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Abstract  

Background: Recent developments in technology result in the generation of big data. In 

genome-wide association studies (GWAS), we can get tens of million SNPs that need to be 

tested for association with a trait of interest. Indeed, this poses a great computational 

challenge. There is a need for developing fast algorithms in GWAS methodologies. These 

algorithms must ensure high power in QTN detection, high accuracy in QTN estimation and 

low false positive rate. 

Results: Here, we accelerated mrMLM algorithm by using GEMMA idea, matrix 

transformations and identities. The target functions and derivatives in vector/matrix forms 

for each marker scanning are transformed into some simple forms that are easy and efficient 

to evaluate during each optimization step. All potentially associated QTNs with P-values ≤ 

0.01 are evaluated in a multi-locus model by LARS algorithm and/or EM-Empirical Bayes. 

We call the algorithm FASTmrMLM. Numerical simulation studies and real data analysis 

validated the FASTmrMLM. FASTmrMLM reduces the running time in mrMLM by more 

than 50%. FASTmrMLM also shows high statistical power in QTN detection, high accuracy 

in QTN estimation and low false positive rate as compared to GEMMA, FarmCPU and 

mrMLM. Real data analysis shows that FASTmrMLM was able to detect more previously 

reported genes than all the other methods: GEMMA/EMMA, FarmCPU and mrMLM. 

Conclusions: FASTmrMLM is a fast and reliable algorithm in multi-locus GWAS and 

ensures high statistical power, high accuracy of estimates and low false positive rate. 

Keywords: genome-wide association study; mixed linear model; multi-locus model; 

FarmCPU; mrMLM 
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Author Summary 

The current developments in technology result in the generation of a vast amount of data. In 

genome-wide association studies, we can get tens of million markers that need to be tested for 

association with a trait of interest. Due to the computational challenge faced, we developed a 

fast algorithm for genome-wide association studies. Our approach is a two stage method. In 

the first step, we used matrix transformations and identities to quicken the testing of each 

random marker effect. The target functions and derivatives which are in vector/matrix forms 

for each marker scanning are transformed into some simple forms that are easy and efficient 

to evaluate during each optimization step. In the second step, we selected all potentially 

associated SNPs and evaluated them in a multi-locus model. From simulation studies,  our 

algorithm significantly reduces the computing time. The new method also shows high 

statistical power in detecting significant markers, high accuracy in marker effect estimation 

and low false positive rate. We also used the new method to identify relevant genes in real 

data analysis. We recommend our approach as a fast and reliable method for carrying out a 

multi-locus genome-wide association study. 
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Background 

Genome-wide association studies (GWAS) aim at investigating the genetic foundation of 

complex traits by focusing on the relationship between molecular markers and these traits [1, 

2]. Initially, each accession was genotyped by SSR markers, and only hundreds of SSR 

markers were used to conduct GWAS in plants [3]. When restriction association site DNA 

sequencing (RAD-seq), specific-locus amplified fragment sequencing (SLAF-seq) and gene 

chip technology were adopted, then, there were tens of thousands single nucleotide 

polymorphisms (SNPs) available. When deep sequencing is implemented, millions of SNPs 

are obtained. As third generation sequencing technology generates, we can get tens of 

millions SNPs. Evidently, severe computational challenges are faced. Accordingly, there is a 

critical need for in-depth study of fast algorithm in GWAS methodologies. 

Mixed linear model (MLM) method of GWAS was firstly established by Zhang et al. [4]. At 

each putative QTN scan in this approach, the pedigree-based coancestry matrices of QTN and 

polygenes are incorporated into the mixed linear model framework to estimate three variance 

components of QTN, polygenes and residual error. Its long running time makes this method 

unfashionable. Yu et al. [5] replaced the pedigree-based coancestry matrix with kinship 

matrix  K to define the degree of genetic covariance between pairs of individuals and view 

QTN effect as fixed. This method was improved by the spectral decomposition of 

 H ZKZ I  and joint maximum likelihood estimation of fixed effect β  and 2
e , where Z  

is an incidence matrix mapping each observed phenotype to each inbred strain, I  is an 

identity matrix and   is the ratio of residual  2
e to polygenic  2

g  variances. This is 

efficient mixed model association (EMMA) of Kang et al. [6]. Several approaches have been 

considered with the aim to reduce the computing time and increase power in QTN detection. 

Zhang et al. [7] suggested ‘population parameters previously determined’ (P3D) where 
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individuals in polygenic effect are replaced by their corresponding groups, and kinship 

among individuals is replaced by the kinship among groups. The P3D eliminates the need to 

re-compute variance components. Kang et al. [8] also fixed the above   in EMMA 

eXpedited (EMMAX). Li et al. [9] optimized the combination of kinship algorithms and 

grouping algorithms. Also, other authors suggested alternatives, such as FaST-LMM [10], 

FaST-LMM-Select [11], GRAMMAR-Gamma [12] and SUPER [13]. In genome-wide 

EMMA (GEMMA) of Zhou & Stephens [14], especially, target functions and derivatives in 

vector/matrix forms for each marker, despite their complicated appearance, are easy and 

efficient to evaluate during each optimization step. Among the above fast methods, the SNP 

effect was treated as being fixed. Although a random marker model has several advantages 

[15, 16], an efficient computational algorithm to estimate SNP effect needs to be addressed. 

Multi-locus model has become the state-of-the-art GWAS procedure. Previous studies have 

reported higher power of QTN detection in multi-locus models as compared to the single-

marker GWAS analysis [17, 16]. Bonferroni multiple test correction in the single-marker 

analysis is replaced by a less stringent selection criterion in multi-locus GWAS analysis [16, 

18]. Therefore significant loci for complex traits are not missed out. Initially, many statistical 

approaches were used to estimate all the SNP effects in multi-locus model, such as Bayesian 

LASSO [19], penalized logistic regression [20, 21], adaptive mixed LASSO [22], elastic net 

[23], empirical Bayes [24], and empirical Bayes LASSO [25]. If the number of SNPs is large, 

the above methods are not feasible, even through the Bayesian sparse linear mixed model of 

Zhou et al. [26] and Bayesian mixture model of Moser et al. [27]. To overcome this 

shortcoming, Segura et al. [17] proposed multi-locus mixed-model (MLMM), which is a 

simple, stepwise mixed-model regression with forward inclusion and backward elimination. 

In FarmCPU of Liu et al. [28], the fixed effect model and random effect model are used 

iteratively until a stage of convergence is reached. The fixed effect model contains the testing 
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marker and pseudo QTNs to control false positives. The pseudo QTNs are selected from 

associated markers and evaluated by the random effect model, with K  defined by the pseudo-

QTNs. However, the computationally intensive forward-backward inclusion of SNPs is 

clearly a limiting factor in exploring the huge model space. Recently, we have proposed 

several multi-locus two-stage GWAS approaches, such as mrMLM [16], FASTmrEMMA [18] 

and ISIS EM-BLASSO [29]. In the first stage, single-locus methods are used to scan all the 

markers on the genome. In the second stage, a few SNPs potentially associated with the trait 

are selected and placed into the multi-locus model, and all the effects in the model are 

estimated by empirical Bayes for true QTN detection. Among our three methods, it is 

possible to quicken mrMLM. 

In this study, we accelerated mrMLM algorithm of Wang et al. [16] using the GEMMA idea 

and matrix transformation of Miller [30]. In other words, target functions and derivatives in 

vector/matrix forms for each marker are transformed into some simple forms that are easy 

and efficient to evaluate during each optimization step. We call this method FASTmrMLM. 

A series of Monte Carlo simulation experiments and real data analyses were used to validate 

FASTmrMLM. FASTmrMLM significantly reduces the running time of the mrMLM 

algorithm. High power and low false positive rate (FPR) in QTN detection and high accuracy 

in QTN effect estimation were also observed as compared to GEMMA, FarmCPU and 

mrMLM.  

Results 

Computational efficiency 

To confirm the effectiveness of FASTmrMLM, a series of Monte Carlo simulation 

experiments were carried out. Each sample was analyzed by five methods: FASTmrMLM, 

mrMLM, FarmCPU, GEMMA, and EMMA. In the first Monte Carlo simulation experiment 
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where no polygenic variance was simulated, the running times (Intel Core i5-4570 CPU 

3.20GHz, Memory 7.88G) for the above five methods are 6.25, 13.77, 5.12, 2.57 and 68.77 

(hours), respectively (Fig 1 and Table 1). FASTmrMLM takes less than 50% of the running 

time needed when mrMLM is used. The same trend is observed in the rest of the simulations 

(Fig 1 and Table 1). It indicates that FASTmrMLM significantly quickens mrMLM. 

Although GEMMA and FarmCPU have lower computational time than FASTmrMLM, their 

performances in statistical power and parameter estimation accuracy are worse than those of 

FASTmrMLM. 

Table 1. Comparison of the time taken (Hrs) in the detection of QTNs in three simulation 

experiments using FASTmrMLM, GEMMA/EMMA, FarmCPU and mrMLM methods (199 

individuals each with 10000 SNPs, 1000 replicates) 

Simulation FASTmrMLM mrMLM FarmCPU GEMMA EMMA 

I 6.25 13.77 5.12 2.57 68.77 

II 6.23 13.25 4.95 2.84 68.25 

III 6.28 13.93 5.08 2.59 68.93 

 

Statistical power 

Statistical power was used to evaluate the effectiveness of FASTmrMLM when compared 

with the other four methods. All the statistical powers in the three simulation experiments are 

presented in Fig 2 and Table S1. In the first simulation experiment (Fig 2a and Table S1), the 

average powers across six simulated QTN from FASTmrMLM, mrMLM, FarmCPU, 

GEMMA and EMMA were 68.8, 68.6, 41.9, 46.0 and 46.0 (%), respectively. It means that 

FASTmrMLM has the highest power in QTN detection. When paired t-test was conducted 

between FASTmrMLM and the other methods, FASTmrMLM has significantly higher power 

than FarmCPU, GEMMA, and EMMA (P-value = 0.004 ~ 0.012). Although there is no 

significant difference between FASTmrMLM and mrMLM (P-value = 0.688), FASTmrMLM 
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has slightly higher power than mrMLM (Table S2). Therefore, FASTmrMLM is the most 

effective method for QTN detection. 

Mean squared errors of estimated QTN effects 

Mean squared error (MSE) was used to measure the accuracy of each estimated QTN effect 

for all the five methods in the three simulation experiments. All the MSE values for all the six 

simulated QTN effects in all the three simulation experiments are shown in Fig 3 and Table 

S3, and the average value for each simulated QTN effect in all the three simulation 

experiments is listed in Table S4. In the first simulation experiment (Fig 3a and Table S3), 

average MSE values across six simulated QTN from FASTmrMLM, mrMLM, FarmCPU, 

GEMMA, and EMMA were 0.0775, 0.0933, 0.2824, 0.5467 and 0.5432, respectively. It 

means that FASTmrMLM has the highest accuracy in the estimation of QTN effect. When 

paired t-test was conducted between FASTmrMLM and the other four methods, the MSE 

value was at least significantly lower from FASTmrMLM than from GEMMA and EMMA 

(P-value = 0.009 ~ 0.020). Although there is no significant difference between FASTmrMLM 

and the other two (mrMLM and FarmCPU) methods (P-value = 0.110 ~ 0.806), 

FASTmrMLM has slightly lower MSE than mrMLM and FarmCPU (Table S2). Therefore, 

FASTmrMLM has the highest accuracy in the estimation of QTN effect. 

False positive rate 

All the single-locus GWAS approaches are involved in multiple test issue so that Bonferroni 

correction is frequently used to control false positive rate (FPR) or empirical type 1 errors. In 

the current multi-locus GWAS method, a less stringent selection criterion was used to 

identify true QTN. In this situation, it is important to show the FPR values in the three 

simulation experiments. All the FPR values are presented in Fig 4 and Table 2. In the first 

simulation experiment (Fig 4a and Table 2), the FPR values for the above five methods were 
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1.80E-2, 1.99E-2, 1.78E-2, 3.25E-2 and 3.25E-2 (%), respectively (Table 2). It indicates that 

FASTmrMLM has almost the lowest FPR, although a less stringent selection criterion is 

adopted. Therefore, FASTmrMLM has controlled the FPR in QTN detection. 

Table 2. Comparison of false positive rate (‰) in the detection of QTNs in three simulation 

experiments using FASTmrMLM, mrMLM, FarmCPU, and GEMMA/EMMA methods 

Simulation FASTmrMLM mrMLM FarmCPU GEMMA EMMA 

I 0.1799 0.1990 0.1780 0.3250 0.3250 

II 0.2276 0.2340 0.1740 0.1660 0.1660 

III 0.2611 0.2660 0.2310 0.2530 0.2530 

 

Receiver operating characteristic curve 

Receiver operating characteristic (ROC) curve is obtained when statistical power is plotted 

against controlled Type 1 error. This curve is used to compare the efficiencies of different 

methods in the detection of significant effects. A method is considered the best if its ROC 

curve lies above all the other curves of the methods being compared. We simulated 100 

various probability levels of significance between 1E-8 to 1E-2. We calculated statistical 

powers corresponding to these levels in the first simulation experiment. Fig 5 depicts the 

ROC curves for the four methods for each simulated QTN in the first experiment. As a result, 

FASTmrMLM performs the best for the simulated QTNs 1, 2, 4 and 6; mrMLM has the 

highest curve for QTNs 3 and 5 though its curves lie slightly above ROC curves of 

FASTmrMLM. 

Real data analysis 

We used FASTMRMLM, mrMLM, FarmCPU, and GEMMA/EMMA methods to re-analyze 

six Arabidopsis flowering time traits (LD, LDV, SD, 0W, 2W, and 4W) in Atwell et al. [31]. 
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FASTmrMLM identified 17, 15, 14, 17, 14 and 15 SNPs to be significantly associated 

respectively with the six traits above. The identified SNPs for each trait were used to conduct 

a multiple linear regression analysis, and we calculated the corresponding AIC and BIC 

values. Table S5 shows the AIC and BIC values for all the methods in all the six traits. 

FASTmrMLM has low AIC and BIC values for nearly all the traits. mrMLM compares 

almost equally with FASTmrMLM. This indicates that SNPs found to be significant by 

FASTmrMLM fit the data better than the other methods. 

We obtained 14, 10, 7, 10, 10, and 11 known genes in the proximity of detected SNPs when 

we used FASTmrMLM method to analyze the six traits respectively. The mrMLM method 

identified 4, 5, 1, 2, 5, and 4 known genes respectively for the above six traits. Known genes 

identified by FarmCPU for the six traits were 2, 3, 2, 0, 0, 4 and 2 respectively. 

GEMMA/EMMA was able to determine 5, 2, 0, 0, 3, and 3 known genes for the above six 

traits. FASTmrMLM detected more known genes than all the other methods (Table S6).  

The new method was able to detect 7, 7, 6, 8, 7 and 5 new genes for the corresponding six 

traits considered in this study (Table S7). GEMMA/EMMA was not able to detect any gene 

for the traits SD and 0W. Indeed the Bonferroni correction is so stringent and may make 

significant genes to be missed it. The same observations are made when FarmCPU is used to 

analyze the 0W trait, and no gene is identified. From the results obtained in this study, we 

observe that the new approach can detect more associated genes when used in GWAS study. 

FASTmrMLM does reduce the computational time as well as ensures that the associated 

genes are not missed out. Based on these findings, we note that Arabidopsis thaliana GWAS 

results obtained in this study are reliable. 

Discussion 
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FASTmrMLM in this study is different from mrMLM of Wang et al. [16] in two aspects. 

First, computations during each optimization stage in the first stage of FASTmrMLM are 

quicker than those in mrMLM. This is because FASTmrMLM uses simplified analytic forms 

of gradient functions and Hessian matrices, and mrMLM uses numerical gradients and 

Hessian matrices during optimization stage. The simplified analytic forms in target functions 

and derivatives quicken computation during each optimization stage of FASTmrMLM. Our 

results confirm the significant reduction in running time in FASTmrEMMA. Second, the 

LARS algorithm of Efron et al. [32] is used in FASTmrMLM to select the 1n  variables that 

are most likely associated with the quantitative trait of interest if the number of markers 

passing the 1% level of significance is more than n  in the second stage of FASTmrMLM. 

The 1n  selected markers are then included in a multi-locus model and detected by EM-

Empirical Bayes for true QTN identification. This can explain why slight improvements in 

statistical power and accuracy are observed in this study. In this study we also confirmed why 

we used EM-Empirical Bayes to estimate QTN effects in the multi-locus model. Here we 

compared three methods: EM-Empirical Bayes, adaptive Lasso, and SCAD. As a result, EM-

Empirical Bayes has higher statistical power and more accurate than SCAD and adaptive 

Lasso (Tables S8 to S10). 

In the past ten years, many approaches have been used to reduce running time in GWAS. 

First, QTN effect is viewed as fixed [5, 7, 8] rather than as previously viewed as random [4]. 

As such, the number of variance components decreases from three (QTN, polygenic and 

residual error) to two (polygenic and residual error). Second, the polygenic-to-residual 

variance ratio, obtained at null hypothesis, is fixed in the single-marker genome scan [7, 8]. 

In this case, the number of variance components decreases further from two (polygenic and 

residual error) to one (residual error). Finally, some matrix transformations and identities are 

adopted. One such matrix transformation is spectral decomposition, which lets target 
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functions and derivatives be expressed by simple forms, such as in Kang et al. [6] and Wen et 

al. [18]. The first stage of the new method (FASTmrMLM) considers a QTN effect as 

random. Then, the polygenic-to-residual variance ratio obtained at null hypothesis is fixed in 

the single-marker genome testing. With a simple matrix transformation, the matrix H  turns to 

be a sum of two matrices (an identity matrix ( I ) and a matrix of rank one (
ci ci i

Z Z )). More 

importantly, the results in Miller [30] are then used to compute quickly 1H , H  and quadratic 

terms in the form 1η H τ , which frequently appear in the target functions, derivatives and 

parameter optimization in Newton-Raphson iterations. 

In the single-locus scanning step of FASTmrMLM, all estimates are based on restricted 

maximum likelihood estimation (REML). This is because FASTmrMLM is an extension of 

mrMLM, which only considers REML estimates [16]. Of course, we preferred REML over 

maximum likelihood estimation because it produces unbiased estimates of the variance 

components by taking into account the degrees of freedom that result from evaluating the 

fixed effects. 

As showed in this study, FASTmrMLM is better than GEMMA. The possible reasons are 

described below. First, FASTmrMLM considers QTN effect as random rather than as fixed as 

in GEMMA of Zhou & Stephens [14]. This confirms the advantages of a random marker 

model as outlined in Goddard et al. [15]. Then, the significance level for each test is LOD=3 

in FASTmrMLM rather than 0.05/m in GEMMA. In theory, a less stringent selection 

criterion simultaneously increases statistical power and FPR. However, our new method 

increases not only statistical power but also FPR. Finally, FASTmrMLM is a multi-locus 

model method while GEMMA is a single-locus model approach. This can explain why 

various significance levels are adopted between FASTmrMLM and GEMMA. 

Conclusion 
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We accelerated our previous multi-locus GWAS method: mrMLM, with the help of a new 

matrix transformation and matrix identities. As a result, the computational time of estimating 

variance components in the first step is significantly reduced. We implemented the LARS 

algorithm of Efron et al. [32] between the first step and EM-Empirical Bayes estimation in 

the second step. This makes slight improvements in statistical power and estimation accuracy 

as compared to mrMLM. We confirmed that EM-Empirical Bayes is the best method for the 

estimation of parameters in the multi-locus model. The proposed method, named 

FASTmrMLM, significantly increased the statistical power and decreased FPR compared 

with other methods: FarmCPU, GEMMA and EMMA. In real data analysis, more previously 

reported genes were detected by FASTmrMLM. 

Materials and Methods 

Genetic model 

We consider a mixed linear regression model, 

i i   Xα Z εy         (1) 

with y  being a 1n  phenotypic vector of quantitative trait of n  individuals, X  is an n q  

incident matrix of fixed effects α  including the overall mean, iZ  is an 1n  vector of the ith 

SNP, i  is a random effect of the ith marker, it is assumed to be a normal distribution with 

zero mean and each marker prior variance 2
i ,  2~ MVN , g0 K  is the polygenic effect 

with a multivariate normal distribution with zero mean and variance 2
g  described by a 

covariance matrix K  (kinship matrix), and  2~MVN , e0 I  is the residual error I  with 

being n n  identity matrix. In this study, the kinship matrix K  is marker inferred kinship [33] 

defined as 
1

m

i i

i

m


K Z Z . 
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From equation (1) we have that,  

 2 2 2 2 2

E( )

Var( )
i i i g e e i i i g e
      



       

Xα

Z Z K I Z Z K I H

y

y
      (2) 

where 2 2 2 2,i i e g g e        are the variance ratios and i i i g
   H Z Z K I . In this 

model, we have three random effects: the ith marker effect, polygenic effect, and residual 

error. Under the pure polygenic model, we have that E( )  Xy   and  2Var( ) e g  K Iy . 

We pre-estimate the value of 2 2
g g e    under the pure polygenic model and fix it when 

testing each SNP effect in the genome-wide scanning [7]. Using spectral decomposition, we 

can find a diagonal matrix  1diag ,. , m D L  and a matrix U  such that .K UDU  Notice 

that spectral decomposition can be performed on K  since as defined it is a square, symmetric 

matrix. Transforming y  in Equation (1) by multiplying by U , we have, 

 i i      U U Xα UZ U εy        (3) 

Let * *, , ,i i
    *U X X Z U Zy y U  then Equation (3) becomes 

 * * *
i i    X α Z U εy   

It follows that,  

 
  

* 2 2 2 2

2
1 2

ˆVar( )

ˆ ˆ ˆdiag 1, 1, , 1

* * * *

i i i g e e i i i g

* *

e i i i g g m g

     

       

       

    

Z Z U KU U IU Z Z D I

Z Z

y

L
      (4) 

For simplicity let  1 1 2
ˆ ˆ ˆdiag 1, 1, , 1g g m g        D L . ˆ

g
 is fixed and 1D as defined is a 

positive semi-definite matrix. Therefore, we can obtain 1 2

1D . Further transforming *y  by 

multiplying equation (3) through by -1 2

1D  and letting * *, , *

c c c i  -1 2 -1 2 -1 2

1 1 1y D y X D X Z D Z  

and    
c

  -1 2

1ε D U ε  . We have that, 
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* * *

i i

c c ci i c





   

   

-1 2 -1 2 -1 2 -1 2

1 1 1 1D y D X D Z D U ε
X Z εy

 

 
            (5) 

Notice that the transformation in Equation (5) is equivalent to multiplying the original y  by 




1

2
1U D  i.e.  c

 1 2

1U Dy y . Now,  

 

     2 2 2

E

Var

c c

c e ci ci i e e
   



    

X

Z Z I A B H

y

y


    (6) 

with ci ci iA Z Z , B I , and  H A B . Thus the distribution of our transformed data 

vector cy  is normal with the mean cX α  and variance-covariance matrix, 2 .e H  The 

parameters to be estimated are 2
e  and 

i  for 1,2, ,mi  L . 

Parameter estimation 

The profiled residual log likelihood (REML) of *y  after absorbing other terms in the constant 

term C  is, 

  2 1 21
log log log

2R e c c c c eC n q        H X H X y Pyl      (7) 

where,   1
1 1 1 1,c c c c


     P H H X X H X X H  and  rank cq  X . We differentiate Equation 

(7) to obtain REML estimates as shown below. 

Estimation of residual variance 
2
e : We have 

 
2

22 2 2

1 ˆ
2

c c c cR
e

e e
e

n q

n q


  

        
  
 

y Py y Pyl  

This can be simplified to 

      1
2 1 1 1 11ˆ c c
e c c c c c c c c

n q n q



   

           
y Py

y H y y H X X H X X H y     (8) 
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Estimation of the variance ratio 
i : We have that, 

2

1 1
tr( )

ˆ2
R

ci ci c ci ci c

i e 
         

PZ Z y PZ Z Py
l

     (9) 

The second derivative of the residual log likelihood function with respect to i  is given 

below, and it is used to obtain the Hessian matrix. 

   
    

 

2

2

22

21
tr

2

c ci ci ci ci c c c c ci ci c
R

ci ci ci ci

i
c c

n q


               


y PZ Z PZ Z Py y Py y PZ Z Py
PZ Z PZ Z

y Py

l      (10) 

Evaluation of REML equation and its derivatives require 1H  and H . H  is a sum of two 

matrices. The inverse and determinant of B  can easily be computed because it is an identity 

matrix, and A  is a matrix of rank 1. In mrMLM of Wang et al. [16], H  is also a sum of two 

matrices but in this new algorithm (FASTmrMLM) we have simplified the H  further to be 

the sum of an identity matrix and a matrix of rank one. Therefore, 

1 1 1 11 1

1 1 1
i

ci ci
g g g

         
  

H B B AB I A I Z Z       (11) 

and,  1 1 ,g g   H B  where  1tr( ) tr( ) tri ci cig    AB A Z Z [30]. REML requires 

many quadratic terms in the form 1ηH τ , which can be expressed as 

1

1
i

ci ci
g

    


ηH τ η τ η Z Z τ    (12) 

where η  and τ  can be any vectors or matrices with 1H such as 1
c c

X H X , c c
y Py or c c

X Py . 

Note that
1

n

j j

j

 


 η τ , where j  corresponds to the jth row (element) of the matrix (vector) 

η  and j  corresponds to the jth row (element) of the matrix (vector) τ  for 1,2, , n .j  L  

Notice that the value in Equation (8) above can easily be estimated because with the help of 

Equation (12) each term in the bracket in Equation (8) is in the form 1ηH τ . For example, 
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1

1
i

c c c c c ci ci c
g

    


y H y y y y Z Z y . Also, the gradient function/score function in Equation (9) 

and Hessian matrix in Equation (10) can also be expressed in the form 1ηH τ . With these 

simplifications, the computation of the variance ratio 
i  for the ith SNP is less 

computationally intensive via the Newton-Raphson method. We estimate the variance ratio 

i  for the ith SNP by equating the gradient functions to be zero using the Newton-Raphson 

technique. With our simplifications, 

        
    

2

1 1
1 1 1 1 1 1 1 1

2

1
1 1 1

1 1
tr( )

ˆ2

1 1
tr

ˆ2

            

R
ci ci c ci ci c

i e

ci ci ci c c c c ci c ci c c c c c ci

e

ci c ci c c c c

 



 
       


  

         
                        

    

PZ Z y PZ Z Py

Z H Z Z H X X H X X H Z y H Z y H X X H X X H Z

Z H y Z H X X H X X

l

 1
c

  
  

H y

    (13) 

which is in the form 1ηH τ , and therefore its computation is so fast. We can also express the 

second derivative expression in Equation (10) in the form 1ηH τ : 

  
    

 

2

2

22

21
tr( ) .

2

c ci ci ci ci c c c c ci ci c
R

ci ci ci ci

i
c c

n q


               


y PZ Z PZ Z Py y Py y PZ Z Py
Z PZ Z PZ

y Py

l  

With these simplifications, the Newton-Raphson will converge smoothly to the estimate 

value of variance ratio i  for the ith SNP. The gradient function and the Hessian matrix are 

in a simplified form. Therefore, the computations in each simulation run are fast. We have 

implemented this algorithm in R software. 

Empirical Bayes estimate of i : The joint distribution of y  and i  is a multivariate normal 

distribution 

2

2 2
~ MVN ,

0

i i i g i i

i
i i i

  

  

                  

Z Z K I ZX

Z

y 
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The conditional distribution of 
i  given y  is 

     1 12 2 2 2 2 2 2 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ| N ,i i i i i i g e i i i i i i g e i i          
            

y Z Z Z K I y X Z Z Z K I Z:   

From a Bayesian analysis point of view, the conditional mean of 
i  given y is an empirical 

Bayes estimate of 
i . Based on this framework, we obtain the Wald test statistic 

  
 

2

2
1

E |
~

Var |
i

i





y

y
 (Chi-square test with 1 degree of freedom) and using this distribution we 

obtain P-values for each marker effect. We test each marker effect at 1% level of significance. 

We do not perform multiple test correction because we intend to include markers that pass 

this initial test in a multi-locus model. 

Detection of true QTNs in multi-locus model 

If the number of markers passing the 1% level of significance test is more than n , we invoke 

the LARS algorithm [32] to select the 1n  variables that are most likely associated with the 

quantitative trait of interest. LARS is a flexible method for variable selection which is 

conducted in lars package (http://cran.r-project.org/web/packages/lars/) in R language. The 

1n  markers are then included in a multi-locus model. Note that if the number of markers 

passing the initial test is less than n , we skip the LARS step and proceed to include all the 

selected markers in a multi-locus model. We compared various multi-locus methods: SCAD 

[34], adaptive Lasso [35] and EM-Empirical Bayes [36]. EM-Empirical Bayes [36] has the 

highest statistical power and accuracy of the estimated marker effects (Tables S8, S9, and 

S10). EM-Empirical Bayes is a random model method given as, 

1
i i

i

s




  Xα Z εy        (14) 

where y , X  and α  are the same as in model in Equation (1), s  is the number of potentially 

associated markers selected from the first step in FASTmrMLM, iZ  and i  are 1n  incident 
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vector and the random effect of the ith SNP, respectively. The polygenic variance is not 

included in the model because the model included all the potentially associated QTNs. We 

assume a normal prior for 
i ,  2 2| ~ 0,i i iN    and a scaled 2  prior for 2

i , 

     1
22 2 2

2
| , exp

2i i

i

f
    


   

  
 

and we set    , 0,0   , which is Jeffrey’s prior 

 2 2| , 2i if       [36]. The procedure for parameter estimation in EM-Empirical Bayes is 

as follows: 

a) Initial step: We set initial  values as,  

 

   

2

1

2

1,  for 1,2, ,

1

2

i

e

i

n

s





 

 

  

X X X

X X

y

y y

L



 

                               (15) 

b) E-step: QTN effect can be predicted by 

   2 1E i i i   Z V Xy        (16) 

where 2 2

1

s

i i i e

i

 


 V Z Z I . 

c) M-step: To update parameters 2
i , α  and 2

e  

           

 

 

     

2

11 1

2

1

E

3

1ˆ E

i i

i

s

e i i

in

  




 

 



 




 

     
 



X V X X V

X X Z

y

y y



 

    (17) 

where        E E E tr Var ,i i i i i            2 2 1 2Var i i i i i i    I Z V Z  and 

   , 0,0   . 

 
We repeat E-step and M-step until convergence is satisfied. We select all SNPs with a score 

LOD 3 (log of odds) and regard them as significant. We term our algorithm as a fast multi-

locus random-SNP-effect mixed linear model (FASTmrMLM). 

mrMLM 
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mrMLM is a two-stage method which tests each random marker effects in the first stage 

before estimating the significant putative QTNs in a multi-locus model [16]. mrMLM and 

FASTmrMLM methods were implemented by the R software mrMLM, which is downloaded 

from http://cran.r-project.org/web/packages/mrMLM/index.html. In mrMLM, we select all 

markers with a score LOD 3  and regard them as significant. 

GEMMA and EMMA 

EMMA is a single-locus testing method for GWAS [6] and considers marker effects as fixed. 

The R codes for EMMA can be downloaded from http://mouse.cs.ucla.edu/emma/. GEMMA 

is a fast version of EMMA [14]. GEMMA can be run in Linux using source codes obtained 

from www.xzlab.org/software.html. For EMMA and GEMMA we select significant markers 

based on Bonferroni correction for multiple tests by setting a threshold for P-value at 0.05 m , 

where m  is the number of markers. 

FarmCPU 

FarmCPU was proposed by Liu et al. [28]. In this method, the fixed effect model and random 

effect model are used iteratively until a stage of convergence is reached. FarmCPU software 

package source codes are available at http://www.ZZLab.net/FarmCPU. We select significant 

markers based on Bonferroni correction for multiple tests by setting a threshold for P-value at 

0.05 m , where m  is the number of markers. 

SCAD  

SCAD [34] is a shrinkage method that performs variables selection using concave penalties. 

SCAD can be run in R using the ncvreg package in R language downloaded from 

http://cran.r-project.org/web/packages/ncvreg/. Here we select all markers with a score 

LOD 3  and regard them as significant. 
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Adaptive Lasso 

Adaptive Lasso [35] is a variable selection method that uses data-dependent weights for 1L -

penalizing coefficients in the penalty by choosing the inverse of ordinary least-square 

estimates for the weights. Adaptive Lasso can be run in R using the parcor package in R 

language downloaded from http://cran.r-project.org/web/packages/parcor/. Here we select all 

markers with a score LOD 3  and regard them as significant. 

Monte Carlo simulation experiments 

We carried out three Monte Carlo simulation experiments to validate FASTmrMLM. In all 

these simulation studies, we sampled the genetic marker values from 216,130 SNPs markers 

in Atwell et al. [31] (http://www.arabidopsis.org/), and we simulated all the phenotypes 

values for quantitative traits. We used the same sample size of 199 diverse inbred lines like 

that in Atwell et al. [31] dataset. We randomly sampled 2000 SNPs from each of the five 

chromosomes; in total, we obtained 10000 SNP genotypes. For the selected SNPs, we used 

the same positions and genotypes as those in Wang et al. [16]. 

The first experiment tested FASTmrMLM method on a model with no polygenic variances 

simulated. From the sampled SNPs, we set six QTN with effect sizes and positions as shown 

in Tables S8 to S10. We placed these QTNs on the SNPs with allelic frequencies of 0.30. The 

heritabilities for these QTNs were 0.10, 0.05, 0.05, 0.15, 0.05 and 0.05, respectively. In this 

case, the phenotypes were simulated from the model: 
6

1
i i

i

 


  y 1 Z  , where 

 MVN ,100 I: . We simulated an overall mean of 10. In this simulation experiment, we 

carried out 1000 runs for each of the methods considered, i.e., FASTmrMLM, EMMA, 

GEMMA, FarmCPU, and mrMLM. For each simulated QTN, we counted the runs in which 
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we obtained the QTN LOD 3  for FASTmrMLM and mrMLM and P-values less than 

0.05 m  (Bonferroni correction for multiple tests), where m is the total number of SNPs for 

GEMMA, EMMA, and FarmCPU. We considered QTNs within 1kb of the simulated QTN as 

true QTN. We counted the number of runs in which we deemed to have obtained each QTN. 

The proportion of such runs relative to the total number of runs (1000) represented the 

statistical power of this QTN. We calculated false positive rate (FPR) as the ratio of the 

number of false non-zero effects relative to the total number of zero effects considered in the 

full model. We measured the bias of each QTN effect estimate by calculating the mean 

squared error (MSE). We also carried out a paired t-test for the differences of statistical 

power or MSE between FASTmrMLM and other methods. 

The second simulation experiment tested FASTmrMLM method on a model with an additive 

polygenic (small effect genes) background. We simulated polygenic effect from a 

multivariate normal distribution,  2MVN , g0 K  where 2
g  is the polygenic variance and 

K is the kinship matrix. We used 2 2g   hence 2 0.092gh  . The QTN size ( 2
h ), average, 

residual variance, and other values were the same as those in the first simulation study, i.e., 

the phenotypes were simulated from the model given as: 
6

1

 


   y 1 Zi i

i

  , where 

 ~ MVN ,20 K  and  ~ MVN ,100 I . 

The third simulation experiment examined FASTmrMLM on a model with an epistatic 

background. We simulated three epistatic QTN each with 2 1.25epi   and 2 0.05epih  . The 

details for the three epistatic QTN were described in Wang et al. [16]. The QTN size ( 2
h ), 

average, residual variance, and other values were the same as those in the first simulation 

experiment. The phenotypes were simulated from the model: 
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6 3

1 1

#i i j j jj

i j

  
 

    y 1 Z C D , where,  MVN ,100 I: , jj  is the epistatic effect 

and  #
j j

C D is its incidence coefficient. 

The Arabidopsis thaliana data 

We re-analyzed six flowering time-related traits in Arabidopsis [31] by GEMMA, 

FASTmrMLM, EMMA, FarmCPU and mrMLM to validate our new method. These traits are 

days to flowering under long days (LD), days to flowering under long days with vernalization 

(LDV), days to flowering under short days (SD), days to flowering under LD with no 

vernalization (0W), days to flowering under long days with 2 weeks vernalized (2W), and 

days to flowering under long days with 4 weeks vernalized (4W). We downloaded these 

datasets from http://www.arabidopsis.usc.edu/. In the real data analyses, we determined the 

significantly associated SNPs by the critical threshold of LOD 3  for FASTmrMLM and 

mrMLM, and with the P-values less than 0.05 m  for GEMMA, EMMA, and FarmCPU. We 

mined candidate genes for the trait under study within 30 kb of the significantly relevant 

SNPs. 

Additional file 

Table S1. Comparison of the Statistical power in the detection of QTN in three simulation 

experiments using five GWAS approaches  

Table S2. Paired t-test for the differences of statistical power and mean squared error (MSE) 

between FASTmrMLM (new) and other methods  

Table S3. Comparison of the Mean squared error (MSE) for QTN effects across 1000 

replicates in three simulation experiments using FASTmrMLM, mrMLM,   FarmCPU, and 

GEMMA/EMMA GWAS approaches  
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Table S4. Comparison of the Mean for QTN effects across 1000 replicates in three 

simulation experiments using FASTmrMLM, mrMLM,   FarmCPU and GEMMA/EMMA 

GWAS approaches 

Table S5. Goodness of fit (AIC, BIC) for SNPs detected by FASTmrMLM, mrMLM, 

FarmCPU, and GEMMA/EMMA where a lower value indicates a better fit  

Table S6. GWAS for six flowering time traits in Arabidopsis thaliana using FASTmrMLM, 

mrMLM, FarmCPU, and GEMMA methods  

Table S7. New Genes detected only by FASTmrMLM in the GWAS of six flowering time 

traits in Arabidopsis thaliana  

Table S8. Comparison of EM-Empirical Bayes, Adaptive Lasso, and SCAD with no 

polygenic variance simulated 

Table S9. Comparison of EM-Empirical Bayes, Adaptive Lasso, and SCAD in the second 

simulation experiment with an additive polygenic background (explaining 0.092 of the 

phenotypic variance) 

Table S10. Comparison of EM-Empirical Bayes, Adaptive Lasso, and SCAD in the third 

simulation experiment with three epistatic QTNs each explaining 0.05 of the phenotypic 

variance 

Abbreviations 

GWAS: genome-wide association study; SNP: single nucleotide polymorphisms; QTN: 

quantitative trait nucleotide; QTL: quantitative trait locus; EM: expectation and maximization; 

EMMA: efficient mixed-model association; GEMMA: Genome-wide efficient mixed-model 

association; FarmCPU: fixed and random model circulating probability unification; mrMLM: 

multi-locus random-SNP-effect mixed linear model; FASTmrMLM: a fast mrMLM multi-

locus mixed linear model. ISIS EM-BLASSO; Iterative modified-Sure Independence 
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Screening EM-Bayesian LASSO; FASTmrEMMA: fast multi-locus random-SNP-effect 

EMMA. 
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Figure legends 

Fig 1. Computing times (hours) taken by FASTmrMLM, mrMLM, FarmCPU, GEMMA, and 

EMMA in the Monte Carlo simulation experiments I (a), II (b) and III (c).  

Fig 2. Statistical powers for all the simulated QTNs detected by FASTmrMLM, mrMLM, 

FarmCPU, and GEMMA in Monte Carlo simulation experiments I (a), II (b) and III (c) 

Fig 3. Mean square error (MSE) for all the simulated QTN effects estimated by F 

FASTmrMLM, mrMLM, FarmCPU, and GEMMA in Monte Carlo simulation experiments I 

(a), II (b) and III (c). 

Fig 4. Empirical type 1 error rates derived from FASTmrMLM, mrMLM, FarmCPU, and 

GEMMA in the Monte Carlo simulation experiments I (a), II (b) and III (c). 

Fig 5. Statistical powers of all the simulated QTNs in the first simulation experiment plotted against 

Type 1 error (in a log10 scale) for the five GWAS methods (FASTmrMLM, mrMLM, FarmCPU, and 

GEMMA). 
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