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Untargeted global metabolic profiling by liquid chromato-

graphy-mass spectrometry generates numerous signals

that are due to unknown compounds and whose identi-

fication forms an important challenge. The analysis of

metabolite fragmentation patterns, following collision-

induced dissociation, provides a valuable tool for identi-

fication, but can be severely impeded by close chromato-

graphic coelution of distinct metabolites. We propose a

new algorithm for identifying related parent-fragment

pairs and for distinguishing these from signals due to

unrelated compounds. Unlike existing methods, our ap-

proach addresses the problem by means of a hypothesis

test that is based on the distribution of the recorded ion

counts, and thereby provides a statistically rigorous

measure of the uncertainty involved in the classification

problem. Because of technological constraints, the test

is of primary use at low and intermediate ion counts,

above which detector saturation causes substantial bias

to the recorded ion count. The validity of the test is

demonstrated through its application to pairs of coeluting

isotopologues and to known parent-fragment pairs, which

results in test statistics consistent with the null distribu-

tion. The performance of the test is compared with a

commonly used Pearson correlation approach and found

to be considerably better (e.g., false positive rate of 6.25%,

compared with a value of 50% for the correlation for

perfectly coeluting ions). Because the algorithm may be

used for the analysis of high-mass compounds in addition

to metabolic data, we expect it to facilitate the analysis of

fragmentation patterns for a wide range of analytical

problems.

Metabolic profiling1,2 combines the application of modern

spectroscopic techniques with statistical analyses in the study of

biofluids, cells, and tissues. The discipline typically employs either

nuclear magnetic resonance (NMR) or mass spectrometry (MS)

to profile biological samples for the levels of thousands of small

molecules (<1 kDa). Liquid chromatography time-of-flight mass

spectrometry (LC-TOF MS)3 has become an increasingly popular

technology in this area, because of its relatively low cost, high

sensitivity, and good resolution.

Because of the high sensitivity of this analytical platform and

the complex nature of metabolic samples, LC-MS experiments

result in large numbers of signals that are due to unknown

compounds and whose assignment forms a major challenge to

the subsequent data analysis. The two primary measurements

used to narrow down the possible identities of the unknown

compounds are their elution times and their mass estimates.

For modern TOF mass spectrometers, the latter may be

accurate to within a few parts per million (ppm), under optimal

conditions.4

An important piece of complementary information may be

obtained through the use of tandem mass spectrometry,5 whereby

molecules of predetermined masses are fragmented through

collision-induced dissociation. The estimated masses of the frag-

ments produced can then be used to place further constraints on

the possible identity of the metabolite from which they are derived.

Various studies have suggested methods for improved chemical

formula elucidation, based on variations of this technique.6-8

Fragmentation patterns may also result from in-source fragmenta-

tion, especially in the case of “hard” ionization techniques such

as electron ionization (EI).

There are fundamental differences in the manner in which

fragmentation patterns are used in metabolomics, compared to

their use in proteomics. The fact that proteins are composed of a

finite set of amino acids has allowed for the development of

elaborate mathematical techniques for the interpretation of their

fragmentation patterns. While equivalent methods are not available

in metabolomics, metabolite databases such as the Human

Metabolome Database9 or Metlin10 provide extensive mass

spectral libraries, including MS/MS data, which constitute im-

portant tools for metabolite identification.
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More modern and higher-throughput fragmentation proce-

dures do not restrict the analysis to metabolites of prespecified

masses, but attempt to simultaneously analyze the fragmentation

patterns of all metabolites across a wide range of masses. One

example, known as MSE, attempts to do so by rapidly alternating

between a high- and a low-energy fragmentation, with the

objective of producing a low-energy spectrum that contains few

or no fragments so that the original metabolite can easily be

identified, using its corresponding fragments observed in the

high-energy spectrum.11 However, this approach can be

confounded by the production of in-source fragments, as well

as those produced by low-energy collisions.

A key challenge to the reliable use of any high-throughput

approach lies in establishing which fragments are derived from

which metabolite when several distinct metabolites are coeluting

from the column. The development of improved chromatographic

techniques, such as Ultra-Performance Liquid Chromatography

(UPLC),12 has allowed for greater separation efficiency; however,

given the large number of compounds found in metabolic samples,

coelution remains an important obstacle. The problem is typically

addressed by exploiting the fact that compounds derived from

the same underlying metabolite will have very similar chromato-

graphic elution profiles, and consequently should have an ap-

proximately constant ratio of intensities. One measure that has

been used to quantify this property is the Pearson correlation,13,14

which has the advantage of being easily interpretable and widely

used in many different contexts. Other methods proposed include

comparing the chromatographic peak profiles using neural net-

works15 and, rather more simply, testing whether the apices of

coeluting chromatographic peaks share the same retention time.16

While these methods are highly valuable to researchers, they

are fundamentally heuristic in that they provide intuitive but poorly

understood rules of thumb to data analysis. There are a number

of reasons for avoiding the use of heuristic methods. Since they

are not built on a comprehensive understanding of the system to

which they are applied, they may, without warning, perform poorly

under “unusual circumstances” (e.g., for very high ion counts).

Moreover, it is difficult to establish the “optimality” of heuristic

methods: they may be designed to maximize a score function that

makes some intuitive sense but whose propriety for the system

studied is difficult to ascertain, since the system is not understood.

Finally, if a score function is used to quantify the degree of peak

similarity, then some “acceptance threshold” for this score must

be chosen, above which the peaks are deemed to stem from the

same underlying metabolite, and below which they are deemed

to be unrelated. The choice of this threshold is generally quite

arbitrary as the distribution of the score function is rarely

understood.

In this paper, we develop a statistically rigorous approach to

the problem of coelution based on an underlying model of the

ion counts that is derived directly from the distribution of the ion

arrivals and the properties of the detection system. In particular,

the method developed is tailored to LC-TOF MS systems employ-

ing a time-to-digital converter (TDC) to measure the time-of-flight

of incoming ions and count the number of ion arrivals. Conse-

quently, the method is not expected to work on instruments

employing the alternative analog-to-digital converters (ADCs),

although it is quite likely that analogous techniques might be

developed for such instruments.

THEORY

Methodological Approach. Despite the elaborate nature of

the technology involved in the generation of LC-TOF MS data,

many of the mechanisms whereby the data are produced can be

described with a high degree of accuracy by means of relatively

simple mathematical models. It may be useful to exploit this

feature and aim for a more rigorous approach to the analysis of

LC-TOF MS data, wherein all the aspects of the data generation

process that are relevant to the eventual analysis are understood

and accounted forsin a sense, an ab initio approach to data

generation and analysis. Such an approach should be set in

contrast to the much more widely studied heuristic techniques

for mass spectral data analysis.

When adopting a rigorous approach, it may be helpful to regard

the raw recorded ion counts in an LC-TOF MS experiment as

being derived from three components:

(1) A systematic element directly due to the compounds in

the sample and in the chromatographic column. This may, to a

first approximation, be regarded as a function of the concentration

and ionization propensity of these compounds.

(2) The fundamental noise due to the fluctuating numbers of

molecules that are ionized.

(3) The effects of the physical architecture of the mass

spectrometer used, such as the type of detector it employs. This

includes the effects of background electronic noise, because its

severity is highly dependent on the type of detector used.

What is typically of interest to the analytical researcher is the

systematic element (1), because this is the component that carries

information regarding the biological system under study, although

it will often also carry chemical noise. Components (2) and (3)

are nuisance effects that introduce uncertainty into the data and

are of no direct interest. Therefore, a good framework for data

analysis should account for the uncertainty introduced by the

nuisance components as accurately as possible, in order to draw

inferences about the biological information in the sample.

It turns out that component (2) is very easy to characterize

mathematically, because the arrival times of the ions are governed
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by the well-known Poisson distribution,17 which is a property that

has previously been used as the basis for a noise model for

quadrupole TOF MS data.18 If a highly advanced mass spectrom-

eter were availablesone capable of measuring to an arbitrary

degree of accuracy the numbers and arrival times of all incoming

ionssthen the development of a comprehensive statistical frame-

work for the analysis of LC-TOF MS data might be within reach.

At present, however, a model based solely on a Poissonian

distribution of ion arrivals is not entirely appropriate, because

current technology does not allow for the detection of the precise

number of incoming ions.

Different manufacturers employ different detection methods,

each having its own advantages and drawbacks. Many mass

spectrometers make use of a TDC as part of their detection

system. TDCs are capable of blocking out most electronic noise,

and therefore, provide good signal-to-noise ratios when the rate

of ion arrivals is low.19,20 However, they are easily saturated, so

that for higher rates of ion arrivals, only a fraction of the ions are

counted and the mass estimates are biased toward lower values.21

In the following, the expression “detector saturation” will be used

to denote any deviations from a linear response, caused by an

excess of ion arrivals at the detector system. While such saturation

can be induced by components of the detection system other than

the TDC, it is typically the latter that has the most impact on

dynamic range.

Thus, for LC-TOF MS systems employing a TDC, significant

deviations from the Poisson distribution should be expected at

higher ion counts. Both statistical21–23 and physical24 methods for

correcting for detector saturation are available. But while the

“corrected” ion count will thereby be rendered closer to the true

count, it will generally not adhere to a Poisson distribution. Rather,

it will adhere to a much more complex distribution for which a

truly rigorous statistical analysis would be very difficult. The same

may be said of most of the standard preprocessing steps that are

routinely applied to LC-MS data (e.g., normalization, retention time

alignment, etc.)ssuch measures make the data easier to analyze

on a superficial level, but the actual statistical distribution of

preprocessed data is extremely complex and may not be suitable

for rigorous statistical analysis.

Initially, it may therefore be preferable to restrict the analysis

to more moderate ion counts, for which the Poisson approximation

is good. On that basis, a statistically rigorous test of hypothesis

for identifying related fragment pairs on TDC mass spectrometers

is presented in the following section.

A Goodness-of-Fit Test for Exact Coelution. In the follow-

ing, it will be assumed that the chromatographic peaks studied

are pure; that is, they are derived from only one molecular species.

As long as the mass peaks are pure, they may be centroided

without the loss of important information, because the shape of

the mass peak is largely determined by factors such as the velocity

and spatial distribution of the ions at the time the electric field is

applied,17 which are of little interest. Moreover, the count of a

centroided mass peak will remain Poissonian, because the sum

of independent Poisson distributed random variables is itself

Poissonian.

The probability of obtaining the count k from a Poisson-

distributed random variable with rate λ is given by

P(k) )
λke-λ

k!

For LC-MS data, the rate of ion arrivals of a particular molecular

species will be a function of its elution time, t, so that we may

write

P(k(t)) )
λ(t)ke-λ(t)

k!

For a Poisson distribution, the rate parameter (λ) is equal to the

mean. The centroided rate function, λ(t), therefore describes the

mean number of ion arrivals of a particular molecular species

within one scan, as a function of retention time. The rate function

may be regarded as the product of the concentration and the

ionization propensity of the compound, and consequently may be

written

λ(t) ) πQ(t)

where π is a measure of the compound’s ionization propensity,

and Q(t) is a measure of its concentration in the retention time

dimension. Supposing a metabolite were to fragment into multiple

ions after eluting from the chromatographic column, these would

all share the same Q(t) as the original metabolite. This provides

the basis for constructing a test of hypothesis for exact coelution.

Suppose we wish to test whether a proposed fragment pair is

“legitimate”, rather than the result of close but partial coelution.

The two ion counts will be referred to as k0(t) and k1(t) and their

rate functions can be written λ0(t) ) π0Q(t) and λ1(t) ) π1Q(t).

A matching pair of ion counts, (k0(t), k1(t)), will be referred to

as a “data point”. The joint distribution of the counts at a given

retention time is then given by

P(k0, k1) )
e-(λ0+λ1)λ0

k0λ1
k1

k0!k1!

where, for the sake of conciseness, the dependence on t has been

omitted. However, if

n ) k0 + k1, µ ) λ0 + λ1, and F )
λ0

λ0 + λ1

we may, following Przyborowski and Wilenski,25 rewrite the joint

probability as
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P(k0, n) )
µne-µ

n!

n!

k0!(n - k0)!
F

k0(1 - F)n-k0

which is the joint probability of a Poisson distribution with mean

µ (which determines the sum of the ion counts, n) and a binomial

distribution of n trials with probability F (which determines what

portion of the sum is due to k0 in particular). If the two ions

under investigation exhibit exact coelution and, hence, share

the same Q(t), then this term cancels out from the expression

for the binomial probability, which, when reinstating the

dependence on t, can be written as

F(t) )
λ0(t)

λ0(t) + λ1(t)
)

π0Q(t)

π0Q(t) + π1Q(t)
)

π0

π0 + π1

which will therefore be constant across retention time. Under the

null hypothesis of constant binomial probabilities, Pearson’s �2

goodness-of-fit statistic,

x2
) ∑

i)0

1 (Expected value of ki - Observed value of ki)
2

Expected value of ki

)
(k0(t) - Fn(t))2

nF(1 - F)

approximates a �2 distribution with one degree of freedom (see,

for example, Wackerly et al.,26 p 682). We can evaluate this

statistic for all N data points across the chromatographic peak

and sum them to obtain a pooled statistic, X2 ) Σx2, which

approximates a �2 distribution with N - 1 degrees of freedom,

since F must be estimated from the data. The approximation

to the �2 distribution works best when n is large and F is

moderate. A standard test of validity is to require that nF g 5

and n(1 - F) g 5; data points for which this is not the case

should be left out or pooled together.

If there is partial coelution, so that the binomial probability

varies from data point to data point, then the value of the X2 will

generally be considerably greater than what would be expected

by chance, a property that can easily be quantified by calculat-

ing the corresponding p-value. Therefore, given a set of ion

counts across two coeluting chromatographic peaks, the

goodness-of-fit (GOF) test indicates the probability of obtaining

deviations from the estimated binomial probability that are at

least as extreme as those observed, under the null hypothesis

that chromatographic peaks examined exhibit exact coelution.

The fact that the test quantifies the uncertainty of this

assignment with a relevant p-value is its main advantage over

the alternative heuristic techniques that measure peak similarity

by means of poorly understood score functions, and conse-

quently define their acceptance thresholds in an essentially

arbitrary manner. The acceptance threshold of the GOF test

may simply be given by the chosen significance level, which

is easily interpretable and relates straightforwardly to the

researcher’s aversion to false positives.

Statistics other than the one previously proposed may be used

to detect deviations from exact coelution. Similar to the X2-statistic,

the likelihood ratio test statistic (see, for example, Wackerly

et al.,26 p 517) is approximately �2-distributed and, in addition,

has certain asymptotically optimal properties. However, it has

been argued that the likelihood ratio test is less reliable than

the X2-statistic for small sample sizes,27 so that considerably

higher n(t) values would be required by the former for the

resulting p-value to be accurate. This is consistent with our

findings from applying the two statistics to the counts of

simulated chromatographic peaks. Therefore, the X2-statistic

is preferable for low counts, and because detector saturation

becomes increasingly severe with higher counts, the use of

the likelihood ratio test statistic is generally not recommended.

To calculate X2, the binomial probability must be estimated.

A very simple estimator may be constructed by dividing the

sum of all the counts of one ion by the sum of all the counts of

both ions:

F̂ )

∑
i

k0(ti)

∑
i

k0(ti) + ∑
i

k1(ti)

If this estimator is used, then the overall computational require-

ments of the test will be very low, and generally comparable to

those of the Pearson correlation. Computational efficiency is an

important property, considering the size of typical LC-MS datasets.

The GOF test can easily be generalized so that it simulta-

neously tests for the exact coelution of an arbitrary number of

chromatographic peaks. When doing so, it becomes necessary

to work with multinomials rather than binomials; however, the

general approach, including the estimation of multinomial prob-

abilities, is closely analogous to the procedure just described. It

should also be noted that confidence intervals can be constructed

for the estimated probabilities. This can be useful when the ions

investigated are isotopologues, in which case the multinomial

probabilities describe the isotopic abundance pattern, knowledge

of which can be helpful in identifying unknown compounds.

Nevertheless, note that the GOF test is not a clustering

algorithm: it does not identify each set of exactly coeluting peaks

over a given range of retention times. Like the Pearson correlation,

it can provide a similarity score (the p-value) to measure the

degree of coelution of each pair of peaks, and on the basis of these

scores a clustering algorithm might be constructed. In addition,

if the GOF test were to be used in an automated fashion, it would

require a separate peak-picking algorithm to define the retention

times and corresponding ion counts to which the test were to be

applied. Thus, the computational requirements of an automated

algorithm would, to a large extent, be dependent on the nature

of the peak-picking and clustering algorithms. The fact that the

GOF test can be used to simultaneously test for the coelution of

multiple peaks might well make the associated clustering algo-

rithm faster than methods that are based exclusively on pairwise

comparisons.

Illustration of the GOF Test on Simulated Data. It may be

instructive to illustrate the use of the GOF test on simulated

chromatographic peaks. The GOF test makes no assumptions

regarding shape of the chromatographic peaks under investiga-
(26) Wackerly, D. D.; Mendenhall, W.; Scheaffer, R. L. Mathematical Statistics

with Applications, Sixth Edition: Duxbury: Pacific Grove, CA, 2002. (27) Larntz, K. J. Am. Stat. Assoc. 1978, 73 (362), 253–263.
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tion, so we may, for simplicity, assume a Gaussian peak shape.

The centroided rate function at the ith chromatographic scan

(lasting from ti-1 to ti) can then be written

λ(i) ) ∫
ti-1

ti I

√2πσ2
e-(x - µ)2/(2σ2) dx

where I is the mean number of ion arrivals over the entire

chromatographic peak. For given values of µ, σ, and I, we may

then simulate Poisson-distributed random variables according to

this model, for each of the N scans over which the chromato-

graphic peak is to be investigated. If two simulated chromato-

graphic peaks share the same µ and σ, then the result of applying

the GOF test to their counts will be a p-value that is approximately

uniformly distributed. A discrepancy in the µ values, for instance,

would tend to inflate the X2 statistic and result in a correspond-

ingly low p-value.

The data thus simulated in Figure 1 illustrate the ability of

the GOF test to detect discrepancies from exact coelution (p )

0.0079) that are so small that the resulting Pearson correlation

(0.9555) is essentially the same as what would be expected for

exact coelution. In addition to the highly significant GOF p-value,

the excessive deviation from the estimated binomial probability

under partial coelution can be seen on the scatterplot from the

comparatively large number of data points with very low p-values,

which is a feature that would be difficult to spot by eye, without

the color coding.

Illustration of the GOF Test on Experimental Data. Figure

2 illustrates the same scenarios of exact and partial coelution using

real metabolic data. As with the simulated data, the X2-statistic

results in a moderate p-value under exact coelution (p ) 0.4426)

but a highly significant one under partial coelution (p < 10-7).

In practice, when analyzing metabolic samples, the total

number of partially coeluting peaks, and the closeness of their

coelution, may vary considerably, depending on the nature of

the sample and on the experimental setup. The GOF test is

likely to be most valuable when the coelution is very close.

EXPERIMENTAL SECTION

The validity of the theory described above rests on two

fundamental assumptions: (i) that the recorded ion counts are

approximately Poisson-distributed, and (ii) that the ratio of the

rate functions at the two m/z values investigated is approximately

constant when there is exact coelution.

It is only if these two assumptions hold that we would expect

the x2- and the X2-statistics obtained from the observed ion

counts of exactly coeluting compounds to adhere to the

distributions predicted under the null hypothesis. Any depar-

ture from the two assumptions (because of detector saturation,

interference from unrelated ions, or indeed, errors in the

theoretical framework) would likely result in inflated statistics.

Therefore, the validity of the test may be evaluated by applying

it to pairs of compounds known to exhibit exact coelution and

Figure 1. (Top) Two simulated chromatographic peaks exhibiting exact coelution (a) and two simulated chromatographic peaks exhibiting very

close but partial coelution (c), as indicated by the shifted means (10% of the standard deviation of the peaks). (Bottom) The corresponding

scatterplots with the p-values of the x2-statistics of each data-point indicated by color-code. Low counts for which the distribution of the x2-

statistics may deviate substantially from the �1
2-distribution are excluded, and these data points are indicated in black. While the correlations are

approximately the same in either scenario, the p-value of the pooled X2-statistic is highly significant under partial coelution (p ) 0.0079), but

quite moderate under exact coelution (p ) 0.1489).
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by comparing the distributions of the resulting test statistics

to the predicted ones. On that basis, the validity of the GOF

test was evaluated on real metabolomic data that have been

derived from synthetic urine.

The validity of the test was examined under varying ranges of

ion counts, to evaluate the effects of detector saturation. Here, it

should be noted that in LC-TOF MS experiments, the number of

ion counts obtained will be dependent on the duration of the

chromatographic scan time: the longer the scan time is, the higher

the count. However, the only factor affecting detector saturation

is the rate of ion arrivals, so that a longer scan time does not

induce greater detector saturation, despite the higher count.

Consequently, ion counts will in the following be classified as

“low”, “moderate”, or “high”, with these categories corresponding

roughly to the tertiles of the full ion count range.

Preparation of Synthetic Urine. Eighty-three of the most

abundant endogenous mammalian metabolites, ranging in mo-

lecular weight from 30-625 Da, were weighed into a 1-L bottle

and then dissolved in 1 L of HPLC-grade water (Sigma-Aldrich,

St. Louis, MO). Any remaining solids were removed by vacuum

filtration. Approximate final metabolite concentrations were tar-

geted to fall between 1 mM and 20 mM, with sodium azide added

at 0.05% v/v as a preservative. The normally high levels of

inorganic salts found in urine were not added, in order to eliminate

the effect of salt suppression in the various sample introduction

interfaces. The stock solution was stored at -80 °C.

Instrumentation. Synthetic urine samples (5 µL) were in-

jected onto a 2.1 mm × 100 mm (1.7 µm) HSS T3 Acquity column

(Waters Corporation, Milford, CT) and eluted using a 18-min

gradient of 100% A to 100% B (A ) water, 0.1% formic acid, B )

acetonitrile, 0.1% formic acid). The flow rate was 500 µL/min, the

column temperature was 40 °C, and the sample temperature was

4 °C. Samples were analyzed using a UPLC system (UPLC

Acquity, Waters Ltd. Elstree, U.K.) coupled online to a Q-TOF

Premier mass spectrometer (Waters MS Technologies, Ltd.,

Manchester, U.K.) in positive- and negative-ion electrospray mode

with a scan range of m/z 50-1000 and a scan time of 0.08 s. Three

technical replicates were run. To obtain data that were as raw as

possible, the spectrometer was run in continuum mode and the

detector saturation correction was switched off. A feature of the

Q-TOF Premier is that it employs a “DRE lens”, which is a

mechanism for defocusing the ion beam to minimize detector

saturation.24 This defocusing mechanism was also switched off.

RESULTS

Selection of Test Datasets. Clusters of isotopologues provide

convenient test sets, because they can be expected to exhibit exact

coelution.15 Eleven prominent clusters of isotopologues were

investigated in this analysis. In all cases, plots of the mass peaks

(see Figure 3) were closely inspected to reduce the risk of

“contamination” from closely coeluting compounds with similar

mass. While this procedure cannot guarantee the resulting dataset

to be one composed exclusively of pure chromatographic peaks,

it is quite conservative, because any contamination would tend to

inflate the resulting x2-statistics, which, in turn, would lead us

to reject the validity of the GOF test. Heavier isotopologues

Figure 2. Similar to Figure 1, except, in this case, real LC-MS data derived from synthetic urine are used. The left-hand side shows the

chromatographic peaks (a) and scatterplot (b) of a pair of isotopologues, which, like related fragments, may be expected to exhibit exact coelution;

the right-hand side shows the chromatographic peaks (c) and scatterplot (d) of two presumably unrelated compounds. The difference in the

estimated means is 6.34 times the estimated standard deviation.
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were excluded if their signal was weak enough to be compa-

rable to the background noise. A total of sixteen peak pairs

were included in the final analysis. The masses and scan

numbers of their apices are listed in Table 1.

To allow for an approximately constant ratio of counts, all the

pairs of isotopologue mass peaks that were accepted as “pure”

were centroided over a matching number of mass bins. The

binomial probabilities were then estimated, and the resulting x2-

statistics calculated. Given the large number of data points

available for each pair of isotopologues, the distribution of each

statistic should approximate a �2-distribution with one degree

of freedom. Thus, the validity of the algorithm may be tested

by evaluating whether or not the empirically calculated x2-

statistics conform to this distribution. Note that the binomial

Figure 3. Continuum plots of a pair of isotopologues. The x-axis indicates the chromatographic scan number, while the y-axis indicates each

of the individual “ticks” of the clock that measures the time-of-flight of the ions, along with the corresponding m/z values. The number of ions

counted at each tick is indicated by the color code. In these two cases, there are no apparent signs of interference from other compounds of

similar masses.

Table 1. Scan Numbers and m/z Values of the Peaks Used in the Evaluation of the GOF test at Their Apicesa

cluster compound scan number/retention time (min) m/z isotopologueb

1 N-acetyl-L-glutamic acid 857/1.652 188.0426 [M-H]-

868/1.672 189.0572 [M+1-H]-

877/1.690 190.0615 [M+2-H]-

2 uridine 1096/2.114 243.0537 [M-H]-

1104/2.129 244.0672 [M+1-H]-

3 4-aminohippuric acid 1677/3.234 193.0507 [M-H]-

1681/3.241 194.0653 [M+1-H]-

1681/3.241 195.0645 [M+2-H]-

4 glutaric acid 1724/3.323 131.0251 [M-H]-

1755/3.382 132.0381 [M+1-H]-

5 methylsuccinic acid 2471/4.763 132.0384 [M+1-H]-

2414/4.654 133.0376 [M+2-H]-

6 3-nitro tyrosine 2877/5.546 225.0399 [M-H]-

2871/5.535 226.0579 [M+1-H]-

7 adipic acid 2952/5.689 145.0464 [M-H]-

2951/5.687 146.0554 [M+1-H]-

8 indoxyl sulfate 2971/5.725 211.9924 [M-H]-

2965/5.714 213.0030 [M+1-H]-

2975/5.733 213.9970 [M+2-H]-

2972/5.727 214.9968 [M+3-H]-

9 suberic acid 3635/7.007 173.0707 [M-H]-

3617/6.973 174.0842 [M+1-H]-

3623/6.985 175.0832 [M+2-H]-

10 salicylic acid 4096/7.895 138.0239 [M+1-H]-

4100/7.903 139.0298 [M+2-H]-

11 sebacic acid 4615/8.893 202.1097 [M+1-H]-

4610/8.884 203.1155 [M+2-H]-

a This may not correspond to the global maximum of the peak, because, for many clusters, parts of the chromatographic peaks were left out,
to avoid “contamination” from distinct compounds of similar masses. b Here, “[M-H]-” denotes the negatively ionized lowest-mass isotopologue
of the metabolite in question.
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probabilities could have been calculated theoretically from the

known isotopic abundance patterns, but this was avoided,

because their estimation will always be required when the test

is applied to putative parent-fragment pairs.

To evaluate the effects of detector saturation, the GOF test

was applied to the data at various cutoffs. The cutoff was applied

to the sum of the paired ion counts rather than to each one

individually, because this reduces the bias caused to the resulting

distribution of x2-statistics. In this way, three datasets were

constructed: the full dataset (6090 data points), a dataset

consisting of low and moderate paired ion counts, namely those

of less than 600 (4029 data points), and one consisting only of

low paired ion counts, namely those of less than 300 (2986 data

points). In all cases, low ion counts for which the x2-statistics

might be unreliable (those with nF̂ < 5 or n(1 - F̂) < 5) were

excluded. Figure 4 shows the resulting GOF scatterplots for one

pair of mass peaks (derived from 4-aminohippuric acid), with the

approximate p-values of the x2-statistics indicated by color code.

The effects of detector saturation are very clear for the full

dataset, where there is a very strong deviation from linearity

and a correspondingly low GOF p-value. The deviation is

difficult to see by eye for the dataset of low and moderate

counts, although the GOF p-value remains significant. The

dataset of low counts results in a moderate p-value and only a

few data points show possible signs of detector saturation.

Validation. To determine whether the x2-statistics of the three

datasets adhere to the �1
2-distribution, quantile-quantile plots

were drawn, along with histograms of the corresponding

p-values (see Figure 5). The percentage of the x2-statistics that

fell within the 5% and 1% critical regions of the �1
2-distribution

were also calculated (see Table 2). The full dataset clearly shows

very strong deviation from the predicted distribution, with far more

high values than would be expected from a �1
2-distribution and

consequently a distribution of p-values that is strongly biased

toward lower values. The same is true of the dataset with the

cutoff at 600, although, here, the deviation is more moderate.

However, the final dataset seems to be consistent with a �1
2-

distribution.

To test the validity of the X2-statistics of the three datasets,

all of the x2-statistics of each group were summed, providing

three X2-statistics. Their distributions should adhere to the �2-

distribution, with the number of degrees of freedom being

equal to the total sample size minus sixteen (the number of

parameters estimated). As shown in Table 2, the two larger

groups yield extremely low p-values, but the group with a cutoff

at 300 yields a p-value that is consistent with a uniform distribution.

As was mentioned earlier, there are statistical methods for

correcting for the effects of detector saturation. While these do

not restore the Poisson distribution of the data, they may extend

the range over which the Poisson approximation is valid. To

investigate such an effect, Coates’ correction algorithm23 was

applied to the continuum data, after which it was centroided and

the GOF test applied once more. The results are shown in Figure

6 and Table 3.

Despite the correction, the distributions of the x2- and X2-

statistics for the full dataset remain significantly different from

the appropriate �2-distributions. For the dataset of low and

moderate counts, the distribution of x2-statistics is made

considerably closer to acceptable, although the p-value of the

X2-statistic remains significant. There is no indication that the

distributions of the statistics change substantially for the dataset

of low counts.

Note that, in cases where the ion count ratio is very close to

one, the degree of detector saturation will be approximately the

same for both counts, which will have the effect of preserving

the approximate constancy of the ion count ratio, even for high

counts. This can potentially induce a lower-than-expected X2-

statistic for high counts and a correspondingly inflated p-value;

however, the application of Coates’ correction algorithm

increases the variance of the counts beyond what would be

Figure 4. Scatterplots for the three datasets derived from 4-aminohippuric acid: (a) the full data set, (b) the dataset with low and moderate

counts, and (c) the dataset with only low counts. The approximate p-values of the x2-statistics are indicated by color code, and the p-values of

the pooled X2-statistics are listed.

Table 2. Data Regarding the x2-Statistics Derived from the Three Datasets

full dataset ion count: 0-600 ion count: 0-300

percentage of x2-statistics in 5% critical region 31.13% (1896/6090) 6.45% (260/4029) 4.99% (149/2986)
percentage of x2-statistics in 1% critical region 21.51% (1310/6090) 1.51% (61/4029) 0.87% (23/2986)
GOF p-value for X2-statistics <10-7 <10-7 0.5642
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expected for Poissonian data, so that this form of bias does

not arise.

An important issue regarding the validity of the GOF test is

the manner in which the rate function of a given fragment may

be influenced by the coelution of a distinct metabolite through

ionization suppression. If ionization suppression were to reduce

the rate functions of all the fragments studied by the same

proportion, then the GOF test would remain valid, as the linear

relationship between the fragments would be unaffected. However,

if the nature of ionization suppression is such that the rate

functions of different fragments are reduced by different propor-

tions, then even very mild suppression effects might induce the

GOF test to return a low p-value when it should not. If this is the

case and if such suppression effects are common under coelution,

then the GOF test should only be expected to return a uniformly

distributed p-value when a single metabolite is eluting, which

would limit its value as an analytical tool.

To test for the presence of such suppression effects, the GOF

test was applied to the chromatographic peaks of a number of

known parent-fragment pairs for which there was partial coelu-

tion with a distinct metabolite. Validating the GOF test in this

setting is more problematic than for isotopologues, because it

requires the identification of the fragment and because of the risk

that the fragment investigated may, in fact, be derived from the

coeluting compound. As with the isotopologues, any contamination

of the mass peaks from unrelated compounds would tend to inflate

the resulting x2-statistics, which, in turn, would lead us to reject

the validity of the GOF test. In addition to validating the GOF

test under partial coelution, this procedure illustrates how the

test would, in practice, be applied to pairs of ions.

The parent-fragment pairs that were investigated are listed

in Table 4. As with the isotopologues, the continuum data were

inspected, Coates’ correction was applied, and three datasets of

differing ion counts were constructed. The chromatographic peaks

of an example parent-fragment pair are shown in Figure 7, along

with that of the coeluting compound.

The results are similar to those obtained for the isotopologues.

As shown in Figure 8, the resulting x2-statistics for the “low” ion

counts are consistent with a �2-distribution, and the overall GOF

p-value for the X2-statistics is consistent with a uniform

distribution at 0.3705. Thus, there is no evidence that the

coelution of distinct compounds affects the validity of the GOF

test. Nevertheless, given that the detailed mechanics of ioniza-

tion suppression remain poorly understood, we cannot deci-

sively exclude the possibility that coeluting compounds could

interfere in such a manner that the GOF test might be rendered

biased. Any technique that identifies related fragments based

Figure 5. (Top) Histograms of the p-values corresponding to the x2-statistics derived from the three datasets and (bottom) quantile-quantile

plots of the x2-statistics themselves, compared to the theoretical �1
2-distribution. Only the dataset of low counts seems to closely approximate

the �1
2-distribution.

Table 3. Data Regarding the x2-Statistics Derived from the Saturation-Corrected Datasets

full dataset ion count: 0-600 ion count: 0-300

percentage of x2-statistics in 5% critical region 20.89% (1183/5662) 5.70% (209/3664) 5.24% (138/2633)
percentage of x2-statistics in 1% critical region 13.49% (764/5662) 1.06% (39/3664) 0.72% (19/2633)
GOF p-value for X2-statistics <10-7 0.0074 0.3190
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on the degree of linearity of their ion count ratios would be

adversely affected by such interference.

Performance Comparison. The false positive and false

negative rates of the GOF test and of the Pearson correlation were

Figure 6. (Top) Histograms of the p-values corresponding to the x2-statistics derived from the three datasets after they had been corrected for

detector saturation and (bottom) quantile-quantile plots of the x2 statistics themselves, compared to the theoretical �1
2-distribution. Only for the

dataset of low and moderate counts does the correction seem to cause the distribution of the x2-statistics to be substantially closer to the

�1
2-distribution than it was for the raw data, although some deviations remain.

Table 4. Parent-Fragment Pairs Used To Test for the Presence of Ionization Suppression Effects on the GOF Testa

a In all cases, a distinct metabolite was coeluting with the above pairs. The scan numbers of the apices of the chromatographic peaks used in
the evaluation of the GOF test are listed.
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compared using the data derived from the pairs of coeluting

isotopologues. Because the null hypothesis of the GOF test is that

the compounds investigated exhibit exact coelution, a false positive

will occur when two exactly coeluting peaks are deemed to be

partially coeluting, whereas a false negative is the failure to classify

two partially coeluting peaks as such. The set of isotopologues

contains only exactly coeluting peaks, and therefore allows only

for an evaluation of the false positive rate. However, artificial

coelution can be introduced by shifting the paired peaks away

from each other scan by scan, thus producing semiempirical data

to imitate partial coelution, and allowing for the false negative rate

of the two tests to be evaluated as a function of “increasingly

partial” coelution. Although the coelution is introduced artificially,

this procedure allows for a level of control over the degree of

coelution that would be impossible to achieve through the use of

purely raw data.

The significance level of the GOF test was set to 0.05, which

is, by definition, also the theoretical false positive rate. Unlike the

GOF test, the theoretical false positive rate of the correlation

approach is very likely dependent on factors such as the peak

heights and shapes and cannot be straightforwardly linked to its

“acceptance threshold”. To allow for a fair comparison, two values

for the acceptance threshold of the correlation were investigated:

one that resulted in an identical number of false positives for the

two tests and another that resulted in a closely comparable

number of false negatives across the retention time shifts. Coates’

correction was applied to the data and the cutoff of 300 ion counts

was used. The retention times of the sixteen pairs of exactly

coeluting peaks were shifted by up to ten scans, giving a maximum

retention time difference of 1 s, which is approximately a third of

the median full width at half-maximum (fwhm) of these chro-

matographic peaks.

The percentages of peak pairs deemed to exhibit partial

coelution are shown in Figure 9, as a function of the retention

time shift. The empirical false-positive rate of the GOF test is 6.25%

(1/16), and the empirical false-negative rate reaches zero after a

Figure 7. Ion counts of 4-aminohippuric acid (blue), the fragment formed by the loss of carbon dioxide (black), and a partially coeluting compound

(red) used in the ionization suppression test. If the rate functions of 4-aminohippuric acid and its fragment were reduced by significantly differing

factors by the partially coeluting compound, we would expect their ratio to start shifting near scan number 1680, but no such effect is observed.

Figure 8. Histogram of the p-values returned by the GOF test when applied to the low ion counts of the six parent-fragment pairs (left), and

quantile-quantile plot of the corresponding x2-statistics (right). The results are consistent with those obtained for the isotopologues, and there

is no evidence that the coelution of distinct compounds affects the validity of the GOF test.
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shift of just four scans. When the empirical false-positive rate of

the correlation is fixed to 6.25%, its empirical false negative rate

is substantially higher than that of the GOF test throughout the

retention time range investigated and takes over ten scans to reach

zero. When the false-negative rates of the two tests are matched,

the correlation has a false-positive rate of 50%, as opposed to the

6.25% for the GOF test. Clearly, the results suggest the perfor-

mance of the GOF test to be considerably better than that of the

correlation at these low counts. This is in addition to the inherent

advantages that come with using a test of hypothesis.

DISCUSSION AND CONCLUSION

The results suggest that when the analysis is restricted to low

ion counts, the GOF test for exact coelution provides a good

approximation to a genuine test of hypothesis. Because of detector

saturation, the distribution of the test statistic used does not

adhere exactly to the predicted distribution; however, for low ion

counts, the approximation seems to be good enough for the

p-values produced to be of satisfactory quality and, here, the test

compares very favorably to a test based on the Pearson correlation.

There is evidence that the range of ion counts over which the

test is valid may be extended by applying Coates’ correction

algorithm23 to the continuum data.

Given the requirement of undistorted Poisson-distributed data,

the GOF test is only expected to work with mass spectrometers

employing a TDC to measure the time-of-flight of the ions. It

seems likely that a similar type of test based on the magnitude of

the deviations from the estimated chromatographic peak ratio

might be designed for other types of detectors. The fact that low

ion counts are required for the test to be valid represents another

important constraint on its use. However, it is one that can often

be overcome by making use of the ion counts of mass peaks of

less abundant isotopologues, or by restricting the sampling to the

edges of the chromatographic peaks. Moreover, this constraint

is likely to become less severe as the technology advances. Also

note that the GOF test is, a priori, just as valid as heuristic

methods such as the Pearson correlation at higher ion counts.

The p-value of the GOF test can still be used as a similarity score,

only it can no longer be assumed to adhere to a uniform

distribution under the null hypothesis and, therefore, its ac-

ceptance threshold will have to be chosen in a manner that is as

arbitrary as that for the heuristic methods.

The GOF test addresses one very specific problem in the

analysis of LC-MS data. There are several software packages, such

as XCMS,28 MetAlign,29 and MZmine,30 that provide much more

extensive tools for the analysis of LC-MS data. These are based

on a rather different philosophy than the GOF test, because they

are generally designed to work with any type of LC-MS data,

irrespective of factors such the type of detector employed by the

mass spectrometer. Nevertheless, the GOF test could quite easily

be incorporated into software packages such as these, although,

given its requirements, it should only be used when detailed

knowledge of the instrument is available. While the GOF test is

expected to become a useful analytical tool, it does also, in the

opinion of the authors, have considerable value as a proof-of-

concept that the data analytical tasks encountered in the analysis

of LC-MS data can, in at least some cases, be addressed using a

mathematically more rigorous approach.

At this point, the prospects of extending the use of rigorous

statistical methods not only to the region of high ion counts, but

also to address other questions of interest, such as quantifying

the uncertainty of mass estimates, seem quite realistic. However,

such a broad theoretical framework would almost certainly have

to incorporate, in detail, the effects of the architecture of the

specific type of mass spectrometer used, and consequently a

(28) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. Anal. Chem.

2006, 78, 779–787.
(29) Lommen, A. Anal. Chem. 2009, 81 (8), 3079–3086.
(30) Katajamaa, M.; Miettinen, J.; Oresic, M. Bioinformatics 2006, 22 (5), 634–

636.

Figure 9. Plots of the percentage of the isotopologue pairs that are classified as exhibiting partial coelution by the GOF test (blue) and the

correlation (red), as a function of “increasingly partial” coelution. Only the leftmost point corresponds to exactly coeluting peaks and thereby

indicates the false-positive rate. False-negative rates correspond to 100 minus the ordinate for nonzero retention time shifts. Plot (a) standardizes

the two tests by matching their false positive rates, while plot (b) matches their false negative rates. Clearly, the performance of the GOF test

is considerably better than that of the correlation.
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distinct mathematical model would have to be developed for each

class of mass spectrometer. The development and assessment of

such a model for a single type of mass spectrometer, as a proof-

of-concept, will be the objective of future research. The fact that

only rather limited documentation is publicly available on most

modern mass spectrometers will form an important obstacle.

In summary, we have demonstrated and validated the feasibility

of addressing an important problem in the analysis of LC-MS data

by means of a rigorous statistical method derived directly from

the fundamental distribution of the incoming ions. In cases where

there is close chromatographic coelution of distinct metabolites,

the algorithm will allow for a substantially improved analysis of

their fragmentation patterns, as it provides a powerful means for

distinguishing between different groupings of related fragments

and includes a rigorous measure of the uncertainty of this

assignment. The technique may thereby greatly facilitate the

elucidation of the molecular formulas of unknown compounds,

and it moreover constitutes an important step toward a more

rigorous approach to mass spectrometry data analysis.
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