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Abstract Water utilities face a challenge in maintaining a good quality of service under

a wide range of operational management and failure conditions. Tools for assessing the

resilience of water distribution networks are therefore essential for both operational and

maintenance optimization. In this paper, a novel graph-theoretic approach for the assess-

ment of resilience for large scale water distribution networks is presented. This is of great

importance for the management of large scale water distribution systems, most models con-

taining up to hundreds of thousands of pipes and nodes. The proposed framework is mainly

based on quantifying the redundancy and capacity of all possible routes from demand nodes

to their supply sources. This approach works well with large network sizes since it does

not rely on precise hydraulic simulations, which require complex calibration processes and

computation, while remaining meaningful from a physical and a topological point of view.

The proposal is also tailored for the analysis of sectorised networks through a novel multi-

scale method for analysing connectivity, which is successfully tested in operational utility

network models made of more than 100,000 nodes and 110,000 pipes.
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1 Introduction

Resilience can be defined as the ability of a system to maintain and adapt its operational

performance in the face of failures and other adverse conditions (Laprie 2005; Strigini

2012). Depending on the application domain, different approaches are applied to assess the

resilience of man-made systems. There is no single widely used definition for quantifying

the resilience of water distribution networks (WDNs), a common method is to formulate the

hydraulic resilience as a measure of the ability of a network to maintain supply under failure

conditions. Todini (2000) proposed a resilience index based on the steady state flow anal-

ysis of WDNs and dissipated energy; consequently, the resilience of a water network was

defined using a measure of the available surplus energy. Recent work extends this approach;

for example, Raad et al. (2010) modelled the outcomes of this index proposing to work with

alternative approaches to the original in Todini (2000); this was done to overcome computa-

tional difficulties in optimising a network design problem using Todini’s resilience index as

an objective function. Therefore, by using parameters of physical significance in the supply

as surrogates and not the real hydraulic details, di Nardo et al. (2013a) included these sur-

rogate indices for optimizing the resilience of sectorised water distribution networks. Baños

et al. (2011) proposed an extension to Todini (2000) by considering failures under vari-

ous water demand scenarios. Other approaches based on a steady state hydraulic analysis

include Prasad and Park (2004) who adapted Todini’s index by incorporating the effects of

both surplus pressure and reliability of supply loops assessed by the variability in the diam-

eter of pipes connected to the same node. They also applied the method to a multi-objective

problem for the optimal design and rehabilitation of a water distribution network. Jayaram

and Srinivasan (2008) used the same method from Prasad and Park (2004) for the analysis

of networks with multiple sources. An alternative approach was proposed by Wright et al.

(2015) who assess the resilience of networks with dynamically configurable topologies by

estimating what percentage of operational demand can be supplied when a disruptive event

occurs.

A common constraint of the above approaches is that the combination of possible fail-

ure scenarios grows exponentially as the network becomes bigger (Berardi et al. 2014)

together with possible inconsistencies and uncertainties associated with hydraulic simu-

lations (Gupta and Bhave 1994). Trifunović (2012) explores hydraulic properties of the

network based on the statistical analysis of common parameters under normal operation and

proposed them as indices to assess the resilience of a water network. However, these statis-

tical parameters may not be valid under failure conditions (Giustolisi et al. 2008). Another

inherent drawback is the dependence on well calibrated (accurate) hydraulic models for

large networks. Beyond the implicit non-linearity, the number of parameters involved in the

hydraulic equations (Abraham and Stoianov 2015) and their large number of possible com-

binations introduce high complexity to the WDN calibration problem (an NP-Hard problem,

which cannot be solved in polynomial time Takahashi et al. (2010).) For large WDNs, these

have an expensive computational cost since, even for moderate size networks, the num-

ber of possible failure scenarios grows exponentially and are approached using either some

linearising assumptions or the use of heuristics for failure simulations (Berardi et al. 2014).

This paper assesses the resilience of WDNs from a topological perspective where prop-

erties such as network configuration and redundancy in connectivity are taken into account

together with physical-based flow properties. This assessment is based on a computation-

ally efficient implementation of the K-shortest paths algorithm (Eppstein 1998). It measures

in a statistically robust way how every WDN demand node would be affected by disrup-

tions in supply. This is done by analysing alternative paths between demand nodes and
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water sources (i.e. tanks and reservoirs). In addition, the paths are weighted by the hydraulic

attributes of the supply routes to make the measures physically meaningful. Graph-theoretic

indices have been applied to assess the resilience of water networks and used also as a

surrogate measure in design problems (Yazdani et al. 2011). These surrogate indices are

measures that correlate to physical/hydraulic based indices of resilience but are not neces-

sarily based on physical indices whose parameters are either unavailable or are difficult to

compute. These indices can be broadly classified into “statistical” and “spectral” measures

(Gutiérrez-Pérez et al. 2013). Among the statistical indices, the meshedness coefficient

(Buhl et al. 2006) provides an estimation of the topological redundancy of a network.

Central-point dominance (Freeman 1977), gives a measurement of the network vulnerabil-

ity to failures corresponding to central locations. Flow Entropy (Raad et al. 2010) measures

the strength of supply to a node both in terms of the number of connections and their similar-

ity. The so-called demand-adjusted entropic degree in Yazdani and Jeffrey (2012) is another

alternative that uses demand on nodes and volume capacity on edges to compute a weighted

entropic degree. More recently, (Liu et al. 2014) have extended the flow entropy measure to

also consider the impact of pipe diameter on reliability.

The work also extends the proposed adaptation of K-shortest paths algorithm for the

analysis of WDNs divided into sectors or District Metered Areas (DMAs) by utilizing multi-

scale network decomposition (Albert and Barabási 2002; Lee and Maggioni 2011). Demand

nodes of a given DMA are aggregated into a sector-node, where a new graph (DMA-graph)

is defined with vertices representing DMA areas and edges that abstract the sector-to-sector

connectivity (Izquierdo et al. 2011). A mapping function is used to establish a relationship

between the network graph of demand nodes and the DMA-graph, where every DMA-vertex

(or sector-node) has new features such as number of customers, total demand, and an aver-

age pressure aggregated from information of individual nodes of the DMA. The physical

connections between sectors, which consist of pipes and boundary valves, form the edges of

this DMA-graph and define the level of its connectivity. Resilience assessments carried out

on individual demand nodes in the DMAs are also linked to the corresponding sector-nodes,

which are then used for a system-level resilience analysis. Considering both the network

graph of demand nodes and a DMA-graph, a multiscale analysis of resilience is proposed.

2 A Graph Theory Perspective on the Definition of WDN Resilience

The network connectivity of a WDN can be modelled as a nearly-planar mathematical

graph1, G = (V ,E), where V (vertices) corresponds to n nodes and E (edges) corresponds

to m pipes of the water system. This graph also has the particular characteristics that every

node or edge should normally have at least one path of edges connecting it to a source node

(tanks and/or reservoirs).

For a given WDN, our approach starts with computing a measure of resilience for each

node by identifying the number of water sources a node is connected to and estimating how

well that node is supplied by the available water sources. To accomplish this, all routes

connecting a node i to all tanks and reservoirs are computed, and used to quantify the

capacity or resistance of the corresponding routes. Since computing all routes which link

1A planar graph is one that can be drawn on a plane without having edges intersecting other than at a node

mutually incident with them. WDN graphs are not strictly planar due to the existence of some possible

crossovers but are almost planar.
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nodes to sources is prohibitively expensive, our approach becomes feasible by restricting

the computations to the K ‘shortest’ routes (Eppstein 1998) for the flow between a node

i and its j -th source sj (i). In calculating this index, every route should be weighted by a

surrogate measure of flow resistance. For example, the proposed surrogate flow resistance

measure depends on the physical characteristics of connecting pipes as water travels from

j -th source, sj (i), to i and it can be estimated by a measure proportional to the energy loss

associated with a route of supply. The estimation of energy loss in water transportation is

commonly done using the Darcy-Weisbach and Hazen-Williams formulae. Although both

formulae depend on hydraulic measures like velocity and roughness, only the proportional

dependence on topological constants of the network has been considered as no detailed

hydraulic modelling is used. Energy loss across a link is proportional to f ×L/D; where f

is the friction factor, L is the length of the pipe and D represents its diameter. This resistance

measure is used to weight every path in the calculus of shortest paths, providing a surrogate

measure for potential energy loss associated with each path connecting a node and its water

source. The proposed resilience index for a node is

IGT (i) =

S
∑

s=1

(

1

K

K
∑

k=1

1

r(k, s)

)

, (1)

where S is the total number of sources in the network and r(k, s) is a surrogate measure of

the energy loss (the resistance to water transport) associated with the kth path to source s.

One such measure of energy loss could be approximated as:

r(k) =

M
∑

m=1

f (m)
Lm

Dm

, (2)

where M is the number of pipes in path k and f (·) estimates the friction factor by pipe age

and material (Christensen 2009).

The weighted KSP algorithm returns infinity for Eq. 2 if there is no path of water distri-

bution connecting the given node with a supply source. The contribution of such a source

to the resilience index for a node in Eq. 1 will be zero. Consequently, both the resistance of

paths to sources and redundancy in supply are explicitly taken into account by the resilience

index.

In Eq. 2, the flow resistance over K paths is averaged since using the shortest path only

may not be sufficient to represent the connectivity and indirectly resilience. By averaging

over the complete set of routes (i.e. K → 2n, where n is a very big number for opera-

tional networks (Eppstein 1998)), the true connectivity of a node to a source is measured.

However, the computational complexity of this measure grows exponentially (O(2nn) for

the proposed index) and it quickly becomes infeasible for medium to large networks. Aver-

aging over the K-shortest paths is a computationally feasible approximation that takes into

account a sufficiently large number of paths in a robust statistical method.

2.1 Validation of the Resilience Assessment Method

A previously published network C-Town (Ostfeld et al. 2012) is used as a validation case-

study for the graph-theoretic method proposed. This is a medium size network that consists

of 333 nodes, 429 pipes, 4 valves, 5 pump stations, 7 elevated tanks, and 1 reservoir. A

graph-theoretical analysis of resilience in WDNs (Yazdani et al. 2011) identifies a node of



A Graph-Theoretic Framework for Assessing the Resilience of WDNs 1689

special importance as those with high betweenness centrality index, which measures the

relative number of shortest paths from all vertices to all others that pass through a node.

Nodes with betweenness centrality values larger than 2 times the standard deviation (SD)

from the network average computed over all nodes will be denominated as high betweenness

nodes. This work considers “critical transfer nodes” to those of topological importance with

respect to the flow distribution with a WDN. Thus, critical transfer nodes are, a priori, those

belonging to the main trunk and those with high betweenness.

In the case of the proposed K-shortest path index, for a demand node i and source s, let

g(K; i, s) =
1

K

K
∑

k=1

1

r(k)
, (3)

represent the inverse of the resistance to supply in Eq. 1 averaged over K paths. Figure 1a

shows the difference g(K + 1) − g(K) for two nodes of varying centrality, A and B, where

the latter belongs to the set of central nodes. In the two cases, the average of Eq. 3 taking

K shortest paths converges when the number of paths is increased. That is, the difference

on computing g(K + 1) or g(K) changes significantly as one moves away from using only

the shortest path (i.e. K = 1) but not as much when one goes from K to K + 1 paths for

larger values of K (over 30 paths in the case of Fig. 1a). Then, this measure is proposed as

a decision criterion on the number of paths to be used in Eq. 1 to compute IGT (·).

Using K paths has two main advantages. Firstly, it emphasises the need to consider multi-

ple paths of transport that contribute to the resilient operation of a network and it guarantees

a robust statistical estimation since multiple paths are used to capture the average connec-

tivity and capacity instead of the unique shortest path connecting two nodes. Secondly, the

sum in Eq. 1 converges for relatively low values of K to obtain a good approximation of the

analysis over all possible routes.

Once the tuning process provides an estimate of the K value, the proposal proceeds to

compute the inverse of the resistance to supply, g(K), for the chosen K . In Fig. 1b g(30)

is plotted for all individual nodes. The same plot also represents the values of g(30) for

central nodes (main-trunk nodes and those with a betweenness centrality of at least 2 times

the SD of the network average; they are plotted with red triangles). Most of the critical

nodes have high g(K) compared to the average node g(K) value. In general, nodes of

higher betweenness centrality are those that will appear more frequently in any shortest path,

including paths to sources, and so will tend to have higher resilience as defined by Eq. 1.

Fig. 1 Validation analysis on the K routes to the water sources
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Table 1 Resilience indices

computed when a percentage of

pipes are removed

Index 0 % removed 2.5 % removed 5 % removed

Ir 0.4476 0.3697 0.2561

IGT 0.6306 0.5711 0.4166

ICB 0.0715 0.0620 0.0550

Im 0.0597 0.0508 0.0419

IS 0.0369 0.0355 0.0351

2.2 Comparison of K-Shortest Paths Index (IGT ) with Alternative Approaches

The next stage of the analysis is a comparison of the various indices of resilience under

failure conditions in a supply network. Three scenarios generated from C-Town are consid-

ered, (Table 1, Fig. 1). The first scenario represents normal operational conditions without

failures. The second scenario is created by the failure (removal) of 2.5 % of randomly

selected pipes. The third scenario assumes the failure of 5 % of pipes. The resilience

indices are expected to degrade as more pipes are taken off. The aim of this example is to

evaluate the consistency of the new index, IGT , by validating that it positively correlates

with results obtained from hydraulic simulations. The comparison is done with Todini’s

hydraulic resilience index, Ir (Todini 2000). Other graph-theoretic indices, such are central-

dominance betweenness (ICB ), meshedness (Im), and a demand-adjusted entropic index

(IS) (Yazdani and Jeffrey 2012), are also included in this analysis. Table 1 summarises the

average of the computed indices under the repetition of 20 random experiments for each

scenario.

To compare the performance of the various indices, their relative change under failure

conditions are investigated. The process starts with the computation of a nominal resilience

value; these are the computed under normal operation of a WDN. Then, there are computed

the indices under failure configurations and are plotted the ratio of the new resilience values

to their corresponding nominal index. Figure 2a shows that the degradation in resilience is

captured by the considered indices to a different degree. The simulation of failure indices

in Fig. 2a is repeated 20 times (by randomly sampling the corresponding disrupted pipes at

each repeated simulation; in this case, 20 samples is enough to arrange statistically mean-

ingful comparisons between groups/indices). At each iteration, different sets of pipes (2.5

Fig. 2 Graph-theoretic indices vs. hydraulic simulation based index
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% and 5 %) are randomly sampled and the indices are averaged for each proportion of pipe

failures in the WDN. Figure 2b shows the distribution of the indices in Fig. 2a under these

multiple experiments.

As shown in Fig. 2b, graph-theoretic indices show consistency with the hydraulic index2.

The index IGT changes in a proportional way to variations in the condition of the water

distribution network. The entropic degree, IS , is the measure which provides the poorest

estimation of the deterioration in resilience as more pipes are removed, similarly to the

results presented by (Greco et al. 2012). Figure 2b also shows that the meshedness index,

Im, has a narrow distribution. This is because meshedness is a measure that depends only

on the relative number of nodes and pipes, without taking into account their physical or

hydraulic properties.

3 Assessing Resilience for Large Scale Water Networks

The network topology of a WDN includes both tree-like (usually hierarchical and lower

redundant networks, i.e. having an equivalent proportion of nodes and links connecting

them) and well meshed structures, where there usually exists several paths connecting two

nodes and so a greater number of links compared to the number of nodes. These two type of

structures can be interconnected by links forming graph-bridges, which transport water from

the transmission mains to these distribution areas. One way to analyse large-scale WDNs

is by partitioning the network into different components (assets: valves, pumps, pipes, and

meters, among others). Alternatively, a WDN can be divided into sub-networks in order to

make the analysis simpler than working with the whole system model. This is of interest

especially in the case of large-scale WDNs, which can contain hundreds of thousands of

nodes and pipes, where consequently the classical methods of analysis are not efficient

because of the large dimensions.

Many WDNs have been divided into sectors (DMAs) mainly for leakage management

(Tabesh et al. 2009; Gomes et al. 2013; Xin et al. 2014). For this and a variety of other rea-

sons (Herrera 2011), WDNs are divided into sectors nowadays and researches have focused

their attention on different sectorisation approaches. The most studied works on water net-

work division are based on variations of graph clustering (di Nardo and di Natale 2011;

Perelman and Ostfeld 2011), spectral clustering (Herrera et al. 2010; Candelieri et al. 2014;

Herrera et al. 2012), community detection (Diao et al. 2012), multi-agent systems (Izquierdo

et al. 2011; Hajebi et al. 2013), breadth and depth first search (Deuerlein 2008; di Nardo

et al. 2014) or multilevel partitioning (di Nardo et al. 2013b). The work of Mandel et al.

(2015) is the first to propose a sectorisation approach for large-scale water networks. For

these previously sectorised networks, the resilience index in Eq. 1 measures the level of

connectivity of each demand node through various supply roots. A DMA division of the net-

work automatically allows the use of two different scales of this resilience measure, having

approaches of resilience for every individual node or measures summarised by sector. This

provides new ways for analysing and managing the system and allows network configura-

tions that have a major impact on resilience to be easily identified; for example multi-feed,

single-feed, cascading DMAs.

2Please note that the proposed index does not replace/estimate hydraulically simulated indices. The presented

analysis validates the consistency of results as failure conditions change.
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3.1 Multiscale Resilience Analysis

The proposed graph-theoretic index is extended to water networks that are divided into

sectors thus enabling resilience analysis. A DMA-based graph is a graph of lower level

of detail (or coarser granularity) that captures the topology of existing DMAs. The DMA-

scale resilience is derived from a user-defined function that transforms the resilience of

the demand nodes in a DMA to a scalar representing the DMA resilience. For example,

by transforming the index of Eq. 1 to the coarser sector level graph to analyse the relative

connectivity of DMAs. Here, it is used the trimmed mean (Garcı́a-Escudero et al. 2003) to

transform the resilience of n∗
i demand nodes of DMAi to the sector graph as:

I ∗
GT (DMAi) =

n∗
i

∑

j=1

IGT (j)

n∗
i

. (4)

In calculating the mean, the trimmed approach discards points of very high or very low

value before computing the mean for the remaining nodes. Then, the aggregated measure

is the summary of the single values for n∗
i nodes of the DMA, with n∗

i ≤ ni . As such,

a trimmed mean is a more robust centrality measure as the average value is not skewed

by extreme low/high value data. For instance, if a DMA with predominantly high resilient

nodes has a sub-area that has critically low resilience, the arithmetic average would not

identify the presence of these in the DMA resilience index, whereas the trimmed method

does. Furthermore, the presence of individual critical customers such as hospitals could

significantly affect the system level resilience assessment. The set of excluded nodes in

the computation of the trimmed mean, H, are identified to validate the existence of critical

nodes among them, and the subsequent impact on the DMA resilience assessment. As a

result, Eq. 5 formulates a constitutive rule which is used to rank DMAs as low resilient

if they have low values of IGT for critical users (hospitals, schools, or industrial users)

regardless of the fact that a DMA as a whole or a majority of its demand nodes might have

high resilience.

IGT (DMAi) =

⎧

⎨

⎩

min{IGT (Hi)} if at least one critical user ∈ H

I ∗
GT (DMAi) otherwise,

(5)

where Hi is the set of critical users in DMAi .

For a DMA with a large variation in the IGT value, it is possible to trim a significant

number of nodes (i.e. a number of demand nodes representing a significant number of cus-

tomers) in computing Eq. 4. To avoid this, the variability of the resilience is used, which is

defined here as standard deviation normalized by the mean resilience value:

S2
GT (DMAi) =

n∗
i

∑

j=1

1

n∗
i − 1

(

IGT (j) − I ∗
GT

I ∗
GT

)2

. (6)

Based on the variability of IGT (·) in each DMAi (Eq. 6), a second constitutive rule is

formulated and applied:

IGT (DMAi) =

⎧

⎨

⎩

minDMAi
{IGT (·)} if S2

GT (DMAi) > t

I ∗
GT (DMAi) otherwise

(7)

where t is a user-defined threshold.
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When high variability exists, this constitutive rule computes the DMA resilience index

over the whole set of demand nodes in the DMA and identifies the existence of low resilient

nodes. The two Eqs. 5 and 7 assist operators to identify areas for a further investigation

where a threshold of demand nodes or critical customers might not have the required level

of resilience.

3.2 Multiscale Representation of a WDN

An essential part of the sector-level resilience analysis is the pre-processing of network

data of varying types and complexity. For example, geographic information system (GIS)

data, telemetry measurements, and hydraulic information is aggregated into an unified sys-

tem that provides access to heterogeneous data sets. A novel augmented graph is proposed

which transforms DMAs into sector-nodes. Each sector-node has aggregated data about

the assets it contains, abstracting the high-granularity graph of hydraulic nodes to a low-

granularity graph. The pipes and valves that connect different DMAs represent the edges

between sector-nodes and inherit their corresponding properties. A schematic view of this

multiscale decomposition process is represented in Fig. 3.

By considering all links hydraulically connecting DMAs, the edges of the new graph

are formed by taking into account the open/closed status of valves, and consequently links

which can provide additional operational resilience are identified. The weights of the new

graph edges are proportional to the aggregated volumetric properties of individual pipes

and valves that connect sector-nodes. Sector-nodes can also be used to visualize average

levels of demand, pressure, elevation, etc. and the sector-node size can inherit topological

characteristics of DMAs (eg. number of nodes or customers).

A multiscale network decomposition to assess the resilience of water systems is

approached by studying their performance and network structure at various granularity lev-

els and by analysing topological and physical information inherited from single demand

nodes to sectors. Other important details that are obtained in the analysis include the number

and location of multi-feed DMAs, the number of valves within each DMA, and the pres-

sure differential between neighbouring DMAs. In addition, the sector-node graph is used to

identify which part of the network topology should require further investigation to improve

resilience.

Fig. 3 Mapping high-granularity demand-node into low-granularity DMA-based graphs
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Fig. 4 Layout and g(K) index for the analysis of WDN-A

4 Experimental Study

Two operational WDNs were used to analyse the proposed methodology for assessing the

resilience of sectorised water distribution networks. Firstly, a medium size WDN divided

into 3 DMAs is investigated. A resilience assessment is carried out for each DMA. The

second case-study corresponds to a large water supply zone with high population density in

England, UK. In both cases, certain sensitive information about the networks is withheld in

order to maintain confidentiality.

4.1 Case-Study A

WDN-A (Fig. 4a) has 4820 nodes, 1 tank, and 5234 pipes and valves sectorised into 3

DMAs. Detailed information for each DMA is summarised in Table 2. Figure 4a also shows

the DMAs layout and the location of critical transfer nodes (i.e. nodes with high values of

central-betweenness).

In order to compute the proposed graph-theoretic index, IGT of Eq. 1, a sufficient number

of shortest paths K need to be used. The analysis outlined in Fig. 1 was carried out on

different nodes and it showed that K = 30 as sufficient for WDN-A. In Fig. 4b, we plot the

values of g(30) for each node of the WDN and for demand nodes with high betweenness

centrality (labelled as critical nodes and also marked in red in Fig. 4a). For this network,

analysis in Fig. 4b shows that the measure g(K) of the most critical nodes exceeds the

average for the network.

From Table 2, it can be concluded that DMA-3 is the sector with lowest resilience given

the index IGT (DMA3), while IGT (DMA2) index is higher than the other two. DMA-2 is

Table 2 Summary of the DMA

configuration and resilience

indices for WDN-A

Sector ID # nodes # pipes IGT (DMA)

DMA-1 1626 1770 0.0654

DMA-2 2416 2638 0.0869

DMA-3 778 826 0.0465

TOTAL 4820 4032 0.0663
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directly connected with the only source that supplies water to the whole network. Thus,

topologically and hydraulically, DMA-2 is the most resilient sector of this network.

4.2 Case-Study B

WDN-B (shown in Fig. 5) is comprised of 106,115 nodes, 4 constant head sources, 28

reservoirs, 111,096 pipes, 102 pumps, and 1,900 boundary valves (Fig. 5a). GIS models,

telemetry data, and physical and hydraulic information are combined in an integral database

framework. Figure 5 shows the process of multiscale decomposition from the network of

demand nodes to a coarser representation by sector-nodes. Through the graph transforma-

tion process, every DMA (sector-node) inherits the information related to the nodes within

the area; such as, demand, elevation, pressure, and geographic coordinates. Sector-nodes

also gather the information of the pipes and valve: diameter and length, and their own

characteristics and the open/closed status for valves.

The proposed multiscale decomposition of the network topology by sector-nodes reduces

the dimensionality of complex networks. Figure 5b shows the spatial distribution of these

sector-nodes together with their connectivity in terms pipes and valves. The volumetric

capacity of aggregated links between DMAs are represented by the thickness of the con-

necting links. The colour code of the sector-nodes identifies whether a DMA is multi-feed

(in colour red) or single feed (grey colour). The analysis shows that almost 40 % of the

DMAs (i.e. 90 of the 228 DMAs) in WDN-B are fed by more than one supply connection,

Fig. 5b. All this information together with the topology of the assets in the DMAs facil-

itate the estimation of the resilience indices at a DMA level, which is a new property of

individual sector-nodes. Any measure based on individual assets within each DMA can be

represented in the multiscale DMA-graph. Figure 6a shows the average resilience for each

DMA, IGT (DMAi), using a traffic light system. Red represents low resilience with an IGT

value 2 SDs below the network average for all DMAs; in this example, the network aver-

age is 0.0395 and 2 SDs below that is 0.02. Similarly, high resilience sectors (with values

2 SDs above average DMA resilience) are represented using green colour, and DMAs in

Fig. 5 Layout of WDN-B and its representation by a graph of sector-nodes. Single-feed and multi-feed

DMAs are differentiated visually.
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Fig. 6 Schematic layout of WDN-B network resilience: IGT (DMAi) given in Eq. (5) is represented by

colour code (low=red, high=green) and the level of critical transfer by node size.

between the two extremes with orange/amber colour. The augmented DMA-graph can also

provide further information which assists operators in understating and analysing topologi-

cal and operational constraints that affect resilience. Figure 6b highlights the critical transfer

nodes of every DMA in distribution using the size of the circle plot associated with sector-

nodes. In this figure, criticality is determined based on the number of high betweenness

nodes.

Resilience and critical transfer measures are simultaneously represented in Fig. 6(c),

which combines a traffic light system and the sector-node size. As a result, the centre and

centre-North of WDN-B include DMAs that have medium and low resilience measures and

medium and high levels of flow transferability for central nodes (see Table 3). All these areas

also supply critical customers and could be prioritised for further analysis and maintenance

to improve network resilience. The boundaries of the WDN layout have low resilience but

also low level of criticality. Table 3 presents a summary of attributes for the top 5 sectors in

terms of their resilience and flow transfer critical nodes.

As shown in Table 3, where the DMAs are ranked by resilience, 3 of the 5 DMAs contain

more than 2,000 nodes, while only one of them has a size less than 1,000 nodes. Taking into

account the number of critical transfer nodes within each sector (column #CNs of Table 3), it

is shown that DMA-29, DMA-101, and DMA-208 are sectors with larger number of transfer



A Graph-Theoretic Framework for Assessing the Resilience of WDNs 1697

Table 3 Summary of the DMA configuration of the top 5 WDN-B sectors

Sector ID # nodes # pipes Multi-feed IGT (DMA) #CNs

DMA-29 2003 2081 Yes 0.0124 118

DMA-184 1119 1242 No 0.0179 32

DMA-85 784 834 Yes 0.0194 25

DMA-101 2106 2181 No 0.0212 60

DMA-208 2081 2249 Yes 0.0268 114

The resilience index, IGT , is computed for each DMA. The number of critical transfer nodes (i.e. the number

of nodes with betweenness centrality values larger than 2 times the SD from the average computed over all

the DMA nodes) is given by #CNs

nodes. These DMAs also have a varying level of resilience; for example DMA-29 has the

smallest resilience index and DMA-208 has the highest.

5 Conclusions

A novel resilience index based on weighted K-level shortest paths from consumption nodes

to water sources has been derived to estimate WDN resilience together with informa-

tion about critical customers. Computing these K different routes for every node provides

numerical robustness to our analysis compared to analysing only the shortest path. The

index is shown to be consistent with hydraulically-defined resilience measures. This is

because the K-shortest paths are weighted by quantities associated with energy losses of

water transport routes. The current proposal has the following advantages:

• An inclusion of physical attributes of the water distribution network within graph the-

oretic indices gives the resilience analysis a hydraulically relevant and easy to quantify

measure of how well connected a node is to the available water sources.
• Computations for the proposed index scale quasi-linearly as a function of the number

of nodes (∼ O(m + n log(n) + kn)). This makes the measure feasible for application

to large scale water networks, where the classical critical link hydraulic based analysis

of network resilience would scale combinatorially.
• Constitutive rules and functions facilitate the inclusion of empirical knowledge.

The proposed graph-theoretic framework is complimented by a novel multiscale decom-

position method that converts the original WDN layout to DMA-based graphs. The

developed method allows us to work with a WDN at two different levels of abstraction: sin-

gle demand node and DMA. This enhances the results obtained for assessing the resilience

of a WDN, especially in the case of large scale networks.
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