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Monitoring sea surface salinity (SSS) and density variations is crucial to investigate the

global water cycle and the ocean dynamics, and to analyse how they are impacted by

climate change. Historically, ocean salinity and density have suffered a poor observational

coverage, which hindered an accurate assessment of their surface patterns, as well

as of associated space and time variability and trends. Different approaches have thus

been proposed to extend the information obtained from sparse in situ measurements

and provide gap-free fields at regular spatial and temporal resolution, based on the

combination of in situ and satellite data. In the framework of the Copernicus Marine

Environment Monitoring Service, a daily (weekly sampled) global reprocessed dataset at

¼◦ × ¼◦ resolution has been produced by modifying a multivariate optimal interpolation

(OI) technique originally developed within MyOcean project. The algorithm has been

applied to in situ salinity/density measurements covering the period from 1993 to 2016,

using satellite sea surface temperature differences to constrain the surface patterns. This

improved algorithm and the new dataset are described and validated here with holdout

approach and independent data.

Keywords: global datasets, sea surface salinity, sea surface density, multivariate optimal interpolation, mesoscale

resolving, in situ and satellite data, CMEMS

INTRODUCTION

The sea surface salinity (SSS) is recognized as one of the Essential Climate Variables (ECVs) by the
Global Climate Observing System (GCOS). Its monitoring provides fundamental information on
many important aspects of ocean dynamics, air-sea interactions and their variability on different
time scales, contributing to identify and predict major changes of the Earth climate. Indeed,
salinity distribution contributes to shape the oceanic circulation, and it is in turn affected by global
water cycle changes, mixing and general circulation variations. The water cycle in particular has a
significant impact on salinity, and thus density (Schmitt et al., 2008). Indeed, as the oceans receive
over 80% of the total rainfall, oceanic observations of salinity offer an opportunity to investigate
the variations in the hydrological cycle due to global warming and more in general to climate
change (Held and Soden, 2006; Trenberth et al., 2007). Salinity and density thus assume a primary
role in the Earth climate system and are directly related to the oceanic dynamics by water masses
distribution (e.g., Frankignoul et al., 2009). However, historical in situ SSS and sea surface density
(SSD) measurements are sparse, and even after the advent of autonomous Argo profilers, which
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started to provide global coverage at the beginning of the third
millennium, the analysis of in situ data alone can provide
information only on the large scales (∼1,000 km), at low
temporal resolution (∼monthly). Examples are provided by the
monthly objectively analyzed SSS fields developed by the Coriolis
In situ Analysis System (Gaillard et al., 2009a,b) and by the Met
Office Hadley Centre (Good et al., 2014).

On the other hand, multivariate approaches based on the
combination of in situ and satellite data were recently proposed
to produce SSS and SSD gap-free fields at much higher spatial
and temporal effective resolution (up to∼100 km and∼weekly).
Two main algorithms have been developed, one based on a
fusion technique that applies a local linear regression between
satellite SST and satellite SSS measurements (Umbert et al.,
2014), and one based on amultivariate optimal interpolation (OI)
scheme, which has been applied starting from satellite sea surface
temperature (SST) and in situ SSS, and successively including
also satellite SSS measurements from European Space Agency
Soil Moisture Ocean Salinity (ESA-SMOS) mission (Buongiorno
Nardelli, 2012; Buongiorno Nardelli et al., 2016; Droghei et al.,
2016).

In the framework of the Copernicus Marine Environment
Monitoring Service (CMEMS), this second algorithm
has been selected to produce a new Global SSS and
SSD optimally interpolated (level 4, hereafter SSS/SSD
L4) dataset (http://marine.copernicus.eu, product id:
GLOBAL_REP_PHY_001_021), covering the period 1993–
2016. The new dataset is provided on a 1/4◦ × 1/4◦ regular grid
at weekly sampling (monthly averaged fields are also computed
and distributed through CMEMS). This first version of the
dataset has been obtained by combining in situ SSS and SSD
measurements collected by Argo profilers and Conductivity
Temperature Depth (CTD) and SST L4 based on satellite data,
while a future release will include SMOS data for more recent
years. The aim of this paper is to present this new dataset and
the modifications of the multivariate OI algorithm carried
out to account for the sparseness of in situ data before 2002.
In particular, the scheme now includes pseudo-observations
derived from the first guess field to reduce coastal biases and
spurious signals in the case of prolonged data voids. This
strategy allows providing a more homogeneous effective spatial
resolution even in cases of prolonged absence of data within
the interpolation input data search space/time radius. The
improvement obtained with this procedure has been initially
evaluated through dedicated holdout validation experiments and
successively implemented in the processing chain. Hereafter,
we thus provide a thorough description of the technique and
product validation.

DATA AND METHODS

Different data types are used as input in the SSS/SSD processing
and for the successive product validation. They include both
in situ and satellite observations and combined data, as briefly
described below. All products are provided over a global spatial
window. Since the processing/analysis has been carried out for

the period 1993–2016, only data covering this time window have
been used.

In Situ Based Data
(1) We used as input surface observations the uppermost values

from the quality controlled (QC) in situ data (from Argo
floats and CTD) ingested by In situ Analysis System (ISAS)
to interpolate COriolis dataset for Re-Analysis (CORA)
analyses (Cabanes et al., 2013). ISAS is a OI tools developed,
maintained and distributed by Laboratoire d’Océanographie
Physique et Spatiale (LOPS) (Gaillard et al., 2016), and
CORA data are now accessible through CMEMS (see
CMEMS PUM: http://marine.copernicus.eu/documents/
PUM/CMEMS-INS-PUM-013-002-ab.pdf). The QC in-situ
observations can be found in the OA data sub-directory.

(2) The CORA objectively analyzed SSS and SST data were
used here as the background (first guess) field for the
multidimensional OI. These data are provided as monthly-
mean fields on standard levels. We used the reprocessed data
INSITU_GLO_TS_OA_REP_OBSERVATIONS_013_002_B
that covers the period 1990–2015, and the near real time data
INSITU_GLO_TS_OA_NRT_OBSERVATIONS_013_002_a
for year 2016. They have an original resolution of 1/2◦ and
have thus been upsized to our final grid at 1/4◦ through a 2D
cubic-spline interpolation.

(3) The delayed mode SSS data provided by LEGOS SSS
Observation Service (SO-SSS, http://www.legos.obs-mip.fr)
are used as independent measurements for the validation
over the period 1993–2015 (Alory et al., 2015). They mainly
include TSG observations starting from 2002 and bucket
samples prior to 2002. Although TSG data are present in all
oceans, they provide a much more homogeneous coverage
in the tropical Pacific and North Atlantic oceanic basins. The
spatial coverage for this data and the relative matchups with
the interpolated L4 product is shown in the Figure 2.

Satellite SST
The satellite SST dataset used is a daily optimally interpolated Sea
Surface temperature (OISST, also known as Reynolds’ SST Level
4), which combines Advanced Very High Resolution Radiometer
(AVHRR) and Advanced Microwave Scanning Radiometer
(AMSR) data (the latter only until October 2012) and in situ
SST observation. This Global Blended Sea Surface Temperature
product is distributed by the National Climate Data Center of
the National Oceanic and Atmospheric Administration and has a
spatial resolution ¼◦ ×¼◦ (Reynolds et al., 2007).

Combined in Situ-Satellite SSS/SSD
The surface salinity and temperature fields extracted from
the version 3 of the global ARMOR3D reprocessed product
(Guinehut et al., 2012) have been used to assess the improvements
provided by the new dataset. ARMOR3D is distributed by
CMEMS (http://marine.copernicus.eu/services-portfolio/access-
to-products/, product id: GLOBAL_REP_PHYS_001_021), and
its version 3 is not the latest release of dataset. Indeed, the new
one (version 4, product id: GLOBAL_REP_PHYS_001_21)
already includes the SSS interpolated data presented
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here. Version 3 was used within the Ocean Reanalyses
Intercomparison Project (ORA-IP) as one of the two reference
observation-only estimates (Balmaseda et al., 2015). ARMOR3D
fields (version 3) were estimated in two steps. In the first step,
corrections to a SSS climatology were obtained from the steric
component of altimeter Sea Level Anomalies and satellite SST
anomalies through a multilinear regression (with coefficients
estimated locally from historical surface salinity observations).
Successively, the result of the first step is combined with in situ
T/S values through a standard OI (Guinehut et al., 2012).

The Multi-Dimensional Optimal
Interpolation Method
The classical OI methodology computes the analysis (i.e., the
value at the interpolation point, xanalysis) as a weighted sum of the
anomalies of theN observations (yobs) with respect to a first guess
background field (xfirst guess). The weights provide the minimum
expected estimate error (in a least squares sense) and the estimate
is unbiased (i.e., it has the same mean as the true field):

xanalysis = xfirst guess + C (R+ C)−1
(

yobs − xfirst guess
)

. (1)

In (1) C represents the first-guess error covariance, R represents
the observation error covariance (that is assumed diagonal, so
that observation errors are uncorrelated and defined by different
constant values per each observation type/platform).

C = E
[

εfgε
T
fg

]

= E
[

(

xfirst−guess − xtrue
) (

xfirst−guess − xtrue
)T

]

R = E
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T
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) (
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]

The OI method also provides an estimate for the variance of the
error of the optimal analysis field xanalysis as follow:

OI Error = 1− CC(R+ C)−1 (2)

here computed as a percentage of the first-guess anomaly.
In the implementation considered here, the observation error

covariance R is actually expressed as a noise-to-signal ratio
(dividing it by signal variance). Since in situ observations are very
sparse, and their number particularly low especially during the
first decade covered by our processing (before the advent of Argo
profilers), pseudo-observations from the background field (first
guess) have been extracted (one every four pixels) and used as
additional input to the interpolation step. This is done because,
in absence of SSS observations in input, the multivariate OI
would not actually use the information on SST pattern but simply
reproduce the background field. In practice, including a pseudo-
observation (intended as a low-resolution grid of values extracted
from the first guess), allows to reshape the first guess values using
the information on the SST pattern. Consistently with previous
works (Buongiorno Nardelli, 2012; Buongiorno Nardelli et al.,
2016; Droghei et al., 2016), in situ observations noise-to-signal
ratio was fixed at 0.1 in the analysis, while a value of 1.0 was
chosen here for pseudo-observations.

In the classic OI technique, the background error covariance
is approximated through an analytical function, generally

expressed as a function of distance (thus defined in a bi-
dimensional Euclidean space). However, depending on the
input data available, covariance models are easily extended
to multidimensional spaces (e.g., considering space–time
variability) simply by introducing generalized distances in
the covariance function. Here, the same multidimensional
covariance model developed by Buongiorno Nardelli (2012)
has been applied to interpolate either in situ SSS or in situ SSD
measurements, (Figure 1). This extended OI method can be
considered as an approximation of a multivariate approach
including both the SST and the SSS (or the SSD) in the state
vector. The cross terms in the resulting covariance matrix
are thus approximated by defining a covariance function that
depends on both space–time distance and (high-pass filtered)
thermal differences. In practice, this particular covariance
model gives more weight to the observations found on the
same (high-pass filtered) isothermal of the interpolation point
with respect to the observations found at the same spatial and
temporal separation but characterized by different SST values.
As the SST L4 data contain information at the mesoscale, this
algorithm is thus able to increase the effective resolution of the
SSS/ SSD L4. The covariance function used is a simple Gaussian
function of the form:

C(1r,1t,1SST) = e
−

(

1r
L

)2

e
−

(

1t
τ

)2

e
−

(

1SST
T

)2

, (23)

where 1r, 1t, and 1SST are the spatial, temporal, and thermal
separations, respectively, while L, t, and T are the spatial,
temporal, and thermal decorrelation terms, respectively. Here,
the values used for the decorrelation scales and filtering are those
defined in Buongiorno Nardelli (2012), namely L = 500 km,
τ = 7 days, and T = 2.75 K. The SST L4 data were high-pass-
filtered (cut-off at 1,000 km) to compute the OI weights. It is
also assumed that the observation space is a subspace of the state
space.

The method was applied to produce daily (but weekly
sampled) global L4 SSS and SSD fields at 1/4◦ resolution
over the period 1993–2016. This dataset is referenced to as
SSS_SSD_GLOB_L4_REP in CMEMS catalog.

Four different configurations have been considered in the
algorithm calibration phase, given by the choice between two
methods and two input sets: Method 1 interpolates SSS,
and computes the corresponding SSD through the standard
UNESCO (United Nations Educational, Scientific and Cultural
Organization) equation of state, combining the interpolated
salinity and temperature; Method 2 first interpolates in situ
density, and provides a dynamically consistent SSS field by
inverting the equation of state to get salinity from density and
temperature; Version 1 (V1) data are then obtained using only
the real in situ observation in input; Version 2 (V2), includes also
pseudo-observations obtained sub-sampling the first guess field.

The Assumptions and Limits of
Applicability of the Multidimensional
Covariance Model
The fundamental assumptions in OI are that the statistics of the
subject data field are stationary (unchanging over the sample
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FIGURE 1 | Two examples of SSS (A) and SSD (B) global fields refers to 12 April 2006. The (C,D) show the error related to the SSS and SSD filed respectively (see

section A Posteriori Error Estimation).

period of each map), homogeneous (the same characteristic
over the entire data field) and known a priori. Moreover,
standard models often make additional assumptions, to simplify
the analysis, on covariance isotropy (the same structure in all
directions; Thomson and Emery, 2014). Basically, classical space
or space-time SSS/SSD true covariances are, in general, spatially
anisotropic and non-stationary. In fact, SSS/SSD are sensibly
modified across fronts and in mesoscale features, and resulting
covariance scales, in turn, change significantly between the cross-
front and along-front directions. These structures are also subject
to intense temporal variability. On the other hand, in a specific
water mass, SSS and SSD are basically modified by isopycnal
mixing alone once the effects of large scale freshwater/heat fluxes
are filtered out: thus occurring at larger space/time decorrelation
scales.

The important problem of the non-stationarity and
anisotropy of the true covariance can be partially recovered
by representing it as a function of space, time, and (high-pass
filtered) SST separation. In fact, in this way the multidimensional
covariance automatically adapts to the mesoscale field
evolution/frontal displacements. Based on the assumption
that different water masses are characterized by different
SST/SSS (and generally SSD) values, in open ocean, where
surface exchanges mostly occur at the atmospheric scales, a
reasonable hypothesis is that, SSS/SSD variations at small scales
are correlated to SST variations, filtering out the effects of large
scale freshwater/heat fluxes. By contrast, SST and SSS/SSD
variations are not necessarily well correlated near the coast,

where air–sea interactions and terrestrial freshwater fluxes can
result into localized input.

We made here additional assumptions, not only that residual
high-pass filtered SSS/SSD variations are due exclusively to
advection and mixing, but also that SST, SSS, and SSDmixing are
driven by the same dynamics (which is a reasonable assumption
in the upper layers, where mixing is mostly driven by turbulent
fluxes).

In conclusion, it is possible to see that in case of
the water masses have the same temperature but different
salinities/densities, the interpolation method will reduce to a
standard space-time algorithm (simply because no local SST
anomalies are present).

ALGORITHM AND PRODUCT VALIDATION

The validation of the modified algorithm (described in section
Data and Methods) and of the new SSS/SSD L4 product includes
both holdout cross-validation (specifically used to validate
the methodology), and comparison with independent in situ
measurements. Additionally, the new dataset was validated in
terms of effective resolution by computing spatial wavenumber
spectra over selected sub-domains and along a repeated TSG
transect.

Holdout Validation
As a first step, we validated the methodology using the
holdout approach, which is the simplest kind of cross-validation
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(Hastie et al., 2009). This method splits the dataset into two
subsets; an input set and a second one, called holdout set. The
latter is used as a fully independent validation dataset. Here, in
particular, for each interpolation day, the in situ observations
relative to the same day have been taken out and collected to
form the holdout set, while all the remaining observations were
ingested in the processing. The differences between the L4 data
obtained from the input set and the corresponding values in
the holdout set are then used for the assessment. The following
Tables 1, 2 show the statistics (Mean Bias Error, MBE; Standard
Deviation Error, STDE and Root Mean Square Error, RMSE) for
the Global L4 dataset of SSS and SSD reprocessed for the whole
year 2012 using the “holdout” approach. TheTables 1, 2 highlight
that the Version 2 yields lower RMSE values (∼ 0.29 psu for the
SSS and∼0.26 kg/m3 for the SSD) compared to the Version 1 (∼
0.33 psu for the SSS and ∼0.28 kg/m3 for the SSD), reaching the
same values found for the first guess (FG). Indeed, because the
data in the holdout set were not used in the Multidimensional
OI, but they were included in the first guess field computation,
this validation is automatically penalizing the former with respect
to the latter.

Independent in Situ Observation Matchups
The matchup database used for the overall SSS/SSD L4
data independent validation was built by selecting all TSG
measurements collected within ±12 h with respect to the
nominal interpolation date and co-locating them with the
nearest grid point, over the period 1993–2015. The RMSE were
computed either by considering all TSG data, or limiting to
offshore data (200 km far from the coast), that are not affected
by the strong salinity variance observed in the coastal areas close
to the main river outflows (Droghei et al., 2016).

The figures below (Figure 2) show the matchup positions
between the Global L4 dataset of SSS and TSGmeasurements and

TABLE 1 | Statistics associated with holdout validation for the Version 1(V1)

dataset (year 2012).

MBE

SSS

STDE

SSS

RMSE

SSS

MBE

SSD

STDE

SSD

RMSE

SSD

HOLDOUT VALIDATION V1 (NUM. DATA 51795)

Method 1 0.002 0.328 0.328 0.016 0.285 0.286

Method 2 −0.013 0.350 0.350 0.005 0.281 0.281

FG −0.001 0.293 0.293 −0.006 0.263 0.264

TABLE 2 | Statistics associated with holdout validation for the Version 2 (V2)

dataset (year 2012).

MBE

SSS

STDE

SSS

RMSE

SSS

MBE

SSD

STDE

SSD

RMSE

SSD

HOLDOUT VALIDATION V2 (NUM. DATA 51801)

Method 1 −0.001 0.290 0.290 0.014 0.262 0.263

Method 2 −0.007 0.295 0.295 0.009 0.257 0.257

FG −0.001 0.293 0.293 −0.006 0.264 0.264

the differences between the interpolated salinity and the relative
TSG value. These figures are relative to four different periods
displaying homogeneous ship data coverage. Specifically, from
1993 to 2001 only the Gulf Stream and the Labrador Sea are
covered, whereas in 2002 the ships’ routes covered the entire
Atlantic Ocean. The largest coverage has been reached during the
period from 2003 to 2014. Finally, the last year of the period,
2015, shows a low number of matchups available, over very
sparse trajectories, possibly due to more recent data processing
delays. In general, the matchups far from the coast show lower
differences between the interpolated data and the TSG salinity
(around 0.2 psu), whereas the near coast differences reach higher
negative values and their pattern is very noisy. The analysis of
Figure 2C, where a more homogenous coverage of TGS data is
present, reveals that the differences remain generally below ±0.2
psu in all offshore regions of the global oceans with the exception
of Caribbean seas (30N 50W) where differences of the order of
1 psu are found and Gulf stream region, where a negative bias of
approximately 0.5 psu is obtained.

In Situ Matchup Global Statistics
The RMSE computed from SSS/SSD L4 data
(SSS_SSD_GLOB_L4_REP) is generally lower than or
comparable to the reference products: version 3 of ARMOR3D
(in this case we have an improvement in RMSE of about 30%,
see Table 3) dataset and CORA (our first guess, see section Data
and Methods), with a few exceptions at the beginning of the
time series. The number of matchup data, however, increases
significantly with time, and only after 2003 a more homogeneous
coverage is provided by TSG, even if matchups remain mostly
confined to the mid-low latitudes, and prevalently located in
the Northern Hemisphere, more than 1.5 million, representing
approximately the 28% of the total number of TSG data. A
significant portion of the TSG data are found in coastal areas,
almost a million, that are characterized by high salinity variability
(partly related to freshwater discharge by major rivers), which
leads to an overall RMSE of 0.84 (Figure 3A). The differences are
significantly reduced and more stable in time when considering
only the offshore TSG data, with an overall RMSE of 0.25 psu
(Figure 3B).

The same behaviors are found in the statistics computed
from SSD data. An overall RMSE of 0.68 kg/m3 is found
considering all TSG data (Figure 4A), but the differences are
significantly reduced, and stable in time, when considering
only the offshore TSG data, with an overall RMSE of 0.21
kg/m3 (Figure 4B). For all calculations, we also estimated
the significance of the statistics, namely by calculating 95%
confidence intervals through a Monte Carlo approach: doubling
the standard deviation of the statistics carried out from 2000
resamples with replacement (Efron and Tibshirani, 1993).
The following Tables 3, 4 report the validation statistics for
our SSS/SSD L4 product (SSS_SSD_GLOB_L4_REP), previous
surface ARMOR3D fields and CORA first Guess for the entire
period 1993–2015, showing the effective reduction, of about
30%, of the SSS/SSD L4 data RSME in respect to the previous
version of ARMOR3D. It must be kept in mind, anyway, that
the comparison between point-wise in situ measurements and
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FIGURE 2 | Matchup positions between Global L4 dataset of SSS and TSG measurements. The four pictures show four different periods where the TSG coverage

was more homogeneous. (A) 1993-2001; (B) 2002; (C) 2003-2014; (D) 2015. The color of the dots, furthermore, provides the differences between the interpolated

salinity and the relative TSG value (in psu).

TABLE 3 | Statistic’s comparison among ARMOR3D, SSS_SSD_GLOB_L4_REP and first guess datasets for the period 1993–2015.

MBE SSS STDE SSS RMSE SSS MBE SSD STDE SSD RMSE SSD

TSG (MATCHUPS 1569694)

ARMOR3D 0.162 ± 0.002 1.20 ± 0.01 1.21 ± 0.01 0.127 ± 0.001 0.915 ± 0.007 0.924 ± 0.007

SSS_SSD_GLOB_L4_REP 0.104 ± 0.001 0.833 ± 0.004 0.840 ± 0.004 0.077 ± 0.001 0.656 ± 0.003 0.661 ± 0.003

CORA (First Guess) 0.080 ± 0.001 0.864 ± 0.004 0.868 ± 0.004 0.044 ± 0.001 0.678 ± 0.003 0.679 ± 0.003

The statistic has been computed using TSG measurements as independent dataset.

mapped products based on satellite observations is affected also
by representativeness issues. In practice, in situ measurements
are typically obtained at a given depth below the surface and are
representative of a very localized water mass, while the satellite
is clearly providing an average signal emerging from a large
footprint. To really assess the mutual error between different
sources defined at different scales at least three independent
sources of co-located observations would be need. In that case,
absolute errors associated with the single instrument/product
could be estimated through the Triple Collocation (TC) method
(e.g. Stark et al., 2008). Unfortunately, then, we do not have
enough data to follow this approach here.

Power Spectral Density
Looking at spatial wavenumber spectra, it is possible to show that
the multidimensional OI method significantly increases the L4

effective resolution with respect to standard products. This has
been done here in two different steps.

First, spatial wavenumber spectra (Power Spectral Densities,
PSD) have been estimated and compared here only between
interpolated SSS/SSD datasets, concentrating on four land free
portions of the domain and considering a temporal average over
the entire 2010 (see Figure 5). Successively, a specific analysis has
been carried out on the smaller scales, by comparing the PSD
obtained from both in situ and interpolated observations along
one repeated TSG track.

In the first case, PSD were computed taking latitudinal
variations only (we take latitudinal variations and not
longitudinal because they represent the same physical distance),
and averaging the results obtained at each longitude and each
time to obtain a single spectrum. A total of 52 snapshots have
been considered, the time difference between two snapshots is 1
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FIGURE 3 | Sea Surface Salinity time series of RMSE (and the corresponding error bars) between TSG observations and SSS_SSD_GLOB_L4_REP (blue),

ARMOR3D (red), CORA (green). The number of co-located observations available each year is indicated, in logarithmic scale, by gray bars. The statistics were

obtained using (A) all TSG data available (including coastal areas), (B) limiting to TSG data collected offshore (>200 km).

week. To reduce spectral leaking, a Blackman-Harris windowing
function has been applied before computing the Fast Fourier
Transform. Four different subdomains have been considered as
detailed in Table 5.

As expected, CORA SSS-PSD (first guess) shows an
abrupt variance drop already at low wavenumber (<0.2
deg−1). The SSS spectrum computed from the version 3
of ARMOR3D also shows a steep variance reduction (with
slope exceeding k−3) at approximately 0.4 deg−1. Conversely,
the new CMEMS SSS L4 spectra show the highest variance
even at low wavenumbers (and a spectral slope comprised
between k−3 and k−5/3), with an effective resolution of about
twice/four time the grid nominal resolution, namely between
1/2◦ and 1◦, where the noise finally flattens the spectrum
(see also Droghei et al., 2016). The spectral behaviors are
consistent among all sub domains. The SSD PSDs show
similar behaviors as SSS PSDs, the first guess field always

displaying a substantial variance drop at wave number greater
than 0.2 deg−1 with both ARMOR3D (version 3) and new
CMEMS SSD showing very similar values up to approximately
0.8 deg−1 where ARMOR3D spectral slope get significantly
steeper, missing information, and also in these cases all
subdomains display consistent feature among the different
datasets.

To verify that the higher variance found at the large
mesoscale range is not given by noise or artifacts, we also
compared co-located SSS TSG and SSS products spectra from
repeated high-resolution TSG measurements collected along
a merchant shipping route, which provides enough data to
minimize the error in spectral computation. To this aim,
we started from same data used by Kolodziejczyk et al.
(2015), i.e., observations from Toucan and Colibri ships (their
Table 1), which span over almost 10 years and cover a transect
in the North Atlantic, looking specifically at data collected
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FIGURE 4 | Sea Surface Density time series of RMSE (and the corresponding error bars) between TSG observations and SSS_SSD_GLOB_L4_REP (blue),

ARMOR3D (red), CORA (green). The number of co-located observations available each year is indicated, in logarithmic scale, by gray bars. The statistics were

obtained using (A) all TSG data available (including coastal areas), (B) limiting to TSG data collected offshore (>200 km).

TABLE 4 | Statistic’s comparison among ARMOR3D, SSS_SSD_GLOB_L4_REP and first Guess datasets for the period 1993–2015, considering no coastal data (with a

2◦ distance from the coast).

MBE SSS STDE SSS RMSE SSS MBE SSD STDE SSD RMSE SSD

NO COASTAL DATA 2◦ (MATCHUPS 866426)

ARMOR3D 0.0204 ± 0.0008 0.385 ± 0.006 0.385 ± 0.006 0.0156 ± 0.0006 0.297 ± 0.004 0.297 ± 0.004

SSS_SSD_GLOB_L4_REP −0.0011 ± 0.0006 0.255 ± 0.002 0.255 ± 0.002 −0.0069 ± 0.0005 0.209 ± 0.001 0.209 ± 0.001

CORA (First Guess) 0.0027 ± 0.0005 0.252 ± 0.002 0.252 ± 0.002 −0.0219 ± 0.0005 0.242 ± 0.001 0.243 ± 0.001

The statistic has been computed using TSG measurements, far from the coast, as independent dataset.

between 24◦N and 34◦N. These data include the region of the
Azores Current/Front, which is known to be very active at
the mesoscale (and sub-mesoscale) (e.g., Kolodziejczyk et al.,
2015, and references therein). To compute the PSD, we sub-
divided the TSG tracks in 600 km-long complete transects,
which correspond approximately to 1 day of data. For each
transect, the closest SSS L4 data have been selected (both in

space and in time), and match-up and TSG data were then
interpolated on a 1 km regular grid to compute the PSD. All
spectra have been finally truncated at the Nyquist frequency
of the original dataset. As a consequence, even if the direct
comparison will be likely affected by synopticity issues, as our
analyses are provided only at weekly sampling, the spectra
are expected to provide a consistent comparison. The PSD
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FIGURE 5 | Comparison among: previous version of surface ARMOR3D, CMEMS REP L4 and first guess tracer power spectral density estimated only on four land

free portions of the domain: SSS (left panel), SSD (right panel). Considering as sample the average over the entire 2010. The figures (A,C,E,G) show SSS Power

spectral densities plots for the North Atlantic, the South Atlantic Gyre, the Indian Ocean and the South Pacific Gyre basins, respectively. The figures (B,D,F,H) show

SSD Power spectral densities plots for the North Atlantic, the South Atlantic Gyre, the Indian Ocean and the South Pacific Gyre basins, respectively.

estimated from TSG, CMEMS SSS L4 and from our first guess
(CORA) are shown in Figure 6. They show that a significant
amount of variance is actually recovered through themultivariate
interpolation.

To demonstrate that the signals retrieved do not originate
from noise, three examples of observed transects are displayed

in Figure 7. They compare data collected within a temporal
window of less than 2 days (but always greater than 1 day),
and show that the CMEMS REP L4 is able to reproduce at
least the main deviations from the mean gradient field found
in the CORA field. Consistently with the estimated PSD, the
amplitude of the retrieved anomalies is clearly much smaller
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than those found in TSG data, but still represents a significant
improvement with respect to standard products. The three
signals have been detrended so that their PSD amplitude at

TABLE 5 | Geographical limits of the subdomains considered for the spectral

analysis.

Basins Box

Restrictions ocean basins North
Atlantic in open ocean

−50< lon< −25; 20 < lat < 40

South Atlantic Gyre −30 < lon < −5; −60 < lat < −30

Indian Ocean 60 < lon < 90; −60 < lat < −5

South Pacific Gyre −180 < lon < −100; −60 < lat < 0

FIGURE 6 | Mean PSD computed from CMEMS REP L4 SSS, CORA SSS,

and TSG observations along the Toucan and Colibri ships’ routes between

2003 and 2011, in the sector comprised between 24◦N and 34◦N.

0 freq. should coincide at zero frequency. Relative excess
amplitude at 0.2 deg−1 then comes out directly from PSD
computation.

A POSTERIORI ERROR ESTIMATION

OI formal error basically measures the amount of information
that effectively enters the analysis, and should not be considered
as ameasure of the “true” error. In fact, if compared to differences
with independent observations, they are expected to reflect
the limits of the assumptions made in the error covariance
estimation. It should indeed be considered as a conservative
estimate of effective errors (see Equation 2), and in our case it
clearly demonstrates the positive impact of Argo measurements
starting from year 2002 (Figure 8).

On the other hand, the formal error can also be used to
tune a posteriori the error estimate to be associated with the
retrieved fields, by directly comparing formal errors and observed
differences from matchup data. Figure 9 thus shows the RMS
and mean bias of the differences between the REP L4 SSS
and TSG SSS as a function of the formal interpolation error
expressed in percentage (binned at 10% intervals). In this case,
scatter plots were displayed separately for purely offshore data
and purely coastal data (within 200 km from land), respectively,
as they are expected to show very different performances.
Indeed, the RMSE values corresponding to the coastal data are
higher, almost doubled, than the RMSE for offshore data, but
in both cases a linear relation can be hypothesized (at least
up to 60%, while not enough matchup can be associated with
higher values). Density plots of the absolute value of differences
between Global REP L4 SSS and TSG LEGOS as a function
of the interpolation error are also presented see Figure 10. A
linear regression fit has then been computed for both coastal
and offshore data from Figure 9, and corresponding coefficients
will be used to convert the interpolation error from percentage

FIGURE 7 | Comparison between TSG (black/gray), CMEMS REP L4 and CORA (first guess) SSS along the Toucan and Colibri ships’ routes on three selected dates:

(A) 2003-02-01; (B) 2010-04-15; (C) 2011-03-17. The black line shows TSG data smoothed through a ¼◦ moving average while original data are shown in light gray.
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to psu values in the V4 release of CMEMS product (as in
Figures 2C,D).

FIGURE 8 | Monthly temporal series from 1993 to 2016 of the spatial

averaged OI formal error.

CONCLUSIONS

In this work, the multi-dimensional OI method originally
proposed by Buongiorno Nardelli (2012) has been modified
and adapted to produce a long time series of Global SSS/SSD
fields, with a nominal spatial resolution of ¼◦, daily (with
weekly sampling), covering the entire period 1993–2016.
The dataset, presently distributed through CMEMS as
part of GLOBAL_REP_PHY_001_021 product (as dataset
SSS_SSD_GLOB_L4_REP), combines high-resolution SST
satellite measurements with in situ salinity and density
measurements in order to get a more accurate description
of both parameters at the sea surface, even during periods
characterized by extremely sparse in situ data coverage. In the
new scheme, pseudo-observations obtained subsampling the
first guess field have been added as input to the interpolation
to reduce the biases due to the combination of data sparseness
and large SSS variability in coastal areas, and to avoid spurious
signals potentially appearing in case of prolonged data voids.
The validation of the new scheme was first carried out using the
holdout approach, evidencing a significant improvement with
respect to the original configuration (with a ∼10% reduction
of the RMSE). Successively, a fully-independent validation

FIGURE 9 | RMSE (red line) and mean bias (blue line) of the differences between Global REP L4 SSS data and SSS from TSG LEGOS as function of the interpolation

error. The plot on the left shows the statistics only for the no coast data (2◦ far from the coast). The plot on the right show statistics for the coastal data. The number of

matchups used to carry out the statistic are showed below the lines.

FIGURE 10 | Density plots of the absolute value of differences between Global REP L4 SSS and TSG LEGOS as a function of the interpolation error. The black lines

are the linear fit computed with slope and intercept showed in the upper part of the figures. The color bars show the number of counts (in logarithmic scale). Left

image shows no coast differences (2◦ far from the coast) and the right image shows only coastal differences.
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of the entire re-processed dataset with TSG observations
was performed, displaying significant improvements both
in terms of statistics of the differences between interpolated
data and in situ observations, and in terms of spatial scales
that are effectively resolved by the multivariate combination
with high resolution SST data. In addition, the increase in the
effective resolution of the multidimensional L4 dataset with
respect to standard products has been analyzed by looking at
spatial wavenumber spectra. Firstly, SSS/SSD Power Spectral
Densities were estimated and compared concentrating on four
land free portions of the domain and considering a temporal
average over the entire 2010. Secondly, co-located SSS TSG
and SSS L4 products were used to compute wavenumber
spectra from repeated high-resolution TSG measurements,
verifying that the higher variance found at the large mesoscale
range is not given by noise or artifacts, but rather reflects the
ability to reconstruct at least part of the observed mesoscale
field. Corresponding increase of retrieved spatial variance
with respect to standard univariate products attains around
a factor 10 at 1/2◦ wavelengths, though remaining below
that estimated from TSG data by approximately the same
factor.

Indeed, this new time series will allow to carry out
analyses of salinity and density variability at different scales,
as it provides information up to the large mesoscale, but
also over temporal scales of interest for the assessment
of interannual changes. On the other hand, a cautionary
approach must be followed when analyzing changes over
longer periods (i.e., decadal trends), as both the number
of input observations and independent validation data is
considerably lower before 2002 (this is particularly evident
when looking at OI formal error). Consistently with previous

results (Buongiorno Nardelli, 2012; Buongiorno Nardelli et al.,
2016; Droghei et al., 2016), however, the analyses presented
here confirm that the multivariate OI combining satellite SST
and in situ SSS/SSD data represents a powerful approach to
provide a better characterization of the ocean surface salinity
and density variability, despite the fact that the product
quality degrades near the coasts. Indeed, improvements can
be found only where SSS and SST small scale anomalies are
correlated, while the technique basically reduces to a standard
space-time salinity/density interpolation in areas characterized
by uniform SST patterns and thermohaline compensation,
respectively.
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