
A Method for Remote and Semi-Automatic Usability
Evaluation of Web-based Applications

Through Users Behavior Analysis
Ariel Vargas

Institute of Computing
University of Campinas

P.O. Box 6176, 13084-971,
Campinas, SP, Brazil
vargas@ic.unicamp.br

Harold Weffers
Laboratory for Quality Software

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB,
Eindhoven, The Netherlands

h.t.g.weffers@tue.nl

Heloísa Vieira da Rocha
Institute of Computing
University of Campinas

P.O. Box 6176, 13084-971,
Campinas, SP, Brazil

heloisa@ic.unicamp.br

ABSTRACT
In this paper we describe a method for evaluating the
usability of web-based applications. Our method is based on
remote and automatic capture and semi-automatic analysis
of users behavior, in order to find usability problems in the
applications’ interfaces. The goal of our method is to allow
an analysis of the way users actually interact with the
evaluated interface. Through the analysis of users behavior
is possible to find patterns of interaction. Analyzing the
patterns found and comparing it to the expected behavior
for the tasks performed by users, we can detect usability
problems. In this paper we also briefly describe a first
experiment with our method and some initial results that
point to the potential of the method in performing remote
and automatic usability evaluations.

Author Keywords
Usability evaluation, remote usability evaluation, user
activity tracking, log file analysis, semi-automatic analysis,
web usage mining, pattern mining, sequence mining, user
behavior analysis, user experience.

ACM Classification Keywords
H.5.2 User Interfaces: Evaluation/methodology

General Terms
Ergonomics, Human Factors, User Issues, Graphical User
Interfaces (GUI), Web-based interaction, Pattern analysis,
Experimentation.

INTRODUCTION
In the last years the web has become a common
environment for computer applications. This has aroused a
growing interest about the usability of these applications

among researchers and developers. In order to develop a
good web-based application interface it is important to
consider its usability since the beginning of the
development process and throughout the lifetime of the
application. Regardless of the development methodology
applied, it is important to evaluate the application’s
usability during and also after the end of the development
[6]. There are many methods to evaluate graphical user
interfaces of computer applications. The most popular
method is the user test, in which an evaluator observes the
user behavior during his interaction with the interface, in
order to detect usability problems [11]. Observing users
behavior is an efficient method to find usability problems in
the interface, however it is an expensive method due to the
costs of finding users to test, moving them to the test
laboratory, preparing the infra-structure, carrying out the
test, collecting and analyzing the results [10,4,9]. Due to
these costs it is common just to analyze the behavior of a
few users in user tests. Furthermore, analyzing the behavior
of a few users hinders a quantitative analysis giving to the
evaluation just a qualitative feature. Some problems could
just be highlighted in a quantitative analysis and also the
impact of them could just be evaluated analyzing a large
number of users [9,12]. Another important factor when the
usability of an interface is evaluated is its context of usage,
which is difficult to simulate in a user test made in a
laboratory. To deal with the difficulties mentioned above
we propose a method for usability evaluation based on
remote and automatic capture and semi-automatic analysis
of users behavior in order to find usability problems in web-
based application’s interfaces.

RELATED WORK
According to [2], in a remote and automatic usability
evaluation users and evaluators are separated in space and
time, i.e., users perform their interaction with the
application in their usual work environment without moving
to a test laboratory. Evaluators do not watch users during
their interaction with the application. They just analyze
their behavior afterwards. To perform this kind of analysis,
the interaction of all users, performed in the application’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. For any other use,
please contact the Measuring Behavior secretariat:
info@measuringbehavior.org.

Proceedings of Measuring Behavior 2010 (Eindhoven, The Netherlands, August 24-27, 2010)
Eds. A.J. Spink, F. Grieco, O.E. Krips, L.W.S. Loijens, L.P.J.J. Noldus, and P.H. Zimmerman 253

mailto:info@measuringbehavior.org�

interface, is captured in a log file. Software tools analyze
these captured data afterwards. There are some tools
already developed to perform this kind of usability
evaluation as: WebVip [16], WET [8], TEA [12] and
UsaProxy [3], which just perform the capture of users data
but do not analyze it. WebVip and TEA logs are similar to
web server logs, with no detailed information about actions
performed by users such as, mouse clicks and mouse
movements. WET performs more detailed capture than
WebVip. However, WebVip and WET need manual
insertion of code in each web page to make the capture.
TEA needs to be installed in the client’s machine.
UsaProxy, differently from the previous approaches, makes
detailed capture of users actions and has the advantage of
working as a proxy between server and client. It does not
need any manual insertion of code in web pages or
installations in client or server. Besides the capture tools
mentioned, there are tools which perform the capture and
some analysis of the data captured as: WebRemUsine [13],
AWUSA [17], WAUTER [5], WELFIT [15] and WebQuilt
[9]. WebRemUsine and WELFIT capture detailed
information about users actions, however they need to insert
some code in each web page on the server in order to make
the capture. WebRemUsine analysis compares the expected
sequence of actions for a task to the sequence of actions
performed by a user. As a result, the tool shows the
differences between both sequences. WELFIT performs an
analysis of all users actions on a single page but does not
care about the path followed between pages. AWUSA
works with server logs and due to this it has no precision in
capturing users actions. Its analysis is the same as
WebRemUsine, comparing two sequences of actions and
showing the differences. WAUTER captures users
interaction in the client side. Its capturing is more precise,
getting all actions performed by users in the web
application, but it needs to install software on the client’s
computer. WAUTER makes its analysis just like AWUSA
and WebRemUsine, comparing expected and performed
sequence of actions for a task. WebQuilt works the same
way as WAUTER capturing actions in the client side, its
capture is however not so accurate, just getting information
about pages requested to the web server. Nevertheless, its
analysis is smarter than other tools referred before. It gets
all actions performed by all users and groups them to find
the most common navigation path for the pages of the
application.

PROPOSED METHOD
Our proposed method for performing usability evaluation
based on remote and automatic capture and semi-automatic
analysis is called WebHint. It is composed of 3 steps as
described below and shown in Figure 1.

Step 1 - Task Definition
The first step in the WebHint method is the definition of the
tasks to be analyzed in the evaluation. A task is a sequence
of actions performed by users in the application’s interface
with a specific goal. Ex: The sequence of actions performed

to read an e-mail message, in a webmail application,
constitutes a task. In Step 1, an evaluator defines the tasks
performing the expected sequence of actions for each task
in the interface of the evaluated application, as was planned
by the application designer. The sequence of actions
performed is captured by software and saved in a log file.

Step 2 – Users Interaction Capture
In the step 2 the users interaction with the application
interface is monitored. All actions performed by all users in
the web application’s interface are captured: mouse
movements, keystrokes, links accessed, pages loaded, etc.

Step 3 – Data Analysis
This is the most important step in the evaluation. Here all
users actions captured in the step 2 are analyzed, as shown
in Figure 2 and described below.

The first activity in the analysis step is the extraction of the
tasks performed by users from the log files. For this purpose
some algorithms were implemented. They are explained
below: 1) Split log – the algorithm splits the log with all
interaction of all users in several log files containing the
interaction of one single user per file. 2) Determine
sequence intervals – the algorithm finds in each log file the
intervals in which there is a sequence of actions that
represents the execution of a certain task. This is made
looking for representative actions in the task as the “begin”
and “end” points. The algorithm also deals with intervals
without a “begin” or “end”, i.e., possible incomplete tasks.
The intervals found are extracted from the log. 3) Extract
executed tasks – For each interval found, the algorithm
applies a LCS (Longest Common Subsequence) [14]
function to measure how similar the extracted interval is
related to the expected sequence for the referred task. If the
interval has a certain similarity rate, the sequence is
extracted from the log.

Figure 1. The WebHint proposed Method.

Proceedings of Measuring Behavior 2010 (Eindhoven, The Netherlands, August 24-27, 2010)
254 Eds. A.J. Spink, F. Grieco, O.E. Krips, L.W.S. Loijens, L.P.J.J. Noldus, and P.H. Zimmerman

The second activity in the analysis is the clustering of the
extracted sequences and the searching for the most common
patterns for the task, i.e. the most common way users
performed the referred task.

In the third activity, the expected sequence for the referred
task is compared with the most common patterns of
execution for the task. Looking for the differences between
the “expected” execution and the “actual” patterns is
possible to identify if the task is really performed as
planned by designers or not. Moreover, it is possible to find
problems in the execution of the task and usability problems
in the interface of the application.

In the fourth activity heuristics are used to detect problems.
The heuristics are sequences of actions that represent
known usability problems. If in one pattern found has a
match of actions with any heuristic, a possible problem can
be detected.

In the end of the analysis, the evaluator obtains the results
composed by: the most common patterns of execution for
each task; differences between the “expected” execution
and the “actual” patterns found; and hints of usability
problems detected.

Considerations About the Proposed Method
Our proposed method has some advantages over the tools
presented in the related work section of this paper. In Step 1
of WebHint, we tried to simplify the task definition
avoiding the use of notations. Opposite to WebRemUsine
and WAUTER using notations, our method just requires a

simple execution of the task in the application’s interface to
define it.

In Step 2, we monitor users behavior capturing all actions
performed in the interface of the web application evaluated.
We intend to find the most common patterns of actions
executed by users performing the tasks as in WebQuilt’s
approach. However, our analysis is deeper than in
WebQuilt and AWUSA due to our captured data being
more accurate, including mouse movements, clicks and all
actions performed in a webpage, not only the sequence of
pages requested. Using a proxy approach as UsaProxy we
do not have the workload of manually editing each webpage
in order to insert code to capture users interaction as in
WebVip, WET, WebRemUsine and WELFIT. It is also not
necessary to install software on a client’s computer as in
WAUTER or WebQuilt.

In Step 3 of WebHint, we analyze all actions from all users
interacting with the application. It allows us to make a
quantitative analysis of the usability of the application.
Differently than WebRemUsine and WAUTER, just
performing the comparison between two single sequences
of actions, our analysis uses the most common patterns
found to compare to the expected sequence. It gives us a
comprehensive analysis of the users behavior. Finally, in
our method we intend to use heuristics in order to automate
the usability problems detection.

METHOD APPLICATION
In order to validate our method, a first experiment was
carried out. In the experiment, 52 users had their interaction
monitored for a period of 2 months in TelEduc1

In the experiment we used the UsaProxy tool for capturing
the users interaction in Step 2 and for capturing the task
definition in Step 1. In Step 3 we used some implemented
algorithms for extracting the tasks from the log, as
mentioned previously in the Proposed Method section. The
process-mining tool ProM [1] [7] was also used for
clustering and detecting the execution patterns of the tasks.

 (beta
version 4.1.1). TelEduc is an environment for on-line
courses where users have tools to interact with, as mailbox,
file repository, wall, etc. A simulated course was prepared
in TelEduc for the experiment and the users were invited to
perform some tasks as participants of the course. The
experiment had the goal to be a pilot test for the method.

RESULTS
In this pilot experiment WebHint showed good potential in
finding usability problems, as described in the example
below. The task analyzed in the example consists in: “reply
an email message received”, using the tool Mail of
TelEduc. One of the interaction patterns found in the users
behavior for this task is illustrated in Figure 3.

1 http://www.teleduc.org.br

Figure 2. Data analysis.

Proceedings of Measuring Behavior 2010 (Eindhoven, The Netherlands, August 24-27, 2010)
Eds. A.J. Spink, F. Grieco, O.E. Krips, L.W.S. Loijens, L.P.J.J. Noldus, and P.H. Zimmerman 255

The loop in the diagram shows that users perform the
following steps: “press the button Send“, “select the
receiver” and finally “press the button Send” again to finish
the task. This behavior differs from the expected sequence
of actions for the task. The expected sequence consists of
“pressing the button Send” once to finish the task. There is
no selecting of the receiver. Analyzing this pattern found it
was possible to figure out that the interface of the
application does not set the receiver of the message as
default, when the button “Reply“ is pressed. So, it is always
necessary to set the receiver of the message, even if the user
is just performing a reply message action. This is a usability
problem because the application breaks an interface
standard for e-mail tools, which consists in setting the
previous sender as the receiver for the reply message.
In the analysis of the data from the experiment we did not
use heuristics to automatic detection of usability problems.
The heuristics for problems detection are still in
development. The usability problems, as the one illustrated
in the example above, were detected analyzing the results
obtained from the sequences clustering, the patterns of
usage found, and the patterns comparison performed using
the ProM tool.
The pilot experiment developed with WebHint, even
executed with a small number of users, achieved its goal,
being useful to validate the method. The results of the
experiment point to the potential of our method in
performing remote and semi-automatic usability evaluations
based on users behavior analysis.

REFERENCES
1. Van der Aalst, W.M.P., Weijters, A.J.M.M. 2004. Process

mining: a research agenda. Computers in Industry 53,
231–244.

2. Andreasen, M. S., Nielsen, H. V., Schrøder, S. O., and
Stage, J. 2007. What happened to remote usability

testing?: an empirical study of three methods. In Proc. of
the SIGCHI - CHI '07. ACM, New York, NY, 1405-1414.

3. Atterer, R. 2006. Logging Usage of AJAX Applications
With the "UsaProxy" HTTP Proxy. In Proc. of the WWW
2006 Workshop on Logging Traces of Web Activity: The
Mechanics of Data Collection, Edinburgh, Scotland, May
2006.

4. Baker, S.; Au, F.; Dobbie, G.; Warren, I. 2008. Automated
Usability Testing Using HUI Analyzer. In ASWEC 2008,
vol., no., pp.579-588, 26-28 March 2008

5. Balbo, S, Goschnick, S, Tong, D, Paris, C. 2005. Leading
Web Usability Evaluations to WAUTER. In The Eleventh
Australasian World Wide Web Conference, Gold Coast,
2005.

6. Cato, J. User-Centred Web Design, Addison Wesley,
2001.

7. van Dongen, B.F., Alves de Medeiros, B.F., Verbeek,
B.F., Weijters, A.J.M.M. and van der Aalst, W.M.P. 2005.
The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors,
Application and Theory of Petri Nets 2005, volume 3536
of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

8. Etgen, M. and Cantor, J. 1999. What does getting WET
(web event-logging tool) mean for web usability. In Proc.
of the Fifth Conference on Human Factors & the Web
(Gaithersburg, MD, 1999).

9. Hong, J, I., Heer, J., Waterson, S., Landay, J,A. 2001.
WebQuilt: A proxy-based approach to remote web
usability testing. ACM Trans. Inf. Syst. 19, 3 Jul. 2001.

10. López J. M., Fajardo I., Abascal J.2007 Towards Remote
Empirical Evaluation of Web Pages' Usability. In Jacko J.
A.(Ed.): Human-Computer Interaction. Interaction Design
and Usability. Part I. LNCS 4550

11. Nielsen, J. Usability Engineering, Academic Press,
Boston, MA, 1993.

12. Obendorf, H., Weinreich, H., and Hass, T. 2004.
Automatic support for web user studies with SCONE and
TEA. In CHI '04. ACM, New York, NY, 1135-1138.

13. Paganelli, L , Paternò, F. 2002. Intelligent analysis of user
interactions with web applications. In Proc. of the 7th
international conference on Intelligent user interfaces,
2002, San Francisco, California, USA

14. Paterson, M., and Dancik, V. 1994. Longest Common
Subsequences. In B. Rovan I. Privara and P. Ruzicka,
editors, 19th MFCS'94, LNCS 841, pages 127-142,
Kosice, Slovakia, August 1994. Springer Verlag.

15. Santana, V. F., Baranauskas, M. C. C. 2008. A Prospect of
Websites Evaluation Tools Based on Event Logs. In:
HCIS 2008 Milan. Springer, 2008. v. 272. p. 99-104.

16. Scholtz, J. AND Laskowski, S. 1998. Developing
usability tools and techniques for designing and testing
web sites. In Proc. of the Fourth Conference on Human
Factors & the Web, Basking Ridge, NJ, Jun, 1998.

17. Tiedtke, T., Märtin, C., Gerth, N. 2002. AWUSA – A
Tool for Automated Website Analysis. In: Proc. of the 9th
Int. Workshop DSV-IS 2002, Rostock, Germany, pp. 251–
266, 2002.

Figure 3. Example of usability problem detected
in the experiment.

Proceedings of Measuring Behavior 2010 (Eindhoven, The Netherlands, August 24-27, 2010)
256 Eds. A.J. Spink, F. Grieco, O.E. Krips, L.W.S. Loijens, L.P.J.J. Noldus, and P.H. Zimmerman

