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A Semilinear Equation in LY(RY).

PHILIPPE BENILAN (*) - HAIM BREZIS (*%)
MICHAEL G. CRANDALL (*+*)

Summary. — The problem p{u)—Ausf is studied where f € L'(R¥) and B is a maw-
xzimal monotone graph in R with 0 € $(0). If N >3 the problem is shown to have
a unique solution in some Marcinkiewicz space. If 0 €int g(R) and N =1, 2 so-
lutions unique up to a constant are obtained; in case 0 ¢ int B(R), it may happen
that no solution exists. Finally it is proved that, under some assumptions the solu-
tion has a compact support.

Introduction.

Let § be a maximal monotone graph in R with 0<g(0). In particular,
B could be any continuous nondecreasing function on R vanishing at 0.
This paper treats the problem

(P) — Au 4+ Bw)2f on RY

for given fe L(RY). The problem (P) is considerably more delicate than
the regularized version

(P:) ewe — Aus + B(u)3f  on RY (6> 0),

which falls within the scope of [2]. The estimates &|ucl;,<|f],: and
|Auel<2]f|: are easy to obtain for (P.) and they are crucial in the
existence and uniqueness proofs. The solutions # of (P) to be obtained here
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will not lie in L(R") in general, and we will need to use the properties of A4-1
considered as an operator on L!(RY) in a very precise way to find suitable
estimates on «#. Therefore it is not surprising that the fundamental solu-
tion of the Laplacian will play a prominent role. In particular, it will be
necessary to handle the cases N =1, N =2 and N >3 separately. When
N =1 or N =2 we will require some coerciveness from the nonlinear term
(namely, 0 eint S(R)).

The main results are summarized below (M”(RN ) denotes the Marcin-
kiewicz (or weak-L”) space (see the Appendix)).

N>3. For every f e L}RY) there exists a unique u e MY ¥~2(R¥) with
Aue LY(RY) satistying (P).

N =2. Let 0OcintB(R). Then for every j e L'(R?) there is a w € WL(R?)
with |gradu]|e M?(R?) and Auc L'(R?) satisfying (P). In addition, two solu-
tions in this class differ by a constant.

N =1. Let 0eint f(R). Then for every fe LY{(R) there exists a
ue WH°(R) with d*u/dx?e LY(R) satisfying (P). In addition, two solutions
in this class differ by a constant.

The plan of the paper is as follows: Some preliminary results and nota-
tions are collected in Section 1. The second section develops the general
results for N>3. The third and fourth sections deal with the cases N =2
and N = 1. Section 5 discusses conditions on § under which (P) has a solu-
tion we LP(RY) (for all N>1). Section 6 considers conditions on f and B
under which (P) has a solution with compact support; in this section f need
not be in LY(R"). We conclude with an appendix describing some properties
of the Marcinkiewicz spaces and the Laplacian.

1. — Preliminaries.

We begin this section with some of the notation and definitions used
later. If Qc RY is Lebesgue measurable, meas £2 denotes its measure.
If fe LYQ), f f denotes the integral of f over £ with respect to Lebesgue

o

measure and this is shortened to f f if Q=RY When it is necessary to
indicate the variable of integration we sometimes write f f(@)dz, etc. The

Q2
norm in I?(RY) is denoted by |[,, 1<p<oo; MP(RY), 1 < p < oo, denotes
the Marcinkiewicz space and |],» is its norm (see the Appendix). If u is
a function on RY, [|u|> A] denotes {zxe&R": |u(x)|> 1}, ete.
If >0 is an integer and 1<p < oo, W*?() is the Sobolev space of func-
tions % on the open set 2CRY for which D'ue L°(2) when |I|<k with its
usual norm. W?(Q) is the closure of D(R) = C(2) in W*?(2). Also, if
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p=2 we write H* for W*% A function u lies in W:2(Q) if {we W*?(Q)
for all LeD(Q).

Some special classes of functions on R we will use are the cones:
Jo={j: R —[0, oo]: j is convex, lower semi-continuous and j(0) = 0},

§={pe C(R)N L>(R): p is nondecreasing},
and

Fo={pe: p(0) = 0}.

Finally £, will be a fixed function in D(RY) such that 0< o<1, So(x) =1
if j2]<1 and Go(x) =0 if |2|>2. For n>1, {.(x) = l(n'x).

Given fe LY(R") we say that » in L} (RY) is a solution of (P) provided
that Aue L' (R") (in the sense of distributions) and f(z) + Adu(z) € f(u(z))
a.e. on RY. If € is a subset of L. (RY) then (P) is said to be well-posed in
f if the following conditions hold:

(I) If fe LY(RY), then (P) has at least one solution w e £. We set
Gsf = {uet: u is a solution of (P)}.

(II) Tsf = {f + Au: u € Gsf} has exactly one element for fe L'(RY).
(I1T) f i(Tsf) < f j(f) for every fe L{(RY) and je J.

(IV) f (Tof — T f) < f (f— 1)+, for f, f € L{RY) where r+ — max(r, 0).

REMARKS. The definitions of G3 and T formally depend on £, but we
will not indicate this dependence explicitly. (III) implies that Tsfe L}(RY)
if fe L}(R") by choosing j(r) = |r|, while (IV) implies that Tsf> TsF i f>F
and (interchanging f and 7) f |Tsf — T,s'f|<f|f—— f|. Thus T is an order-
preserving contraction on L}RY) if (P) is well-posed in £. The require-
ments (III) and (IV) are natural in this problem and are motivated by the
results of Brezis and Strauss [2] to which we refer for references to previous
related works. It will be shown that (P)is well-posed in MY ¥~2(R¥) if N >3,
in {uec WLL(R?: [gradu|e M*R?} if N =2 and in L (R) it N =1.

‘We begin with a well-known linear result.

LeEMMA 1.1. For every fe LA(RY) and every A> 0 there is a unique
u e LYRY) satisfying u— AAdu = f in D'(RY). Moreover, |u| < |f];: and also

ess sup # <max {0, ess sup f} .
RN RN
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Proor orF LEmMMA 1.1. We give only an outline (employing elementary
functional analysis rather than Fourier analysis). Suppose first that f € L2(RY).
Then the standard variational argument shows there is a unique u c H'(RY)
such that w— Adu =f. For any ped, such that p’'e L°(R) one has
p(u) e HRY) and

Jupw) =[fp) + 2] (40 p@) = [1pw) — 2[p @)|Val*< [tpw) .
Choosing appropriate p’s we easily deduce that

€85 SUp % < Max {0, ess sup 1}
and Jul,<|fl, for feL¥RY)n LYR¥). For general fe LY(RY) choose
fn€ LXRY) N L(R") so that f,—f in LYRY) (for example, f, = min(n,
max(f, — n))) The corresponding solutions #, form a Cauchy sequence in
LY(R") (since fe L*(R¥) N L*R¥)r>u is a contraction in L!'(RY)). There-
fore u, —uec L'(R") and u satisfies the conditions of Lemma 1.1. Finally
we prove uniqueness. Suppose wueL'(RY) satisfies u— Adu =0. Leb
o€ D(RY) and % = g% u. Then @ e C°(RY) N HY(R") (since || < [lo]z|u]
and |grad @|,.<|grad o;.|w]z). Also @ — A4% = 0. Consequently @ =
=pxu=0 for all g D(R") and hence u = 0.

It follows from Lemma 1.1 that we can apply [2, Theorem 1] (see also
Konishi [4]) with Au = — Au -+ eu, D(A) = {u e L} (R"): Aue L'(R")} to ob-
tain the next lemma which is crucial for the existence proofs.

LEMMA 1.2. Let N>1 and ¢>0. For every fe LY(RY) there is a unique
us€ L'(RY) with Auc.c L\(RY) satisfying (P.). In addition, (III) and (IV)
hold with § replaced by § + el.

In other words, (P.), which is (P) with g replaced by f -+ &I, is well-
posed in L'(RY). In order to show convergence of the u. as ¢ —~0 - we will
use the following lemma.

LEMMA 1.3. Let N>1 and fe LM(RY). Let u. be the solution of (P:) and
we= Ty, f =f+ Au.. In addition, if N =1 or 2, suppose that u. is bounded
in LL(RY). Then {[us, ws]: e> 0} is precompact in L. (RY):. Moreover, if
£, =0+ and [u,,w, ][4, w] in L (R")?, then w=f-+ Auc L (RY), u is

a solution of (P), and fj(w)<fj(f) for every je 3,. In addition:

(1.4) If N>3, then ue MY¥-2(RY),
(1.5) If N>2, ue Wkl

loc

(1.6) If N =1, duj/dwe L°(R).

(RY) and |grad u|e MY V-D(RY),
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PROOF OF LEMMA 1.3. By Lemma 1.2, T,;,, is a contraction on L*(RY).
Moreover, T, , is clearly translation invariant and 0= T,; ;0. Thus
we = Top,4f satisties Jw,|n<[f[, and f|w€(-7/' +h)— ws(“’)|dx<f|f(x + k) —
—f(@)lde for heRY. Thus {w.:e>0} is precompact in L (RY). Also,
by (IIT) for (Pe), [j(w:)<[j(f) for jedJ,. If & —0+ and w, —w in
L (R") it then follows from Fatou’s lemma that fj(w)<fj(f) for jeJ,.
In particular, w € LY{(RY). Next, using Lemma A.5 if N3 and Lemma A.14
if ¥ =2 one finds

lote || agmrer-n <oy | Au [ n <20y [fl i N>3
and

“ grad U, ” N1 < 2dN

fl, it N>2.

If N>3 these estimates imply that u, is bounded in WjL(R¥) and hence
{u,: ¢> 0} is precompact in Ly (RY). (M?(RY)c L, (R") with continuous
injection if 1< p << oo). If N =2, the same is true since u. is assumed to
be bounded in L (RY). In addition, {grad«,} is also precompact in L} (Ry)

since

(1.9) lgrad ue( - + k) — grad we(- )| yyvie-n <2dy [[f(- 4+ k) — F(+) | s

for he RY. Hence properties (1.4) and (1.5) are easily obtained from Fatou’s
lemma (see the remark following Definition A.1). The fact that w = liq}n u,,
is a solution of (P) is clear.

Finally, if ¥ =1 we have

d2

| d
LOO\ d$2

L1<2||f”1‘1(dze(ioo) =0 since useLl(R)) .

Ue

du
d—me

Therefore, {us} is precompact in Lj (R) as soon as it is bounded in Lj,
and (1.6) is clear. The proof is complete.

Lemma 1.3 reduces the problem of showing (P) is well-posed in a class £
considerably. For N>3 and £ = MY¥-2(RV) it will suffice to show that
solutions of u e are unique. Then Tf =f + Au is also unique and hence
w,= T, pf >f+ Au in L (RY). IV then follows from Fatou’s lemma.
If N =2 and £ = {uec Wi (R®: graduec M2R?)}, or N =1 and £ = L. (R),
a bound on u. will first have to be obtained. Then it will suffice to show
that two solutions of (P) in £ differ by a constant. For in this case
Tsf =f+ Au is still unique, and IV holds as above. The cases N >3,
N =2 and N =1 are treated separately below.

(R),
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2. — N>3.
The main result of this section is

THEOREM 2.1. The problem (P) is well-posed in L= MY ¥=(RY) and
the solution w of (P) in L is unique (i.e. Gg is single-valued). There is a con-
stant Cy depending only on N such that

(22)  |Gsf — GsFllapmivn + |grad(@sf — G J) | apminn < Oy — Fll
for f, f e LA(R¥). Moreover, Gg is order preserving.

PrOOF oF THEOREM 2.1. By the preceding remarks (P) is well-posed in £
if solutions v €€ are unique. Let w,, 4, L be solutions of (P), v = u, — u,
and w = A(u; — u,). Then uecf and we L'(RY) and uw>0 a.e. on RY (by
the monotonicity of f). It follows from Lemma A.10 that for pe ¢,

fp’(u)|gradu|2 —I-pr(u)<0 )

Since wp(u)>0, gradu = 0 and w is a constant function in MY ¥—(RY),
But then » =0.
It u = Gsf, 4 = Gs}, IV implies

14— )| <2]f — F s

and then (2.2) is a consequence of Lemma A.5. Finally G4 is order preserving
since Ggf = 1}}&’ Gopipf in L (RY) and G, , is order preserving (see [2]).

REMARK. (P) is well-posed in any subspace £ of L (RY) such that
(i) MYE-2RNyc L
(ii) uel and Au = 0 implies v =0.

Indeed, it suffices to show a solution € £ in fact lies in M¥¥~3(RY), Let
uet, 4 MY ¥=2(R¥) be solutions and ve MY V~(RY) satisy Av = A(u— ).
Then (v—u+4)ef and Aw—u-+4+4)=0, so u=0v-+ de MYIIRY),
Interesting examples of choices £ satisfying (i) and (ii) are the following:

£, — {u € IL(RY): lim
R Ilei<e

lu(ne)|de = 0} .
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To check (i) observe that M?(R¥)c €, for every 1< p < oo, while (ii) fol-
lows from Lemma A.8. Another class is

| —{ueL,ocR ): f - [u(z) |dw<oo}

(1 + o)
where 2 <<a<N. (Related spaces are considered in Nirenberg and Walker [51)-
Indeed, to check (i) note that

f(1+| o @) ds< [ luto)|da+

l2l<1

x, 1
+> f o [u(x)| da <
k=0
2k <zl ok

< Ol aewra-» (1 + z
=0

Qk+1)2

e ) Clﬂu“MN/(N—z) .

On the other hand £,cf, since

C 1
J'[u(mv)ldw<7? flu(ﬁl)|dy<02f (1+_I?/|)-N|“(Z’/)ld?/

1<l <2 n<IYI<2n n<|YI<2n

and the right hand side tends to zero as n — co if uef,.

3. - N=2.
The main result of this section is
THEOREM 3.1. Assume 0cintB(R). Then (P) is well-posed in the class
£ = {ue Wia(R?: |gradu|e M*(R2)} .

In addition, two solutions of (P) in L differ by a constant and there exists C
such that

(3.2) lgrad (Gsf — Gs Dl p<Clf—Flz  for f, fe LY(R?).

Also Gz maps bounded subsets of LY (R?) into bounded subsets of WLP(RY) for
1<p<<2. Finally we have

(3.3) fTﬁf =ff for fe LY(R?).
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PrOOF oF THEOREM 3.1. We begin by showing the uniqueness up to a
constant. Let 2> 0 be large enough so that 0¢ (1) and 0¢pf(— ). Sup-
pose u,, u, €L are two solutions of (P). We are going to prove that
grad(u; — 4,) = 0. First observe that meas [|u;|>2]< oo for i=1, 2,
(since f -+ Au,e€p(u;) a.e. and f+ Au;e L\(R2) so that meas [|u; — u,|>
> 201 < oo. If U=y — Uy, w= A(u;— u,) we have uef, meas [|u|>22]< oo,
we L'(R?) and #-w>0 a.e. It follows from Lemma A.10 that gradu = 0.
To prove that (P) is well-posed in £ it remains to show (in view of the
remarks after Lemma 1.3) that the solution #. of (P.) remains bounded in
L (R% as ¢ —0+. However, with the same reasoning and 1 as above,
meas [|us| > 2] i8 bounded by a constant u independent of . Therefore,
by Lemma A.16 and the fact that grad u. is bounded in M2(R?) we con-
clude that |uelz: g is bounded provided B is a ball such that meas B> u.
The inequality (3.2) is a consequence of IV and Lemma A.11 while (3.3)
follows from Lemma A.13. Finally, suppose f lies in a bounded subset of
IY(R?) and let u < Gs(f). Then we have

[Tsflp<lflz<C and |[gradw|,<2ds|f|n<C,

for some ¢, C;. The same argument as above shows that « is bounded
in Lj . (R?). Moreover, |grad«| is bounded in ILf (R? for 1<p<2 by

Lemma A.2. It follows that % is bounded in Wi2(R?) for 1<p < 2.

REMARK. It is clear that (P) is well-posed in any subspace £ of WiL(R2)
such that

. @) £c{ue Wii(R?): |gradu|e M*(R?)}
and
(ii) uwel and Aue LY(R?) imply |gradu|e M3R?).

Examples of such classes are

£, = {u € Wise(R?): lim f|(grad u)(na)| de = O}
et e

(see Lemma A.11) and
1

£, = {u € Wis(R2): J‘m lgrad w(z)|de < oo}



A SEMILINEAR EQUATION IN L!(R¥) 531

where 1 <<a<2. To check (i) for £,, note that

| (s oy M@)o [poraet+s | g p@iar<oiole.
R? lel <1 2r< | L2k
On the other hand, £,cf, so (ii) holds for £,.

We now take a more detailed look at the question of uniqueness of solu-
tions # of (P) in the £ of Theorem 3.1. While this is settled completely
below, we first state a result giving two interesting criteria under which
solutions of (P) are unique:

PrOPOSITION 3.4. Under the assumptions of Theorem 3.1, (P) has a unique
solution uw = Gsfe L provided either f f#0 or B~(0) = {0}.
For the proof we will need the following lemma:

LeMMA 3.5. Let B be a maximal monotone graph in R, 0€p(0), p>1,
we WiA(RY), M >1, ce R and w(z) € f(u(x)) N p(u(z) + ¢) a.e. If we LY(RY),
then either w =0 or ¢=20.

ProoF. Let je J, be such that ¢j = where 0j is the subdifferential
of j. By the definition of subdifferential

J(u@) + ¢) — j(ul@)) >w(@)e a.e. e RY

j(w(@)) — j(u(@) + ¢) >w(@)(—ec) a.e. zeRY.

Thus j(u + ¢)— j(u) = we. Next we show that j(u + ¢) — j(u) is constant.
Since w € L'(R¥) this completes the proof. First assume that §(R) is bounded.
Then j is Lipschitz continuous and j(u -+ ¢), j(u)e WiZ(RY). Moreover,
grad(j(u + ¢) — j(u)) = wgrad(u+ c—u) =0 a.e. (since ue Wi?(RY) im-
plies  has partial derivatives in the usual sense a.e.). If 8 is not bounded,
let B, be § truncated above of A and below at — 4 (an explicit formula
is By=(0I_4 4+ 1)t where I is the indicator function of K), and w,
the truncation of w. Then w, € (B,(% + ¢)N B (w)) a.e. By the above,
wy, =0 or ¢c=0. The proof is complete since w, = 0 for some A >0 im-
plies w = 0.

If u, and u, are two solutions of (P) then w = f + Au, = f + Au, € f(u,) =
= f(u,+¢) a.e. where ¢==u,— u, i3 a constant by Theorem 3.1. Since
w e LY(R?), either w =0 so — Au; =] or w+# 0 and ¢ = 0 by the preceding
lemma. Thus solutions of (P) are not unique if and only if there exist
ve L”(R?) such that Adv=/f and 2|v|,~ < measB-1(0). Proposition 3.4 now
follows from Lemmas A.15 and A.13.

36 - Annali della Scuola Norm. Sup. di Pisa
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The next result shows that G is as order preserving as it can be, given
that it is not necessarily single-valued.

ProrosiTION 3.6. Let f, ?eLl(RZ) with f <f a.e. and f # ?, ueGsf, and
G eGsf then u<i a.e.

PrOOF oF PRrOPOSITION 3.6, Let pe {, satisfy p(r) =0 for r<0 and
p'(r)>0 for r>0. It follows from Lemma A.13 (applied to u — #) that

[p@—a)lgrad@—d) + [ —d)pw—i)< [ - Fp@—a)

where w = Tsf, & = T}p ? Since # is monotone (w — @) p(u — 4)>0 and the-
refore fp’(u— 4}|grad(u — 4)|2<0. Hence gradp(u—4) =0 a.e. on R? and
80 p(u—4) =C with C(>0. If C =0 we conclude that u<#. Otherwise
0>0 and 80 u— @ = C'> 0. Then w>® a.e. On the other hand f<f im-
plies w < 4 since T is order-preserving. Thus w = and Au = A(4+0') = Ad.
We conclude f = f, a contradiction.

To conclude this section we give two results related to the necessity
of the condition 0eint #(R) in Theorem 3.1. The first is:

THEOREM 3.7. Let § be a maximal monotone graph in R with domain D(f)
bounded above (md B(R) [0, o). Then given fe L R?2) with f § <O there is
no function u € Ly, (R?) with the properties Aue L, (R?) and [ + Au € p(u) a.e.

Proor or THEOREM 3.7. First note that the nonexistence claim is stronger
than saying (P) has no solution since dwe L:(R?) is not required. Assume,
to obtain a contradiction, that u has the above properties. Set M = sup D(4).
Then u< M a.e., uec Li, and Au=—f -+ (du +f)> f a.e. Let p e DH(R?),
fg_l @ =gp%u. Then G<M a.e. and Aii>—F=—p%f. Since ff<0
we can assume f;f < 0 by an appropriate choice of p.

Now @€ C*(R?). Let v:[0, oo) -~ R be given by

27
o(r) = f a(r cos 0, rsin 0) df
0

Then

0

1 2n 27 27
1 .
v,,—l—;v,: Uy + ;ﬁ,d@ =f (Ad-—;l_;ﬁea) d0>f———f(r cos 0, rsin 0)do .
0 ' 0

Thus for B> 0

f(rv,,+v >— ff

l2l<<R
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¥ — f ?(m)dx>a>0 for B> R, the above implies that Rov(R)>e¢ for

lz|<R

R>R,. Then v»(R)>slogR ¢ for some ¢. On the other hand #<M
implies v<2nxM, a contradiction.

REMARKS.

1) By a similar proof we get easily the following (known) fact. Sup-
pose we L. (R?), Au>0 (in the sense of distributions) and w is bounded
above; then u is a constant. Indeed it is sufficient to handle the case of a
smooth u. As above we get that fAu:O and therefore Au = 0. Next
we can apply the previous result to w = ¢“; since Adw = e*(du + lgrad u|2) >0
and w is bounded above we conclude that Aw =0 and so grad v = 0.

2) Suppose now that Tligrnm inf By(r)/r > 0; then for any given fe (R?)
with ff < 0, (P) has no solution. Indeed we get as above »(R)>¢log R + C.
On the other hand f°u)>déu— ¢’ (6> 0) and thus

2n
sdlogr 4 06<fﬂ°(u(r, 6)) df + 2nC’
0

which contradicts the fact that f°(u)e L'(R?). It is natural to raise the
question whether a solution of (P) exists under the additional assumption
[i>o.

In the case N >3 the proof of existence relied heavily on the estimate
that ||u,| yve-n<ey|Au,| . <2¢4|fl;:- In particular, u. remained bounded
in Lj (R?) as ¢ -0, and this was the crucial ingredient in the existence

of u. Such an estimate does not hold when N = 2. More precisely, let
B = {weR*: |#| <1}. Then there is no C for which

(3.8) lul e < ClAu| g,y for uwe DR?).

We give two proofs. First, if (3.8) holds then a similar estimate holds if B
is replaced by rB, r> 0 (by scaling). Moreover, if (3.8) holds for ueD
it holds for u e L'(R?). But then we have existence of solutions of (P) for
every f, contradicting Theorem 3.7. A direct proof may be obtained by
choosing u(x) = v(kx) for fixed veD and keR. Then (3.8) may be re-
written as

1
T f!v(y)ldK Cf)dvow)|dy .

<k R?
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As k-0 we find
2xv(0)|< C|Av]|,, for veD.

Now set v = {o{g,* log) where g, — d and , is the cut-off function of Sec-
tion 1. This yields

271((gn % 10g)(0)| < C|| ALo(0n * l0g) [ 1: +- 2C

grad f, (g,, % 17?];)

|+ 20l

However, |(p.%* log)(0)] - oo a8 # — oo, and we have a contradiction.

REMARK. The case =0 is a special one with regard to existence. The
problem — Au = fe LY(R?) always has solutions « in the class BMO of fune-
tions of bounded mean oscillation. If weBMO and Awe L(R?), then
gradue M?*(R2). We have not employed these facts in our presentation as
we have not needed them.

4, — N =1.

The main result of this section is:

THEOREM 4.1. Assume 0cint f(R). Then (P) is well-posed in the class
£ =L (R). In addition, two solutions of (P) in L differ by a constant and

(4.2) “(%(Gﬂf_Gﬁf)“Lm@”f—f”Ll for f, fe L(R) .

Also, G5 maps bounded subsets of L'(R) into bounded subsets of W' (R).
Finally, we have

(4.3) f Tsf — f f for fe L'(R).

ProoF oF THEOREM 4.1. We first obtain some simple estimates on a
solution # of (P). We write ' = du/dz, etc. It follows from u'e LY(R)
that «'e L®(R) and the limits #'(+ oo) exist. If, e.g., u'(+ oo)~ 0 then
|u(®)] - oo as & - co. However, since 0eintS(R) this contradicts the
properties f + u’€f(u) a.e. and f -+ u'c L'(R) of the function w = f 4 v’
Thus #'(4 o0) =0 and 80 ||#'| o< |w"|,. Next, if jeJ, and 0j = we
have j(u)'=wu’ a.e., so [jlu)|.<|w|;]|v;o. Once again the properties
of w used above imply that j(u)(+ co) =0 and [j(u)|ze < ||w]p]|w'|p=. Bub
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j(r) = oo a8 |r| — oo since 0 eint S(R) and therefore e L”(R). It is trivial
to show that if «"e LY(R) and ue L”(R), then p'(u)u'2e L'(R) and

(4.2) fp’(u)u’2 —i—fp(u)u”<0 for pe .

Using (4.2) in the same way as Lemma 1.3 was employed in the proof of
Theorem 3.1 we find that solutions of (P) are unique up to a constant and
that (4.3) holds. Moreover, the above arguments applied to the solution wu.
of (Po) yield [(ef2)u? + §(u) o< If + 9! |l <2015 30 we i3 bounded
in L*(R). Thus (P)is well-posed in £. We summarize the estimates established
for a solution u of (P):

(4.3) w(too)=0, |u|pe<|u|n<2]fln
and
(4.4) 1) | go < If + |z | g <2 ]2 -

The inequality (4.2) follows from (4.3) since if wue Ggf, #eGsf then
(w—4) (£ o0) =0 andso [(u—4) |0 <|(w— &) |<2]f— flz: Moreover,
(4.3) shows > (Gsf) bounded from L'(R) to L”(R) and (4.4) shows that
f > Gsf is bounded from L'(R) to L°(R).

REMARK. We cannot ask that (P) be well-posed in a class £; larger
than L. (R). It is obviously well-posed in £, if L (R)>£;> W'°(R).
The situation as regards uniqueness of solutions of (P) is precisely as in
Section 3, and is established by the same argument. Solutions of (P) are
not unique if and only if there exists ve L”(R) such that "= f and 2||v| ;o <

< meas §-1(0). Moreover, if ve L”(R) and v"e L'(R) then v'(4- oco) =0 so

f "= 0. Thus we have the analogue of Proposition 3.4:

PrOPOSITION 4.5 If either B~(0) = {0} or ff;éO solutions of (P) are
unique.

Finally we state the analogues of Proposition 3.6 and Theorem 3.7.
The proofs are simpler where they differ from those for N =2 and are
omitted.

PROPOSITION 4.6. Let f, fe LY(R) with f<f a.e. and f+#f. If ueGsf
and GcQgf then u<d a.e.

THEOREM 4.7. Let § be as in Theorem 3.7. Then given fe L(R) with
f f<0 there is no function we L (R) with the properties u'c L (R) and
f+u"eplu) ae.
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5. — Problems well-posed in L?(R¥).

If B is a maximal monotone graph in R, then £° denotes the function
with domain D(8) such that §°(r) is the element of f(r) of least modulus. If »
is measurable and we f(u) a.e., then |w|>|f°(u)| a.e. Thus if « is a solu-
tion of (P), f°(u)e L}(RY). In this section, under various conditions on B,
we are interested in the consequences of this additional information about u.
A main result of this section is:

THEOREM B.1. Let § be a maximal monotone graph in R satisfying
0ep(0) and

there are numbers k, A >0 such that
(5.2)

| <E|p(r)|  for re D(B), Ir|<A.

Then (P) is well-posed in LY(RY) for N>1. Moreover, G5 is a bounded map
from LY(RY) to L*RY) which is continuous if N>3.

Proor oF THEOREM 5.1. The arguments differ for ¥ >3, N =2 and
N =1. We first give the simple estimates common to the three cases. Note
that (5.2) implies 0cintB(R) and 8-1(0) = {0} so u = Gsf is uniquely de-
fined for fe LY{(RY), N>1. It follows from (5.2) that

(5.3) [ lui<k [ 1pw)<k[lf + dul<Eifl

[lui4] [lul=< A4l

since Tgu = f -+ AucB(u) a.e. Moreover, |f°(r)]>(A[/k) for |r|>A by the
monotonicity of f. Thus

(4/k) meas [lu] > 4] <[ 1Bw)|< [If + Aul<[fl
ful< 4]
and we have

(5.4) meas [|u| > A] < (B/A)|f| 1.

In each of the cases N>3, N =2 and N =1 (5.3) implies e L([|u|<A])
while (5.4) implies meas[|u|>A] < co. It willremain to show ue L*([ [u|> A4]),
the reason for which varies with the case.

N>3. Since the £, in the remark following Theorem 2.1 includes L(RY),
in order to show (P) is well-posed in L!(R¥) it suffices to prove GsLY(R¥)C
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C LYRY). Now u = Gsf satisfies |u| yme-»n<2ey[f|;:. This and (5.3), (5.4)
imply that

©.5)  [lul=[ ul+ [ lul<kIfl+ (measllul> A1) fulzones
lui<43 flul> 4]

<K||flp + 20y (kJA | f|F DN

Thus Gs: L}(R")) — L*(R")) and it is bounded. To see that G is continuous
into L'(RY) let f,—f in LYRY) and w,= Tsfn: Then w, —>w = Tsf
since Tp is an L' contraction. For 1> 0 set K= [|w.|>! or |[w|>1] so0
R™K,, = [|w,| <1 and |w|<1]. We have

(5.6) Imeas K, < f (lwa] + fo]) <€

where C is independent of n. Now

©1)  [16ofu— Gafl =[16afa— Gafl +]  |Gata— G|

KEnt [lwal, lwl<i]

<2oylf— flmeas (Kuf™ + | [Gota— Gof.

Liwal, lwl <11

If I < min(|°(4)], |B°(— 4)]), then u, = Gsf, and u = Gpf satisfy |u,|<klw,],
lu| < Elw| on [|wa], lw| <] by (5.2). For such !

5.8) [ 1Gsta—Gati<t [ (ol + o] -

Lhwnl, twl <1} [lwnl, hol <11

Taking the lim sup in (5.7) as n — co and using (5.6) and (5.8) yields

Lim sup |Gy fa— Gyf|l <24 |wo]
e [hwi <]

and the result follows by sending ! to zero.

N =1. By Theorem 4.1 G4 maps bounded subsets of L(R) into bounded
subsets of L*(R). Thus (5.3) and (5.4) imply

[l [ 1w+ [ wi<klfls + @A) 16,

[lul<4] [lul>4]

and Gg: LY(R) - LY(R) and is bounded. Since LY(R)c Ll (R), (P) is well-
posed in L(R).
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N =2. This case is somewhat more delicate. We need to estimate
we L'([|u]| > A]), which is the point of the next lemma.

LemwMA 5.9. Let ue L, (R?), grad ue M*(R?), 1>0 and meas[|u|> 1] < co.
Then

f(|u| — 2)+< 0| grad u|,, meas[|u| > 1] .

where C is independent of v and A.

Assuming Lemma 5.9 for the moment, we complete the proof of
Theorem 5.1. If u = Gsf then |gradu|,,<2d,]f|,.. Moreover, by (5.2),
meas [|u|> 1] << oo for all A>0. Thus Theorem 3.1, Lemma 5.9, (5.3)
and (5.4) yield

[li< [ Wi+ [ wl<®ifl+[(lul— 4)* + A meas[fu| > 4]
[lul<4] [lui>A4]

<Elfl: + (C2:]fl s + A) meas[[u] > A]
<(2 + (20, fx -+ A) (K[ A) |f] 12 -

At this point we know that Gy LY(R2?)c L*(R?). The fact that then (P) is
well-posed in L'(R?) follows from Lemma A.14, which implies that a solu-
tion % of (P) in L(R?) lies in the £ of Theorem 3.1.

Proor or LeMMA 5.9. We actually show a little more, namely
meas[u > A] << co implies

f(u — A< C)grad u| . meas[u > A].

Applying this result to — « and summing gives the result of the lemma.
Now ue L, (R?) and |grad »|e M*(R?) implies uc Wi?(R?) for 1<p <2 by

loc

Lemma A.2. Given A,> 1 set
A=A [u > A
pu)y=3 v — 2 on [A>u> 4]
0 on [u<<A].
Then p(u)e WE2(R?) for 1<p <2 and
0 a.e. on [u> 4]
grad p(u) =4 gradu a.e. on [4, > u> 4]

0 a.e. on [u<<A4].
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Thus |grad p(u)| =< |grad u|,,.. Moreover, p(u)e L”(R?) is supported in s
set of finite measure. Hence p(u)ec LYR?), 1<g<oo: Now by the Sobolev-
Nirenberg-Gagliardo inequality (e.q. [7, section 1.9]) if ve L?(R?%), gradve
eL’(R?, 1/p=1/r— % and 1<r< 2, then there is a constant C such that

lol < Clgrad o], .

The constant ¢ depends only on p and r. For the purposes of this lemma,
we choose p =2, r=1, v = p(u). This yields

Jpw = [ pa<([pw?)*(meastu> )
v <C( f lgradp(u)l) (meas[u > 1))}

[u>4]

< O|grad p(u)| 5 meas[u > A)

< Clgrad u| ;. meas[u > 1] .

Now let A, — co. The conclusion follows from Fatou’s lemma.

ReEMARK. If in addition to the assumptions of Lemma 5.9 we have
Aue I'(R?), then we have |[(|Ju|— A)*<edy|du|, meas[ju|>1] by Lem-
ma A.11. It is interesting to note that an equality of this type does not hold
if only meas[|u]> 4] < co and Aue L(R? are assumed. W. Rudin has
given us an example of a nonconstant harmonic function u satisfying
measf|u| > 1] < M < oo for all 1>1.

REMARK. The condition (5.2) seems fairly sharp as a criterion for well-
posedness in L!(RY). Indeed, let «>1 and }LI(% sup B°(r)jr* << oo. Choose

7,>0, k>0 so that |f°(r)|<kr” for 0 <<r<<7,. Let

= for |¢|> R,
el

—g |z|2+7, for |x|<RE,

where A, R are chosen so that e C'(RY). Then ue MY ¥-D(RY)\ L}(RY)
if N>3, |gradu|e M3R?) and w¢ LVR?) if N =2, uwel*(RN\LYR) if
N =1 while g%u), Auwe LY(RY).
One can generalize Theorem 5.1 suitably to include the cases:
There exist p, 1<p << oo, 4, k> 0 such that

(5.10) lul’ <k|f%u)| for ue D(F) and |u|<A.

We explicitly allow 4 = co which means |ul®<k|f%u)| for u e D(B).
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THEOREM 5.11. Let (5.10) hold. Then

() If N>3 and 1<p<N/(N—2) (P) is well-posed in L»RY). If
N>3 and A = oo, (P) is well-posed in L*(RY).

(ii) If N =1, (P) is well-posed in L*(R).
(fil) If N =2, (P) is well-posed in L*(R?).

ProOF oF THEOREM 5.11. The proofs resemble the arguments used in
obtaining Theorem 5.1, so we only sketch them. As (5.2) gave bounds on

f lu|? and meas[|u|> A] for u = Gsf in the case p =1, so does (5.10)
lluf<4] .
give similar bounds here. The point is then to see that ue L*([|u]|> 4]).

If N =3, ue MY¥~2(R¥) supplies this information if 1<p < N/(N — 2) (by
Lemma A.5), while u € L(R) if N =1. If N =2, Lemma 5.9 is replaced by:

LeMma 5.12. Let ue L}

oo (RR2), |grad u)e M3(R?), 1> 0 and meas[|u|> 1] < co.
Then

I(lul — A)* [ .»< ¢, | grad ] yr(measf ju| > A])*”

for 1< p < oo where ¢, depends only on p.

Proor oF LemMmA 5.12. Form the same function p(#) as in the proof of
Lemma 5.9. If 1<p <2, use

Up(u)”]””< ( f p(u)z)*(meas[u > A1) % < o] grad p(w) | 4 (meas[w > 2])'7.

[u>2]

I p>2, use the Sobolev inequality directly with 1/p=1/r—31 or
r=2p/(p + 2). The rest is the same as Lemma 5.9.

There are only two points remaining. First, if 4 = oo, (5.10) itself
guarantees that u = Gsfe L*(R¥) for N>1. The final point is the question
of uniqueness for the case ¥ = 2. But again we may use Lemma A.14.

6. — Solutions with compact support.

Let B be a maximal monotone graph in R with 0€4(0) and fe L (RY).
In this section it is convenient to index (P) by g and f. Also, in this section,
a solution of

(Pgy) — Au 4 Bu)>f on RY
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is a function ue L, (RY) such that Awe I (RY) and f+ Aucf(u) a.e.
The requirements that f and Au lie in LY(RY) have been dropped. L{(RY)
denotes {u e LY(R"): supp # is compact} where supp » is the support of w.
We will prove, under various assumptions, that (Pg,) has solutions u € Li(RM).

The main results are stated next.

THEOREM 6.1. Let e, satisfy op=p. Then (Pg) has a solution
we LY(RY) for all fe LY(R") if and only if

1

(6.2) f (p(s)) Fds < oo.

-1

By convention, @(s) "t =0 if ¢(s) = co and @(s)”F = oo if p(s) = 0. Ob-
serve that if B(r) = |r|*signr for 0 <a <1 or 0eintf(0), then q)‘* satis-
fies (6.2).

THEOREM 6.3. Let B(0) = [y_,p,], — co<y_<0<y,< oo, and f€ L (R").
Suppose R>0 and there are functions g, € L, ([0, o)) such that v(y,— f(@)) >

>g,(|z|) >0 for ve {+,—} a.e. on [|z|> R] and which satisfy er"lgv(r) dr =co .
0
Then (Py) has a solution ue Ly(R"). If N =1 or N=2 and y_, y,€int f(R),
then frg,,(r) dr=oco for N=2 and J'rlog 14+7g@@)dr=oc0 if N=1 are
0 0

sufficient to imply that (Pg) has a solution uwe LY(RY).

REMARKS. Solutions  of (Pg,) are unique in the class Ly(R"). Indeed,
if w is such a solution then w, Awe L}(R¥) and we may use the proofs of
the preceding sections (for N =1 or 2, note that if functions in L}(R")
differ by a constant then they coincide).

The simplest case of Theorem 6.3 arises if y, > oc+>f>ac_> y_ for some
constants o, _. This special case can be deduced from Theorem 6.2 with
the aid of Lemmas 6.4 and 6.5 below, and extends a result of Brezis [1],
as does Theorem 6.3. The generalization arises from allowing f to be un-
bounded on [|z|<R]. Our proofs are different from those in [1] however.

The proofs of these theorems will employ the next two simple com-
parison results.

Lemma 6.4. Let fi,f,f€ L, (RY) and fi<f<f, a.e. If (Pg) has a
compactly supported solution u,e Ly(RY) for ¢ =1, 2, then (Pg;) has a solu-
tion u satisfying w,<u<u, (so we Lj(Ry)). Moreover, f, + Au,<f + du<
<fa + Aus.
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PROOF oF LEMMA 6.4. Let £ be an open ball containing suppw, and
suppu,. By a result of [2] there exists a unique ve Wg'(£2) such that
Ave LY{Q) and f, + dve f(v) a.e. on 2. Moreover u, <v<u, a.e. on £2 and
f+ Adu,<f + Av<f, + Au, a.e. on £. Since then supp v C £2, the function »
defined by u=v on 2 and » =0 on R™\ 2 has the desired properties.

LeMMA 6.5. Let fe Ll (RY) and n be a maximal monotone graph in R
with 0en(0). Suppose D(n)>D(B) and [n°(r)|< |Br)| for re D(B). If f>0
or <0 and (P,) has a compactly supported solution, then (Pg) also has a
solution with compact support.

ProoF oF LEMMA 6.5. Assume that f>0 and v is a solution of (P,)
with eompact support. As in the previous proof, let £2 be a ball containing
supp v and we Wyl(Q) satisfy duwe LX(2) and f + due f(u) a.e. on Q. Then
%, v>0 and so fu)>7"(v) a.e. Setting h = — Au + n°(u)ef + n°(u) — f(u)
we therefore have h<f a.e. on £2. Moreover h 4+ Au = n°(u) e n(u) a.e. on £2.
From the results of [2] we conclude that v>u>0 a.e. on £2. Again, ex-
tending » to be zero on R™\ £ results in a compactly supported solution
of (Pg). The case f<O0 is treated similarly.

ReEMARK. If f> 0 we only use 8°(r)> n"(r) for » > 0 while if < 0, n°(r) > (r)
for r< 0 suffices.

Proor or THEOREM 6.1. Observe first that (6.2) implies that (5.2) holds.
Indeed, if »> 0 and r e D(f) then ¢(r)<rf’(r). Moreover, ¢ is nondecreasing
on R+ so

” .
[otortassLowiag viiFe.
%f

Thus (6.2) implies T]_i)lol}r (r/ﬂ"(r)) = 0, which implies (5.2) for r>0. The case
r<0 follows similarly. Hence (Pg) is well-posed in LY{(RY) by Theorem 5.1.
We show the solution % = Gsf of (Pg) has compact support if fe Ly(RY).
The preceding two lemmas allow us to assume that f does not change sign
and that f§ is bounded. Indeed, by Lemma 6.4, it is enough to treat
/¥ = max(f, 0) and — f~ = f-— f*+ in place of f, and by Lemma 6.5 we may
truncate B (note that this preserves (6.2)). Hence we assume that >0 and
BR)c[— A, A] for some A. Let suppfc{|z|<R} and u = Gsf. Now
f+ Auep(u) implies that |[du|<A on {|z|>R}. But then ue Wi({jx|> E})
and AweL”({|#|> R}). By standard arguments we conclude that we
eWE2({|lx| > R}) for 1<p < oo. Choosing p> N, the Sobolev embedding the-
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orem implies e C'({|#|> R}). Let R,> R and fix M = max{|u(z)|: |»| =
= R,}. Next we build a radial comparison function v on {|z| > R}
with compact support such that v>u on {jz| = R,} and there exists g>0

such that g 4+ AveB(v) a.e. on {|x|> R,}. The function v —>f(2<p(s))“* ds is
o

a nondecreasing function from R*; it is onto because § is bounded. Let h
be the inverse function so that A'(r) = V2¢(k(r)) and h'(r)epB(h(r)) a.e.
on R+. Set

MRB,— |2]) for Ry<|o|<Ry
v(x) =

0 for |z|> R,

where R,> R,. Then ve C'({|z|>R,}) and if

(N —1)B'(R,— |w|) for Ry< |2| <R,
g(x) =
0 for |z|> R,

then ¢g>0=/ on {|z|> R} and Av+ gef(v) a.e. on {|r|> Ry}. If we
choose R, > R, so that h(R,— R,)> M, it follows that also v = (B, — E,)>u
on {jr| = R,}. The next lemma will allow us to conclude that then v>u on
{lo|> Ry}

LEMMA 6.6. Let R>0 and ue L' ({|z| > R}) N C*({{z|>R}) satisfy Aue
e L({lz|> R}). If wtAu<0 ae. on {{z|>R} and u<0 on {|z| = R}, then
u<0 on {|jr|> R}.

ProoF oF LEMMA 6.6. Since we C'({|z|>R}) and AdueL({lz|>R}),

f (Au)yyp = — f grad u grad y

lml=R lzlz=R

for ye O'({|z|>R}) provided that y has compact support and y =0 on
{lz| = R}. Choose ped so that p(r)=0 on r<0 and p’'e L”(R). Setting
v =pu),, above with (,={(x/n) we find (because u, Au>0 implies
p(u)C,Au>0):

0< f (Au)(p(u)C,) = — f lerad w|2p’ (w)C,

iR lelz=R
— f p(u) grad w grad £,

lz|=R

= J. lgrad ulzp’(u) L, - fj(u)AC,.

lzlZ=R ||z R
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where j(r f p(s)ds. Thus

flgradulp u)Cn\ 2 [Ple 48] |l nsiorcan

lzlz=R

and, letting n — oo, |grad u|2p'(u) =0 a.e. on {|z|>R} by Fatou’s lemma.
It follows that grad w =0 a.e. on the open set {u >0}, whence the result.

Applying the lemma to u — v above we conclude u<v on {|z|>R,} and
therefore » has compact support.

1
NECESSITY. Suppose for instance that f((p(s))_%ds = co. By Lemma 6.5
0

we can assume B-1(0) = 0. Let f be the characteristic function of {|z|<1}.
Assume, to obtain a contradiction, that u is a solution of (P4) with compact
support. By uniqueness of solutions e L'(RY), » must be radial since f
is radial and the problem is invariant under rotations. That is, # has the
form u(z) = v(|x|). The function v satisfies » € C1((0, o)), v>0 and

—1

"

6.7 [fle=1>k()=

v'(r)+ g(r)eP(v(r)) a.e. r>0,

where g(r) =1 for 0<r<1 and g(r)=0 for r>1. Since ue L}(R"Y) and
>0, R = max {r: o(r) > 0} is positive and finite. Clearly R>1 for (6.7) im-
plies that g(r) € f(v(r)) for r > R while 1¢ (0). In fact R > 1, because (6.7)
implies that

(6.8) %(W‘lv’(r)) <r¥-1(1—g(r)) a.e. r>0.

From (6.8), v 'v'(r) is decreasing on 0 <r<1. Hence if E=1, then
(1) =2'(1) =0 and »'(r)>0 for 0 <r<1. Thus v<0 on (0,1). Since also
>0 and v is not identically zero on (0, 1) this is impossible. Next we claim
that o(r)> 0 on (1, R). Indeed, h(r)eB(v(r)) so h>0 and

d
zl—;(rN‘lv’(r)) = p¥=1}(r) >0 ae l<r<R.

Now v/ (B) =0, 80 v'<0 on 1<<r<< R. It follows that »(r)> 0 and h(r) >0
on 1<r<<R, so v(r)<<0 on 1<<r<R. Thus

(1) )
—' T
6.9 .
(69) \/2(p \/2(]9 =
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by the assumption on ¢. We will obtain a contradiction by estimating
—v’(r)/\/go(v(r)) on [1, R]. Now if w=1"2 and 1 <r< R we have

N—1
r

p(v) = ho'= ('v” + v’) v’<%exp [—2(N —1)r)(exp[2(N —1)r]w)’

and 80 2 exp [2(N —1)R]gp((v)’ < (exp [2(N —1)r]w)’. Since w(R) = ¢(v(R)) =0,
integrating this inequality over the interval (r, R) leads us to conclude that

2 exp [2(N — 1) R]gp(v) > exp [2(N — 1)r]w(r) > exp [2(N —1))(v'(r))?

for 1<r<R. Thus

R

R
e |
e dr < | exp [(N —1)}(R—1)]dr < co,
lf Vaplow) =

contradicting (6.9).

ProOF oF THEOREM 6.3. Adding the inequalities for g, and g_ we have
Y.—v_>0,+9_, s0 g, and g_ are bounded. Since g, is bounded,
min(g,, y,) satisfies the same integral condition as g, and (y,—f+(z))>
>min(g,, y,) on {|jz|> R}. Dealing similarly with the minus case and re-
calling Lemma 6.4, we can suppose: f>0 and there is an K> 0 such that
f>v, on {lz|<R} while f()=y,—g,(|z)) on {|#|>R}. Let f.=f on
{le| <n} and f, =0 on {|z|>n}. By Theorem 6.2, (P, ) has a compactly
supported solution u,. Moreover, , and w, =f + Au, are nondecreasing
in n since f, is nondecreasing in n. (Note that we may assume f fnt 0 if
N =1,2). At this point if N =1 or N =2 we assume supB(R)>y,. Since

(wn_Y+)—Aun:fn_y+<(f_y+)+7

Un<U, W,<W Wwhere U=0Gs  (f—y, )t and w=(f—y,)*+ Au are in
Li(RY) (since (f—y,)reLY(RY)). Thus wu,tu<% and w,fw<w for some
functions %, w € L (RY). We have we f(u) a.e. and f + du=w in D'(RY),
$0 u is a solution of (Pg). Thus it is enough to bound the supports of the
%, uniformly in =n.

‘We make one further reduction. By Lemma 6.5, it suffices to assume that
B(R)c[— A4, A] for some A>0. On {jz|>R}, (f—yp, )" = (— g,(|Jz))+* =0,
so (f—y )"+ duep@) implies A%e L({|x|> R}). Also ue Wii(RY), so

we C({|x|>R}) as in the previous proof. Choose RE,> R and set
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M= Sup {la(x)]}. Now if

r r S N1
h(r, 7o) Zf ( f(é) g+(3)d'5') do ,

then lim A(r, r,) = co since
r—>

T

f(s—ro)g+ (s)ds if N=1,

To

h(r, 7o) = f s (log (;)) g.(s)ds it N—2,

To

1 SN—I .
mf("ﬂ—"s‘) g+(3)d3 if N>3.

To

Choose B> R, so that M = (R, R,) and let

MR, |z])  if Ry<|z|<R
0 if jo|>R.

We have ve C'({|z|>R,}),v= M>u>u,on{|z|=R}andy, — o=y, —g,
on {R,< |z|< R}, and — Av=0 on {|z|> R}. Thus if 2=y, on {R,< |z|< R}
and # =y, — g, on {|x|> R}, then ze€f(v) and z2— Ao =9y, — g, >f,. It now
follows from Lemma 6.6 that v>u, on {|z|>R,} and so suppu.c{|z|<R}.
Finally we treat the cases N =1,2 and y, = supf(R). The main dif-
ference here is that # is not available as an upper bound on the #,. Assuming,
however, that there is an R,> R such that u,(x)<M < oo for |z| = R, we
can proceed as above. It remains then to obtain such a bound. We may
assume f(r) = {y,} if r>0. Next observe that since u,, Au, e LY(RY),
— Au,>0. This follows from Lemma A.13 and A.14 if N=2 (let p

{un>01
tend to the characteristic function of (0, o) in Lemma A.13) and from (4.2)

if ¥ =1. Thus

f7+ <f(7+ — Au,) =f7+_ 9+ +f(y+ — 94
[urn>01 [un>01 {un>0.l2| <Rl [un>0,x|>R]

which implies that
PRGNS

[un<<0. lzl>R] [zl <R
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Now |Adu.|<y,+ 9, € Lig({{#] > B}) so u, e C{|x|> R}). Let » = limu,. By
the above and Fatouw’s lemma

Jo-ahao< | 7.

{u<0, lz|>R] [lzl <R]

Since g, (|#|) ¢ L*({|»|> R}), there exists z, such that u(z,) = 0 (and hence
Un(@) = 0 for all n) and R < |z,|. Pick R,, R, so that R < R, < |w)| <R,
and let v, € Wi({ R, < |#| < R,}) satisty Av,= Au,. Since u, is nondecreasing
in n and %,>0, u,—v,>0 and %, — v, is nondecreasing in n. Also since
{4u,} is bounded in L®({R, <|r|< R.}), {v.} is bounded in C({R, < |#|< R.}).
By Harnack’s theorem either {u,,—— v,} is bounded on compact subsets of
{R, < |w| < Ry} or lim(u, — v,) = oo on {R, < |#| < R,}. Since u.(x,) = 0, the
first alternative holds and the proof is complete.

REMARK. The hypotheses in Theorem 6.3 cannot be weakened. Let
fe Li(R") be radial, [ (f—1)*>0 and <1 on |z[>1. Then:
lal<1
(1) I pr)={1} for r>0, f(0)=1[0,1] and f(r)= {0} for r<0
and (Pg) has a solution e Ly(R"), then f (1—f)= oo.

l21>1

(2) Assume f 4x(1 —f) < oo where gy(z) = log |2|, |z], 1 according as

lei>1

N =1,2 or N>3. Then there is a maximal monotone § with £(0)>[0, 1]
and B(R)= R such that (Pg) does not have a solution u € L(RY). The
proofs use the methods introduced above and are left to the reader.

REMARK. Redheffer [6] has also obtained results related to those of this
section while considering equations of a more general form. However, the
results of [6] do not imply those presented here.

Appendix: What you always wanted to know about 4-! in L'(R¥).

This appendix contains both known material which is presented some-
what differently than in other sources and results which appear to be new.

DEFINITION A.1. Let u be a measurable function on RY, 1 < p < oo and
1/p'+1/p=1. Then |ul > = min{Ce[0, co]: flu(w) |dz < O(meas K)'/" for all
K

measurable KCRN}. M»(RY) is the set of measurable functions « on RY
satisfying | %] y» << oo.

It is easy to verify that M?(R") is a Banach space under the norm ||||,..
Furthermore, it follows at once from Fatou’s lemma that if {u.}C M»(R")
is a sequence satisfying u, —~u a.e., then [u|y»<lim inf [u, |-

37 - Annali della Scuola Norm. Sup. di Pisa
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LEMMA A.2. Let 1<q<<p<<oo. Then for every measurable function u
on RY
”u||Mp<sup {» meas [|u]> A1} < |u|3 .

(i)

Moreover

(i) f ol
K

for every measurable subset K CR”. In particular, M?(R") c LL (RY) with con-
tinwous injection and we M?(RY) implies |u|®e MPYRY).

\a
f)—q (g)wﬂu“}'up(meas K)o-ow

PROOF oF LEMMA A.2. We begin with the right-hand inequality of (i).
Given w and A> 0, set K, = {weR¥: |»|<i and |u(2)|> 1}. Then
lmeasK,<f|u(m)|dm< %] yo(meas K )7 .
K

Thus A(meas K,)"”< |u],» and as % — co we find Az meas[|u|> 1] < ||%,
which is the desired inequality. For the converse, set «(4) = meas[|u|> 1]
and B = sup A?a(4). Given 4,>0 we have

>0

f|u(x)|dx<zomeas1( + f ()| des .

K [lu|>4,]
Now

o

r1 1
j, w)|dx——f/ldoc—- oc(l)dl—l—oz( )ZO<B ﬂ. dl"{‘ Ap—l_‘B il AP—I'

[lul> 2,1 Ao Ao

Choosing 4, so that Ajmeas K = Bp we obtain

f [w(z)|de < B”"(meas Ky’
or

r+1

y D
lelser <=8

Thus the first inequality in Lemma A.2 holds.
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In order to prove (ii), observe that
B, = sup A7 meas [ |u|e> 1] = supz? meas [|u|>n] <|u|3>
A>0 n>0

and

L o M e P I T

q p

by (i). This inequality is a restatement of (ii).
As a direct application of Lemma A.2 we get:

LEMMA A.3. For N> a> 0 the function |x|™* lies in M™*(RY).

REMARKS. M?(RY) coincides with the space L(p, o) of [9, Ch. V.3] and
the norm |||,,» coincides with the norm ||,., of [9, p. 203]. However, the
current definition is more direct. It has the disadvantage that p = 1 is not
allowed however. It is clear that L»(RY) c M»(R¥) and |« | y» < |u|;» (Holder’s
inequality). Lemma A.3 shows this inclusion is strict.

LEMMA A.4. If Ee M*(RY), 1<p< oo, and fe L RY), then Exfe
e M*(R%) and
1B f| o< | Bl ago 1 -

ProoF. We have

[1@s pai= [( [ 18— liiw)ay) ao
K K R"

< || B po | f | 2(meas K"

(Note that the above and Fubini’s theorem shows _f Ex—vy)f(y)dy converges
absolutely a.e. ze R".)

REMARK. This result is essentially (¢) of Theorem 1 in [8, p. 119] (see
the comment following the proof). However, our proof is simpler.

The spaces M? enter our problem via the fundamental solutions for — 4.
Let E, be defined by

1 .
F—ohyepz NS
By()=y ;
it N=2,

éj—_[logm
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where by is the volume of the unit N-ball. Then Eyec WEXRY) and
— AEy, = 6 in D'(R"). Moreover, Eye MY ®~?(R") for N >3 and |grad B, |
e M¥®-D(R¥) for N>2. Thus if N>3 and fe LYR") then u = E
provides a solution in the space MY ¥~2(R¥) of the equation — Au =f. Our
next result asserts that any solution of — Au = f satisfying a certain decay
condition of infinity must coincide with Eyxf if N>3.

LeMMA A.5. Let N>3, ue L. (RY), Auec L{R") and w satisfy

(A.6) lim f u(na)|dw = 0 .

R—>00
1< |e]<<2

Then u = Ey % (—Au). In particular, u € M ymw-n(RY), |grad u| e MY ¥ -D(RY)
and | ulyme-o <oy Aulp, |grad u| yvew-o <dyl|Aul; for some constants cy,
dy independent of wu.

Changing variables in (A.6) by setting ¥ = nz one sees that (A.6) is
equivalent to

(A7) limn— flu(y)]dy =0.
T p<ivi<en

Thus (A.6) states that the average of |u(y)| over the annulus n< |y|<<2n
tends to zero. It is obvious that uwe L'(RY) or ue M?(R¥) 1< p < oo im-
plies (A.7) holds (for N>1). Thus (since Ey* (— du)e MY *~2(R")) Lem-
ma A.b is a direct consequence of the next result.

LemMMA A.8. Suppose N>1, ue L, (RY) and Au = 0. If u satisfies (A.6),
then u = 0.

Proor oF LEMMA A.8. The result is obvious if N =1. We assume
that N>2. If o is integrable on the sphere S = {x: |#| = R} we will de-
note the average of v over S by v,. Since the average of |u(y)] over
n<|y|<2n may be expressed as a weighted average of |u|, over n<r<2n,
(A.7) implies that there is a sequence r,—>co such that |u|, —0. Since u
is harmonic on RY, Poisson’s formula implies that |u(x)|<2"|u|, Whenever
jz] < 7r./2. Letting n — oo with « fixed in this inequality we find u(z) = 0.

The next lemma is used in Section 2 to prove the uniqueness of solutions
of (P) if N>3.
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LEMMA A.10. Suppose N >3, ue MYV—2(RY)and Auc L\(R"). Then for
every pe T, (T, is defined in Section 1)
Vp'(u) |grad u| e L2(RY)

and

[P wlgradul: + [ Aupy<o.

REMARK. Lemma A.10 implies, in particular, that for every A>0
lgrad u| e L([|u] < 4]).

Proor oF LEMMA A.10. Let f=— Au, u, = 0. % %, fo=— A4, = 0% f
where {p,} is a sequence of mollifiers satisfying o, — &, in D’(RY). Mul-
tiplying the equation f, = — Au, by p(%,) and {c D+ we obtain

fp’(u,,)|grad wa|2C +fp(un) grad u, grad £ =ff,,p(u,,)§.

Now u, —wu in Wi since ue Wit (by Lemma A.5) and f,—f in LYRY).

Thus Fatou’s lemma allows us to eonclude that p’(u)|grad u|*{ € LY(RY) and
[#'w)lgradupe + [p(w) radu gradg < [p(w)c .
Now choose { =, = (o(x/n) as before. It remains to show that X, =

=[p(u) gradugradl, -0 as n—oo. Recall ue MV~ (R") so gradue
€ MM P¥-(RY) by Lemma A.5. For 1> 0 one has

X< f lgrad u(a)|

[lui<a}

(grad &,) (2) ‘ |p(w(z))|de +

+ M,’l—lﬁf f[grad u(x)| de=Y,+ Z, .

[lui>4)

eraa o) (%)

Now |p(u)]|<p(2) — p(— 4) when |u|< A since pe F,. Thus the first term ¥,
above satisfies

C ,
| Y. <—7—j! (p(2) —p(— A))||grad &) 1= || grad w| sxiv-—n oA

where 1/p'=1— (N —1)/N = 1/N and C, depends only on N. We conclude
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that

Yy < Oy (p(A) — p(— 1)) | grad | yme-n | grad Co | zo -
On the other hand

IZ”|< nz%’lb’ji “grad C(,“Looflgrad u|<

[lul>2]

|z [lgrad ||z
n

< lp

|grad «| s~iw-n(meas [|u] > A])V¥

and meas[|u|> 1] < co since we MY ¥~2,  Thus Jim sup | X.| < Cy(p(d) —
— p(— 2)) [grad u| i | grad o[ 1= for all 1> 0. Since p(0) = lim p(4) = 0,
lim [X,|=0.

The results corresponding to Lemma A.5 and A.10 in the case N =2
are presented next.

LeMMA A.11. Let ue Wi(R2), Auec LY(R®) and

(A.12) lim f[(grad u)(nx)|dr =0 .

n—>00
1<|xl<2

Then gradu = grad F,% (— Au). In particular,
lgradu|e M2(R?) and | gradu|,.<d||du|;.

for some d, independent of w.

Proor oF LeMmMA A.11l. Let v=gradu + grad E,* Au, v = (v, v,).
Clearly v, e L} (R?) satisfies (A.6) for ¢ =1, 2. Moreover, 4v; =0 in D'(R?).
Thus »; =0 by Lemma A.8, and the result follows.

LemmA A.13. Let ue Wii(R?), |grad u|e M*(R?) and Auec LY (R?). Then
P'(w)|grad w|* e LN(R?) for all ped and, in particular, |gradu|e L*([|u]<1])
for 2> 0. If, in addition, there is a k> 0 for which meas[|u|> k] << oo, then

[ wlgraaul? + [ dupw <o

for all pe&. In particular, fAu:O.
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Proor or LEMMA A13. Let ¢,e€D, g, > 6, 4, =p,%u and f=— Au
so that f, = g, % f = — du,. Clearly u, —u in Wia(R?) and f, —f in LY(R?).
Let €D, ped and multiply - Adu, =f, by p(u,)¢ to obtain

[p' @) lgrad 2 =[fp(n)E + [pun) gradu, grad?

Letting # — oo we find, as before, p'(u)|grad«|?e L, (R?) and

[P wlerad izt < [ipw)t + [pu) grad u grad

for e DH(R?). Set { =, = {lx/n). We will show that X, =fp(u) grad u-
-grad {, remains bounded since grad ue M2?R?) while X, >0 if also
meas |u| > k] is finite for some k. The proof will then be complete. We have

|[(erndugmazp)|<plsmleradsle 1n [ lgradul

n<|xl<2n

<Clgraduy,,

80 the first claim is established. For the second write

|[(eradugradtyp)|< | lgradalgradzip)
flul<<kl
+ | leradullgrad Zallp(@)] = K, + L, -
we have [lul>%]

E,<plie( [ lewadul)tlgradsol s

(i<l
n<|ot<<2n
since [lgrad{,| . = [gradfel;.. Now |gradu|e L*([Ju|<k]) implies K, —0.
Finally,

rad w
L.<|p|zo “g_fo_uﬂ_

f[grad u|<

Lut>k}

1
< [Plls= [grad Zyfue |grad ul e (meas [uf>k])?

80 L,—>0 as n — oo. Choosing p = 4-1 we see that :}:fAu<0, and the
proof is complete.

LeMMA Al14. Let 1<p < oo and uecL?(R?) be such that Auec L*(R?2).
Then we Wiiy(R?) and gradu = grad E,* (— Au). In particular, |gradu|e
€ M*(R*) and |grad u| s <ds| Aul..
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ProoF oF LEMMA A.14. If pc D(R?), @& = o* u has the properties as-
sumed for » as well as grad@ = (gradp)* uwe L?(R?). Thus grad satisfies
(A.12) and by Lemma A.11

grad @ = grad B, (— A@) = grad By * (o* (— Au)) .

Choose ¢ = g, so that & —u in L?(R?) and A# — Au in L'(R?). Then, by
the above, grad i — grad B,* (— du) in M*R?) (so also in L} (R?) and
the result follows.

LEMMA A.15. Let ue L°(R?) be such that Auec LNR?). Then uec Wii(R?)

and |gradu|e L*(R?). Moreover, there is a constant C such that

lgrad |7, < C(uf e + |duf )]z .

ProoF oF LEMMA A.15. Using mollification again it suffices to treat
ue C°(R2) N L*(R?). Let f = — Au and multiply by lu for { € D+(R?). One
finds

[eleradur— 3 furd = [fu< s lulse -
Setting £ = £, = {o(w/n) leads to
Jealeradulr<dlule [146.] + Ifllule -

But |A4L.|p = |4L]» and the result is obtained by letting n — co:
The final result of this Appendix is:

LEMMA A.16. Let B be a ball of radius R in RY and uwe WY*(B) with
1<<p<<N. Then there is a constant C depending only on p and N such that if
o =meas[|u| < 4] > 0 then

meas B

1p*
%] z#*sy < A(meas B)y»* 4 G(( ) + 1) |grad || oz

where —} l
» p N°

PROOF OF LEMMA A.16. Let uy = (1/meas B)[u(z)ds. By Poincaré’s in-
B

equality (see e.g. [7]) we have |u — ug| oz < Clgrad sl sy . Thus

[lu—ug )" o] < Glgrad ul oy
[lul<diNB
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and hence

luplo™®" <26™" + C|lgrad ]| pa, -

Therefore

%] oz < |uz|(meas B)17* 4 O] grad w|zom <

(1]
(2]
(31
[4]
(5]
[6]
(7]
[8]
[9]

1/p*
< A(meas B)1»* 4 ¢ [(meis B) v

i 1] lgrad w] o) -
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