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ABSTRACT To investigate the performance of Adaptive Neuro-Fuzzy Inference System (ANFIS), activated 

by spectral analysis features, for detection of abnormal cardiac valves sound signals. A dataset of 1837 heart 

sound signals were acquired from international PhysioNet Challenge 2016 databases (classes A, B and E). 

This included 1369 normal and 468 abnormal signals. The signals were de-noised using Notch and 

Butterworth filtering, fed to Discrete Fourier Transform, and 5 features using High Order Spectral (HOS) 

analysis were extracted from the third Cumulant. Later, the ANFIS neural network was trained and tested to 

discern abnormal signals. The results showed that the selected features were statistically significant (p<0.05). 

The proposed method was tested and achieved classification of 63-89% accuracy, 63-100% sensitivity, and 

62-100% specificity, respectively. The results were compared with reports utilizing different neural network 

techniques, indicating competitive performance. The HOS spectral features can be reliable to participate in 

neural network systems to sort heart sound (HS) signals as normal or abnormal. The bispectral matrix is a 

new presentation of attributes describing signals. The ANFIS is a suggestive successful tool, which has not 

been attempted in Physio-net challenge 2016. The HOS attributes and ANFIS can participate successfully in 

PhysioNet Challenge 2016. 

INDEX TERMS ANFIS neural network, Heart Sounds, High Order Spectrum, PhysioNet-Challenge 2016  

I. INTRODUCTION 

The dysfunction of cardiac valves is serious part of 

cardiovascular diseases (CVDs) leading to mortality. In 

USA, the cost of health care services related to CVDs is 

about $ 320 billion annually and it may approach to 1 trillion 

by 2030 [1-3]. The assistive-diagnostic cardiac technology 

such as ultrasound, cardiac CT, and monitoring system is 

also costly and -heavy demand instruments.  

Long time ago, the auscultation of heart sound (HS) 

known as Phonocardiography (PCG) is a complementary 

essential procedure to assess heart functioning. 

Distinguishing defects in heart sounds by means of hearing 

aid (stethoscope) depends on physician’s experience. Lately, 

electronic systems (Electronic Cardiac Microphone) were 

introduced to provide clear PCG signal. Four different 

frequencies (S1, S2, S3, and S4), characterizing the 

mechanical functions of heart valves, were recognized [4]. 

Clinical trials proved that many cardiac valve diseases such 

as Aortic Stenosis, Murmurs, Paradoxical Splitting, and 

others abnormal heart conditions (HC), are related to the 

components of S1 and S2 [5]. Signal processing (e.g. 

computer aided diagnosis (CAD)) can help, but careful 

analysis to S1 and S2 is substantially required. However, 

PCG is complicated non-stationary signal. Furthermore, 

PCG is nonlinear low frequency bio-signal, easily affected 

by surrounding sources of signals, resulting in challenge. 
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The interference sources could be 50/60Hz, skin impedance, 

technical properties of electrodes, and electronic noise.  

The challenge mission for signal processing researchers is 

to distinguish the healthy HS against the pathological signal 

arising from HC. Thus, international databases of normal HS 

and HC were generated and made available via internet 

worldwide. In this work, the database by 

PhysioNet/Computing in Cardiology (CinC) Challenge 2016 

was utilized [6]. This database is considered as reference for 

comparing CAD’s outcomes.  
In the current study, due to the nonstationary and 

nonlinearity nature of HS signals, we attempted the Fourier 

spectrum analysis along with HOS of the third cumulant (i.e. 

bispectrum) to generate linear HS features without noise. 

These features after statistical normalization were inserted 

into ANFIS neural network, which has not been attempted in 

literature, to detect normal HS from HC signals.  

In literature, many studies attempted the signal processing 

challenge on the international database (i.e. PhysioNet 

Challenge 2016). Due to the noisy cardiac sound 

background, most state of art techniques focused on de-

noising HS signal and establishing the most significant 

features. For example, features in time, frequency, statistical, 

and wavelet domains had been addressed by many authors 

[7-10]. The neural network methodologies and learning 

machine algorithms were implemented intensively to reach 

to the best classification accuracies. This includes algorithms 

as Convolutional Neural Network (CNN), Drop Connected 

Neural Networks (DCNN), Gram polynomials and 

probabilistic neural networks, AdaBoost classifier, 

LogitBoost, Random Forest, and a Cost-Sensitive Classifier 

[11-15]. Martin et al. [16] used the deep learning machine 

during the detection of chronic heart failure disease and to 

improve classification accuracy. Other approaches achieved 

an acceptable accuracy using clustering techniques for 

cardiac sound classification such as the k-nearest neighbors 

(kNN) algorithm [17], threshold-based methods, and 

decision trees [18]. Support vector machine (SVM) had been 

also proved its capability having different kernel functions 

for HS classification [19-21]. Some HS features were 

generated from phase components of Fourier spectrum [22 

and 23]. They claimed that phase information could be useful 

if the complete phase spectrum was employed appropriately. 

This paper presents the results of new attempt (i.e. 

framework) based on utilizing High Order Spectral (HOS) 

analysis and ANFIS, which, to best of our knowledge, has 

not been addressed in literature. The method was applied to 

same international database, PhysioNet Challenge 2016, and 

the outcomes were compared with similar attempts in 

literature. Figure 1 shows the block diagram of our attempt. 

II. MATERIALS 

The PhysioNet-Challenge 2016 [6] is an international 

database that contains more than 3000 HS recordings. The 

HS signals are distributed in Class A, B, C, D, and E. We 

collected 1837 HS signals from class A, B, and E. They were 

divided into training and testing sets with 80-20% (class A), 

and 85-15% (class B and E) split protocols respectively, as 

seen in Table I. These HS samples were selected based on 

consideration that there is no emergency noise source (e.g. 

voices from humans or machines), deteriorating the HS 

recording; we will discuss this point in the discussion 

section. The time duration of each HS signal is up to 120 sec. 

Each signal is sampled to 2000Hz. These are the original 

specifications provided by PhysioNet challenge webpage. 

 

FIGURE 1.  Block diagram of the proposed framework 

TABLE I DATASET DISTRIBUTION 
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Class Sets # Subjects Abnormal HC Normal HS 

A Training 313 218 95 

Test 78 54 24 

B Training 301 66 235 

Test 50 8 42 

E Training 930 104 826 

Test 165 18 147 

A + B + E Training 1544 388 1156 

Test 293 80 213 

Total  1837 468 1369 

III. METHOD 

A. Pre-processing step 

Both types, the normal HS and HC signals, are noisy and 

intersect in frequency characteristics. Therefore, two 

preprocessing steps were utilized. First we applied band pass 

notch filter to reject the 50-60 Hz noise. Second, 4th 

Butterworth band pass filter was applied. Figures 2 a-b and 

3 a-b illustrate the results on a 5 second segment, which 

contains S1 and S2¸ of normal HS and HC signals. In 

Butterworth filter, we implemented two cut off frequencies. 

These are the FC1=0.025 and FC2=0.4, which were tested 

and recommended by reference [24]. 

 

 

 

FIGURE 2. Normal HS, original (a), filtered (b), and Normalized DFT(c). 

 

 

 

FIGURE 3. Abnormal HC, original (a), filtered (b), and Normalized 
DFT(c). 

B. High Order Statistics 

The Discrete Fourier Transform (DFT) was applied on the 

preprocessed signals, as seen in Figure 1. The DFT can sort 

frequencies constituents of the signal. Therefore, the 

magnitude spectrum was normalized and plotted as shown in 

Figure 2-c and 3-c, indicating perceptual difference between 

normal HS and HC spectrums. Then, the high order spectral 

(HOS) analysis was applied. The HOS have different 

moments (i.e. cumulants), where each cumulant itself can be 

expressed by moments. The third cumulant is same as the 

central moment, it is called as Bispectrum Fourier [25]. This 

bispectrum can investigate the nonlinear coupling 

information, quantifying the oscillatory between basic 

frequencies f1, f2, and their modeling𝑓1 + 𝑓2. However, the 

expression of bispectrum can be calculated from the Fourier 

Transform of the 3rd order correlation in which HS signal is 

analyzed [26]: 𝐵𝑖𝑠(𝑓1, 𝑓2) = lim𝑇→∞ (1𝑇) 𝐸[𝑋(𝑓1 + 𝑓2)𝑋∗(𝑓1)𝑋∗(𝑓2)]          (1) 

Where: 𝑋(𝑓)  is Fourier transform 3rd order of the HS 

signal (i.e. time series). 

(*) is the complex conjugate. 

E stands for the expected/ estimated value.  
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In order to compare normal HS with HC quantitatively, set 

of statistical parameters were extracted from the matrix of 

bispectrum (i.e. 2D mapping for all frequencies pairs of 

cardiac sound signal). The drawn segments of cardiac sound 

were divided into several sub-segments using the 2D priestly 

window (Figure 4) of bispectrum. Consequently, it forms a  

bispectral matrix size of 128×128 points as shown in Figure 

5 [27]. 

 

 

 

FIGURE 4.  Contour plot of Bispectrum response for normal HS (Top) and 

HC (Bottom) 

 

 

Figure 5: Bispectral matrix examples of HC (top) and normal HS (Bottom). 

C. Features extraction 

The Bispectral matrix contains the result of mapping 

frequencies in form of real and imaginary components. 

Many attributes may be extracted. We investigated the HOS 

features [26]. Table II reports the selected five features. They 

were calculated from the real (Re) of each point of matrix. 

These are the mean, standard deviation (SD), variance (Var), 

Entropy, and Log Entropy of real component of the third 

cumulant (i.e. bispectrum) of DFT. This set of features will 

be, then, used for training a supervised ANFIS classifier to 

automatically estimate the person health condition, as 

normal or abnormal health condition. 
The fifth feature (i.e. log entropy) was omitted because of 

its low significance (p>0.05). The remaining features were 

normalized to become in the range of 0 to 1 for all signals as 

explained in Equation 2. That is the jth feature (j=1 to 4) for 

"n" samples (n=1 to 1837) was normalized between 0 and 1 

values. Thus, the classification process, which will be 

explained in the forthcoming section, will not be affected by 

different magnitudes/scales of the considered signal. �⃗�𝑗,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (�⃗�𝑗 − 𝐹𝑗,𝑚𝑖𝑛)/(𝐹𝑗,𝑚𝑎𝑥 − 𝐹𝑗,𝑚𝑖𝑛)    (2) 

Where: 

  𝐹𝑗and 𝐹𝑗,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  are the original and normalized j-th  

feature, respectively; 𝐹𝑗,𝑚𝑖𝑛  and 𝐹𝑗,𝑚𝑎𝑥  are the minimum and the maximum 

of the 𝑗 -th feature values calculated for all "n" 

samples (i.e. 1837 samples), respectively.  
TABLE II 

LIST OF HOS FEATURE EXTRACTED FOR CLASSIFICATION 

Symbol Feature Significance P Value a 

1 Mean  < 0.05 

2 SD  < 0.05 

3 Var  < 0.05 

4 Entropy  < 0.05 

5 Log entropy >0.05 

D. Adaptive Neuro Fuzzy Inference System 

ANFIS classifier is a suggestive artificial intelligence 

technique for data classification. The ANFIS architecture 

relies on five layers of nodes. They are incorporated to 

compare the input signal against previous knowledge 

(training) stored. Two layers of ANFIS are adaptive while 

the rest consist of fixed nodes [28 and 29]. The Input 

parameters that fed into ANFIS are: Mean, SD, VAR, and 

Entropy. The resulting abnormal output (HC) was denoted 

by 1, while number 2 was used to denote the Normal HS. The 

training parameters of ANFIS are given in Table III. 

TABLE III 

INTERNAL ANFIS PARAMETRS FOR BEST CLASSIFICATION 

TYPE SUGENO 

FIS andMethod Prod 

FIS orMethod probor 

FIS defuzzification Method Wtaver (Weighted average 

performance of all rule outputs) 

FIS implication Method Prod 

FIS aggregation Method sum 

FIS inputs 1 × 4 fisvar 

FIS Outputs 1 × 1 fisvar 

FIS rules 5 fisrule 

Epoch number 200 

Range of influence 0.4 

FIS Creates a Sugeno FIS fis.Name="sug41” 

 

The PRECISION and RECALL statistical metrics were 

calculated using Equations 3, 4, and 5  

Precision=TP/(TP+FP)   (3) 

RECALL=TP/(TP+FN)   (4) 
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F-score= 2*precision*RECALL/[precision+RECALL]   (5) 

Where: 

TP: true positive represents the abnormal samples 

detected correctly 

FP: false positive represents the normal samples detected 

as abnormal 

TN: true negative represents the normal samples detected 

correctly 

FN: false negative represents the abnormal samples 

detected as normal 

IV. RESULTS AND DISCUSSION 

The proposed approach attempts to eliminate noise, 

selects significant spectral features using HOS attributes, and 

employs ANFIS neural network. This framework was 

applied to all 1837 HS signals in the dataset. As a result, a 

matrix with entries containing complex values (Real and 

Imaginary) was obtained for each HS signal. The bispectrum 

showed peak placed around (0, 0) Hz for normal HS signals, 

and between 0.02 and -0.02 Hz approximately for HC signals 

(Figure 4). This led to deduce four HOS significant spectral 

features, which are, in turn, fed to ANFIS neural network. 

For instance, Figure 6 shows the ANFIS’s outputs for 78 test 
samples in Class A. All abnormal signals (i.e. 54 HC) were 

successfully detected (indicated by blue color), while normal 

samples (indicated by red color) were well detected (i.e. 24 

normal HS), except two cases.  

 

 

Figure 6.  The ANFIS’s outputs on 78-test samples for class A in dataset 

Each class in the dataset was randomly categorized as 

training and testing sets, as shown in Table I. The ANFIS 

was trained for the whole dataset. That is all training sets in 

classes A, B, E participated in the training stage (1544 HS 

signals). Later, it was, first, evaluated on all testing samples 

(293 HS samples), and then evaluated for each test set in each 

class. The ANFIS outcomes were observed. The precision, 

recall, and accuracy were reported. Table IV shows the 

results of the framework.  

Since class A (391 samples), class B (351 Samples), and 

class E (1095 samples) have different number of HS signals, 

the ANFIS achieved range of values for precision (63-100%) 

and accuracy (63-89%). Both precision and accuracy 

increased with the increment of samples (Table IV). This 

may indicate the ANFIS ability to detect abnormal HS 

signals (i.e. TP responses). However, the recall (i.e. 

specificity) was 62%, 100% and 78% in class A, B, and E, 

respectively. This variation, on the one hand, may be 

attributed to variations in number of normal and abnormal 

HS test samples. That is, as seen in Table I, class A included 

24 normal HS test samples in comparison to 42 and 147 in 

class B and E, respectively. Whilst, class A included 54 

abnormal HS test samples in contrast to 8 and 18 samples in 

class B and E, in turn. These differences have direct impact 

on equation (4). On the second hand, this variation in recall 

(and in sensitivity and accuracy) may be attributed to fact 

that, as stipulated by PhysioNet challenge [6], the HS 

recording's severity (i.e. occult) were distributed unequally 

among classes. Since we utilized only four features as inputs 

for ANFIS, these statistical metrics (sensitivity, specificity, 

and accuracy) are subject to improve if the number of 

features increases. The results in Table IV, with 

consideration that only four features were utilized, 

rationalize the conclusion that ANFIS can classify HS 

signals. In other words, Table IV indicates that ANFIS is a 

successful classifier on PhysioNet, but it also indicates that 

there is requirement to increase the number of HS’ attributes 
(i.e. features) to obtain close results. Increasing the number 

of input parameters, or collaborating ANFIS with other types 

of neural networks, may improve the performance. These are 

prospective research. 

 
TABLE IV 

THE FRAMEWORK PERFORMNCE ON DATASET 

Class Sets # Subjects Precision Recall F-Score 

A Training 313 0.71 1 0.83 

Test 78 

B Training 301 0.63 0.62 0.63 

Test 50 

E Training 930 1 0.78 0.89 

Test 165 

A + 

B + E 

Training 1544 0.78 0.80 0.78 

Test 293 

  

Figure 7 shows the receiver operating characteristics (ROC) 

describing the accumulative performance of the suggested 

framework (Figure 1), based on adjusting the ANFIS 

operating parameters. 

 

Figure 7.  The accumulative framework performance (ROC) 
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In literature, many participations in PhysioNet-challenge 

2016 were reported, addressing different types of neural 

networks and classifiers. Table V summarizes these main 

attempts, to best of our knowledge. It shows the author’s 
group, technical features (i.e. methodology), features’ 
number, neural network/classifier type, and overall accuracy. 

Generally, authors focused on objectives to enhance HS 

signals, select group of features, and apply a classifier. The 

wavelet domain was attracting for some authors [8, 30, and 

36]. They used resampled wavelet envelope features, 

wavelet entropy, wavelet-based deep convolutional neural 

network (CNN), and spectral features. For this group, the 

SVM showed an accuracy ranging between 77-88.9%. The 

second group of authors was interested in Hidden Markov 

Model combined with some statistical features [31 and 37]. 

They reported accuracy in range of 79-82%. Third group 

attempted to extract features using the spectrogram method 

[32 and 35]. They employed classifiers like SVM, CNN, and 

Logistic Regression (LR). These attempts achieved accuracy 

of 68-81%. Other researchers attempted the dynamic time 

warping (DTW) linked with Mel-frequency cepstral 

coefficients (MFCC) [14 and 33]. The DTW features were 

fed to SVM (training rule 1) and 20 feed forward neural 

networks (training rule 2). They recorded the highest 

accuracy in comparison to other attempts, they reported 

accuracy in the range of 82-91.5%. Finally, the fifth group 

attempted time-domain and frequency-domain features, they 

recorded accuracy of 86-88% [34]. 

Table V shows that the suggested framework has produced 

close performance to other neural network techniques. 

Considering the fact that this performance was achieved with 

only four features, whereas all other attempts had used at 

least 13 features to achieve accuracy in the range of 68-

91.5% (63-89% in this paper), this arises that the proposed 

framework has exhibited signs of success. Thus, ANFIS can 

successfully participate in the PhysioNet challenge. This is 

the first contribution in this paper. It may team up with other 

neural networks.  
On the other hand, we have selected 1837 samples. We chose 

the samples from Normal and Abnormal sub-folders in each 

class A, B, and E. We avoided the “Unsure” sub-folder in 

each class since the aim of this paper is to preliminary test 

ANFIS and HOS as new framework proposal. The 

administration of PhysioNet stipulated that some of the HS 

are difficult or even impossible to classify into normal or 

pathological condition [6]. We avoided HS signals that 

contain emergency voices from probably external 

environment (i.e. uncontrolled voices that can be heard 

during the recording), using our hearing skills being as 

biomedical engineers. If we had included all signals, the 

performance would have dropped. However, this is the 

situation with all attempts by various research institutes who 

had employed part of the available signals (i.e. less than 1000 

samples) such as references [8, 30, 33, 38], as seen in Table 

V. However, some techniques in Table V employed more 

than 3000 HS signals [14, 31, 34-37]; they had attempted 

some of these difficult signals, but they needed to explore 

high number of input parameters in the range of 13-124 

different signal attributes. Thus, they reported better reliable 

performance than ANFIS, but this would not affect the 

suggestive capability of ANFIS to classify signals after 

training, particularly if the number of features was increased 

(e.g. more than 4 features). 

TABLE V 

LITERATURE SUMMARY ON PHYSIO-NET CHALLENGE 2016 

Author Methodology # Features Neural Network Classifier # HS Samples Accuracy 

Goda et al. [30] Wavelet envelope 

features 

128 SVM 1000 81.2% (MAcc) 

Grzegorczyk et al. 

[31] 

Algorithm based on 

Hidden Markov 

Model. 

48 Neural networks 3000 79 % 

Langley et al. [8] Wavelet Entropy 1 (wavelet 

entropy) 

Classification algorithm 400 77% 

Nilanon et al. [32] Spectrogram Many time 

windows 

SVM, CNN, and Logistic 

Regression (LR) 

About 3000 68- 80 % 

González Ortiz et al. 

[33] 

DTW coupled with 

MFCC  

> 5 SVM unknown 82.4% 

C. Potes et al. [12] Time and frequency-

domain Features  

124 Convolutional neural network 

(CNN) 

3240 86% 

J. Rubin et al. [34] Transformation of 

1D/2D waveforms 

into heat map 

representations using 

MFCCs 

13 Deep Convolutional Neural 

Networks 

3240 88% 

Singh-Miller et al. 

[35] 

Spectrogram method  20 Random forest regression 3000 81% 

M. Tschannen et al. 

[36] 

Wavelet deep 

convolutional neural 

25 SVM 3153 81.2% 
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network (CNN) and 

spectral features 

S. Vernekar et al. [37] Markov features, 

statistical, and 

frequency domain 

features 

38 Multi artificial neural networks 

and gradient boosting trees 

3153 82% 

M. Zabihi et al. [14] Wrapper-based 

feature  

40 Grouped 20 feedforward neural 

networks 

3454 Train Rule2 is 

91.5% 

Train Rule 1 is 

85.9% 

M. N. Homsi et al. 

[38] 

Nested ensemble of 

algorithms 

131 Random Forest, LogitBoost 

and a Cost-Sensitive Classifier 

764 86.48% 

This work High order spectrum  4 ANFIS 1837 63-89% 

  * MAcc stands for Modified Accuracy, which is calculated as: (specificity + sensitivity) / 2  

 

Two other contributions can be concluded. First, the HOS 

features are possible parameters to be fed into medical 

decision support system for HS classification. There are 

other features such as skewness and kurtosis. Second, the 

bispectral matrix, in Figure 5, is a new presentation of HS 

signal’s features. It presents the real and imaginary 

components of frequency constituents of the HS signal. We 

used only HOS attributes. The matrix may be used to extract 

further attributes describing HS signal such as co-occurrence 

matrices and may some of them capable to discern abnormal 

from normal HS signals. Those two contributions are subject 

for prospective research. 

In summary, this paper is the first attempt to introduce 

ANFIS with four HOS features, extracted from new 

presentation of real and imaginary parts of HS’ frequency 
constituents (i.e. bispectral matrix) , as a possible framework 

to classify the HS international PhysioNet challenge signals, 

and profitably showed its capability on 1837 HS signals. 

Increasing number of input parameters, or collaborating 

ANFIS with other types of neural networks, would further 

sustain the findings in this paper.  

V. CONCLUSION 

This paper attempted to distinguish normal from abnormal 

HS signals available in PhysioNet-challenge 2016. The 

method collaborated Butterworth filtering, DFT, HOS 

spectral analysis presented as bispectral matrix, and ANFIS 

artificial intelligence technique. The framework was applied 

to 1837 samples from three different groups of HS signals in 

PhysioNet dataset. The suggested framework achieved 63-

89% accuracy, indicating suggestive promising outcomes in 

comparison with other techniques attempting the challenge 

but on lower number of samples. It is a preliminary first 

attempt to utilize ANFIS on 1837 samples in contrast to other 

investigations, in which researchers utilized all HS samples 

(3126), or utilized more features and other sophisticated 

classifiers [37]. 
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