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A Polymer Foam Conduit Seeded with Schwann Cells
Promotes Guided Peripheral Nerve Regeneration
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ABSTRACT

Alternatives to autografts have long been sought for use in bridging neural gaps. Many en-
tubulation materials have been studied, although with generally disappointing results in com-
parison with autografts. The purpose of this study was to design a more effective neural
guidance conduit, to introduce Schwann cells into the conduit, and to determine regenera-
tive capability through it in an in vivo model. A novel, fully biodegradable polymer conduit
was designed and fabricated for use in peripheral nerve repair, which approximates the
macro- and microarchitecture of native peripheral nerves. It comprised a series of longitu-
dinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal sur-
faces promoted the adherence of Schwann cells, whose presence is known to play a key role
in nerve regeneration. This unique channel architecture increased the surface area available
for Schwann cell adherence up to five-fold over that available through a simple hollow con-
duit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic
acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique,
employing low-pressure injection molding, was used to create highly porous conduits (ap-
proximately 90% pore volume) with continuous longitudinal channels. Using this technique,
conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels.
Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed
with physiologic saline, and coated with laminin solution (10 mg/mL). A Schwann cell sus-
pension was dynamically introduced into these processed foams at a concentration of 5 3
105 cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried
out in which cell-laden five-channel polymer conduits (individual channel ID 500 m m, total
conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n 5 4), and
midgraft axonal regeneration compared with autografts (n 5 6). At 6 weeks, axonal regen-
eration was observed in the midconduit region of all five channels in each experimental an-
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imal. The cross-sectional area comprising axons relative to the open conduit cross sectional
area (mean 26.3%, SD 10.1%) compared favorably with autografts (mean 23.8%, SD 3.6%).
Our methodology can be used to create polymer foam conduits containing longitudinally
aligned channels, to introduce Schwann cells into them, and to implant them into surgically
created neural defects. These conduits provide an environment permissive to axonal regen-
eration. Furthermore, this polymer foam-processing method and unique channeled archi-
tecture allows the introduction of neurotrophic factors into the conduit in a controlled fash-
ion. Deposition of different factors into distinct regions within the conduit may be possible
to promote more precisely guided neural regeneration.

INTRODUCTION

EN O RM O U S E FFO RT H A S BE E N D EV O TE D to the generation of a synthetic guidance conduit  for the re-
pair of peripheral nerve defects.1 –8 Biosynthetic conduits provide  an attractive alternative in bridg-

ing extensive nerve defects that are too lengthy to repair with autografting techniques; the current ex-
perimental approach employs the use of cadaveric nerve allografts, necessitating undesirable long-term
immunosuppressive therapy.9 Synthetic conduits  are also under investigation for the repair of short pe-
ripheral nerve defects, where the goal is to promote superior clinical outcomes to those currently achiev-
able with autografting.

Biological or biocom patible synthetic materials have been employed for decades to bridge neural de-
fects.10– 16 The entubulation model has been extensively examined, where proximal and distal stumps
of a severed nerve are inserted into either end of a hollow tube; many of the molecular and cellular
events that occur at the regenerating nerve endings have been elucidated in this model.1 3 Investigators
hope to exploit the properties of biomaterials to promote these regenerative events more thoroughly.

Biocompatible silicones and other nonbiodegradable inert materials have been successfully utilized to
bridge short neural defects. The presence of lumen-occupying substances, particularly extracellular matrix
(ECM) components, lengthens the span able to be crossed by regenerating axons.3,7 The presence of nerve
growth factor (NGF), other neurotrophic  agents,17– 23 and Schwann cells24– 27 has also increased the regen-
erative response through these conduits. Bridging neural defects with autogenous materials has been mod-
estly successful; skeletal muscle basal lamina (SMBL) grafts have shown promise in bridging longer pe-
ripheral nerve defects,28– 30 possibly because their complex basal lamina architecture promotes robust axonal
extension. Most recently, nerve defects have been bridged with biodegradable hollow conduits, following
the observation that neural regenerates encased by foreign material over extended periods tend to develop
compression syndromes.31– 33

In this study, a fully biodegradable polymer conduit has been fabricated for bridging peripheral nerve
defects. The design simulates both SMBL and autograft architecture, containing a series of longitudinally
aligned channels. These channels, with finely controlled diameters and hole positions, provide an increased
surface area for Schwann cell migration and adherence, as well as for growth cone elongation at the re-
generating axon tips. The polymer material consists of a high-molecular-weight copolymer of lactic and
glycolic acids (PLGA) (MW 130,000), which is well tolerated in vivo, and whose degradation time can be
controlled by altering the ratio of the two monomers. The degradation mechanism is similar to known phys-
iological processes: the polymer is broken down by simple hydrolysis, and the resultant products removed
by the Kreb’s cycle.34 This polymer has proven effective as a drug delivery vehicle,34,35 adding to its po-
tential value as a neural conduit material.

Schwann cells were previously demonstrated to adhere well to PLGA film surfaces.36 Consequently in
this study, an increased number of adherent Schwann cells were expected in a multichannel conduit in com-
parison with a single-lumen conduit, because of the increased lumenal surface area. These Schwann cells
were introduced into the conduits in vitro during the preimplantation dynamic seeding process.

A small series of animals were implanted with Schwann cell-seeded five-channel conduits. The degree
of axonal regeneration through them was comparable to that achieved with autografts.
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MATERIALS AND METHODS

Polymer foam processing

A 10% solution (wt/wt) of polylactide-co-glycolide (PLGA) in an 85:15 monomer ratio (Birmingham
Polymers, Birmingham, AL) was prepared in reagent grade 99.99% glacial acetic acid (Aldrich, St. Louis,
MO) [freezing temperature (Tf) 5 16.2°C]. Polymer foam conduits were prepared using a novel injection
molding technique, to be described elsewhere.37 The polymer solution was injected under low pressure into
a stainless steel mold and cooled to a temperature below the PLGA/acetic acid freezing temperature. After
freezing, the polymer foam conduit was demolded and freeze dried in a lyophilizer under 30–40 mTorr vac-
uum. These processed polymer foams were stored in a dry environment until use.

The channels were created in the polymer conduits by stainless steel wires, which were held in place by
stainless steel wire mesh inserts at either end of the mold cavity. Wires had diameters of 60–500 microns,
depending on the number and diameter of channels desired. They were positioned in different configura-
tions through the wire mesh cloth, creating different lumenal compositions (Fig. 1).

Polymer foam characterization

Cross sectional conduit morphology was assessed using a high-resolution scanning electron microscopy
(SEM) (Jeol USA Inc., Peabody, MA, model #FTG 6320). The samples were prepared by gold-palladium
sputter coating, then imaged between 130 3 and 370 3 magnification.

The foams were characterized using gel permeation chromatography, differential scanning calorimetry,
and nuclear magnetic resonance spectroscopy; the results are described elsewhere.37

Dynamic seeding of Schwann cells into polymer foam conduits

Schwann cells were isolated from neonatal Fisher rats using previously described methods.36,38 The cells
were expanded for up to 12 weeks in culture, and then either used or frozen for later use.

Cell seeding was carried out in three stages. First, the conduits were pre-wet in a room temperature
bioreactor flow loop by first pulsing a 50% ethanol solution through  the polym er conduit and then
flushing overnight with phys iologic saline; the ethanol solution allowed the hydrophobic polymer pores
to be wet by aqueous-based solutions and suspensions. Second, the polymer conduit  was laminin-coated
in the room temperature bioreactor flow loop by a 10 m g/mL laminin solution, which circulated for 4
h; the laminin coating promotes the adherence of Schwann cells to the polym er surfaces. Third, a sus-
pension of Schwann cells (5 3 105 cells/mL) was pumped in a closed bioreactor loop (Fig. 2) at 1
mL/min for 4 h through  the laminin-coated polym er conduit;  this step was conducted in a 5% CO2 ,
37°C incubator environment. Qualitative assessments of Schwann cell adherence were made by a pre-
viously  described dynamic flowing tetrazoleum conversion assay (MTT).39 After 4 h of exposure to
MTT, the polymer conduits  were inspected grossly for the presence of a dark purple tetrazoleum prod-
uct produced by live cells only.
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FIG. 1. Schematic demonstrating the appearance of the wires (black circles) threaded through wire cloth in different
configurations. Shown are a 5-channel insert, 16-channel insert, and 57-channel insert.
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In vivo regeneration studies

Ten Fisher rats underwent microsurgical removal of a section of the left sciatic nerve, followed by con-
duit or autograft repair. Briefly, after induction using inhalational methoxyfluora ne anesthesia, animals were
shaved and sterilely prepped. An incision was made over the left hindlimb, and the gluteal musculature was
divided to expose the sciatic nerve. For the conduit repairs, the nerve was sharply transected, allowed to
contract, and sharply transected again to leave a 7-mm gap between cut ends. For autografts, a 7-mm sec-
tion of the nerve was marked, sharply transected at both ends, and rotated so that the distal graft met the
proximal stump and the proximal graft met the distal stump. The conduits or the autografts were secured
into place using two to three 10-0 nylon sutures at both ends, and the incision was closed in layers. Ani-
mals were allowed to recuperate, and were given food and water ad libitum . Animal Care and Use Com-
mittee guidelines were followed. Autotomy was prevented or minimized by weekly treatment with Bitter
Apple taste deterrent (Grannick’s, Greenwich, CT) to the left foot.
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FIG. 2. Bioreactor flow loop.

FIG. 3. Schematic illustrating the cross-sectional appearance of polymer conduits after acetic acid removal. Outer
diameter was 2.3 mm in all cases. Shown are single channel conduit, 5-channel conduit, 45-channel conduit, and 183-
channel conduit.
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After 6 weeks, animals were sacrificed via methoxyfluorane overdose, and their sciatic nerves were har-
vested. The nerves were fixed in 2.5% glutaraldehyde, postfixed in osmium tetroxide, and epoxy embed-
ded for histologic analysis. Sections, 1 m m thick, were toluidine blue stained; histomorphometric analysis
was performed on the neural regenerate present in the midconduit region.
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FIG. 4. Electron micrograph of cross section of a 45-channel conduit. (A) Magnification: 130 3 . (B) Magnification:
400 3 .
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RESULTS

Polymer conduit architecture

Conduits containing five to over one hundred lumens were produced (Fig. 3). The internal diameters of
these channels ranged from 60 to 500 microns and corresponded to the diameter of the stainless steel wires
used in the molding process. Grossly, the conduits were semirigid, but pliable and able to be manipulated
into gentle curves to bridge nerve gaps.
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FIG. 5. Histologic section of toluidine blue-stained neural regenerate. (Magnification:  200 3 ). (A) One lumen of the
polymer conduit. (B) Autograft.

A

B

http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-011.jpg&w=354&h=234
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-011.jpg&w=354&h=234
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-011.jpg&w=354&h=234
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-011.jpg&w=354&h=234
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233
http://www.liebertonline.com/action/showImage?doi=10.1089/107632700320748&iName=master.img-014.jpg&w=354&h=233


Electron microscopy revealed the expected network of pores (Fig. 4). In the absence of significant poly-
mer shrinkage, the pore volume was estimated to be 90% based on a comparison between starting and sub-
limated weights.

Following the dynamic seeding of Schwann cells, the presence of Schwann cells aligning the channels
was verified histologically, using toluidine blue staining of longitudinal sections of the conduits.

In vivo regeneration

Upon harvest, all conduits were intact, with no anastomotic disruptions or fractures along the length of
the conduit. Histologic examination of the toluidine blue-stained midconduit sections revealed the presence
of a neural regenerate in each of the longitudinally- aligned channels in all experimental animals (n 5 4)
(Fig. 5). As indicated by the histomorphometric analysis results in Table 1, all autografted animals demon-
strated regeneration consistent with literature levels for similar gap lengths and survival times. At 6 weeks,
the percentage of neural tissue per cross sectional open area through the polymer conduits (mean 26.3% ,
SD 10.1%) was statistically similar to those through autografts (mean 23.8%, SD 3.6%). However, the mean
axon diameter was 3.7 m m, significantly greater than the 2.3- m m mean diameter of control autografts (p ,
0.05).

DISCUSSION

Based on reported literature studies, conduits with longitudinally aligned channels have demonstrated
better regeneration across long peripheral nerve gaps than hollow conduits.9,28–30 Although the autograft-
ing results have not been functionally or histologically surpassed, skeletal muscle basal lamina grafts and
cadaveric nerve allografts have provided encouraging regenerative results. Axonal growth through SMBL
grafts improved when the graft is pretreated with Schwann cells in culture before implantation.40

In this study, these promising autogenic multichanneled conduit architectures were mimicked in a syn-
thetic polymer configuration. A synthetic system allows the lumenal architecture to be application-tailored,
providing greater control over the regeneration direction than is possible with autogeneous materials. In ad-
dition, in vitro lumenal introduction of Schwann cells is enhanced in a synthetic conduit in comparison with
an autogenous conduit.

The use of PLGA has several advantages. First, the regenerated nerve will not be encased in a foreign
material because PLGA is 100% diodegradable; entubulation with nonbiodegradable materials has been
shown to lead to compression syndromes over time.31– 33 Second, PLGA can be tailored to slowly release
substances over a protracted period, as demonstrated by its use as a drug delivery vehicle.1,34,35 Ultimately
this property may be exploited for differential regeneration of distinct neural fiber types.

In a pilot group of animals, regeneration through the polymer conduit has been demonstrated that equals
and may surpass regeneration through autografts. The fact that the average fiber diameter in the polymer
conduits was significantly greater than that in the autografts suggests that the regenerative environment in
the tissue engineered prosthesis may favor regeneration of myelinated (“fast”) motor fibers. This finding
has broad implications in peripheral nerve surgical repair, because optimal motor function is the ultimate
clinical goal.

The total fiber number through the synthetic conduits was low in comparison with autografts because the

SCHWANN CELL LADEN CONDUIT AND NERVE REGENERATION

125

TABLE 1. HISTO M O R PH O M ETRIC ANA LY SIS OF FIVE-CH ANN EL

CO ND UITS AN D AUTO GR AFT S

Type of Fiber width Percent neural
repair (mm) tissue

PLGA conduit 3.73 6  0.51 26.3 6  10.1
Autograft 2.54 6  0.24 23.8 6  3.61



five-channeled prostheses had a low open cross-sectional conduit area (20%) in comparison with autografts
(50%). Given the quality of the neural regenerate in each channel, however, additional channels within the
conduits should lead to a higher overall fiber number.

Ongoing studies in this laboratory continue to address the optimization of cellular seeding into the con-
duit, and the assessment of functional recovery following autograft or conduit neural repair.
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