
A Distributed, Heterogeneous Control System for the ALICE TPC Electronics

J. Alme, M.Richter, D. Larsen, D. Röhrich, K.Ullaland
Department of Physics and Technology, University of Bergen, Norway

Johan.Alme@ift.uib.no, Matthias.Richter@ift.uib.no

K.Røed
Faculty of Engineering, Bergen University College, Norway

S. Bablok, R. Keidel, Ch. Kofler
Center for Technology Transfer and Telecommunications, University of Applied Science Worms, Germany

T.Krawutschke
Institute of Communication Engineering, University of Applied Sciences Cologne, Germany

T.Alt, D.Gottschalk, H.Höbbel, V. Kiworra, V. Lindenstruth, M.R. Stockmeier
Kirchhoff Institute of Physics, University of Heidelberg, Germany

U. Frankenfeld
GSI, Gesellschaft für Schwerionenforschung, Darmstadt, Germany

R. Campagnolo, C. Engster, C. GonzalezGutierrez, A. Junique, B.Mota, L.Musa
CERN, European Organization for Nuclear Research, Geneva, Switzerland

Abstract

The ALICE detector is a dedicated heavy-ion detec-
tor currently built at the Large Hadron Collider (LHC) at
CERN. The detector consists of several sub-detectors each
of them forming a highly complex device. The Detector
Control System (DCS) covers the task of controlling, con-
figuring and monitoring of the detector system.

Since the experiment will be running in a radiation en-
vironment, fault tolerance, error correction and system sta-
bility in general are major concerns. A system consisting of
independently running layers has been designed, the func-
tionality layers are running on a large number of nodes and
sub-nodes. An autonomous single-board computer, the DCS
board, has been developed which allows one to run the op-
erating system Linux in an embedded environment and to
perform tasks related to the hardware devices. Further cus-
tom hardware devices have been developed covering spe-
cific tasks and serving as sub-nodes. These devices together
with standard computers in higher control layers form a dis-
tributed control system.

This article will focus on the concept and architec-
ture of the DCS for the Front-end electronics of the Time-
Projection Chamber (TPC) and present results and experi-
ences from system integration tests.

Figure 1. The ALICE detector

1 Introduction

ALICE is one of four experiments at the LHC at CERN.
It is designed to investigate collisions of lead nuclei and pro-
tons which are accelerated by the LHC. The ALICE exper-
iment is outlined in [1]. LHC and the ALICE detector are
currently under development and are scheduled to be com-
missioned in 2007.
To be able to differentiate all the particles resulting from

the freeze-out of a nuclear collision, huge detectors need to

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

be built. Figure 1 shows an overview of the ALICE detec-
tor. Surrounding the detector is a huge magnet, and inside
this magnet many of the sub-detectors are found. The main
sub-detectors of the central arm are the ITS (Inner Tracking
System), TPC (Time Projection Chamber), TRD (Transition
Radiation Detector), TOF (Time of Flight), PHOS (PHOton
Spectrometer) and HMPID (HighMomentum Particle Iden-
tification Detector). In addition to this there are different
smaller detector systems, e.g. for trigging.
All the mentioned sub-detectors have configurable vari-

ables all the way down to the hardware level, and the DCS
has to continuously measure parameters. The TPC detector
itself has a configuration consisting of approximately 4500
Front-End Cards communicating with 216 Readout Control
Units. In each Front-End Card there are 128 channels that
provide data and these channels must be individually con-
figured. Adding this together gives close to 600 000 chan-
nels that must be individually configured in the TPC detec-
tor alone.
The ALICE detector works in a radiation environment.

In such an environment errors in the Front-end electronics
will occur, that may lead to a malfunctioning of the system.
It is of high importance to detect and repair these errors as
soon as possible, to prevent permanent damage and errors
in the data-stream. Physical shielding of the sensitive parts
cannot be implemented, as this will effect the particle mea-
surements. The limited accessibility of the ALICE detector
is also an important aspect. Hardware errors that may have
occurred cannot be repaired without dismantling the whole
detector.
This article will focus on one of the embedded computer

systems used for controlling the TPC, PHOS and TRD de-
tector Front-end electronics. The setup of the TPC and
PHOS control systems are practically identical, while the
TRD has a slightly different setup. The control system for
the TPC detector will be investigated in-depth, while expe-
riences from the TRD detector and the PHOS detector will
also be discussed because of the similarities.

2 Overall Architecture

To be able to handle such a huge and complex system, a
sophisticated control system is needed. The system needs
to be able to run under harsh conditions, in which it has to
work from the day it is installed. Because of the limited
accessibility, it also needs to be easily reconfigurable and it
must be possible to detect error conditions at an early stage
and notify the operator. It also needs to be able to automat-
ically act upon certain severe error conditions in order to
prevent permanent damage to the hardware. Furthermore
the cooling system, the ventilation system, the magnetic
fields, etc have to be controlled. In general for the ALICE
project these tasks are covered by the Detector Control Sys-

tem (DCS). Detailed information on the components and
architecture can be found in [2]. The various components
not concerning the TPC Front-end electronics will not be
investigated further.

Embedded
Computer

sub-node

PCs with
Communication Software

PCs with a Commercial
Controlling Software

Supervisory Layer

Control Layer

Field Layer

Embedded
Computer

Embedded
Computer

Embedded
Computer

TPC
Front-end
electronics

sub-node

TPC
Front-end
electronics

sub-node

TPC
Front-end
electronics

sub-node

TPC
Front-end

electronics

Figure 2. A sketch of the Detector Control
System in ALICE for the TPC sub-detector.

A sketch of the DCS for the TPC Front-end electronics
is given in figure 2 showing the principles of the architec-
tural layout. It is a distributed computer system that is di-
vided into three layers, Supervisory Layer, Control Layer
and Field Layer. The Supervisory Layer is the top-level
with the operator’s user-interface. The Control Layer is a
communication layer, and the Field Layer is where the dif-
ferent nodes are found. All the nodes in the system work in
parallel, feeding the operator with useful information con-
cerning the status of the system, or responding to commands
given at the top-level.
It is important to notice that the control system is de-

tached from the data-flow. The data is transported from the
Front-end electronics to Data Acquisition (DAQ) through
an optical link. The main task of the control system is to
avoid occurring system errors interrupting the data-flow.

3 The Distributed Control System

3.1 Tasks of the Detector Control System
The DCS investigated in this article is responsible for

configuring, monitoring and controlling the Front-end elec-
tronics of sub-detector systems. The control system is de-
signed to automatically act upon different conditions that
may occur in the equipment, e.g. shutting down a Front-
End Card in the TPC system, if the voltage level exceeds
a given threshold. The configuration task includes upload-
ing configuration data to certain FPGAs on the Front-End
Cards. This data is stored in the Configuration Database
and includes physical location of the equipment, hardware
addresses and different operational modes. This informa-
tion covers both hardware and software.
The tasks of the control system will be distributed over

many PCs and embedded computing devices forming a het-

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

erogeneous system. This ensures a scalable design that eas-
ily can be adapted in case of changes in the complete sys-
tem. Such architecture is also needed because of the scale
of the control system, and to allow independent operation
of the different parts involved.

3.2 Hardware architecture
The hardware architecture is described by three layers.

From top to bottom this is (see figure 2):

� The Supervisory Layer
The Supervisory Layer consists of a number of PCs
and provides user interfaces to the operator. It com-
municates with the Configuration Database and con-
nects to disk servers. It also communicates with exter-
nal systems for the LHC itself.

� The Control Layer
The Supervisory Layer communicateswith the Control
Layer mainly through a LAN network. This layer con-
sists of PCs, PLCs (Programmable Logic Cells) and
PLC like devices. The Control Layer collects and pro-
cesses information from the Field Level, as well as
sending commands and information from the Super-
visory Layer to the Field Layer.

� The Field Layer
The Field Layer consists of all field-devices, sensors,
actuators and so on. The DCS board with its sub-nodes
is located in this layer.

Sharing of devices between different sub-systems is
avoided whenever it’s possible, so that independent oper-
ation is ensured. This is also an important issue in devel-
opment and commissioning of the system, so that each sub-
system can be debugged and tested separately from other
parts of the system. This technique is called partitioning
and is a widely used feature in the design of ALICE.

3.3 Software architecture
The three functional layers of the DCS are represented

also in the software architecture. This will be discussed in
chapter 5.

3.4 The TPC Front-end electronics sub-system
The TPC and PHOS detectors use a specific hardware

device, the Readout Control Unit (RCU), to control a set
of Front-End Cards (FECs). An RCU consists of the RCU
motherboard, from now on referred to as RCU board, and
the DCS board embedded computer. The design of the RCU
board is based on an FPGAwith firmware update possibility
and enough space to host other tasks in addition to the read-
out. The DCS uses the RCU board as a sub-node to the DCS

board. Specialized tasks which are adapted to the underly-
ing hardware run on the sub-nodes while the more complex
tasks are running on the node itself. The DCS board con-
tains components that make it capable to run a light-weight
version of Linux. More details are given in chapter 4

Figure 3. Read Out Control Unit motherboard
v3.0, with a DCS board v1.16, an SIU board
and two Front-End Cards attached.

Figure 3 shows a picture of a prototype of the system
components. In the picture the RCU board is shown with
the DCS board and a Source Interface Unit (SIU) board
connected. The backplanes can be seen coming out from
the back of the card, and two Front-End Cards (FECs) ([3])
are connected to this. Up to 25 FECs can be connected.
The event-data is converted from an analog to a digital sig-
nal in the FECs, then handled by the RCU and shipped out
through an optical link that is sited on the SIU card. The
SIU card and the data readout chain are only mentioned for
completeness in this article.
The DCS boards are independent nodes in a distributed

computer system. They are configured to work in parallel,
performing sophisticated error-handling and other tasks re-
lated to the control system. In addition a DCS board is able
to reconfigure its neighboring boards via a JTAG connection
in case of malfunction.
Registers and memory on the sub-nodes are accessible

from the Linux operating system on the DCS board, either
directly or indirectly. For that purpose the sub-nodes define
memory mapped interfaces which can be accessed from the
node via device drivers. More on this topic and an example
for the TPC sub-system is given in chapter 5.5.

3.4.1 DCS board embedded computer
The DCS board is used in multiple detectors of the ALICE
experiment and flexibility has always been a major concern.
The core of the system is an Altera EPXA1, containing a

32bit ARM processor with cache andMMU (MemoryMan-

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

agement Unit). Among other features there are 100k gates
of PLD (Programmable Logic Device) available. The PLD
in combination with the Linux operating system is the chief
cause for the flexibility that will be examined in detail in
chapter 4.
In addition to the FPGA, the board hosts a radiation tol-

erant 8 MB Flash ROM, 32 MB SDRAM, an Ethernet in-
terface, an ADC (Analog-Digital Converter) for voltage and
temperature monitoring, a JTAG connector, as well as ded-
icated data-lines to the RCU board connector. All these
components make the DCS board a custom-made, fully-
functional computer.

3.4.2 RCU board stability measures
The functionality of both the DCS board and the RCU
motherboard is based on FPGAs which can experience er-
rors at some point due to the radiation environment. These
errors are not of a permanent nature, and will be corrected
by reloading the firmware into the configuration memory of
the FPGA. The firmware files are stored in radiation tolerant
Flash memory. Reloading the configuration and rebooting
causes downtime of the specific node. Since the data-path
is independent of the status of the DCS board, occasional
downtime of the DCS board node is irrelevant.

DCS-board

RCU-board

Radiation hard
CPLD

Xilinx FPGA

FLASH

Altera FPGA
w/ ARM cpu

Bank 0

Bank 1
Bank 2
Bank 3

FLASH mem
w/ Linux

Bank 0
Bank 1
Bank 2
Bank 3

Figure 4. Reconfiguration scheme for the Xil-
inx FPGA on the RCU board.

This simple approach is not satisfying for the FPGA on
the RCU board, as it will interrupt the data-flow. To over-
come this problem automatic checking and refreshing of the
firmware has been implemented. The scheme is sketched in
figure 4. It is based on an FPGAwhich allows one to refresh
the firmware without interrupting the operation. In the cur-
rent system a Xilinx Virtex-II Pro device [4] has been cho-
sen. In addition there are a CPLD (Complex Programmable
Logic Device) and a Flash Memory on the RCU mother-
board, that both are radiation tolerant. The custom-made
design in the CPLD can continuously refresh the configu-
ration memory, or if needed, read back the configuration
memory and verify it against the original binary-files stored

in the Flash memory. This setupmakes it possible to remove
errors in configuration memory of the FPGA before they af-
fect the behavior of the system. Both the Flash memory and
the Configuration Memory of the FPGA is also made avail-
able for the DCS board computer, making firmware upgrade
possible, or to do more sophisticated error-handling.

4 Linux on DCS board embedded computer

The Linux system is one of the main reasons for the flex-
ibility of the DCS-node. It provides a powerful and extend-
able tool to configure the system to behave as needed in a
given situation. The use of device drivers to communicate
with different parts of the hardware introduces an abstrac-
tion layer which decouples software from hardware. This
technique also eases the maintenance of the system. Up-
dated firmware modules and device drivers with new func-
tionality can at any time be inserted in the system. This
makes it an organic system that can easily be suited to meet
future demands, even if the whole detector system will be
physical unavailable. This chapter will focus on the Linux
operating system on the DCS boards.

4.1 Armboot
After power-up and before startup of the kernel the ARM

CPU starts executing at address 0 of the flash memory, at
which the bootloader (armboot) is located. The bootloader
initiates the boot sequence and fulfills three major duties:

� Configure the PLD (see chapter 4.3)

� Copy the kernel command line to memory

� Copy the compressed kernel image to memory.

Armboot ends itself by handing over control to the kernel
image which extracts to main memory.

4.2 Kernel startup and device drivers
The first actions the kernel takes after self-extraction

are starting the caches, the MMU, initializing the stack
and setup of the interrupt descriptor table. These are plat-
form and processor specific setups which are unique for the
EPXA1 on the DCS board. Also the paging is preparedwith
the setup of the global descriptor table and the page table.
After this the kernel continues with startup, which is in-

dependent of the processor architecture it runs on, except
for the device drivers which are initialized at the end.
In normal operation the kernel is only activated when an

(hardware) interrupt occurs or a system call is issued by a
user program. In the terms of abstraction, access to most of
the hardware is made available by the device drivers via files
residing in the /dev directory. Similar to a regular file on a
disk or another file-system, a hardware file can be opened,

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

closed, read or written. One has to keep in mind that there
are rules how to use a specific hardware introduced by the
device driver author. The access to a lot of drivers for the
hardware on the DCS board, are used as dynamically load-
able kernel modules.

4.3 The PLD

Much of the hardware presented in the beginning is con-
nected to the PLD of the EPXA1, the central chip. This is
in effect a new layer between device driver and hardware.
A common application is the protocol machine. Outside
the central chip a simple driver/receiver (e.g. a PHY for
Ethernet) added and the PLD is configured with the com-
plex hardware necessary for the communication protocol
(e.g. the Ethernet Medium Access Controller - MAC). A
module that implements memory-mapped communication
with other firmware modules on the FPGAs on the DCS
and RCU boards is also present.
With the Altera tools for the EPXA1 a programming file

is created for the device. As stated above the boot-loader
armboot loads this configuration into the PLD after system
power-up. This has to be done after every power cycle be-
cause of the SRAM based technology inside the PLD. This
process can also be done later on, when the system is run-
ning to reconfigure the PLD for another task or to reload the
actual configuration for safety reasons.
The cooperation of reconfiguration and loadable kernel

modules is the key-feature for the flexibility of the DCS
board. With minor changes it is adaptable to several de-
tector sub-systems and other tasks.

4.4 The root file system

Three quarters (3MB) of the Flash memory are reserved
for the root file system formatted in the JFFS2 (Journal-
ing Flash File System 2) type. JFFS2 is writable, fail safe
against power-loss, compresses data, takes care of wear-
leveling and is often chosen for embedded systems. It con-
tains at least the init program which is started by the kernel
after the setup.
The regular programs for operating and administrating a

UNIX system are provided by BusyBox1 which is remark-
ably small in size (approx. 0.3 MB). This is achieved by re-
ducing functionality of some standard utilities and by com-
bining all functionality into a single executable and sharing
functions. Some programs are from other sources, like the
well known openSSH-daemon or written by the developers
for the detector specific hardware on the board. But another
advantage of choosing Linux as operating system becomes
evident: with a minimum effort standard software is avail-
able. The main difference regarding compilation is the use

1www.busybox.net

of a cross compiler. Because of the limitations of the sys-
tem the software has to be cross compiled on a host system,
normally a regular linux PC.
The first process, init, starts the daemons like inetd and

executes the rc-script from where the network is set up,
pseudo terminals for the remote login via telnet or ssh are
created. The web-server can generate dynamic web-sites or
be used for user interaction. The syslogd logs the system
and kernel messages to a ram-disk or a remote server. The
crond checks the consistency of the flash and does other
repetitive tasks.

5 Architecture of the communication soft-
ware

5.1 Overview

Figure 5 shows an overview of the architecture of the
system. A SCADA (Supervisory Control And Data Ac-
quisition) system builds the top, through which the op-
erator can access and monitor data points related to the
hardware devices. A commercial controlling software,
PVSS (Prozess- Visualisierungs- und Steuerungs- System
by ETM2), has been chosen for the ALICE experiment. The
DCS is not restricted to this specific controlling software but
can feature any SCADA system. The PVSS connects to the
InterComLayer, a specific communication software acting
as the Control Layer and connecting the hardware devices
in the Field Layer to the controlling system in the Super-
visory Layer. The system uses the communication frame-
work DIM (Distributed Information Management)3, which
is based on the client-server principles. Several abstraction
layers have been introduced:

� PVSS and InterComLayer communicate through a
specific interface, the Front-End-Device (FED, com-
mon among different sub-detectors within the ALICE
experiment). The InterComLayer implements a server
which the PVSS can subscribe to as a client.

� Each hardware device implements a Front-End-
Electronics-Server (FeeServer), which the InterCom-
Layer subscribes to as a client.

The InterComLayer connects to several FeeServers (in
the case of the TPC: 216 FeeServers) and pools data before
distributing it to the SCADA system. Vice versa the Inter-
ComLayer distributes configuration data to the FeeServers.
In addition it implements an interface to the Configuration
Database containing all specific configuration data for the
hardware devices.

2ETM professional control GmbH, www.etm.at
3http://www.cern.ch/dim

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

Figure 5. Schematic view of the DCS for the
ALICE TPC

5.2 Communication protocol
Communication between all layers is based on the DIM

protocol. DIM is an open source communication frame-
work developed at CERN. It provides a network-transparent
inter-process communication for distributed and heteroge-
neous environments. DIM implements a client-server rela-
tion with two major functionalities.

� Services: The DIM server publishes so called services
and provides data through a service. Any DIM client
can subscribe to services and monitor their data. The
DIM clients get notified about current values via a call-
back from the DIM server.

� Commands: A DIM server can accept commands from
DIM clients. Server and client have to agree on the
format of the command.

A dedicated DIM name-server takes control over all the
running clients, servers and their services available in the
system. Each server registers at startup all its services and
command channels. For a client the location of a server
is transparent. It asks the DIM name-server which server
provides a specific service and retrieves the access informa-
tion. The process then connects directly to the correspond-
ing server. The DIM name-server concept eases a recovery
process of the system after update and restart of servers or
clients at any time. It enables also fast migration from one
machine to another and distributed tasks. Whenever one
of the processes (a server or even the name server) in the
system crashes or dies all processes connected to it will be
notified and will reconnect as soon as it comes back to life.

5.3 The Front-End-Electronics-Server
The DCS as described in this article is based on so called

Front-End-Electronics-Servers (FeeServers). They are run-
ning in an embedded environment on the DCS board nodes

under the operating system Linux close to the hardware (see
chapter 4). A FeeServer abstracts the underlying Front-
end electronics to a certain degree and covers the following
tasks:

1. Interfacing hardware data sources and publishing data

2. Receiving of commands for configuration and control-
ling the Front-end electronics

3. Self-test and Watchdogs (consistency check and set-
ting of parameters)

5.3.1 The FeeServer core
The core of the FeeServer is device-independent. It pro-
vides general communication functionality, remote control
and update of the whole FeeServer application. Some fea-
tures are related to the configuration of the data publishing.
The core can be used for different devices, i.e. different
detectors of the ALICE experiment. The device-dependent
actions are adapted for each specific device and are exe-
cuted in separated threads. This makes a controlled execu-
tion possible. Special precautions have been taken to detect
and correct bit flips due to radiation and magnetic field in-
fluences.

5.3.2 The ControlEngine (CE)
The ControlEngine implements the device dependent func-
tionality of the FeeServer. An abstract interface between
FeeServer and CE is defined, the ControlEngine imple-
ments interface methods for initializing, cleaning up and
command execution as well as device data access and up-
date. The access of the specific hardware is done via Linux
device drivers. This makes the functionality of the CE inde-
pendent from the hardware/firmware version.

5.4 InterComLayer
The InterComLayer takes the task of the Control Layer

(see chapter 3.2). It runs independently from the other sys-
tem layers on a separate machine outside of the radiation
area. It provides three interfaces (see also figure 5):

� Front-End-Electronics Client (DIM client) to connect
to the Field Layer

� Front-End-Device Server (DIM server) to connect to
the Supervisory Layer

� Interface to the Configuration Database, using a
database client

The InterComLayer connects to all FeeServers of one
sub-detector, which are running on the DCS board nodes.
The FEE interface consists of a command channel, a cor-
responding acknowledge channel, a message channel and

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

several service channels. These services are referred to be
values of interest like temperature, voltage, currents, etc.
of the Front-end electronics. In order to reduce network
traffic the FeeServer can apply thresholds for data value
changes, so called dead-bands. As described in chapter 5.2
the DIM framework and the DIM name server concept pro-
vide an easy connection procedure between the FeeServers
and the InterComLayer. After the connection is estab-
lished, the InterComLayer subscribes to the services of the
FeeServers and controls their message channels. Filtering
of messages according to the log-level is performed on each
layer to reduce network traffic. The service channels of the
FeeServers are pooled together and re-published to the su-
pervisory level. By this means the source of the services is
transparent to the SCADA system on top. The InterCom-
Layer is an abstraction layer, which disconnects Supervi-
sory and Field Level.
In order to transport configuration data to the Front-end

electronics, the InterComLayer has an interface to the con-
figuration database. Neither database nor InterComLayer
know about the format of the data. The data will be han-
dled as so called BLOBs (Binary Large OBjects). The
database contains entries of configuration packages. For
each specific configuration of the Front-end electronics it
creates a descriptor which refers to the required configura-
tion packages. The Supervisory Layer sends a request to
load a certain configuration to the InterComLayer, which
then fetches the corresponding BLOB from the configura-
tion database and transports it through the command chan-
nel to the FeeServers.
In addition the InterComLayer provides functionality for

maintenance and control of the FeeServers. Servers can be
updated, restarted and their controlling properties can be ad-
justed to any requirements.

5.5 Readout Control Unit (RCU)
As outlined in chapter 3.4 the TPC and PHOS detector

sub-systems use the RCU board as a sub-node to the DCS
board. These sub-nodes host basic controlling functional-
ity for a set of FECs. This approach has several advantages.
The workload is distributed over a couple of nodes. Further-
more an RCU and FECs can work in a stand-alone system
for system prototypes and development. An even bigger
concern is system stability. Since the whole Field Layer of
the DCS, i.e. FECs, RCUs and DCS boards, is exposed to
radiation a redundant system is necessary. As mentioned
in chapter 3.4.2 the RCU is designed to be radiation toler-
ant and is therefore suited for crucial tasks, one is the Lo-
cal Slow Control (LSC) described below. The DCS board
runs complex system failure analysis to control both its own
work and the sub-node.
So far two DCS modules are running on the sub-node

� Altro Bus Interface module

This module provides access to the FECs through a
memory mapped interface. It implements simple ac-
cess sequences. The DCS board exploits these meth-
ods to read and write data from/to registers and mem-
ory on the FECs. The Altro Bus Interface module is
widely used by the DCS during configuration of the
Front-end electronics.

� Local Slow Control - LSC
The LSC module monitors the health status of the
FECs by controlling critical values like currents, volt-
ages and temperatures. In case of an abnormal be-
havior the FEC is removed from the data readout and
turned off to avoid damage of the system. By this
means the alarm is handled as close as possible to
the source and the response time is minimized. The
message channel of the DCS is used to signalize the
alarm/error upwards and the operator will be informed.
During normal operation the LSC provides access to
monitoring data. The Control Engine of the FeeServer
reads the values periodically and updates the services
if the change exceeds a certain threshold.

6 Experiences and results

Several small scale control systems consisting of the
DCS board and applicable sub-nodes has already been used
as stand alone systems in major tests, these include setups
used for the TPC detector, the PHOS detector, as well as the
TRD detector. The tests are called beam-tests, because an
actual particle beam from one of the accelerators at CERN
is used to create the radiation environment. The modularity
of the design makes it possible to test the complete readout
chain of data, only using a subset of the complete Control
System. At the time of the TPC- and PHOS-test the com-
munication protocol between the Field Layer (DCS boards)
and the Control Layer was still under development. This
made it necessary to control the system using only direct
login on the Linux of the DCS board.

6.1 TPC Beam-test

At the TPC beam-test, two DCS boards and two RCU
boards were used, with more than 40 TPC Front End Cards
connected. The system was running and collecting data for
more than a week without experiencing any major prob-
lems. The DCS board was mostly used to configure the
system in this setup, as the firmware and software that deal
with monitoring the system where under development. This
configuration was done by running basic access tools and
command-line scripts in Linux.

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

6.2 PHOS Beam-test

At the PHOS beam-test, one DCS board and one RCU
board where used, with two PHOS Front-End Cards con-
nected. The test lasted close to a week, in which the system
was fully operational. Again the DCS board was mostly
used to configure the system. There is a high voltage sec-
tion on the Front-end electronics and tuning the bias voltage
was important for the experiment. This was done by using
command line scripts that communicate directly to the reg-
isters in the firmware. This was not an easy task for the
control room operators, so a macro was made in Labview to
ease the job. This macro was quickly made, because of the
well-known interface the Linux system provides.

6.3 TRD Beam-test

The Front-end electronics communication chain of the
control system has been tested during the TRD sub-system
test in October 2004. For that purpose, a stack of 6 TRD
layers was mounted and placed into the beam line in an ex-
periment hall at CERN.
The distributed control system consisted of 9 DCS board

nodes with embedded computers, the device specific read-
out boards as sub-nodes and two PCs running the InterCom-
Layer and the PVSS respectively. Each TRD layer con-
tained one readout board with an attached DCS board node.
In addition, the top most and lowest readout board was con-
nected to a second DCS board for testing purposes. One
more was used to control the whole readout-chain.
All 9 DCS board nodes ran continuously during the 2

weeks of the test-beam. The FeeServer on each DCS board
computer monitored up to seven independent values, which
were read from an ADC placed on the DCS boards. All
these values were collected by the InterComLayer and de-
livered further up to PVSS. Control- and configuring com-
mands were sent as broadcasts from this SCADA system
as well. The actual control data was read from small sized
configuration files by the InterComLayer and distributed to
the FeeServers on the DCS boards.

6.4 Irradiation test of electronics

Since the system is supposed to work in a radioactive en-
vironment, each and every component that is on the circuit-
boards need to be tested for radiation hardness. Several tests
have been performed at the Cyclotron at the University of
Oslo, and at the SvedbergLaboratory in Uppsala in Sweden.
These tests have been very valuable, giving information that
has influenced the design of the DCS/RCU sub-system, as
mentioned in chapter 3.4.2. More detailed information on
the irradiation tests is found in [5].

7 Summary and conclusion

This article has presented the Detector Control Sys-
tem for the TPC Front-end electronics of the ALICE
experiment. The DCS board embedded computer is a
fundamental part in the distributed controlling system
which allows running complex controlling software under
the operating system Linux. Tasks can be processed in
parallel on the DCS board and the connected custom
hardware devices serving as sub-nodes.

Several advantages of this sub-system have been pointed
out:

� Distributed and module-based design with well-
defined interfaces increases structure and testability.

� Parallel systems increase bandwidth and reduce work-
load on each node.

� The system is independent of physical intervention.
This is of high importance as the system is unacces-
sible when it is in operative mode.

� Linux operating systems on the embedded computers
provides flexibility and well known interfaces.

� Software and Firmware that is easily reconfigurable,
using the Linux operating system.

� Low-level devices with intelligent error-handling de-
crease the possibility for permanent failures.

The ALICE detector is to be commissioned in 2007
along with the other experiments using the Large Hadron
Collider. The system is still under development. The
modularity of the system makes it possible to test and
review each sub-system on it’s own independently of the
complete setup, and several tests have been performed with
satisfying results.

References

[1] ALICE Collaboration CERN/LHCC/1995-71.

[2] ALICE Collaboration; Technical Design Report: Trig-
ger, DAQ, HLT, DCS; CERN/LHCC/2003-062.

[3] L. Musa et al The ALICE TPC Front End Electronics,
Proc. of the IEEE Nuclear Science Symposium, Port-
land, October 2003

[4] Virtex-II Pro and Virtex-II Pro X User Guide, Xilinx
UG012 (v3.0), August 2004

[5] K. Røed; Irradiation Tests of ALTERA SRAM-based
FPGAs,Master thesis, University of Bergen, May 2004

Proceedings of the 2005 International Conference on Parallel Processing Workshops (ICPPW’05)

1530-2016/05 $20.00 © 2005 IEEE

