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Introduction

In a large number of application domains, such as traffic and fleet management,
environmental and ecological modelling, robotics, computer vision and, more recently,
computational biology and mobile computing, collected data present a spatial dimension.
Indeed, they are measurements on one or more attributes of the objects, which occupy
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specific locations. These (spatial) objects are characterised by a geometry (e.g., a line or
an area) which is formulated by means of a reference system. This geometry implicitly
defines both spatial properties, such as orientation, and spatial relationships of a different
nature, such as topological (e.g., intersects), distance or direction (e.g., north-of)
relations. A ‘geographical’ object represents a special case of a spatial object whose
relative position is specified with respect to the physical earth.

Studies in spatial data structures (Giiting, 1994), spatial reasoning (Egenhofer and
Fransoza, 1991) and computational geometry (Preparata and Shamos, 1985) have paved
the way for the investigation of ‘spatial data mining’, which is related to the extraction of
interesting and useful but implicit spatial patterns (Koperski et al., 1996). A spatial
pattern expresses a spatial relationship among (spatial) objects and can take different
forms, such as classification rules, association rules, regression models, clusters and
trends.

Spatial data mining has received considerable attention in the recent years (Roddick
and Spiliopoulou, 1999; Roddick et al., 2001). However, most of the works in this area
are simple adaptations of conventional data mining tools and techniques, which do not
recognise the uniqueness of the spatial dimension. Unfortunately, conventional data
mining algorithms perform poorly on spatial data since they are based on the assumption
that data samples are independently generated. Moreover, they generally use very simple
representations of spatial objects and spatial relationships (Buttenfield et al., 2000). The
former are uniformly represented as vectors of common features, which do not suitably
express the diversity of spatial objects. The latter are often limited to Euclidean distances,
although the spatial dependency can also manifest itself across non-Euclidean distances,
topological and directional relationships. Han et al. (2001) review many spatial clustering
algorithms, which deal with points in a d-dimensional space and consider only one spatial
relationship, the distance. A similar considerations also applies to other tasks, such as
spatial regression and outlier detection (Gao et al., 2006; Shekhar et al., 2001).

In the recent years, we are also assisting to a growing attention for a class of data
mining algorithms, known as multi-relational (or simply relational), which operate on
data scattered through multiple tables (relations) of a relational database and discover
relational patterns that involve multiple relations and are typically stated in a more
expressive language (e.g., predicate calculus and SQL) than patterns defined on a single
data table. Many data mining tasks (e.g., classification, clustering, association analysis)
have already been adapted to a multi-relational setting.

In this position paper we argue that the multi-relational setting is the most suitable for
spatial data mining problems, since it can deal with the heterogeneity of spatial objects, it
can distinguish their different role (reference or task-relevant), it can naturally represent a
large variety of spatial relationships among objects and it can accommodate different
forms of spatial autocorrelation. We also mention the most significant attempts to design
multi-relational data mining (MRDM) systems, which discover relational patterns from
spatial data, we illustrate the many challenges that must be overcome, and issues that
must be resolved before the relational approach can be effectively applied to spatial data.

The paper is organised as follows. Peculiar issues of spatial data mining tasks are
introduced in the next section, and then, based on these considerations, the
multi-relational approach to spatial data mining is motivated in Section 3. Section 4
closes with some open problems and a list of challenges for researchers interested in
developing MRDM methods for the analysis of spatial data.
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2 What is special about spatial data mining

In this section, the four main issues that characterise spatial data mining tasks are
reported.

2.1 Spatial information modelling

At the ‘conceptual’ level, the two main approaches to modelling spatial information are
‘field-based’ and ‘object-based’ (Shekhar and Chawla, 2003). In field-based models, the
world is seen as a continuous surface over which features vary. Spatial variation is
defined by a number of field functions, of the form:

f:R" & Attribute domain.

The elevation, precipitation or temperatures of a given geographic area are three
examples of field functions. Interactions between spatial objects are defined by
combining field functions with field operators, such as addition and composition:

f+g:xz—> f(x)+g(z) (addition),
fog:z— f(g(x)) (composition).

In object-based modelling, the world is seen as a surface littered with distinct, identifiable
and relevant objects which can be zero-dimensional (or punctual), one-dimensional
(or linear) or two-dimensional (or surfacic).! Interactions between spatial objects are
described by means of topological, directional and distance-based operators.

The formulation of a spatial data mining must consider the representation of the
spatial information at the ‘logical’ level. Two types of data structures have been reported
in the literature: ‘tessellation” and ‘vector’ (Laurini and Thompson, 1992). The
tessellation model partitions the space into a number of cells, each of which is associated
with a value of a given attribute. No variation is assumed within a cell and values
correspond to some aggregate function (e.g., average) computed on original values in the
cell. A grid of square cells is a special tessellation model called ‘raster’. In the vector
model, the geometry is represented by a vector of coordinates, which define points, lines
or polygons. The tessellation and vector models can be equally used to represent spatial
information modelled by either field-functions or spatial objects at the conceptual level
(see Figure 1). The tessellation model is simple and frequently used (e.g., in remote
sensing), nevertheless, it requires large storage capabilities, the operations on objects are
time-consuming and the geometry of a spatial object is imprecise. The vector model is a
concise and precise representation, easy to scale (although some spatial operations, such
as intersection, remain computationally demanding) and is well supported by spatial
database management systems (DBMS). Henceforth, we will refer to the vector model as
the logical model adopted for the representation of spatial information. In particular, we
assume that a field function or a spatial object is represented by one or more tuples of a

‘layer’, that is, a database relation R, with a number of elementary attributes Ai,. . .,Ai

m;
and possibly a geometry attribute G represented in the vector mode. A spatial pattern,

which expresses the interaction among spatial objects, will be defined by means of
topological, directional and distance-based relationships.
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Figure 1 (a) Field-based data represented in tessellation mode (b) object-based data represented
in tessellation mode (c) field-based data represented in vector mode (d) object-based
data represented in vector mode (see online version for colours)
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2.2 Heterogeneity of spatial objects

Spatial patterns often describe interactions between objects of different types, such as a
town and a highway. In spatial databases, objects of different types are organised in
separate layers, each of which has a distinct set of attributes. For instance, a town can be
described in terms of economic and demographic factors, as well as a polygon
corresponding to its administrative boundary, while a highway is described by the
average speed limit, traffic and driving safety conditions, as well as a polyline
corresponding to its path. To deal with object heterogeneity in spatial patterns, the design
of a spatial data mining method should not be strictly bound to process objects in one
specific layer.

2.3 The implicit definition of spatial relationships among objects

Spatial objects have a locational property, which implicitly defines several spatial
relationships between objects. Topological relationships are invariant under
homomorphisms, such as rotation, translation and scaling. Their semantics is precisely
defined by means of the nine-intersection model proposed by Egenhofer and Franzosa
(1991). The distance between two points is typically computed according to the
Euclidean metric, while the distance between two geometries (e.g., two areas) is defined
by some aggregate function (e.g., the minimum distance between two points of the areas).
Distance relationships can be non-metric, especially when they are defined on the basis of
a cost function which is not symmetric (e.g., the drive time). Directional relations can be
expressed by the angle formed by two points with respect to the origin of the reference
system or by an extension of Allen’s interval algebra, which is based on projection lines
(Mukerjee and Joe, 1990). In a spatial database, implicit binary spatial relationships

correspond to spatial joins R2; >, R, between two layers R, and I, , where 0 is a binary

predicate (e.g., ‘intersects’, ‘contains’, ‘northwest’, ‘adjacent’) evaluated on the geometry
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attributes G, and G; of the two layers (Shekhar and Chawla, 2003). The relational nature

of spatial patterns makes the computation of these spatial joins crucial for the
development of effective and efficient data analysis methods. To complicate matters, the
data analyst is generally interested in spatial patterns where object interactions are
abstracted from the geometry of involved spatial objects (e.g., a river crosses a city,
whatever the geometric representations of rivers and cities are).

2.4 Spatial autocorrelation

By picturing the spatial variation of some observed variables in a map, we may observe
regions where the distribution of values is smoothly continuous with some boundaries
possibly marked by sharp discontinuities. In this case, a variable is correlated with itself
through space. Formally, spatial autocorrelation is defined as the property of random
variables taking values, at pairs of locations a certain distance apart, that are more similar
(positive autocorrelation) or less similar (negative autocorrelation) than expected for
randomly associated pairs of observations (Legendre, 1993). Informally, spatial positive
(negative) autocorrelation occurs when the values of a given property are highly uniform
(different) among similar spatial objects in the neighbourhood. In geography, spatial
autocorrelation is justified by Tobler’s (1970) first law of geography, according to which
‘everything is related to everything else, but near things are more related than distant
things’. However, spatial autocorrelation occurs in many other disparate fields, such as
sociology (e.g., social relations affect social influence), web mining (e.g., hyperlinked
web pages typically share the same topic) and bioinformatics (e.g., proteins located in the
same place in a cell are more likely to share the same function than randomly selected
proteins). In statistics, spatial autocorrelation is divided into two primary types:
spatial error (correlations across space in the error term), and spatial lag (the dependent
variable in space 7 is affected by the independent variables in space ¢, as well as those,
dependent or independent, in space ;). Most statistical models are based on the
assumption that the values of observations in each sample are independent of one
another, but spatial autocorrelation (or spatial dependence, as it is typically called in
statistics) clearly indicates a violation of this assumption. As observed by LeSage and
Pace (2001), ‘anyone seriously interested in prediction when the sample data exhibit
spatial dependence should consider a spatial model’, since this can take into account
different forms of spatial autocorrelation. In addition to predictive data mining tasks, this
consideration can also be applied to descriptive tasks, such as spatial clustering or spatial
association rule discovery. More in general, the analysis of spatial autocorrelation is
crucial and it can be fundamental for building a spatial component into (statistical)
models for spatial data. The inappropriate treatment of sample data with spatial
dependence could obfuscate important insights and observed patterns may even be
inverted when spatial autocorrelation is ignored (Kiihn, 2007).

2.5 Limits of current solutions

Traditional data mining algorithms do not offer adequate solutions to all these issues.
They do not deal with spatial data characterised by geometry, do not handle observations
of different types, do not naturally represent spatial relationships between observations
nor take them into account when mining patterns.
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To overcome some of these limitations, several extensions have been investigated in
spatial statistics, where spatial dependence is typically modelled by the following linear
models (LeSage and Pace, 2001):

y=Xa+pDy+DX~y+¢€
where:

1 yisthe n x 1 vector of observations of the dependent (or response) variable

2 o considers the influence of the independent (or explanatory) variables observed in ¢

on the response variable in ¢

3 Disan n X n matrix, called spatial weight matrix, which defines the neighbourhood,
i.e., D;; > 0 for observations j sufficiently close (as measured by some metric) to

observation 4, D;;> 0 otherwise

4  preflects the strength of the spatial dependence on the response variable of the
neighbours

5 v reflects the strength of the spatial dependence on the explanatory variables of the
neighbours

6  ereflects the ‘noise’ or a stochastic disturbance in the spatial dependence relation.

However, the application of these spatial models still presents some problems. First, the
spatial weight matrix D has to be carefully defined in order to specify to what extent a

spatially close observation in space j can affect the response observed in 7. With a proper
choice of D, the residual error should, at least theoretically, have no systematic variation.

Second, it is unclear how D can express the contribution of different spatial relationships,

such as a polluting industry in an ‘adjacent’ area and a highway ‘crossing’ the same area.
Third, spatial dependencies are all handled in a pre-processing or feature extraction step,
which typically ignores the subsequent data mining step. In principle, a data mining
method, which can handle spatial dependencies directly, presents the advantage of
considering only those dependencies that are really relevant to the task at hand. Fourth,
all spatial objects involved in spatial phenomena (rows of matrix X) are uniformly
represented by the same set of attributes. This can be a problem when spatial objects are
of different types and are characterised by different properties. Fifth, there is no clear
distinction between the reference (or target) objects, which are the main subject of
analysis and the task-relevant objects, which are spatial objects ‘in the neighbourhood’
that can help to account for the spatial variation.

3 Opportunities for a relational approach

The problems reported above are due to the fact that in spatial data mining, the units of
analysis are typically composed of several spatial objects with different properties and
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that their structure cannot be easily accommodated into a classical double-entry table,
whose columns correspond to elementary (nominal, ordinal or numeric) single-valued

attributes. In fact, spatial datasets can be naturally modelled as a set of relations R,,...,R,,
such that each relation R, has a number of elementary attributes Ai,...,Ajn and possibly

a geometry attribute G, (in which case, it is a layer). Relationships are either explicitly
modelled by means of foreign key constraints or implicitly represented by spatial joins.

Example

To investigate the social effects of public transportation in a British city, a spatial data set
made of three relations is considered (see Figure 2). The first relation ED contains
information on enumeration districts, which are the smallest area units for which census
data are published in UK. In particular, ED has two attributes, the identifier of an
enumeration district and a geometry attribute (a closed polyline), which describes the
area covered by the enumeration district. The second relation BL describes all the bus
lines, which cross the city. In this case, relevant attributes are: the name of a bus line, the
geometry attribute (a line) representing the route of a bus and the type of bus line
(classified as main or secondary). The third relation CE contains some census data
relevant for the problem, namely, the number of households with 0, 1, or > 2’ cars. This
relation also includes the identifier of the enumeration district, which is a foreign key for
the table ED. A unit of analysis corresponds to an enumeration district (the reference
object), which is described in terms of the number of cars per household and crossing bus
lines (bus lines are the task-relevant objects). The relationship between reference objects
and task-relevant objects is established by means of a spatial join, which computes the
intersection between the two layers ED and BL. This relationship allows us to discover
truly relational patterns, such as ‘the enumeration districts with a high percentage of
households which own less than two cars, are served by at least two bus lines, one of
which is a main bus line’. Here, the verb ‘served’ is purposely introduced, to show that
spatial patterns of interest may not necessarily be expressed in terms of the original
spatial predicates used in the spatial join operations. The most obvious interpretation of
this verb can be the topological relation ‘intersect’ between the area of an enumeration
district and the bus line, although other more sophisticated interpretations are possible
(e.g., on the basis of the length of the intersected line). However, it may well be the case
that an enumeration district with few households owning less than two cars is not actually
crossed by a bus line, but rather it is spatially surrounded by several other enumeration
districts where all conditions above hold. To take this spatial autocorrelation into account,
a spatial join between ED and itself can be computed and the relational patterns can be
searched across the units of analysis.

The previous example shows that MRDM offers the most suitable setting for spatial
data mining tasks. Indeed, MRDM tools can be applied directly to data distributed over
several relations to find relational patterns, which involve multiple relations (DzZeroski
and Lavrac, 2001). Relational patterns can be expressed not only in SQL, but also in
first-order logic (or predicate calculus), which explains why many MRDM algorithms
originate from the field of inductive logic programming (ILP) (Muggleton, 1992;
De Raedt, 1992; Lavrac and Dzeroski, 1994).
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Figure 2 Relational representations of data on the social effects of public transportation in a
British city (see online version for colours)

ED D Area BL Name | Line Type
‘ 03bsfc01 15 | A~ | main
CE ED #households | #households | #households
no car 1car =2 cars
03bsfc01 80 143 67

Notes: ED and BL are two layers since each of them has a geometric attribute. CE has a
foreign key for ED.

Upgrading a classical data mining algorithm devised for double-entry tabular data to a
relational setting is not a trivial task (Van Laer and De Raedt, 2001). For instance, it may
be necessary to extend the definition of distance measure to data distributed among
several tables. For propositional patterns expressed as pure conjunctive (queries) or pure

disjunctive (clauses) formulae, the generality order > coincides with the subset (C)

relation, while for relational patterns it is necessary to consider different generality orders
(e.g., B-subsumption), whose computation is NP-complete (Gottlob and Leitsch, 1985).
Consequently, search efficiency is a concern for MRDM algorithms, which use some
form of ‘declarative bias’ to limit the search space for interesting patterns. An exhaustive
list of theoretical results and techniques that have been developed to improve the
efficiency and scalability of MRDM approaches is reported in Blockeel and Sebag
(2003).

The handling of spatial data adds difficulties to the upgrading of classical data mining
algorithms. Indeed, it is necessary to define a representation of spatial objects, to define
operators for spatial joins, to optimise the computation of spatial joins with spatial
indexes, to distinguish reference from task-relevant objects and to devise some
visualisation techniques of discovered patterns on maps.

4 Challenges for a relational approach

Although the MRDM setting seems the most suitable for spatial data mining, there are
still several challenges that must be overcome and issues that must be resolved before the
relational approach can be effectively applied to spatial data mining. Some of them are
reported in the following.

4.1 Spatial relationships are many and not explicitly modelled

Many MRDM methods take advantage of knowledge on the data model (e.g., foreign
keys), which is obtained free of charge from the database schema, in order to guide the
search process. However, this approach does not suit spatial databases, since the database
navigation is also based on the spatial relationships, which are not explicitly modelled in
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the schema. To solve this problem, spatial relationships can be computed and explicitly
represented during the pre-processing step of the knowledge discovery process. This
approach is typically applied by statisticians before computing the spatial weight matrix
D. It has also been adopted in the GeoMiner system (Han et al., 1997), whose data
mining algorithms, though, operate on a single database relation obtained from the
pre-processing step. Also Ester et al. (1999) propose to pre-compute distance, direction
and topological relations and to materialise (i.e., store) them into some database relations
(called neighbourhood indices), which are then used by data mining algorithms to
efficiently retrieve all neighbours (with respect to some spatial relation) of a given spatial
object. A feature extraction module is implemented into the ARES system (Appice et al.,
2005) to pre-compute spatial relationships, which are converted into Prolog facts used by
the ILP system SPADA (Malerba and Lisi, 2001) to generate spatial association rules.
The pre-computation is justified by the fact that spatial databases are rather static, since
there are not many updates on objects such as geographic maps. However, the number of
spatial relationships between two layers can be very large and many of them might be
unnecessarily extracted. The alternative is to dynamically perform spatial joins only for
the part of the hypothesis space that is really explored during the search by a data mining
algorithm. This approach has been implemented in two MRDM systems, namely
SubgroupMiner for subgroup mining (Klosgen and May, 2002) and Mrs-SMOTI for
regression analysis (Malerba et al., 2005). Both systems achieve a tight integration with a
spatial DBMS (namely, Oracle Spatial) and have been applied to datasets where few
spatial relationships are actually computed. Spatial index structures, such as R-trees
(Guttman, 1984), are used to speed up the processing of spatial joins. However,
scalability remains a problem when many spatial predicates have to be computed. A
scalability issue arises also in spatial statistics, since the spatial weight matrix D can be
very large and sparse (LeSage and Pace, 2001).

4.2 Spatial autocorrelation can bias feature selection

Although the presence of autocorrelation in spatial phenomena strongly motivates a
MRDM approach to spatial data mining, it also introduces additional challenges. In
particular, it has been proven that the combined effect of autocorrelation and
concentrated linkage (i.e., high concentration of objects linked to a common neighbour)
(see Figure 3) can bias feature selection in relational classification (Jensen and Neville,
2002). In particular, the distribution of scores for features formed from related objects
with concentrated linkage presents a surprisingly large variance when the class attribute
has a high autocorrelation. This large variance causes feature selection algorithms to be
biased in favour of these features, even when they are not related to the class attribute,
that is, they are randomly generated. Conventional hypothesis tests, such as the y’-test for
independence, which evaluate statistically significant differences between proportions for
two or more groups in a dataset, fail to discard uninformative features. Indeed, they are
based on the i.i.d. assumption, while observations drawn from a relational data set may
not be independent. Most MRDM algorithms do not account for this bias, a notable
exception being a relational probability tree-learning algorithm that uses a randomisation
test to adjust for feature selection bias (Neville et al., 2003). Pseudo samples are
generated from the relational data by retaining the linkage present in the original sample
and the autocorrelation among the class labels, and, at the same time, by destroying the
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correlation between the original attributes and the class labels. Therefore, pseudo samples
appropriately conform to the null hypothesis and can be used to estimate a p-value for the
actual data.

Figure 3 (a) Examples of low and high linkage between ED’s and bus lines (b) examples of low
and high autocorrelation between ED’s crossed by the same bus line (see online version
for colours)

0 Linkage > 1
|BL| |[BL| | BL| [BL| |BL| |BL]
(a)
0 . > 1
Autocorrelation
z I; Iz é; (0] [ep] [e0]
(b)

4.3  Learning from unlabeled spatial data

Inductive learning algorithms designed for predictive tasks may require large sets of
labelled data. However, the common situation is that only few labelled training data are
available for mining, although a very large test set must be classified. This is especially
true in geographical data mining, where large amounts of unlabeled geographical objects
(e.g., map cells) are available and manual annotation is fairly expensive. Inductive
learning algorithms would actually use only the few labelled examples to build a
prediction model, thus, discarding a large amount of information potentially conveyed by
the unlabeled instances. The idea of transductive inference (or transduction) (Vapnik,
1998) is to analyse both the labelled (training) data and the unlabeled (working) data to
build a classifier and classify (only) the unlabeled data as accurately as possible.
Transduction is based on a (semi-supervised) smoothness assumption according to which,

if two points z; and 7, in a high-density region are close, then the corresponding outputs

y1 and g, should also be close (Chapelle et al., 2006). However, in spatial domains, where
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closeness of points corresponds to some spatial distance measure, this assumption is
implied by (positive) spatial autocorrelation. Therefore, the transductive setting seems
especially suitable for spatial classification and regression, and more in general, for those
relational learning problems characterised by autocorrelation on the dependent variables.
Only recently, a work on transductive relational learning has been reported in the
literature (Malerba et al., 2009): some preliminary results on spatial classification tasks
show the effectiveness of the transductive approach.

4.4  Spatially lagged prediction models demand for collective inference

In predictive data mining tasks, the generation of patterns, which express the spatial
autocorrelation of the dependent variable, raises the issue of how inference on new cases
should be performed. Indeed, these patterns take the form:

Yi = f(xiaxN(z),il/N(z)),

where y(z)is the value of the dependent (independent) variable in space ¢, while
Yni)(@n(y) represents the value(s) of the dependent (independent) variable for i‘s

neighbour(s). For instance, the price level for goods at a retail outlet in a city depends on
the price for the same goods in the vicinity. In order to predict y; it is necessary to know

the value(s) of y,,, which might be unavailable (the related values of the dependence

variable are to be inferred as well). In this case, both y; and all unknown values ¥y, have

to be inferred collectively. A possible approach to collective inference combines locally
learned individual inference models with a joint inference procedure
(e.g., relaxation labelling) to make an inference. An example is iterative classification
(Neville and Jensen, 2000), which dynamically updates the attributes of some objects as
inferences are made about related objects. Inferences made with high confidence in initial
iterations are fed back into the data and are used to inform subsequent inferences about
related objects. Iterative classification works well when the classification model allows us
to make initial inferences accurately, otherwise all subsequent predictions will be misled
due to a ripple effect. An alternative approach is to use joint relational models, which first

estimate the joint probability distribution over the variables of objects both in 7 and in
N(7) and then jointly infer the values of both y; and y,,. In particular, probabilistic

relational models can be used to represent a joint probability distribution over the
attributes of a relational dataset (Getoor et al., 2001; Neville and Jensen, 2003). By
making inferences about multiple instances simultaneously, joint inference can exploit
autocorrelation in the data to improve predictions (Jensen et al., 2004). Therefore, this
inference procedure seems particularly suitable for spatial data sets and should be better
investigated in the context of spatial data mining.

4.5 Spatial patterns can be discovered at various levels of granularity

Spatial objects are often organised in hierarchies. By descending/ascending through a
hierarchy, it is possible to view the same spatial object at different levels of abstraction
(or granularity). Spatial patterns involving the most abstract spatial objects can be well
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supported but at the same time, they are the less confident. Therefore, spatial data mining
methods should be able to explore the search space at different granularity levels in order
to find the most interesting patterns (e.g., the most supported and confident). In the case
of granularity levels defined by a containment relationship, this corresponds to exploring
both global and local aspects of the underlying phenomenon. Very few data mining
techniques automatically support this multiple-level analysis. In general, the user is
forced to repeat independent experiments on different representations and results
obtained for high granularity levels are not exploited to control search at low granularity
levels (or vice versa). Two noticeable exceptions are represented by Geo-associator
(Koperski and Han, 1995), a module of GeoMiner which mines spatial association rules
from data represented in a single relation (table) of a relational database, and SPADA
(Malerba and Lisi, 2001), which discovers multi-level spatial association rules from
relational data. SPADA has also been used in an associative classification framework:
once strong spatial association rules with only the class label in the consequent are
extracted for each granularity level, they are used to mine either propositional or
structural spatial classifiers (Ceci et al., 2004; Cesi and Appice, 2006).

4.6 Automatically exploiting background knowledge on spatial phenomena

A large amount of knowledge is often available on spatial phenomena. This is
particularly true in the special case of geographic knowledge discovery, where relations
among spatial objects express natural geographic dependencies (e.g., a port is adjacent to
a water body). These dependences are expressed in non-novel or uninteresting patterns,
but with very high support and confidence. If this geographic knowledge were used to
constrain the search for new patterns, the scalability of the spatial data mining algorithms
would greatly increase. Actually, these dependencies are represented either in geographic
database schemas through one-to-one and one-to-many cardinality constraints or in
geographic ontologies. Therefore, they can be used at no additional cost in a MRDM
perspective, thus, moving a step forward toward knowledge-rich data mining (Domingos,
2007). In the context of spatial data mining, both Appice et al. (2005) and Bogorny et al.
(2006) explain how to use knowledge to constrain the search space for spatial association
rules.

4.7 Embedding spatial reasoners in spatial data mining systems

Spatial reasoning is the process by which information about objects in space and their
relationships are gathered through measurement, observation or inference and used to
reach valid conclusions regarding the objects’ relationships. For instance, in spatial
reasoning, the accessibility of a site A from a site B can be recursively defined on the
basis of the spatial relationships of adjacency or contiguity. Principles of spatial
reasoning have been proposed for both quantitative and qualitative approaches to spatial
knowledge representation. Quantitative spatial reasoning deals with exact numerical
values, such as coordinates and distances, and are more akin to machine reasoning, while
qualitative spatial reasoning (Freksa, 1991) deals with abstract representations
(e.g., ‘northwest’ and ‘far’) and is more closely related to the way humans reason.
Qualitative spatial reasoning is arguably efficient and can deal to some extent with
imprecision, uncertainty and incompleteness, which quantitative reasoning cannot.
Embedding spatial reasoning in spatial data mining is crucial to make the right inferences
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either when patterns are generated or when patterns are evaluated. Surprisingly, there are
few examples of data mining systems, which support some form of spatial reasoning. In
SPADA, a limited form of spatial inference is supported if rules of spatial reasoning are
encoded in the background knowledge (Malerba et al., 2002). In particular, SPADA
applies an ILP technique, known as ‘saturation’, to make explicit those pieces of
information that are implicit in the spatial units of analysis, given the background
knowledge. However, although a general-purpose theorem prover for predicate logic can
be used for spatial reasoning (as in SPADA): constraints which characterise the spatial
problem solving have to be explicitly formulated, in order to make the semantics
consistent with the target domain ‘space’. Therefore, embedding specialised spatial
inference engines in the spatial data mining systems seems to be the most promising, but
still unexplored, solution.

5 Conclusions

In this paper, some important issues concerning the discovery of patterns and models
from spatial data are presented and discussed. The main specificity of spatial data mining
is due to the implicit definition of spatial relationships between objects. We advocate a
multi-relational approach to spatial data mining in order to properly deal with these
spatial relationships. This approach is promising but it poses several challenges to current
MRDM systems, namely:

1 the absence of an explicit modelling of the task-relevant spatial relationships
2 the bias caused by spatial autocorrelation on feature selection

3 the exploitation of the many unlabeled spatial objects in a semi-supervised or
transductive setting

4 the demand for collective inference in spatially lagged prediction models

5 the discovery of spatial patterns at various levels of granularity

6 the automated exploitation of background knowledge on spatial phenomena
7  the integration of spatial reasoners into spatial data mining systems.

Obviously, this list of challenges is not exhaustive, but rather it is indicative of the
necessity for developing synergies between researchers interested in spatial statistics,
MRDM, visualisation, spatial databases and GIS. It is hard to envisage whether the
different communities of researchers will actually join forces. Nonetheless, there is good
cause for optimism: real applications, such as sales prediction of individual shops, urban
data analysis, location-based services, cry out for this collaboration.
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