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Abstract

Building Energy Management is identified as a key part of the move towards localised energy
generation and control. The significant discrepancy between building energy use as designed
and during actual operation shows a need to evaluate the relationship between building
occupants and energy requirements. The need to better account for the influence of occupants
on building energy use has been established through post-occupancy studies, highlighting the
characteristics needed for more successful building control systems. This paper provides an
overview of current building control systems technology and discusses existing academic
research into more advanced occupant-centric controls. The potential for application of
various methods is compared. It is found that study into occupant-centred control systems
covers a wide array of approaches, ranging from simple presence-based switching of lighting
systems to full model predictive control. Studies suggest an optimum point balancing the
complexity of a system against its potential for saving energy.
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1. Introduction

As energy generation for buildings becomes increasingly localised thanks to advances in
renewable technologies, the mismatch between real-time energy generation and use leads to a
need for effective localised energy control. The use of Building Energy Management Systems
(BEMS) to cater building energy use directly to occupant needs has an important role to play
in this system. This paper seeks to provide a review of approaches to energy management that
place specific emphasis on collecting and reacting to real-time occupant data. This work
builds upon the detailed review of the impacts of occupancy on energy and current capability
of Building Energy Management solutions established in [1], with an emphasis on the
methods and hardware used to accurately detect occupant data and a broader review on how
this data is implemented intro building control. Through cross-review of the existing body of
work in these fields, this study aims to highlight current issues/complicating factors in
occupancy detection, emerging techniques/technologies and potential routes to improving the
robust performance of occupant-centric building controls.

Data collected during building operation typically shows a significant difference between
designed and actual energy use in buildings across multiple sectors, as shown in Figure 1-1.
Discrepancies between predicted and real building performance are caused by:
underestimation of predicted values for reasonable building use during the design phase,
potential construction defects causing deviation from the designed build quality, and
excessively wasteful use of resources during actual operation. Both the design and
operational issues are affected by the “inability of current modelling methods to represent
realistic use and operation of buildings” [2]. Menezes et al. highlight the fact that occupant
behaviour is one of the major factors contributing to excessive energy use during building
operation, alongside effectiveness of services control and deviations from designed build
quality.

Figure 1-1 - Predicted Versus Actual Energy Use in Commercial Buildings [3]

The contribution of occupancy/occupant behaviours towards final energy use in buildings has
been assessed in several studies. Simulation of different schedules and behaviours within
commercial buildings has shown an occupant-dependent variation of from 30% [4] to 150%
[5] of final energy use. Studies of control systems and real buildings have shown high
variation in domestic electrical loads depending on occupant behaviours [6,7]. In commercial
buildings, it was found that building services have poor response to occupant presence
patterns [8], noting that energy used on HVAC was sometimes higher in unoccupied spaces
than occupied [9]. This suggests the need for more occupancy-centric control systems.

Most research looking specifically at behavioural impact on building energy use shows that
there is significant potential for energy saving through greater understanding of building use.
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The field of detailed exploration into occupant behaviour is relatively young, meaning that
there is currently a lack of large-scale in-use data for buildings in the UK [10].

2. Energy Management Systems – Current state

As it has been seen that occupancy and occupant behaviours can significantly affect the way
a building operates, it must be addressed whether current building control systems are
operated sensitively in response to changing occupant needs. The automated control of
buildings encompasses an array of different technologies and is described using many
different terms. In this publication, the term Building Energy Management Systems (BEMS)
is used.

2.1. Commercially available technology

Application of BEMS is highly variable in both commercial and domestic buildings. The
general structure of BEMS can be defined as: a centralised management layer where general
policies and decision making is applied, a field layer of local devices to measure and actuate
changes to the indoor environment, and an automation layer interfacing between the two with
localised controllers [11].

The area of energy and comfort management in buildings has received significant research
interest over the last decade [12]. Despite this interest, an estimated 90% of current HVAC
control systems do not run optimally [13], showing the need for an improvement in the way
that controls are designed and implemented. Commercial systems tend to rely on pre-set
working schedules, based on the occupancy patterns estimated at the building design stage. It
has been found that such schedules can differ dramatically from actual use patterns, causing
energy waste [14].

The last few years have seen a dramatic rise in commercial interest in energy management
software and hardware, typically procured as a retrofit to existing or recently completed
buildings. Often the retrofitted solution can only control the building’s energy consumption
so far as the existing sensing/actuation system allows; requiring the major overhaul of a full
BEMS and significant physical changes for more comprehensive control. Due to increasingly
cheap hardware including wireless sensors/actuators, and the availability of configurable
software, the barriers to entry for more sophisticated energy management solutions have
lowered in recent years.

Commercial reports hint towards the importance of the software intelligence and data
analysis side of the BEMS business in the near future [15]. In the domestic field in particular,
recent years have seen a large increase in the sophistication of occupancy-related tools in
energy management: Table 2-1 summarises the capability of popular ‘smart’ domestic
heating control systems. It can be seen that many major controllers are adopting learning
algorithms and occupancy-responsive technology, facilitated by the wider availability of
easily installed wireless sensors etc. Trends towards occupant-responsive systems and
integration with personal devices for remote control can also be seen in popular home
automation management hubs and software. These ‘central hub’ solutions typically offer a
more open system compatible with third party hardware using multiple communication
protocols [16].
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Table 2-1 - Comparison of major domestic heating controls packages available in the UK as of Q4 2017

Hive Active
Heating 2 (2016)

[17]

Nest v3 (UK)
(2017) [18]

Heat Genius (2016)
[19]

Tado (2016) [20] Honeywell
Evohome (2015)

[21]
Multi-zone control Up to 3 zones if

boiler allows
Per thermostat if

boiler allows
♦ Per thermostat ♦ 

Remote Control ♦ ♦ ♦ ♦ ♦
User Motion

Sensing
♦ ♦ 

User Geolocation Limited - prompts
manual alterations

♦  ♦  

Learning heat
response

♦ ♦ ♦ ♦ 

Weather data use ♦ ♦ ♦
Additional

features
 Security
Integration

 Self-learning
schedules*
 Security
Integration

 Modular
 Further home

automation

 Distance
dependent

temperature
setback

 High control
granularity

* Reviews indicate effectiveness of learning can vary [22]

The greater sophistication of domestic systems can be difficult to apply to larger, more
complex commercial systems, where a high number of occupants may cohabit in a space and
obtaining occupancy/behavioural data becomes more complex.

3. Collection of Occupant Data

The concept of ‘occupant data’ is not standardised, meaning that occupant-centric controls
can be operated from a widely varied range of collected data, each with its own
characteristics [23]. In this publication, ‘occupancy’ refers to the presence or number of
people in a space. ‘Location’ refers to the localisation of occupants within a space, and
‘Occupant behaviour’ refers to a higher level of inference based on occupant interactions
with the building.

3.1. Occupant Presence/Number

The binary parameter of whether or not any occupants are present in a space is one of the
simplest forms of occupancy sensing, but is still difficult to achieve 100% accuracy with
current technology. Generally, a reasonable accuracy can be achieved by installing
motion/PIR sensors [24], particularly in small spaces with only one occupant [25]. Estimation
of the number of people in a space is considerably more complicated than presence alone.
Research in the field has explored a wide range of possible methods, each with its own
benefits and drawbacks.

The use of a single sensor type to count occupants is attractive due to its lower complexity
and installation costs. CO2 concentration sensors are commonly used, but have a delayed
response time as CO2 exhaled by occupants takes time to accumulate to elevated levels [23].
Visual methods using the feed from cameras [26] [27] are computationally intensive and
depend heavily on lighting conditions and space arrangement for their accuracy.

A popular method in recent research is the combination of data from several different sensor
types. This has the benefit of being able to use non-intrusive, relatively inexpensive sensors
and generally achieves higher accuracy than using only a single sensor type. Common
sensors included are PIR and CO2, which were used alongside cameras [26], ventilation
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actuator signals [28], relative humidity, acoustic and temperature sensors [29–32]. In analysis
of the information gained by each new sensor type, Lam et al. found that the most useful
sensors in an open-plan office space were relative humidity, acoustic, CO2 and temperature
sensors [30] while a systematic approach applied by Ekwevugbe et al. favoured CO2 trend,
computer use and acoustic levels [32]. One consideration that arises from comparing multi-
sensor studies is the relative performance of sensor types in different applications: where
sensors rely on physical properties of a space, the quality of occupancy information provided
can vary significantly between different building layouts, space uses etc. This remains a
drawback to generic application of ambient environmental sensing systems.

3.2. Location Sensing

Location information about building occupants provides a platform for much richer analysis
of occupant impacts on building energy use and the possibility of tailoring building control to
an individual level. However, this increased detail of collected information often causes more
concerns about privacy and typically requires the specific permission of building occupants
before implementation.

Wearable radio-frequency tags are a common occupant location technology, used to transmit
location signals to receivers around the sensed space [33–35]. When used alone, tagging
systems can have issues with calibration and reflected signals adding noise to the receiver
input. It can also be more difficult to detect moving occupants than stationary [35]. The use
of many receivers around a space [36–38] or using tags in tandem with infrared detectors [39]
can significantly improve the accuracy of location. While fine-grained data is obtainable
through this method, tagging of occupants is only truly applicable to a space where all
occupants are known and can be expected to wear a tag – typically places of work.

Ambient sensing can be used to locate occupants in spaces where occupants are not always
known regular visitors, such as in public and retail buildings. For example, the interaction
between the human body and ambient wireless LAN signals can be detected and used to infer
the location of a person [23], or a dense network of ambient PIR sensors can be used
alongside existing CO2 and humidity data to infer location [40]. Methods such as these are
often heavy on computation and may be too slow to run in real-time [40].

As uptake of the smartphone and other smart devices has become more common in recent
years, a significant amount of research interest has been put into using personal devices for
indoor location [34]. There are several possible sources of data that could be used to calculate
a user’s position:

 Telephone company data/GPS – company data gives a highly coarse approximation to
location by using a mobile phone’s connection to nearby telephone masts, while GPS
can offer more detail when enabled on a device. Both methods suffer accuracy issues
when used indoors [41].

 Wi-Fi connection – locally distributed Wi-Fi beacons can be used to locate a smart
device by requesting connections, or the ID of a device’s current connected Wi-Fi
network can be logged over time [42]. However, many smart device users turn off
Wi-Fi when not in use, due to the high power drain caused by leaving it on [41].

 Bluetooth – inquiries by Bluetooth beacons can be a slow process, but it has been
shown that speed can be improved by locating devices by which can connect to each
other [41]
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 Orientation data – the on-board accelerometer and gyroscope found on many smart
devices effectively records a user’s path through a space, if their starting point is
known. Systems have been developed by combining this data with inter-device
connections [43] and visual data processing [44].

3.3. Activity and Energy Behaviours

It is often an advantage to know the specific activity taking place in an indoor space. This
information can be used for user feedback on energy behaviours (e.g. use of appliances,
opening/closing windows), analysis of the energy impact of user actions or provide building
services control specific to the task’s requirements.

A basic approach to learning occupant behavioural context is to highlight recurring patterns
in sensor data, which can then be manually assigned to activity types [45]. Along similar
lines, entrance/exit people-counting sensors can be used to identify anomalous events in
occupancy and their time span, as these events have the greatest impact on the effectiveness
of scheduling in building control systems [46]. This approach has limited scope for wider
application due to the need for manual labelling of activities, but presents the first step
towards learning behaviour in buildings.

Automated detection of activity types can be achieved by including more detail in the sensed
variables. For example, measurements from a range of ambient sensors including motion
sensors, sound level and chair pressure pads have been shown to detect office activities with
high accuracy [47]. Other approaches include the measurement of when appliances and
objects are used [48–51] , assuming that most human activities involve interaction with some
measurable object. A typical problem with this approach is that all expected activities must
be predefined and sensors specified for each object interaction. Activities not originally
considered will not be detected at all. However, in applications that require actions targeted
only at specific circumstances, this limitation is not an issue. For example, systems to identify
unusual or low activity levels in assisted living spaces have been developed to identify when
an occupant may need medical help [52]. It should also be noted that, as with other multi-
sensor ambient detection systems, the accuracy of a trained activity model using similar data
sources can vary dramatically in spaces occupied by different people, suggesting that generic
application of the same system may not be feasible [49].

Analysis of camera feeds may provide a more generic solution, but requires an extremely
high amount of processing and current research cannot produce consistently accurate results
[53]. As with any use of processed visual data, there are also issues with privacy that prevent
widespread application.

3.4. Discussion

With advances in the scope and availability of various sensing devices in recent years [54],
there has been a significant increase in the amount of study into occupant data in the built
environment. Many studies focus on improving sensing technology itself, through studying
the most effective combinations of sensors or applying new techniques to allow more
effective inference of occupancy rates. The use of trained machine learning models to
combine sensor data is widespread, although some studies have opted for systems that do not
require manually labelled training data. Much of the work discussed is in its early
developmental stages and can be expected to improve in future applications. Table 3-1
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summarises the main uses, benefits and drawbacks of the various physical sensors used to
detect building occupancy.

Some overarching trends can be observed throughout the studies discussed. In particular, it
can be seen that the success of occupancy-sensing technologies can be highly dependent on
its specific application: from physical characteristics of the space to varying behavioural
habits of its occupants. Where designers of building control systems wish to apply a similar
system to a range of buildings, this presents a potential issue in providing consistent levels of
improvement. This issue is found especially in systems using ambient environmental sensors
that rely more strongly on their surrounding physical context.

In many applications, the amount of additional hardware required to collect high quality
occupant data may be prohibitively high. For this issue, the possibility of leveraging the
widely available hardware of personal devices such as smartphones is an attractive solution.
Given the increasingly widespread use of smart devices, this approach appears to show
promise for wider future application. However, it should be noted that solutions relying only
on personal device data can be skewed towards certain population demographics: a 2017 UK
survey suggested that 92% of 16-19 year olds owned smartphones, in contrast with only 65%
of those aged 65-75 [55].

When selecting which technologies are most appropriate for an application, a balance
between the intrusiveness and accuracy of measurement must be decided. Generally, both the
level of detail available and its accuracy increases with the inclusion of more sensors and is
highest with the more intrusive options, such as wireless tagging of occupants. Different
methods also require different levels of processing and training: combining passive ambient
sensors is less intrusive and can achieve accurate results, but typically requires extensive
manually labelled training data that may not be appropriate for many applications.

The greater the complexity of occupancy information sensed, the lower the accuracy to be
expected. The following section discusses applied examples of occupancy sensing, with
further justification of the balance between accuracy and detail.

Table 3-1 - A summary of sensors used in occupancy detection and their uses

Technology Strengths Weaknesses Ideal Applications

Passive Infrared (PIR)/ Motion
sensors

[23,24,26,28–32,40,45,56,57]

- Relatively low cost
- Readily available
- Less intrusive

- No counting capability
- False negatives when

occupants are still
- Require direct line of sight

- Single-person
offices

- Individual
cubicles

CO2 [23,24,26,28–32,40,56] - Readily available
- Non-intrusive

- Slow response time
- Affected by ventilation

- Smaller volume,
enclosed spaces

- Known activity
level

Volatile Organic Compounds
VOC [56]

- Can detect activity-
specific person
count

- Non-intrusive

- Very specific application - Kitchen areas

Smart meter data mining [58] - Uses existing
infrastructure

- Non-intrusive

- False negatives when
occupants are not using
electricity

- Residential

Illuminance [24,31] - Relatively low cost
- Readily available
- Non-intrusive

- Must be combined with
other sensors

- Ambient sensor
combination
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Acoustic [24,29–32] - Relatively low cost
- Readily available
- Less intrusive

- Must be combined with
other sensors

- Ambient sensor
combination

Appliance/lighting use [24,32,48–
51,56]

- Non-intrusive - Misses occupants/
activities not using
electricity

- Ambient sensor
combination

- Workplace
activity sensing

Temperature [29–31,59] - Relatively low cost
- Readily available
- Non-intrusive

- Must be combined with
other sensors

- Ambient sensor
combination

Door Open/Close Status [57] - Non-intrusive - Must be combined with
other sensors

- Ambient sensor
combination

Door Counter [46] - Non-intrusive - Can be skewed by multiple
people at once

- Public spaces
- Workplaces

Humidity [31,40] - Low cost
- Readily available
- Non-intrusive

- Must be combined with
other sensors

- Ambient sensor
combination

Cameras [26,27,44,53] - High level detail
possible

- Privacy concerns
- Heavy processing required

- Workplaces,
public places
with existing
CCTV

Radio Frequency tags [35–39] - High level detail
possible

- Privacy concerns
- Hardware must be carried

- Workplaces

Pressure Pads [42,47,49,52] - Can monitor
specific location
of interest

- Privacy concerns
- Intrusive installation

- Assisted
living,
domestic,
office

HVAC Actuation - Helps to account for
ventilation effects

- Relationship to occupancy
can be indirect

- Workplaces
- Existing HVAC

systems

Air pressure change [60] - Non-intrusive
- Can sense

movement between
spaces

- Relationship to occupancy
can be indirect

- Low occupancy
spaces

- Residential

Smart device tracking [41–44] - High level detail
possible

- Privacy concerns
- Hardware must be carried
- Assumes all occupants

have a device

- Workplaces
- Residential

4. Academic Research into Occupant-Centric Controls

The improvement of occupant-centric control in BEMS has also been subject to an increasing
level of academic interest in recent years. Studies have addressed a range of techniques and
complexity levels. The mechanism of response to occupant data can also be highly varied.
Following the convention established in existing reviews [61], occupant-centric controls have
been separated here into four broad categories: reactive response to occupancy in real-time,
control to individual occupant preference, control catered to individual behaviours or
activities and control based on the prediction of future occupancy/behaviours. It should be
noted that these categories are not mutually exclusive: several of the following studies use
multiple techniques for building control.
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4.1. Real-Time Response to Occupancy

The use of real-time response/reaction to building occupancy is well established in
commercial lighting control, with widespread use of PIR motion sensors to switch on/off
lighting. In the typical commercial system, lighting is switched on when motion is detected,
and switched off after a fixed time delay after the last motion event detected. While some
degree of improvement to current lighting control can be offered by optimising time delay
after occupancy detection [62], in open-plan spaces techniques to localise lighting only where
occupants are present may provide a greater impact [63,64]. Application of occupant data to
the control of other more energy-intensive systems has further potential for improvement
against current standards. In the domestic sector, products for occupancy-based appliance
power management are available [65], but commercial applications in multi-occupancy
spaces remain more complex. In application to electrical appliance control, some studies have
focussed on local motion sensing to detect presence close to appliances [66], while others
have used wearable Bluetooth tags to allow equipment reboot as owners approach [67]. Here,
it was concluded that a more detailed situational context was required for reliable appliance
control.

The control of building HVAC systems through BEMS is a rapidly developing field. Most
occupant-centric research focuses on commercial applications, making use of the prevalence
of existing commercial building sensing and automation hardware. Meyer and Rakotonirainy
provided an overview of context-aware home projects and their differences to commercial
applications [68]. In particular it was noted that commercial and home applications of
automation have different sets of priorities, with homes catered to comfort while commercial
systems focus on productivity. The focus on improving productivity while reducing energy is
particularly true for office environments. Here, research ranges from relatively simple CO2-
based estimation of number of people [69] to complex combination of multiple sensor types
[70] , often using machine learning techniques. For single-person office spaces, presence
detection through motion and door sensors can yield high accuracy and energy saving [71,72]
– a similar approach to that applied in single-occupant residential dorms [73]. A direct
comparison of control system complexities suggests that single-occupancy offices gain
significant benefit from simple presence or CO2 responsive HVAC control, with a smaller
marginal benefit seen from more complex strategies [74]. In more diverse spaces, more
complex control strategies have shown greater energy saving. For example, Wi-Fi-based
smartphone tracking has been implemented to detect occupants within a larger space [75]. In
a similar vein, wireless tags can be used to locate occupants in a multi-use office space,
demonstrating energy saving with localised heating control [76]. In particular, spaces with
highly variable use levels see a more significant improvement in energy use when accounting
for real-time occupancy levels in HVAC control [77].

Response-only controls have demonstrated a potential for energy saving across all kinds of
building automation. As simple response-based lighting control is already widely established,
reactive control of other systems (HVAC etc.) is arguably the closest occupant-centric
approach to wide scale commercial application. Reactive systems tend to follow more simple
logical rules than the other approaches described below, often requiring less computing
power to implement.

4.2. Control to Individual Occupant Preference

Some control applications benefit from input on the individual comfort level of users,
catering building conditioning to each person’s own preferences. Personalised lighting levels
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may be applied in a shared office space by recording lighting adjustments made by each
occupant [78]. More commonly, occupant preferences are applied to thermal systems.
Thermal comfort is highly subjective and thus preference data should allow much more
responsive HVAC systems, greater overall comfort and improved energy efficiency.
Quantification of user thermal preference has been achieved by: using personal devices to
locate users and perform periodic comfort surveys [79,80]; using a range of ambient sensors
to predict local comfort levels [81–83] or locate users while recording manual control
adjustments [84]; estimation of thermal comfort using skin temperature as detected by IR
cameras [85]; and RFID tagging and recording manual adjustments to building controls made
by each user [86,87], with the inclusion of PIR for greater accuracy of location sensing [88–
90]. Some of the above applications are highly specific to the type of space in which they are
implemented: the ambient-sensing project [84] used a range of sensors that are only
applicable to learn personal preferences in a residential context with a single main occupant.
By contrast, the work of Moreno-Cano et al. [88–90] is designed to be a generic platform
that can learn the requirements of each user in any type of space.

Controlling building systems to individual preference is shown to create issues with comfort
conflicts between individuals in multi-occupancy rooms. Further research may be required on
how best to balance conflicting comfort standards in a multi-occupancy space. A potential
avenue for further consideration is the distinction made between occupant groups with
tracked locations/preferences and unknown occupants detected by ambient sensors: some
consideration of this conflict is made in [87]. In general, application of preference-based
systems has shown consistent improvement in overall comfort levels, but the overall energy
saving varies depending on the building/occupancy type and on the preference of the
occupant(s).

4.3. Control to Individual Behaviours/Activity Types

This branch of occupant-centric control is based on the assumption that a users’
environmental requirements change depending on the activity taking place, or their specific
behaviours. Existing studies include optimisation of localised lighting through visual
detection of location and activities [91], desk lighting by combining sensor types to determine
space use [64], and desk-level lighting, electrical and HVAC control based on presence and
desktop computer use [92]. A domestic study has also been demonstrated, using IR cameras
and presence sensors to define activity types [93].

Activity-based control has seen limited academic study, likely due to issues with the accuracy
of activity detection and the availability of building systems that offer enough fine-grained
control. Activity detection can also be a highly specialised task, with the effectiveness of a
solution closely linked to the specific purpose, layout, and occupancy demographic of a
space. To be feasibly applied, it requires either high levels of assumption about potential
activities that may occur in a space, or extensive sensing that falls beyond the capability of
large-scale systems at the current time.

4.4. Control through Occupancy/Behaviour Prediction

This control method tries to predict the occupant-based context of a space in the near future
in order to pre-emptively condition the space to acceptable levels. In theory, this allows
spaces to drift further away from comfort conditions while not occupied, saving energy that
would have been used keeping a space to ‘standby’ comfort levels in a simpler control
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system. The most appropriate ‘prediction horizon’, or the amount of time into the future for
which predictions are made, is dependent on the type of system to be controlled.

For fast-response controls, such as lighting or appliance management, the prediction horizon
is typically in the order of minutes [94], or designed to predict the next action in a sequence.
This form of prediction is useful for the control of power supply to household appliances,
lighting etc. as in the Adaptive House [95,96] and MavHome [97,98] projects, where the
environment around a user detected and recorded typical sequences of actions during use of
the home. The system then attempted to automate the more common sequences.

For slower-response systems like HVAC control, predictions of occupancy must run over a
longer time horizon. This requires the construction of a model of occupant behaviour from
extended observation of a space, typically based on an appropriate machine learning method.
The majority of such models use supervised machine learning, where the model is trained on
data that is labelled with the correct outcome. Supervised models can be trained using a
single batch of labelled training data: Mamidi et al. [99,100] and Howard et al. [101]
developed prediction up to 90 minutes in the future using a combination of environmental
sensors to define the current occupant state; while Erickson et al. [102–104] experimented
with several trained methods before arriving at a system that saved 30% energy use in testing.
Alternatively, models can be trained online, re-training periodically and gradually increasing
accuracy during operation. For example, re-training with weighting on newer data to account
for changes in building use over time [105] or continually adding new observations of
presence duration to the pool of historic data used for direct similarity comparison [106] or
stochastic estimation [107]. Another alternative is to build models using rules and structures
that do not need to be explicitly trained with labelled data, including: inferred event
sequences from ambient sensor data used to predict occupancy duration [108]; event
sequences with office calendar data, weather data and a physical model of the building [109];
automatically generated daily profile matching [110], and implicit prediction of occupancy
directly from thermal measurements [111]. The use of occupancy data to predict internal
gains over the long term (up to 60 hours) for the purpose of optimising HVAC suggests that
energy can be saved without making changes to set points when a room is vacant [112].

While many studies show the benefits of occupancy prediction in appropriate applications,
there is some debate about the value of including complex predictive control over simple
real-time reaction. Oldewurtel et al. tested the benefit of prediction over real-time reactive
control by simulation of a single-occupant office environment [113] [114], with the
conclusion that predictive control did not provide a significant benefit above reactive control.
Along similar lines, Goyal et al. tested several HVAC control methods, including fixed
schedules, reaction and prediction through simulation [115] and experimentation [116] for a
small office space. Prediction did not show large improvement over the energy savings made
by reaction only. It should be noted that in the above studies, the tested spaces are generally
small and are not expected to have many occupants. Other studies have noted that spaces
such as this, which can be conditioned quickly to comfort conditions, are not ideal candidates
for predictive control [83] [117]. In spaces with slower response times, it has been shown that
effective preconditioning of the space can yield significant energy savings [118].

4.5. Discussion

Due to the wide range of building types and control methods cited above, it is difficult to
directly compare the energy saving made by different studies. Figure 4-2 provides a broad
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summary of the studies reviewed. It can be seen that the highest percentage energy savings
were observed in predictive approaches, although variation between separate studies is high.

In research that directly compares different strategies in the same building, it appears that the
greatest overall energy savings can be achieved with controls that combine real-time reactive
and future-predictive approaches to optimise conditioning of a space, shown in Figure 4-1.
However, there is debate on whether the benefits of predictive control justify the significant
increase in complexity and computing power required over purely reactive control. In
general, the value of predicting behaviours over real-time response depends on the
application – most prediction models are applied to HVAC operation, as this typically has the
slowest response of any building system and so can benefit the most from early warning of
demand changes. By extension, factors that extend the typical response time of HVAC
systems to changing demand are likely to increase the potential benefit of a predictive control
approach. These factors include: spaces with larger open-plan footprints, higher thermal
mass, sudden large changes in occupancy and highly intermittent space use. To the authors’
knowledge, no study has yet systematically quantified the benefit of occupancy-predictive
control in such circumstances, highlighting a potential gap for future research.

Figure 4-1 - Energy Saving Simulated in Comparison of Reactive/Predictive Strategies [115]

An attribute common to most cited studies is that the control is often tested through
simulation, rather than deployment in a real building. Given that there are many identified
issues with current simulation technology, there would be significant worth in testing systems
by implementation in real-life buildings where possible. Practical application, however, is
often limited by physical space use and hardware cost restraints. This suggests that systems
making opportunistic use of existing infrastructure – through existing building systems or
personal device use [75] – have the potential for wider uptake and so may be more viable for
commercial application.

A further factor common to all strategies discussed in this section is the reliance on some
degree of manual judgement: on what occupancy information is needed to make relevant
control decisions, what control decision is appropriate at a given threshold of occupancy
change, or the criteria to assess the impact of a control action. While this is not always a
drawback, it highlights one of the major challenges of integrating occupant data into control
systems. It is impossible to limit all sources of uncertainty when collecting data, applying
control logic and assessing its effects. The assumptions and thresholds applied in practice
therefore shape the capability of the control system to handle the full range of realistic human
responses. For example, activity-based controls often employ manual identification of
relevant categories of activity: where in-use behaviours fall outside of these pre-set bounds, a
less robust system will fail to provide an appropriate control action. Where the success of a
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strategy is assessed only on its energy benefit, a decrease in occupant comfort or changing of
occupant behaviour may be missed. The challenge therefore lies in making judgements that
allow systems to be robust to unanticipated behaviours and outcomes.

Figure 4-2 - Summary of Studies into Occupant-Centric Building Controls
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Garg & Bansal [62] ♦ ♦ ♦ 25%
Labeodan et al. [63] ♦ ♦ ♦ ♦ 24%
Park et al. [66] ♦ ♦ ♦ ≤ 21%
Harris & Cahill [67] ♦ ♦ ♦ Not reported
Batra et al. [73] ♦ ♦ ♦ Not reported
Sun et al. [69] ♦ ♦ ♦ ≤ 56%
Agarwal et al. [71] ♦ ♦ ♦ 10-15%
Agarwal et al. [75] ♦ ♦ ♦ 17.8%
Zeiler et al. [76] ♦ ♦ ♦ 30-45%
Rosiek and Batlles [77] ♦ ♦ ♦ 42%
Gruber et al. [74] ♦ ♦ ♦ 6-39%
Yang et al. [70] ♦ ♦ ♦ 18-20%
Singhvi et al. [78] ♦ ♦ ♦ Not reported
Zhao et al. [81] ♦ ♦ ♦ 44%*
Kolokotsa et al. [82] ♦ ♦ ♦ ♦ ♦ Not reported
Gao & Keshav [83] ♦ ♦ ♦ ♦ ♦ Not reported
Jazizadeh et al. [80] ♦ ♦ ♦ ♦ 26-39%
Yong et al. [79] ♦ ♦ ♦ ♦ Not reported
Hagras et al. [84] ♦ ♦ ♦ ♦ Not reported
Chen et al. [86] ♦ ♦ ♦ ♦ Not reported
Moreno-Cano et al. [88–90] ♦ ♦ ♦ ♦ ♦ 20%
Yeh et al. [87] ♦ ♦ ♦ ♦ ♦ 16.5-46.9%
Vissers and Zeiler [85] ♦ ♦ ♦ ♦ ♦ <17%
Lee et al. [91] ♦ ♦ ♦ ♦ Not reported
Xu et al. [64] ♦ ♦ ♦ ♦ ≤ 34%
Milenkovic & Amft [92] ♦ ♦ ♦ ♦ ♦ 21.9%
Pallotta et al. [93] ♦ ♦ ♦ ♦ Not reported
Harle & Hopper [94] ♦ ♦ ♦ ♦ 50%
Mozer [95,96] ♦ ♦ ♦ Not reported
Cook et al. [97] ♦ ♦ ♦ ♦ ♦ Not reported
Mamidi et al. [99,100] ♦ ♦ ♦ Not reported
Howard & Hoff [101] ♦ ♦ Not reported
Dong et al. [108,109] ♦ ♦ ♦ 18-30%
Dobbs and Hencey [105] ♦ ♦ ♦ 8%
Peng et al. [106] ♦ ♦ ♦ 20.3%
Gunay et al. [107] ♦ ♦ ♦ 10-15%
Aswani et al. [111] ♦ ♦ ♦ 30-70%
Barbato et al. [110] ♦ ♦ ♦ ≤ 28%
Erickson et al. [102–104] ♦ ♦ ♦ ≤ 42%
Zhang et al. [112] ♦ ♦ ♦ Not reported
Oldewurtel et al. [113] [114] ♦ ♦ ♦ ≤ 34%*
Goyal et al. [115,116] ♦ ♦ ♦ ≤ 56-61%*
*Simulated result of ideal prediction

5. Conclusions

The observable gap between designed and actual energy performance across a range of
building types highlights the need for more complex and responsive building controls,
catered to real-time measurable building occupant energy demand. A range of studies have
confirmed that occupants significantly affect the energy requirements of a building through
varying use patterns and energy-related behaviours. However, the majority of current
building control systems are not suited to the task of occupant-responsive control.
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Relatively simple schedule-based systems remain the most common commercial building
controls. In such systems, the building conditions are maintained to a steady level throughout
the scheduled period, with no regard to the actual use of the building by occupants. Control
sensing and actuation hardware is often not localised enough to cater to the needs of
individuals or occupants of a particular sub-zone within a larger building. However, trends in
the availability of increasingly affordable, easily installed wireless technologies and industry
interest in more comprehensive control software suites suggest that more complex,
responsive systems will become more commonplace in the future. Recent trends in the
availability of home automation suites show an increased responsiveness to occupancy
patterns, allowing a centralised control hub to integrate with smartphone location services,
remote access and self-learning algorithms for automated scheduling. It can be expected that
such occupant-centred technologies will also see wider integration into complex commercial
controls in the future, although the increased complexity of larger and more diverse building
populations presents a range of further barriers to commercial uptake.

The concept of ‘occupant data’ can cover a wide range of detail and disaggregation levels.
This complicates the study of how to optimise data collection methods, as often the qualities
of occupancy data required depend entirely on the intended application. Studies were divided
into three broad categories: the detection of occupant presence/numbers, locationing and the
detection of specific activities. While a wide range of sensor technologies were tested across
different works, a general trend was observed towards a trade-off between the level of detail
in the data collected and the expected accuracy of results. Studies aiming to parse presence
data within smaller spaces typically found simpler systems of motion sensors or CO2

concentration to be sufficient, while full 3D location or activity detection required more
computationally intensive processes, often involving the combination of multiple sensor
types in trained models. The success of technologies relying on physical properties of the
observed space were found to vary across studies, suggesting that generic application of the
same sensing systems across diverse building types may not be feasible. Most importantly,
perhaps, is the data collection must be robust in order to provide benefit: the BEMS value of
occupant data is provided in parsing information that is actionable for building controls. For
example, if an occupant system has no way to detect a sub-section of building occupants –
whether occupants standing outside motion sensor range or building visitors who do not carry
location tags – poor control choices could be made when this sub-section is present and not
detected. The combination of multiple approaches can help to decrease these robustness
issues.

In the application of detection systems to building controls, the range of applications can be
broadly described by: real-time response, occupant preference, activity response, and future
prediction. Academic trials of these systems show great variability depending on application,
but generally the more complex systems such as prediction can achieve the greatest potential
energy saving, at the cost of greater computational requirements. This appeared to be true for
slower response systems in particular, although it was noted that the breadth of studies did
not directly account for these factors. Given how application-dependent energy savings are
across the range of studies presented in this work, it is proposed that a framework for more
systematic treatment and categorisation of applications would allow for a richer cross-
assessment of the benefits and drawbacks of different occupant-centred control strategies. In
order for this to be effective, it would also be necessary for a wider range of strategies to be
tested in live buildings rather than through simulation. The opportunistic use of existing data
collection hardware, in particular the increasing amount of data collected through widespread
smartphone use across many populations, may allow for wider application of occupant-
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centred testing. In order to move forward in the field of occupant-centred energy
management, a further major challenge is the robustness of design strategies to unanticipated
occupant behaviours. It is impossible to limit all sources of uncertainty when collecting data,
applying control logic and assessing its effects. The assumptions and thresholds applied in
practice therefore shape the capability of the control system to handle the full range of
realistic human responses.

It is clear that the field of Building Energy Management/Control is evolving, and that
increased use of intelligence in control systems has become viable as the cost of such
technologies decreases. As technologies emerge to allow for more accurate and detailed
occupant data collection, control systems will continue to develop. The authors are
developing works on the application of smart device Wi-Fi and Bluetooth detection to
reactive/predictive office energy management/control.

6. Acknowledgements

This work was supported by the EPSRC and Laing O’Rourke as part of a PhD programme at
the University of Nottingham, UK.

7. References

[1] Whiffen TR, Naylor S, Hill J, Smith L, Callan PA, Gillott M, et al. A concept review of
power line communication in building energy management systems for the small to
medium sized non-domestic built environment. Renew Sustain Energy Rev 2016.

[2] Menezes AC, Cripps A, Bouchlaghem D, Buswell R. Predicted vs. actual energy
performance of non-domestic buildings: Using post-occupancy evaluation data to
reduce the performance gap. Appl Energy 2012;97:355–64.
doi:10.1016/j.apenergy.2011.11.075.

[3] CarbonBuzz. Summary of Audits Performed on CarbonBuzz by the UCL Energy
Institute 2013. http://www.carbonbuzz.org/downloads/PerformanceGap.pdf (accessed
May 6, 2014).

[4] Eguaras-Martínez M, Vidaurre-Arbizu M, Martín-Gómez C. Simulation and evaluation
of Building Information Modeling in a real pilot site. Appl Energy 2014;114:475–84.
doi:10.1016/j.apenergy.2013.09.047.

[5] Clevenger CM, Haymaker J. The impact of the building occupant on energy modeling
simulations. Jt. Int. Conf. Comput. Decis. Mak. Civ. Build. Eng. Montr. Can., Citeseer;
2006, p. 1–10.

[6] Yu Z, Fung BCM, Haghighat F, Yoshino H, Morofsky E. A systematic procedure to
study the influence of occupant behavior on building energy consumption. Energy Build
2011;43:1409–17. doi:10.1016/j.enbuild.2011.02.002.

[7] Yohanis YG, Mondol JD, Wright A, Norton B. Real-life energy use in the UK: How
occupancy and dwelling characteristics affect domestic electricity use. Energy Build
2008;40:1053–9. doi:10.1016/j.enbuild.2007.09.001.

[8] Martani C, Lee D, Robinson P, Britter R, Ratti C. ENERNET: Studying the dynamic
relationship between building occupancy and energy consumption. Energy Build
2012;47:584–91. doi:10.1016/j.enbuild.2011.12.037.

[9] Masoso OT, Grobler LJ. The dark side of occupants’ behaviour on building energy use.
Energy Build 2010;42:173–7. doi:10.1016/j.enbuild.2009.08.009.

[10] Lowe R, Oreszczyn T. Regulatory standards and barriers to improved performance for
housing. Energy Policy 2008;36:4475–81. doi:10.1016/j.enpol.2008.09.024.



15

[11] SEAI - Building Energy Management Systems (BEMS) n.d.
http://www.seai.ie/Your_Business/Technology/Buildings/Building_Energy_Manageme
nt_Systems_BEMS_.html (accessed January 20, 2014).

[12] Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim T. A review on
optimized control systems for building energy and comfort management of smart
sustainable buildings. Renew Sustain Energy Rev 2014;34:409–29.
doi:10.1016/j.rser.2014.03.027.

[13] Carbon Trust. Building controls: Realising savings through the use of controls. 2007.
[14] Escrivá-Escrivá G, Álvarez-Bel C, Peñalvo-López E. New indices to assess building

energy efficiency at the use stage. Energy Build 2011;43:476–84.
doi:10.1016/j.enbuild.2010.10.012.

[15] Fox JP, Wheelock C. Executive Summary: Building Energy Management Systems -
Enabling Systems for Energy Efficiency, Demand Response, Energy Management, and
Facility Automation in Commercial Buildings. Pike Research; 2010.

[16] Best Home Automation UK 2016 - A Detailed Comparison n.d.
http://www.appcessories.co.uk/best-home-automation-uk-system/ (accessed March 7,
2016).

[17] Hive Thermostat & Heating Control App | Hive Active Heating n.d.
https://www.hivehome.com/hive-active-heating (accessed October 30, 2015).

[18] Meet the Nest Thermostat. Nest n.d. https://nest.com/uk/thermostat/meet-nest-
thermostat/ (accessed October 30, 2015).

[19] Heat Genius Products and Services: Heating App, Smart Thermostats n.d.
https://www.heatgenius.co.uk/products/ (accessed October 30, 2015).

[20] For Heating & Air Conditioning – Intelligent Climate Control. Tado° n.d.
https://www.tado.com/gb (accessed October 30, 2015).

[21] evohome - Honeywell UK Heating Controls n.d.
http://www.honeywelluk.com/products/Underfloor-Heating/evohome-Main/ (accessed
October 30, 2015).

[22] Martin J. Nest’s latest thermostat can control your hot water as well as your heating.
Tech Advis 2017. http://www.techadvisor.co.uk/review/smart-thermostats/nest-
thermostat-review-3rd-gen-3543915/ (accessed September 24, 2017).

[23] Naghiyev E, Gillott M, Wilson R. Three unobtrusive domestic occupancy measurement
technologies under qualitative review. Energy Build 2014;69:507–14.
doi:10.1016/j.enbuild.2013.11.033.

[24] Hailemariam E, Goldstein R, Attar R, Khan A. Real-time occupancy detection using
decision trees with multiple sensor types. Proc. 2011 Symp. Simul. Archit. Urban Des.,
2011, p. 141–148.

[25] Yu T. Modeling Occupancy Behavior for Energy Efficiency and Occupants Comfort
Management in Intelligent Buildings, IEEE; 2010, p. 726–31.
doi:10.1109/ICMLA.2010.111.

[26] Meyn S, Surana A, Lin Y, Oggianu SM, Narayanan S, Frewen TA. A sensor-utility-
network method for estimation of occupancy distribution in buildings. Decis. Control
2009 Held Jointly 2009 28th Chin. Control Conf. CDCCCC 2009 Proc. 48th IEEE
Conf. On, 2009, p. 1494–1500.

[27] İçoğlu O, Mahdavi A. VIOLAS: A vision-based sensing system for sentient building 
models. Autom Constr 2007;16:685–712. doi:10.1016/j.autcon.2006.11.007.

[28] Ebadat A, Bottegal G, Varagnolo D, Wahlberg B, Johansson KH. Estimation of building
occupancy levels through environmental signals deconvolution, ACM Press; 2013, p. 1–
8. doi:10.1145/2528282.2528290.



16

[29] Dong B, Andrews B, Lam KP, Höynck M, Zhang R, Chiou Y-S, et al. An information
technology enabled sustainability test-bed (ITEST) for occupancy detection through an
environmental sensing network. Energy Build 2010;42:1038–46.
doi:10.1016/j.enbuild.2010.01.016.

[30] Lam KP, Hoynck M, Zhang R, Andrews B, Chiou Y-S, Dong B, et al. Information-
theoretic environmental features selection for occupancy detection in open offices. Elev.
Int. IBPSA Conf. Ed. PA Strachan NJ Kelly M Kummert, 2009, p. 1460–1467.

[31] Yang Z, Li N, Becerik-Gerber B, Orosz M. A multi-sensor based occupancy estimation
model for supporting demand driven HVAC operations. Proc. 2012 Symp. Simul.
Archit. Urban Des., 2012, p. 2.

[32] Ekwevugbe T, Brown N, Pakka V, Fan D. Improved occupancy monitoring in non-
domestic buildings. Sustain Cities Soc 2017;30:97–107. doi:10.1016/j.scs.2017.01.003.

[33] Curran K, Furey E, Lunney T, Santos J, Woods D, Mc Caughey A. An Evaluation of
Indoor Location Determination Technologies. J Locat Based Serv 2011;5:61–78.

[34] Misra A, Das SK. Location Estimation (Determination and Prediction) Techniques in
Smart Environments. Smart Environ. Technol. Protoc. Appl., Hoboken, NJ, USA: John
Wiley & Sons, Incorporated; 2004, p. 193–228.

[35] Li N, Calis G, Becerik-Gerber B. Measuring and monitoring occupancy with an RFID
based system for demand-driven HVAC operations. Autom Constr 2012;24:89–99.
doi:10.1016/j.autcon.2012.02.013.

[36] Zhen Z-N, Jia Q-S, Song C, Guan X. An indoor localization algorithm for lighting
control using RFID. Energy 2030 Conf. 2008 ENERGY 2008 IEEE, 2008, p. 1–6.

[37] Spataru C, Gillott M. The use of intelligent systems for monitoring energy use and
occupancy in existing homes. Sustain. Energy Build., Springer; 2011, p. 247–256.

[38] Spataru C, Gillott M, Hall MR. Domestic energy and occupancy: a novel post-
occupancy evaluation study. Int J Low-Carbon Technol 2010;5:148–57.
doi:10.1093/ijlct/ctq020.

[39] Shipman R, Gillott M. A Study of the Use of Wireless Behavior Systems to Encourage
Energy Efficiency in Domestic Properties, Hong Kong: 2013.

[40] Dodier RH, Henze GP, Tiller DK, Guo X. Building occupancy detection through sensor
belief networks. Energy Build 2006;38:1033–43. doi:10.1016/j.enbuild.2005.12.001.

[41] Hay S, Harle R. Bluetooth tracking without discoverability. Locat. Context Aware.,
Springer; 2009, p. 120–137.

[42] Zhao Y, Zeiler W, Boxem G, Labeodan T. Virtual occupancy sensors for real-time
occupancy information in buildings. Build Environ 2015;93:9–20.
doi:10.1016/j.buildenv.2015.06.019.

[43] Jun J, Cheng L, Sun J, Gu Y, Zhu T, He T. Improving Indoor Localization with Social
Interactions. Proc. 10th ACM Conf. Embed. Netw. Sens. Syst., New York, NY, USA:
ACM; 2012, p. 323–324. doi:10.1145/2426656.2426689.

[44] Lee D, Oh S. Understanding human-place interaction from tracking and identification of
many users. Cyber-Phys. Syst. Netw. Appl. CPSNA 2013 IEEE 1st Int. Conf. On, 2013,
p. 112–115.

[45] Bruckner D, Velik R. Behavior Learning in Dwelling Environments With Hidden
Markov Models. IEEE Trans Ind Electron 2010;57:3653–60.
doi:10.1109/TIE.2010.2045992.

[46] Zhao ZB, Xu WS, Cheng DZ. User behavior detection framework based on NBP for
energy efficiency. Autom Constr 2012;26:69–76. doi:10.1016/j.autcon.2012.04.001.

[47] Nguyen TA, Aiello M. Beyond Indoor Presence Monitoring with Simple Sensors.
PECCS, 2012, p. 5–14.



17

[48] Sebbak F, Chibani A, Amirat Y, Mokhtari A, Benhammadi F. An evidential fusion
approach for activity recognition in ambient intelligence environments. Robot Auton
Syst 2013;61:1235–45. doi:10.1016/j.robot.2013.05.010.

[49] Ortega JLG, Han L, Whittacker N, Bowring N. A machine-learning based approach to
model user occupancy and activity patterns for energy saving in buildings. Sci. Inf.
Conf. SAI 2015, 2015, p. 474–82. doi:10.1109/SAI.2015.7237185.

[50] Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, et al. Inferring
activities from interactions with objects. IEEE Pervasive Comput 2004;3:50–7.
doi:10.1109/MPRV.2004.7.

[51] Gonzalez LIL, Troost M, Amft O. Using a Thermopile Matrix Sensor to Recognize
Energy-related Activities in Offices. Procedia Comput Sci 2013;19:678–85.
doi:10.1016/j.procs.2013.06.090.

[52] Fernandez-Luque FJ, Martínez F, Domènech G, Zapata J, Ruiz R. EMFi-based low-
power occupancy sensor. Sens Actuators Phys 2013;191:78–88.
doi:10.1016/j.sna.2012.11.027.

[53] Benezeth Y, Laurent H, Emile B, Rosenberger C. Towards a sensor for detecting human
presence and characterizing activity. Energy Build 2011;43:305–14.
doi:10.1016/j.enbuild.2010.09.014.

[54] Kazmi AH, O’grady MJ, Delaney DT, Ruzzelli AG, O’hare GMP. A Review of
Wireless-Sensor-Network-Enabled Building Energy Management Systems. ACM Trans
Sen Netw 2014;10:66:1–66:43. doi:10.1145/2532644.

[55] Deloitte. State of the smart: Consumer and business usage patterns, Global Mobile
Consumer Survey 2017: The UK cut. 2017.

[56] Ekwevugbe T, Brown N, Fan D. Using indoor climatic measurements for occupancy
monitoring 2012.

[57] Mahmoud S, Lotfi A, Langensiepen C. Behavioural pattern identification and prediction
in intelligent environments. Appl Soft Comput 2013;13:1813–22.
doi:10.1016/j.asoc.2012.12.012.

[58] Chen D, Barker S, Subbaswamy A, Irwin D, Shenoy P. Non-Intrusive Occupancy
Monitoring using Smart Meters, ACM Press; 2013, p. 1–8.
doi:10.1145/2528282.2528294.

[59] Georgescu M, Mezic I. Estimating Occupancy States from Building Temperature Data
using Wavelet Analysis. BS2013, Le Bourget Du Lac, France: 2013.

[60] Patel SN, Reynolds MS, Abowd GD. Detecting Human Movement by Differential Air
Pressure Sensing in HVAC System Ductwork: An Exploration in Infrastructure
Mediated Sensing. In: Indulska J, Patterson DJ, Rodden T, Ott M, editors. Pervasive
Comput., Springer Berlin Heidelberg; 2008, p. 1–18.

[61] Nguyen TA, Aiello M. Energy intelligent buildings based on user activity: A survey.
Energy Build 2013;56:244–57. doi:10.1016/j.enbuild.2012.09.005.

[62] Garg V, Bansal NK. Smart occupancy sensors to reduce energy consumption. Energy
Build 2000;32:81–87.

[63] Labeodan T, De Bakker C, Rosemann A, Zeiler W. On the application of wireless
sensors and actuators network in existing buildings for occupancy detection and
occupancy-driven lighting control. Energy Build 2016;127:75–83.
doi:10.1016/j.enbuild.2016.05.077.

[64] Xu Y, Stojanovic N, Stojanovic L, Anicic D, Studer R. An approach for more efficient
energy consumption based on real-time situational awareness. Semanic Web Res. Appl.,
Springer; 2011, p. 270–284.

[65] energyEGG n.d. http://energy-egg.com/our-story/ (accessed June 5, 2014).



18

[66] Park S, Choi M, Kang B, Park S. Design and Implementation of Smart Energy
Management System for Reducing Power Consumption Using ZigBee Wireless
Communication Module. Procedia Comput Sci 2013;19:662–8.
doi:10.1016/j.procs.2013.06.088.

[67] Harris C, Cahill V. Exploiting user behaviour for context-aware power management.
Wirel. Mob. Comput. Netw. Commun. 2005WiMob2005 IEEE Int. Conf. On, vol. 4,
2005, p. 122–130.

[68] Meyer S, Rakotonirainy A. A survey of research on context-aware homes. Proc.
Australas. Inf. Secur. Workshop Conf. ACSW Front. 2003-Vol. 21, 2003, p. 159–168.

[69] Sun Z, Wang S, Ma Z. In-situ implementation and validation of a CO2-based adaptive
demand-controlled ventilation strategy in a multi-zone office building. Build Environ
2011;46:124–33. doi:10.1016/j.buildenv.2010.07.008.

[70] Yang Z, Li N, Becerik-Gerber B, Orosz M. A systematic approach to occupancy
modeling in ambient sensor–rich buildings. Simulation 2013;90:960–77.
doi:10.1177/0037549713489918.

[71] Agarwal Y, Balaji B, Gupta R, Lyles J, Wei M, Weng T. Occupancy-driven energy
management for smart building automation. Proc. 2nd ACM Workshop Embed. Sens.
Syst. Energy-Effic. Build., 2010, p. 1–6.

[72] Agarwal Y, Balaji B, Dutta S, Gupta RK, Weng T. Duty-cycling buildings aggressively:
The next frontier in HVAC control. 2011 10th Int. Conf. Inf. Process. Sens. Netw.
IPSN, 2011, p. 246–57.

[73] Batra N, Arjunan P, Singh A, Singh P. Experiences with Occupancy Based Building
Management Systems 2013.

[74] Gruber M, Trüschel A, Dalenbäck J-O. Alternative strategies for supply air temperature
control in office buildings. Energy Build n.d. doi:10.1016/j.enbuild.2014.06.056.

[75] Balaji B, Xu J, Nwokafor A, Gupta R, Agarwal Y. Sentinel: occupancy based HVAC
actuation using existing WiFi infrastructure within commercial buildings. Proc. 11th
ACM Conf. Embed. Netwroked Sens. Syst., 2013.

[76] Zeiler W, Boxem G, Maaijen R. Wireless Sensor Technology to Optimize the
Occupant’s Dynamic Demand Pattern within the Building 2012.

[77] Rosiek S, Batlles FJ. Reducing a solar-assisted air-conditioning system’s energy
consumption by applying real-time occupancy sensors and chilled water storage tanks
throughout the summer: A case study. Energy Convers Manag 2013;76:1029–42.
doi:10.1016/j.enconman.2013.08.060.

[78] Singhvi V, Krause A, Guestrin C, Garrett Jr JH, Matthews HS. Intelligent light control
using sensor networks. Proc. 3rd Int. Conf. Embed. Networked Sens. Syst., 2005, p.
218–229.

[79] Yong CY, Qiao B, Wilson DJ, Wu M, Clements-Croome D, Liu K, et al. Co-ordinated
management of intelligent pervasive spaces. Ind. Inform. 2007 5th IEEE Int. Conf. On,
vol. 1, 2007, p. 529–534.

[80] Jazizadeh F, Ghahramani A, Becerik-Gerber B, Kichkaylo T, Orosz M. User-led
decentralized thermal comfort driven HVAC operations for improved efficiency in
office buildings. Energy Build 2014;70:398–410. doi:10.1016/j.enbuild.2013.11.066.

[81] Zhao J, Lam KP, Ydstie BE, Loftness V. Occupant-oriented mixed-mode EnergyPlus
predictive control simulation. Energy Build n.d. doi:10.1016/j.enbuild.2015.09.027.

[82] Kolokotsa D, Saridakis G, Pouliezos A, Stavrakakis GS. Design and installation of an
advanced EIB TM fuzzy indoor comfort controller using Matlab TM. Energy Build
2006;38:1084–92. doi:10.1016/j.enbuild.2005.12.007.

[83] Gao PX, Keshav S. SPOT: a smart personalized office thermal control system. Proc.
Fourth Int. Conf. Future Energy Syst., 2013, p. 237–246.



19

[84] Hagras H, Callaghan V, Colley M, Clarke G, Pounds-Cornish A, Duman H. Creating an
ambient-intelligence environment using embedded agents. Intell Syst IEEE 2004;19:12–
20.

[85] Vissers D, Zeiler W. The User as Sensor to Reach for Optimal Individual Comfort and
Reduced Energy Consumption. Oppor. Limits Needs Environ. Responsible Archit.,
Lima , Perú: 2012.

[86] Chen H, Chou P, Duri S, Lei H, Reason J. The Design and Implementation of a Smart
Building Control System, IEEE; 2009, p. 255–62. doi:10.1109/ICEBE.2009.42.

[87] Yeh L-W, Wang Y-C, Tseng Y-C. iPower: an energy conservation system for intelligent
buildings by wireless sensor networks. Int J Sens Netw 2009;5:1–10.
doi:10.1504/IJSNet.2009.023311.

[88] Moreno MV, Zamora MA, Skarmeta AF. User-centric smart buildings for energy
sustainable smart cities. Trans Emerg Telecommun Technol 2013:n/a–n/a.
doi:10.1002/ett.2771.

[89] Moreno-Cano MV, Santa J, Zamora MA, Gómez AFS. Context-Aware Energy
Efficiency in Smart Buildings. Ubiquitous Comput. Ambient Intell. Context-Aware.
Context-Driven Interact., Springer; 2013, p. 1–8.

[90] Moreno-Cano MV, Zamora-Izquierdo MA, Santa J, Skarmeta AF. An Indoor
Localization System Based on Artificial Neural Networks and Particle Filters Applied to
Intelligent Buildings. Neurocomput 2013;122:116–125.
doi:10.1016/j.neucom.2013.01.045.

[91] Lee H, Wu C, Aghajan H. Vision-based user-centric light control for smart
environments. Pervasive Mob Comput 2011;7:223–40. doi:10.1016/j.pmcj.2010.08.003.

[92] Milenkovic M, Amft O. An opportunistic activity-sensing approach to save energy in
office buildings. Proc. Fourth Int. Conf. Future Energy Syst., 2013, p. 247–258.

[93] Pallotta V, Bruegger P, Hirsbrunner B. Smart heating systems: Optimizing heating
systems by kinetic-awareness. Third Int. Conf. Digit. Inf. Manag. 2008 ICDIM 2008,
2008, p. 887–92. doi:10.1109/ICDIM.2008.4746833.

[94] Harle RK, Hopper A. The potential for location-aware power management. Proc. 10th
Int. Conf. Ubiquitous Comput., 2008, p. 302–311.

[95] The adaptive house n.d.
http://www.cs.colorado.edu/~mozer/index.php?dir=/Research/Projects/Adaptive%20hou
se/ (accessed January 14, 2014).

[96] Mozer MC. Lessons from an adaptive home. Smart Environ. Technol. Protoc. Appl.,
Hoboken, NJ, USA: John Wiley & Sons, Incorporated; 2004, p. 273–98.

[97] Cook DJ, Youngblood M, Heierman, E.O. I, Gopalratnam K, Rao S, Litvin A, et al.
MavHome: an agent-based smart home. Proc. First IEEE Int. Conf. Pervasive Comput.
Commun. 2003 PerCom 2003, 2003, p. 521–4. doi:10.1109/PERCOM.2003.1192783.

[98] Cook DJ, Youngblood GM, Jain G. Algorithms for smart spaces. Eng Handb Smart
Technol Aging Dissablity Independence Wiley 2008:783–800.

[99] Mamidi S, Chang Y-H, Maheswaran R. Smart Sensing, Estimation, and Prediction for
Efficient Building Energy Management. Multi-Agent Smart Comput. Workshop, 2011.

[100] Mamidi S, Chang Y-H, Maheswaran R. Improving Building Energy Efficiency with a
Network of Sensing, Learning and Prediction Agents. Proc. 11th Int. Conf. Auton.
Agents Multiagent Syst. - Vol. 1, Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems; 2012, p. 45–52.

[101] Howard J, Hoff W. Forecasting building occupancy using sensor network data. Proc.
2nd Int. Workshop Big Data Streams Heterog. Source Min. Algorithms Syst. Program.
Models Appl., 2013, p. 87–94.



20

[102] Erickson VL, Lin Y, Kamthe A, Brahme R, Surana A, Cerpa AE, et al. Energy
efficient building environment control strategies using real-time occupancy
measurements. Proc. First ACM Workshop Embed. Sens. Syst. Energy-Effic. Build.,
2009, p. 19–24.

[103] Erickson VL, Carreira-Perpinan MA, Cerpa AE. OBSERVE: Occupancy-based
system for efficient reduction of HVAC energy. Inf. Process. Sens. Netw. IPSN 2011
10th Int. Conf. On, 2011, p. 258–269.

[104] Erickson VL, Achleitner S, Cerpa AE. POEM: power-efficient occupancy-based
energy management system. Proc. 12th Int. Conf. Inf. Process. Sens. Netw., 2013, p.
203–216.

[105] Dobbs JR, Hencey BM. Model Predictive HVAC Control with Online Occupancy
Model. ArXiv14034662 Cs 2014.

[106] Peng Y, Rysanek A, Nagy Z, Schlüter A. Occupancy learning-based demand-driven
cooling control for office spaces. Build Environ 2017;122:145–60.
doi:10.1016/j.buildenv.2017.06.010.

[107] Burak Gunay H, O’Brien W, Beausoleil-Morrison I. Development of an occupancy
learning algorithm for terminal heating and cooling units. Build Environ 2015;93, Part
2:71–85. doi:10.1016/j.buildenv.2015.06.009.

[108] Dong B, Andrews B. Sensor-based occupancy behavioral pattern recognition for
energy and comfort management in intelligent buildings. Proc Int IBPSA Conf, 2009.

[109] Dong B, Lam KP. A real-time model predictive control for building heating and
cooling systems based on the occupancy behavior pattern detection and local weather
forecasting. Build Simul 2013;7:89–106. doi:10.1007/s12273-013-0142-7.

[110] Barbato A, Borsani L, Capone A, Melzi S. Home energy saving through a user
profiling system based on wireless sensors. Proc. First ACM Workshop Embed. Sens.
Syst. Energy-Effic. Build., 2009, p. 49–54.

[111] Aswani A, Master N, Taneja J, Krioukov A, Culler D, Tomlin C. Energy-efficient
building hvac control using hybrid system lbmpc. ArXiv Prepr ArXiv12044717 2012.

[112] Zhang X, Schildbach G, Sturzenegger D, Morari M. Scenario-based MPC for energy-
efficient building climate control under weather and occupancy uncertainty. Control
Conf. ECC 2013 Eur., 2013, p. 1029–1034.

[113] Oldewurtel F, Sturzenegger D, Morari M. Importance of occupancy information for
building climate control. Appl Energy 2013;101:521–32.
doi:10.1016/j.apenergy.2012.06.014.

[114] Sturzenegger D, Oldewurtel F, Morari M. Importance of Long-Term Occupancy
Information–A Validation with Real Occupancy Data. Clima-RHEVA World Congr.,
2013.

[115] Goyal S, Ingley HA, Barooah P. Occupancy-based zone-climate control for energy-
efficient buildings: Complexity vs. performance. Appl Energy 2013;106:209–21.
doi:10.1016/j.apenergy.2013.01.039.

[116] Goyal S, Barooah P, Middelkoop T. Experimental study of occupancy-based control
of HVAC zones 2014.

[117] Gruber M, Trüschel A, Dalenbäck J-O. Model-based controllers for indoor climate
control in office buildings – Complexity and performance evaluation. Energy Build
2014;68:213–222.

[118] Lu J, Sookoor T, Srinivasan V, Gao G, Holben B, Stankovic J, et al. The smart
thermostat: using occupancy sensors to save energy in homes. Proc. 8th ACM Conf.
Embed. Networked Sens. Syst., 2010, p. 211–224.


