, infrared/smoke scanners and local ser(gog. meteorological). In
this work, we propose a Data Mining (DM) approach that useearelogical data, as
detected by local sensors in weather stations, and thabisrkio influence forest fires.
The advantage is that such data can be collected in realatievith very low costs,
when compared with the satellite and scanner approachesnReal-world data, from
the northeast region of Portugal, was used in the expersn@&he database included
spatial, temporal, components from the Canadian Fire Veeattdex (FWI) and four
weather conditions. This problem was modeled as a regresagk, where the aim
was the prediction of the burned area. Five different DM atgms, including Support



Vector Machines (SVM), and four feature selections (usiiggirttt combinations of
spatial, temporal, FWI elements and meteorological véeglwere tested.

The proposed solution, which is based in a SVM and requirég four direct
weather inputs (i.e. temperature, rain, relative humidiig wind speed) is capable of
predicting small fires, which constitute the majority of fire occurrences. The draw-
back is the lower predictive accuracy for large fires. To aunkledge, this is the first
time the burn area is predicted using only meteorologicaktladata and further ex-
ploratory research is required. As argued in [18], predicthe size of forest fires is
a challenging task. To improve it, we believe that additlenfrmation (not available
in this study) is required, such as the type of vegetationfamfighting intervention
(e.g. time elapsed and firefighting strategy). Neverthelbssproposed model is still
useful to improve firefighting resource management. Foaimst, when small fires are
predicted then air tankers could be spared and small graemegsacould be sent. Such
management would be particularly advantageous in drafiiiseasons, when simul-
taneous fires occur at distinct locations.

This study was based on an off-line learning, since the DMri@pies were applied
after the data was collected. However, this work opens raomthfe development of
automatic tools for fire management support. Indeed, inuheé we intend to test the
proposed approach by using an on-line learning environasepart of a FMS. This will
allow us to obtain after some time a valuable feedback franfitafighting managers, in
terms of trust and acceptance of this alternative soluimother interesting possibility
would be the use of weather forecasts, in order to build giv@cesponses. Since the
FWI system is widely used around the world, further resedsaheed to confirm if
direct weather conditions are preferable than accumulatkets, as suggested by this
study. Finally, since large fires are rare events, outli¢ecton techniques [28] will
also be addressed.
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