
Int. J. of High Performance System Architecture 1

A Survey of Architectural Techniques for DRAM
Power Management

Sparsh Mittal

Electrical and Computer Engineering
Iowa State University
Iowa, USA, 50014
Email: sparsh@iastate.edu

Abstract:

Recent trends of CMOS technology scaling and wide-spread use of multicore processors
have dramatically increased the power consumption of main memory. It has been
estimated that modern data-centers spend more than 30% of their total power
consumption in main memory alone. This excessive power dissipation has created the
problem of “memory power wall” which has emerged as a major design constraint
inhibiting further performance scaling. Recently, several techniques have been proposed
to address this issue. The focus of this paper is to survey several architectural techniques
designed for improving power efficiency of main memory systems, specifically DRAM
systems. To help the reader in gaining insights into the similarities and differences between
the techniques, this paper also presents a classification of the techniques on the basis of
their characteristics. The aim of the paper is to equip the engineers and architects with
knowledge of the state of the art DRAM power saving techniques and motivate them to
design novel solutions for addressing the challenges presented by the memory power wall
problem.

Keywords: Architectural techniques, power efficiency, energy saving, DRAM, main
memory, survey, review, classification

Reference to this paper should be made as follows: Mittal, S. ‘A Survey of Architectural
Techniques for DRAM Power Management’, Int. J. of High Performance System
Architecture, Vol. 4, Nos. 2, pp. 110-119

Biographical notes: Sparsh Mittal received his B. Tech. degree in Electronics and
Communications Engineering from the Indian Institute of Technology, Roorkee, India.
He was the graduating topper of his batch and his major project was awarded Institute
Silver medal. At present, he is pursuing his PhD degree in Electrical and Computer
Engineering at Iowa State University, USA. He has been awarded scholarship and
fellowship from IIT Roorkee and ISU. His research interests include memory system
power efficiency, cache architectures in multicore systems and real-time systems.

.

1 Introduction

Recent years have witnessed a dramatic increase in
power consumption of computing systems. As an
example, in year 2006 alone, the data-centers and servers
in U.S. consumed 61 billion kilowatt hours (kWh)
of electricity [1]. Further, the energy consumption of
main memory is becoming an increasing fraction of
total energy consumption of the system, in processors
ranging from low-end to high-end. It has been estimated
that as much as 40% of the total power consumed
in smartphones and datacenters is attributed to the
memory system [2–4]. Studies conducted on real server

systems show that memory system consumes as much as
50% more power than the processor cores [3].

There are several architectural and technological
trends that mandate the use of high amount of main
memory resources and thus, contribute to the increase
in memory power consumption. Firstly, in modern
processors, the number of cores on a single chip is on rise
[5, 6] and hence, the pressure on the memory system has
been increasing. Secondly, as we move to the exascale
era, the requirements of data storage and computation
are growing exponentially [7–10] and to fully optimize
the value of such data, modern processors are using
main memory (as opposed to persistent storage) as the
primary data storage for critical applications. Thirdly,
modern data-centers exhibit low average utilization [2],
but frequent, brief bursts of activity, and thus, to meet



the requirements of service-level-agreements (SLAs),
operators are forced to provision high amount of main
memory resources, suitable to meet the worst case
requirement. To cater to the above mentioned demands,
modern processors are using main memory with high
bandwidth, frequency and capacity. Finally, CMOS
technology scaling has enabled higher transistor packing
density, which have further exacerbated the problems of
power consumption and heating and have also inhibited
the effectiveness of cooling solutions. Thus, improving
the power efficiency of memory systems has become
extremely important to continue to scale performance [8]
and also achieve the goals of sustainable computing.

Recently, many techniques have been proposed for
optimizing the power efficiency of memory systems. In
this paper, we review several of these techniques. As
it is practically infeasible to review all the techniques
proposed in the literature, we take the following
approach to limit the scope of the paper. We only
include techniques proposed for saving energy in DRAM
systems and do not discuss other emerging storage
technologies (e.g. phase change memory). We consider
DRAM, since it has been traditionally used as main
memory because of its properties such as high density,
high capacity, low cost and device standardization etc.
[11]. Also, we focus on architecture-level techniques
which allow runtime power management and do not
discuss circuit-level innovations for reducing power
consumption. Further, although the techniques aimed at
improving memory performance (e.g. reducing latency)
are also likely to improve memory power efficiency, we
only include those techniques that have been evaluated

for improving memory power efficiency. Finally, since
different techniques have been evaluated using different
experimentation methodologies, we do not present their
quantitative results; rather, we only discuss the key ideas
of those techniques.

The remainder of the paper is organized as follows.
In section 2, we briefly discuss the terminology used in
DRAM systems and the sources of power consumption in
them. Understanding the sources of power consumption
also helps in gaining insights into the opportunities
available for improving power efficiency. In section 3, we
present a classification of the techniques proposed for
managing DRAM power consumption to highlight the
similarities and differences among them. A more detailed
discussion of these techniques is provided in section 4.
Finally section 5 provides the concluding remarks.

2 Background

In this section, we briefly discuss DRAM terminology
[12] and the sources of power consumption in DRAM
systems, to aid in discussion of DRAM power
management techniques discussed in the next sections.

2.1 DRAM terminology

In DRAM terminology, a column is the smallest
addressable portion of the DRAM device and a row is a
group of bits in the DRAM array that are sensed together
at the instance of receiving an activate signal. A DRAM
bank is an array of DRAM cells, which can be active
independently and has same data bus width as external
output bus width. A DRAM rank is a group of DRAM
devices which operate together to service requests from
the memory controller. A DIMM (Dual in-line memory
module) is a printed circuit board containing one or more
DRAM ranks on it, which provides an interface to the
memory bus. A DRAM channel is a group of one or more
DIMMs of DRAM that handle requests from the memory
controller. An typical DRAM can have 2 channels, 2
DIMMs per channel, 2 ranks per DIMM, 8 banks per
rank, for a total of 64 (= 2× 2× 2× 8) banks.

2.2 Sources of Power Consumption

The power consumption in DRAM memory is broadly
classified in three categories, namely activation power,
read/write power, background power (for a more detailed
analysis, see [11, 13, 14]). Activation power refers to
the power dissipated in activating a memory array row
and in precharging the arrays bitlines. The read/write
power refers to the power which is consumed when the
data moves either into or out of the memory device. The
background power is independent of the DRAM access
activity and is due to the transistor leakage, peripheral
circuitry, and the data refresh operations. Note that the
DRAM memory cells store data using capacitors that
lose their charge over time and must be periodically
recharged; this is referred to as data refreshing.

3 A Classification of DRAM Power

Management Techniques

In this section, we present a classification of the
DRAM power management techniques based on their
characteristics.

As shown by Barroso et al. [2], modern servers
operate most of the time between 10% and 50% of
maximum utilization. Thus, considerable opportunities
exist to transition idle inactive memory banks into low-
power modes. These power modes could be either state-
preserving modes (i.e. the data is retained) or state-
destroying modes (i.e. the data is not retained). For
this purpose, DRAM chips provision several modes of
operation. Each mode is characterized by its power
consumption and the time that it takes to transition
back to the active mode. This time is referred to
as resynchronization latency or exit latency. Typically,
the modes with lower energy consumption also have
higher reactivation time and vice versa. Also, a DRAM
module may enter a low-power state-preserving mode
when it is idle, but must return to the active mode to



service a request. A large number of techniques have
been proposed which utilize the adaptive power saving
capability offered by the modern multi-banked memory
systems [4, 15–59].

Some techniques perform memory access
redistribution (also called memory traffic reshaping),
which involves changing the address mapping in DRAM,
migrating data within DRAM etc., for increasing the idle
period of certain memory banks or increasing memory
reference locality [15, 17, 24, 34, 38–40, 48–50, 60–64].

Several other techniques reduce the power consumed
in each DRAM access by accessing only part of DRAM
in each memory access [11, 54, 57, 65–68]. Thus, these
techniques provision activating a much smaller portion
of DRAM circuit component than what is activated in
conventional DRAMs.

Many techniques for reducing memory power
consumption use mechanisms based on memory access
scheduling [15, 32, 44, 69–76]. This includes mechanisms
such as memory access throttling or buffering or
coalescing. Also, techniques have been proposed which
reduce the number of accesses to memory by smart
management of last level caches or program level
transformations etc. [15, 77–79].

Some techniques use data compression to reduce
the memory footprint of the application [49, 80–82].
This helps in reducing the number of memory banks
occupied by application data. The techniques based on
data replication increase idle time duration of memory
banks by duplicating their selected read-only data blocks
on other active banks [49].

Like other CMOS circuits, DRAM power also
depends on operating frequency and supply voltage
and hence DVFS (dynamic voltage/frequency scaling)
mechanism has been used in several techniques to
save memory power [29, 64, 70, 83]. Some techniques
reduce the DRAM refresh power, by trading off
either performance or reliability [43, 78, 84–89]. Some
techniques account for the effect of temperature while
optimizing for memory energy [17, 70, 90–92]. Such
techniques are referred to as thermal-aware memory
energy saving techniques.

Also, while most of the techniques work to
reduce total power consumption of DRAM system,
a few techniques work to limit their average power
consumption [23], while some other techniques work to
limit their peak power consumption [22, 30].

4 DRAM Power management techniques

In this section, we review several DRAM power saving
techniques. As discussed before, we only present the
key ideas of each technique and do not discuss their
qualitative results.

Lebeck et al. [40] propose a technique for turning
off DRAM chips in low-power mode. Their technique
works by controlling virtual address to physical address
mapping such that the physical pages of an application

are clustered into a minimum number of DRAM chips
and the unused chips are transitioned to low power
modes. In addition, their technique also monitors the
time period between accesses to a chip as a metric for
measuring the frequency of reuse of a chip. When this
time is greater than a certain threshold, the chip is
transitioned to the low-power mode.

Fan et al. [31] present an analytical model to
approximate the idle time of memory chips. Based on
this, they identify the threshold time, after which the
memory chip can transitioned to low-power state. They
observe that, for their experimentation framework, the
simple policy of immediately transitioning a DRAM chip
to a low-power mode when it becomes idle, performs
better than more sophisticated policies that predict
DRAM chip idle time. Li et al. [42] propose a technique
for saving memory energy which adaptively transitions
memory module to low-power modes while also providing
guarantees on the maximum performance loss.

Delaluz et al. [26] propose software and hardware
based approaches to save memory energy. Their
hardware based approach works by estimating the time
of next access to a memory bank and then, depending
upon the time, switching the bank to a suitable
low-power mode. The software-directed approach uses
compiler analysis to insert memory module transition
instructions in the program binary. To avoid the time
overhead of resynchronization, they propose bringing
the memory bank to active mode before its next use.
Depending upon the break-even analysis of length of idle
time and power saving opportunity of different power
saving modes, a suitable power saving mode is chosen.
Delaluz and Sivasubramaniam et al. [27] describe an OS
scheduler-based power mode control scheme for saving
DRAM energy. Their scheme tracks memory banks that
are being used by different applications and selectively
turns on/off these banks at context switch points.

A limitation of the approaches based on power
mode control is that most of the idle times between
different accesses to memory ranks is shorter than the
resynchronization time between different power modes.
To address this issue, Huang and Shin et al. [34] propose
a method for saving memory energy by concentrating the
memory access activities to merely few memory ranks,
such that rest of the ranks can be switched to low-
power modes. Their method migrates the frequently-
accessed pages to “hot” ranks and the infrequently-used
and unmapped pages to “cold” ranks. This also helps in
elongating the idle periods of cold ranks.

Delaluz and Kandemir et al. [24] propose a technique
to save memory energy by dynamically placing the
arrays with temporal affinity into the same set of banks.
This increases the opportunities of exploiting deeper
sleep modes (more energy-saving operating modes) and
keeping modules in low-power modes for longer durations
of time. Using the same principle, they also propose
an array interleaving mechanism [25] for clustering
multiple arrays, which are accessed simultaneously, into
a single common data space. Interleaving enhances



spatial locality of the program and reduces the number of
accesses to the off-chip memory. Along with interleaving
the arrays, their mechanism also transforms the code
accordingly by replacing the original array references and
declarations with their transformed equivalents.

Huang and Pillai et al. [33] propose a technique
for saving memory energy using virtual memory
management. Their technique works by using virtual
memory remapping to reduce the memory footprint of
each application and transitioning the unused memory
modules to low-power modes. Zhou et al. [59] discuss a
utility-based memory allocation scheme where different
applications are allocated memory in proportion to their
utility (i.e. the performance benefit gained by allocation
of the memory). After allocation, the rest of the memory
is transitioned to low-power modes for saving power. For
estimating the utility of allocating memory to different
applications, their scheme dynamically tracks page miss-
rate curve (MRC) for virtual memory system using
either hardware or software methods. Lyuh et al. [44]
propose a technique which uses analytical model for
saving memory power. Their technique selects a suitable
low-power mode for a memory bank by synergistically
controlling assignment of variables to memory banks and
scheduling of memory access operations, such that total
memory power consumption is minimized.

Bi et al. [19] propose methods to hide the latency of
resynchronization of memory ranks to low-power modes
by exploiting the knowledge of system input/output
(I/O) calls. Their technique works on the observation
that a majority of file-I/O accesses are made through
system calls, the operating system knows the completion
time of these accesses. Thus, using this knowledge, their
technique transitions idle memory ranks into low-power
modes. Further, to hide the resynchronization delay,
their technique uses prediction mechanism to estimate
the most likely rank to be accessed on a system call
entry and speculatively turns on that rank. On a correct
prediction, the rank transition completes before the
memory request arrives and thus, the resynchronization
latency is fully hidden.

Pandey et al. [50] propose a technique for saving
energy in DMA (direct memory access) transfers. Since
DMA transfers are usually larger than the transfers
initiated by the processors, they are divided into multiple
number of smaller transfer operations. However, due to
the availability of only short time gaps between any two
DMA-memory requests, the opportunity of transitioning
the memory to low-power mode remains small. To
address this, Pandey et al. propose temporally aligning
DMA requests coming from different I/O buses to the
same memory device. For this purpose, their technique
delays DMA-memory requests directed to a memory chip
which is in low-power mode and tries to gather enough
requests from other I/O buses before transitioning that
chip to the normal power mode. This helps in elongating
the idle time of memory chips and also maximizes the
utilization of active time of memory chips.

Koc et al. [39] discuss a data-recomputation approach
for increasing idle time of memory banks to save their
energy. When an access to a bank in low-power mode
is made, their technique first checks the active banks. If
the requested data can be recomputed by using the data
stored in already active banks, their technique does not
activate the bank in low-power mode. Rather, the data
request is fulfilled based on the computations performed
on the data obtained from the already active banks.

To reduce the refresh power of the DRAM devices,
Ghosh et al. [84] propose adaptive refresh method. The
conventional refresh mechanism of DRAM periodically
refreshes all the memory rows for retaining the data.
However, from the standpoint of data retention, an
access to a memory row performs an operation equivalent
to a regular refresh. The technique proposed by Ghosh
et al. [84] uses this observation to avoid refreshing a
memory row, if it has been recently read out or written to
by the processor. To track the recency of memory access
operation, they use counters for each row in the memory
module. Using this technique, the number of regular row-
sweeping refresh operations are greatly reduced, which
results in saving of power.

J. Liu et al. [85] propose a technique for saving
DRAM energy by avoiding unbeneficial refreshes. Their
technique works on the observation that in the DRAM,
only a small number of cells need to be refreshed at
the minimum conservative refresh rate. The rest of the
cells can be refreshed at a much higher rate, while still
maintaining their charge. Based on this observation,
their technique groups DRAM rows in multiple bins
and uses different refresh interval for different bins.
Thus, by refreshing most of the cells less frequently than
the leaky cells, their technique reduces the number of
refresh operations required and reduces memory power
consumption.

Isen et al. [78] discuss a technique for utilizing
program semantics to save memory energy. Their
technique uses memory allocation/deallocation
information to identify inconsequential data and avoids
refreshing them. For example, the regions of memory
which are free (unallocated and invalid) or freshly
allocated (allocated but invalid ) do not store meaningful
data and hence, retaining the data of those regions is
not important. Thus, their technique saves power by
avoiding refreshing such data.

S. Liu et al. [43] propose an application level
technique to reduce refresh level power in DRAM
memories. They show that many applications are
tolerant to errors in the non-critical data, and errors
in non-critical data show little or no impact in the
application’s final result. Based on this observation,
their technique works by using programmer supplied
information to identify critical and non-critical data
in the programs. Using this information, at runtime,
these data are allocated in different modules of the
memory. The memory modules containing critical data
are refreshed at the regular refresh-rate, while the
modules containing non-critical data are refreshed at



substantially lower rates. The use of lower refresh rates
leads to saving in refresh power, however, it also increases
the probability of data corruption. Thus, their technique
exercises a trade-off between energy saving and data
corruption.

Sudan et al. [63] propose a technique for saving
memory power by using OS management approach.
Their technique works by controlling the address
mapping of OS pages to DRAM devices such that
the clusters of cache blocks from different OS pages,
which have similar access counts are colocated in a
row-buffer. This improves the hit rate of the row-buffer
and thus leads to saving of memory power. For co-
locating pages, Sudan et al. propose two techniques. One
of their technique reduces OS page size such that the
frequently accessed blocks are clustered together in the
new, reduced size page (called a “micro-page”). Then,
the hot micro-pages are migrated in the same row-buffer.
The second technique proposed by them uses a hardware
scheme. This scheme introduces a layer of translation
between physical addresses assigned by the OS and those
used by the memory controller to access the DRAM
devices. By taking advantage of this layer of mapping,
hot pages are migrated in the same row-buffer.

Trajkovic et al. [73] propose a buffering based
technique for reducing memory power consumption.
Their technique works on the observation that if
in a synchronous DRAM, two memory access (i.e.
read/write) operation are done in a same activate-
precharge cycle, the cost of activation and precharging
can be avoided. This is because, the DRAMs allow the
row to be left ‘on’ after a memory access. Based on this
observation, on read accesses, their technique prefetches
additional cache blocks. Similarly, for write accesses,
combines multiple blocks which are to be written to the
same DRAM row. To store the extra prefetched lines,
their technique uses a small storage structure in the
memory controller. Similarly, to buffer the writes to the
same DRAM row also, a small storage structure is used.
By adapting the above mentioned prefetching and write-
combining scheme for each application, their technique
achieves reduction in memory power consumption.

Zheng et al. [57] propose a technique for saving
memory power consumption by reducing the number
of memory chips involved in each memory access. This
is referred to as “rank-subsetting” approach. Their
technique adds a small buffer called “mini-rank buffer”
between each DIMM and the memory bus. Using this, a
DRAM rank, which normally provides 64-bit datapath,
can be internally designed using either eight 8-bit ranks,
or four 16-bit ranks or two 32-bit ranks, which are termed
as mini-rank. With this support, on any memory access,
only a single mini-rank is activated and the other mini-
ranks can be transitioned to low-power modes.

Fang et al. [66] extend mini-rank approach to
heterogeneous mini-rank design which adapts the
number of mini-ranks according to the memory access
behavior and memory bandwidth requirement of each
workload. Based on this information, for a latency-

sensitive application, their technique uses a mini-
rank configuration which does not degrade application
performance; while for a latency-insensitive application,
their technique uses a mini-rank configuration which
achieves memory power saving.

Yoon et al. [75] propose a technique for saving
memory power consumption by intelligently utilizing
low-power mobile DRAM components. Their technique
uses buffering mechanism to aggregate the data outputs
from multiple ranks of low frequency mobile DRAM
devices (e.g. 400MHz LPDDR2), to collectively provide
high bandwidth and high storage capacity equal to
server-class DRAM devices (e.g. 1600MHz DDR3).

Yoon and Jeong et al. [74] propose a technique
for saving memory power by dynamically changing the
granularity of data transferred in each DRAM access.
Their technique works by managing virtual memory
such that a specific access granularity can be used for
each page based on the spatial locality present in each
application. For applications with high spatial locality,
their technique uses coarse-grained data accesses, while
for applications with low spatial locality their technique
uses fine-grained data accesses.

Several researchers have proposed techniques which
use DVFS mechanism to save memory energy. Deng et
al. [28, 29] use memory DVFS to save memory energy.
At the time of low memory activity, their technique
lowers the frequency of DRAM devices, memory channels
and memory controllers such that the performance loss
is minimum. This leads to saving of memory power
consumption. They also extend their technique for
coordinating DVFS across multiple memory controllers,
memory channels, and memory devices to minimize the
overall system power consumption.

Diniz et. al. [30] propose a technique to limit
the instantaneous (peak) power consumption of main
memory to a pre-specified power budget. Their technique
uses knapsack and greedy algorithms to decide the
timings at which memory devices should be transitioned
to suitable low-power modes such that the instantaneous
power of memory is always within the power budget.
David et al. [23] present a scheme for limiting the
average power consumption of memory, by suitably
transitioning memory devices into low-power modes.
Chen et al. [22] propose a method for limiting the peak

power consumption of the server (which includes power
consumption of processor and main memory) system
using control theoretic approach.

Amin et al. [15] propose a replacement policy for last-
level cache, which tries to increase the idle time of certain
pre-chosen DRAM ranks, called “prioritized ranks”. This
replacement policy tries to prevent the replacement of
blocks belonging to the prioritized ranks. This reduces
the conflict misses and writebacks to the prioritized rank,
increasing the idle period between accesses made to those
ranks. Amin et al. also propose a technique which buffers
writeback requests sent to DRAM, to increase the idle
period of the DRAM ranks. The requests are buffered as
long as the target ranks remain idle or the buffer remains



full. When the targeted ranks become active (due to the
demand misses), the buffered requests are sent to them.

Ozturk et al. [48] present a bank-aware cache miss
clustering approach for saving DRAM energy. Their
technique uses compiler analysis to restructure the code
such that the cache misses from the last-level cache are
clustered together. Clustering of the cache misses also
leads to the clustering of cache hits. Thus, the memory
accesses and memory idle cycles are also clustered.
This increases the memory access activities in certain
banks and the other banks become idle for a long time.
By taking advantage of this, idle memory banks are
transitioned to low-power modes.

As the computational requirements of state-of-the-art
applications is increasing [93], the pressure on memory
systems is also on rise and to mitigate this pressure,
researchers have proposed techniques to intelligently
manage the last level caches (LLCs) in the processors.
Mazumdar et al. [79] propose a technique for reducing
the number of memory accesses in multicore systems
by cache aggregation approach. Their technique works
on the observation that due to the availability of high-
bandwidth point-to-point interconnects between sockets,
a read from the LLC of a connected chip consumes less
time and energy than an access to DRAM. Based on
this, their technique uses the LLC of an idle processor
in a connected socket for holding the evicted data from
the active processor. This reduces the number of accesses
to DRAM and thus reduces the power consumption of
DRAM.

Phadke et al. [88] propose a heterogeneous main
memory architecture which comprises of three different
memory modules. Each memory module is optimized for
latency, bandwidth, power consumption, respectively, at
the expense of the other two. Their technique works
by using offline analysis to characterize an application
based on its LLC (last level cache) miss rate and memory
level parallelism. Using this information, at runtime, the
operating system allocates the pages of an application
in one of the three memory modules that satisfies
its memory requirements. Thus, their approach saves
memory energy and also improves performance of the
system.

Yang et al. [82] discuss a software-based RAM
compression technique for saving power in embedded
systems. Their technique uses memory compression only
for those applications which may gain performance or
energy benefits from compression. For such applications,
their technique performs compression of memory
data and swapped-out pages in online manner, thus
dynamically adjusting the size of the compressed RAM
area. Thus, their technique saves power by using
compression to increase the effective size of the memory.

Ozturk et al. [49] integrate different approaches
such as dynamic data migration, data compression, and
data replication etc. to effectively transition a large
number of memory banks into low-power modes. They
formulate DRAM energy minimization problem as a
integer linear programming (ILP) problem and solve it

using an ILP solver. Using ILP formulation, they find
the (nonuniform) bank architecture and accompanying
data mapping strategy which best suits the application-
data access patterns. Similarly, they use ILP formulation
to find best possible data replication scheme which
increases idle time of certain banks by duplicating their
selected read-only data blocks on other active banks.
They also use ILP formulation to find the best time to
compress and/or migrate the data between banks.

Several researchers have used domain-specific
optimizations to save DRAM power. Kim et al. [61] and
Li et al. [62] propose techniques for reducing DRAM
power consumption in video processing domain. Video
processing applications are characterized by abundant
spatial and temporal image data correlations, and
unbalanced accesses to frames (e.g. certain image frames
are accessed much more frequently than other image
frames). Hence, to take advantage of these properties,
their techniques map image data in DRAM in a way
which minimizes the number of row-activations. Thus,
the power consumption of DRAM is reduced.

Chen et al. [21] propose a technique for tuning the
garbage collector (GC) in Java to reduce memory power
consumption. GC is an tool used in Java virtual machine
(JVM) for automatic reclamation of unused memory.
Chen et al. propose using GC to turn off the memory
banks that do not hold live data. They also observe
that the pattern of object allocation and the number
of memory banks available in the DRAM architecture
crucially influence the effectiveness of GC in optimizing
energy.

Pisharath et al. [51] propose an approach to
reduce memory power consumption in memory-resident
database management systems (DBMS). One of their
techniques uses hardware monitors to detect the
frequency of use of memory banks during query
execution and based on this, switches the idle banks
into low-power mode. Another technique uses a software
approach. For DBMS systems, when the query is
submitted, it is first parsed and then sent to the query
optimizer which uses query tree to find the best suited
plan for execution of the query [51]. At this point,
query optimizer finds the database tables which will be
accessed to answer the query. Based on this information,
their technique changes the table-to-bank mapping such
that memory accesses can be clustered. Also, the queries
presented to the database are augmented with explicit
bank turn off or turn on instructions. Using this
support, at runtime, the memory banks are dynamically
transitioned into low-power mode.

Since leakage (static) power varies exponentially with
the temperature, the dissipation of power in DRAM
leads to increase of device temperature, which further
increases the leakage power dissipation. This may lead to
thermal emergencies. Also, many of the above mentioned
approaches move or map frequently accessed pages to
merely a few active memory modules. This is also likely
to increase the temperature of the active modules. To
address this, Ayoub et al. [17] propose a technique



which monitors the temperature of the active modules.
When the temperature reaches a threshold, it selectively
migrates a small number of memory pages between
active and dormant memory modules and transitions
the active modules in the self-refresh mode. Since this
approach spreads out the memory accesses to multiple
modules, it reduces the power density of the active
modules and thus avoids thermal emergencies.

C. Lin et al. [90] propose a technique for addressing
memory thermal issues which works by orchestrating
thread scheduling and page allocation. Their technique
groups the program threads in multiple groups such that
all the threads in a group can be active simultaneously.
Then each group is mapped to certain DIMMs and at
any time, only one group and its corresponding DIMMs
remain active and the rest of the DIMMs are inactivated
to reduce their temperature. Similarly, J. Lin et al.
[70, 91] propose techniques to mitigate overheating in
the memory system by adjusting memory throughput to
stay below the emergency level.

5 Conclusion

Recent advances in CMOS fabrication and chip design
have greatly increased the power consumption of main
memory in modern computing systems. To provide
a solution to this problem, several research efforts
have been directed towards managing the power
consumption of main memory. In this paper, we surveyed
several architectural techniques which are designed for
improving DRAM memory power efficiency. We also
presented a classification of the proposed techniques
across several parameters, to highlight their similarities
and differences. We believe that this survey will help
researchers and designers to understand the state of the
art in approaches pursued for reducing memory power
consumption. At the same time, it will also encourage
them to design innovative solutions for memory systems
of future green computing infrastructure.

References

[1] R. Brown, E. Masanet, B. Nordman, B. Tschudi,
A. Shehabi, J. Stanley, J. Koomey, D. Sartor, P. Chan,
J. Loper, et al., “Report to congress on server and data
center energy efficiency,” Public law 109-431, 2007.

[2] L. Barroso and U. Hölzle, “The datacenter as a
computer: An introduction to the design of warehouse-
scale machines,” Synthesis Lectures on Computer
Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter,
M. Kistler, and T. Keller, “Energy management for
commercial servers,” Computer, vol. 36, no. 12, pp. 39–
48, 2003.

[4] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio,
F. Rawson, and J. Carter, “Architecting for power
management: The IBM R© POWER7 approach,” in
HPCA, pp. 1–11, IEEE, 2010.

[5] S. Borkar, “Thousand core chips: a technology

perspective,” in Proceedings of the 44th annual DAC,
pp. 746–749, ACM, 2007.

[6] Intel. http://ark.intel.com/products/53575/.

[7] A. Agrawal et al., “A new heuristic for multiple sequence
alignment,” in IEEE EIT, pp. 215–217, 2008.

[8] K. Bergman et al., “Exascale computing study:

Technology challenges in achieving exascale systems,”

tech. rep., DARPA Technical Report, 2008.

[9] S. Khaitan, J. McCalley, and M. Raju, “Numerical

methods for on-line power system load flow analysis,”
Energy Systems, vol. 1, no. 3, pp. 273–289, 2010.

[10] M. Raju et al., “Domain decomposition based high

performance parallel computing,” International Journal

of Computer Science Issues, 2009.

[11] E. Cooper-Balis and B. Jacob, “Fine-grained activation
for power reduction in DRAM,” Micro, IEEE, vol. 30,

no. 3, pp. 34–47, 2010.

[12] B. Jacob, S. Ng, and D. Wang, Memory systems: cache,

DRAM, disk. Morgan Kaufmann Publication, 2007.

[13] “Calculating memory system power for DDR3.”

http://download.micron.com.

[14] T. Vogelsang, “Understanding the energy consumption
of dynamic random access memories,” in MICRO,

pp. 363–374, 2010.

[15] A. Amin and Z. Chishti, “Rank-aware cache replacement

and write buffering to improve DRAM energy

efficiency,” in Proceedings of the 16th ACM/IEEE
international symposium on Low power electronics and

design, pp. 383–388, ACM, 2010.

[16] V. Anagnostopoulou, S. Biswas, H. Saadeldeen,

A. Savage, R. Bianchini, T. Yang, D. Franklin, and
F. T. Chong, “Barely alive memory servers: Keeping

data active in a low-power state,” in ACM Journal on
Emerging Technologies in Computing Systems, Special

issue on Sustainable and Green Computing Systems,

April 2012.

[17] R. Ayoub, K. Indukuri, and T. Rosing, “Energy efficient
proactive thermal management in memory subsystem,”

in International Symposium on Low-Power Electronics

and Design (ISLPED), pp. 195–200, IEEE, 2010.

[18] H. Ben Fradj, C. Belleudy, and M. Auguin, “System
level multi-bank main memory configuration for

energy reduction,” in Integrated Circuit and System

Design. Power and Timing Modeling, Optimization and
Simulation (J. Vounckx, N. Azemard, and P. Maurine,

eds.), vol. 4148 of Lecture Notes in Computer Science,

pp. 84–94, Springer Berlin / Heidelberg, 2006.

[19] M. Bi, R. Duan, and C. Gniady, “Delay-hiding energy
management mechanisms for DRAM,” in HPCA, pp. 1–

10, IEEE, 2010.

[20] K. Chandrasekar, B. Akesson, and K. Goossens, “Run-

time power-down strategies for real-time SDRAM
memory controllers,” in Proceedings of the 49th Annual

DAC, pp. 988–993, ACM, 2012.

[21] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan,

M. J. Irwin, and M. Wolczko, “Tuning garbage collection
for reducing memory system energy in an embedded

java environment,” ACM Trans. Embed. Comput. Syst.,

vol. 1, pp. 27–55, Nov. 2002.



[22] M. Chen, X. Wang, and X. Li, “Coordinating processor

and main memory for efficient server power control,” in

International Conference on Supercomputing, ICS ’11,

(New York, NY, USA), pp. 130–140, ACM, 2011.

[23] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,

and C. Le, “RAPL: Memory power estimation and

capping,” in International Symposium on Low-Power

Electronics and Design (ISLPED), pp. 189 –194, aug.

2010.

[24] V. De La Luz, M. Kandemir, and I. Kolcu, “Automatic

data migration for reducing energy consumption in

multi-bank memory systems,” in DAC, 2002, pp. 213–

218, IEEE, 2002.

[25] V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. Irwin,

A. Sivasubramaniam, and I. Kolcu, “Compiler-directed

array interleaving for reducing energy in multi-bank

memories,” in ASPDAC, pp. 288–293, IEEE, 2002.

[26] V. Delaluz, M. Kandemir, N. Vijaykrishnan,

A. Sivasubramaniam, and M. Irwin, “DRAM energy

management using software and hardware directed

power mode control,” in HPCA, pp. 159–169, IEEE,

2001.

[27] V. Delaluz, A. Sivasubramaniam, M. Kandemir,

N. Vijaykrishnan, and M. Irwin, “Scheduler-based

DRAM energy management,” in DAC, pp. 697–702,

ACM, 2002.

[28] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch,

and R. Bianchini., “MultiScale: Memory System DVFS

with Multiple Memory Controllers,” in International

Symposium on Low power electronics and design

(ISLPED), July 2012.

[29] Q. Deng, D. Meisner, L. Ramos, T. Wenisch, and

R. Bianchini, “Memscale: active low-power modes for

main memory,” ACM SIGPLAN Notices, vol. 46, no. 3,

pp. 225–238, 2011.

[30] B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini,

“Limiting the power consumption of main memory,” in

ACM SIGARCH Computer Architecture News, vol. 35,

pp. 290–301, ACM, 2007.

[31] X. Fan, C. Ellis, and A. Lebeck, “Memory controller

policies for DRAM power management,” in Proceedings

of the 2001 international symposium on Low power

electronics and design, pp. 129–134, ACM, 2001.

[32] M. Floyd, S. Ghiasi, T. Keller, K. Rajamani, F. Rawson,

J. Rubio, and M. Ware, “System power management

support in the IBM POWER6 microprocessor,” IBM

Journal of Research and Development, vol. 51, no. 6,

pp. 733–746, 2007.

[33] H. Huang, P. Pillai, and K. Shin, “Design and

implementation of power-aware virtual memory,”

USENIX Annual Technical Conference, pp. 57–70, 2003.

[34] H. Huang, K. Shin, C. Lefurgy, and T. Keller,

“Improving energy efficiency by making DRAM less

randomly accessed,” in Proceedings of the 2005

international symposium on Low power electronics and

design, pp. 393–398, ACM, 2005.

[35] I. Hur and C. Lin, “A comprehensive approach to

DRAM power management,” in 14th International

Symposium on High Performance Computer

Architecture, 2008. HPCA., pp. 305–316, IEEE, 2008.

[36] S. Irani, S. Shukla, and R. Gupta, “Online strategies for
dynamic power management in systems with multiple
power-saving states,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 2, no. 3, pp. 325–346,
2003.

[37] M. Kandemir, U. Sezer, and V. Delaluz, “Improving
memory energy using access pattern classification,” in
International Conference on Computer-Aided Design,
pp. 201–206, IEEE Press, 2001.

[38] B. Khargharia, S. Hariri, and M. S. Yousif, “Self-
optimization of performance-per-watt for interleaved
memory systems,” in 14th international conference
on High performance computing, HiPC’07, (Berlin,
Heidelberg), pp. 368–380, Springer-Verlag, 2007.

[39] H. Koc, O. Ozturk, M. Kandemir, and E. Ercanli,
“Minimizing energy consumption of banked memories
using data recomputation,” in International Symposium
on Low Power Electronics and Design, 2006., pp. 358–
361, 2006.

[40] A. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power
aware page allocation,” ACM SIGPLAN Notices, vol. 35,
no. 11, pp. 105–116, 2000.

[41] X. Li, R. Gupta, S. Adve, and Y. Zhou, “Cross-
component energy management: Joint adaptation
of processor and memory,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 4,
no. 3, p. 14, 2007.

[42] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and
S. Kumar, “Performance directed energy management
for main memory and disks,” in ACM SIGARCH
Computer Architecture News, vol. 32, pp. 271–283,
ACM, 2004.

[43] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn,
“Flikker: Saving DRAM refresh-power through critical
data partitioning,” ACM SIGPLAN Notices, vol. 46,
no. 3, pp. 213–224, 2011.

[44] C. Lyuh and T. Kim, “Memory access scheduling and
binding considering energy minimization in multi-bank
memory systems,” in Proceedings of the 41st annual
DAC, pp. 81–86, ACM, 2004.

[45] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C.
Lee, C. Kozyrakis, and M. Horowitz, “Towards energy-
proportional datacenter memory with mobile DRAM,”
in ISCA, pp. 37 –48, june 2012.

[46] D. Meisner, B. Gold, and T. Wenisch, “PowerNap:
eliminating server idle power,” ACM Sigplan Notices,
vol. 44, no. 3, pp. 205–216, 2009.

[47] J. Mukundan and J. F. Martinez, “MORSE: Multi-
objective reconfigurable self-optimizing memory
scheduler,” HPCA, vol. 0, pp. 1–12, 2012.

[48] O. Ozturk, G. Chen, M. Kandemir, and M. Karakoy,
“Cache miss clustering for banked memory systems,”
in IEEE/ACM international conference on Computer-
aided design, ICCAD ’06, pp. 244–250, ACM, 2006.

[49] O. Ozturk and M. Kandemir, “ILP-Based energy
minimization techniques for banked memories,” ACM
Trans. Des. Autom. Electron. Syst., vol. 13, pp. 50:1–
50:40, July 2008.

[50] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-
aware memory energy management,” in HPCA, pp. 133
– 144, feb. 2006.



[51] J. Pisharath, A. Choudhary, and M. Kandemir,

“Reducing energy consumption of queries in memory-

resident database systems,” in Proceedings of the 2004

international conference on Compilers, architecture, and

synthesis for embedded systems, pp. 35–45, ACM, 2004.

[52] I. Rodero, S. Chandra, M. Parashar, R. Muralidhar,

H. Seshadri, and S. Poole, “Investigating the potential

of application-centric aggressive power management for

hpc workloads,” in International Conference on High

Performance Computing (HiPC), 2010, pp. 1 –10, dec.

2010.

[53] K. Sudan, K. Rajamani, W. Huang, and J. Carter,

“Tiered memory: An iso-power memory architecture to

address the memory power wall,” IEEE Transactions on

Computers, 2012.

[54] A. Udipi, N. Muralimanohar, R. Balsubramonian,

A. Davis, and N. Jouppi, “LOT-ECC: LOcalized and

Tiered Reliability Mechanisms for Commodity Memory

Systems,” in Proceedings of ISCA, 2012.

[55] A. Udipi, N. Muralimanohar, N. Chatterjee,

R. Balasubramonian, A. Davis, and N. Jouppi,

“Rethinking DRAM design and organization for energy-

constrained multi-cores,” in ACM SIGARCH Computer

Architecture News, vol. 38, pp. 175–186, ACM, 2010.

[56] Z. Wang and X. Hu, “Energy-aware variable

partitioning and instruction scheduling for multibank

memory architectures,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 10,

no. 2, pp. 369–388, 2005.

[57] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David,

and Z. Zhu, “Mini-rank: Adaptive DRAM architecture

for improving memory power efficiency,” in MICRO,

pp. 210–221, IEEE, 2008.

[58] H. Zheng and Z. Zhu, “Power and Performance

Trade-Offs in Contemporary DRAM System Designs

for Multicore Processors,” IEEE Transactions on

Computers, vol. 59, no. 8, pp. 1033–1046, 2010.

[59] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,

Y. Zhou, and S. Kumar, “Dynamic tracking of page miss

ratio curve for memory management,” in ACM SIGOPS

Operating Systems Review, vol. 38, pp. 177–188, ACM,

2004.

[60] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist

open-page: a DRAM page-mode scheduling policy for

the many-core era,” in MICRO, MICRO-44 ’11, (New

York, NY, USA), pp. 24–35, ACM, 2011.

[61] H. Kim and I.-C. Park, “High-performance and

low-power memory-interface architecture for video

processing applications,” IEEE Transactions on Circuits

and Systems for Video Technology,, vol. 11, pp. 1160 –

1170, nov 2001.

[62] Y. Li and T. Zhang, “Reducing DRAM Image Data

Access Energy Consumption in Video Processing,”

IEEE Transactions on Multimedia, vol. 14, pp. 303 –313,

april 2012.

[63] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi,

R. Balasubramonian, and A. Davis, “Micro-pages:

increasing DRAM efficiency with locality-aware data

placement,” in ACM SIGARCH Computer Architecture

News, vol. 38, pp. 219–230, ACM, 2010.

[64] M. E. Tolentino, J. Turner, and K. W. Cameron,

“Memory MISER: Improving Main Memory Energy

Efficiency in Servers,” IEEE Trans. Comput., vol. 58,

pp. 336–350, Mar. 2009.

[65] J. Ahn, N. Jouppi, C. Kozyrakis, J. Leverich, and

R. Schreiber, “Future scaling of processor-memory

interfaces,” in Proceedings of the Conference on

High Performance Computing Networking, Storage and

Analysis, p. 42, ACM, 2009.

[66] K. Fang, H. Zheng, and Z. Zhu, “Heterogeneous mini-

rank: Adaptive, power-efficient memory architecture,”

in 39th International Conference on Parallel Processing

(ICPP), 2010, pp. 21–29, IEEE, 2010.

[67] O. Seongil, S. Choo, and J. H. Ahn, “Exploring

energy-efficient DRAM array organizations,” in 54th

International Midwest Symposium on Circuits and

Systems (MWSCAS), 2011, pp. 1 –4, aug. 2011.

[68] G. Zhang, H. Wang, X. Chen, S. Huang, and P. Li,

“Heterogeneous multi-channel: fine-grained DRAM

control for both system performance and power

efficiency,” in Proceedings of the 49th Annual DAC,

pp. 876–881, ACM, 2012.

[69] H. Hanson and K. Rajamani, “What computer

architects need to know about memory throttling,” in

Computer Architecture, pp. 233–242, Springer, 2012.

[70] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and

Z. Zhang, “Software thermal management of DRAM

memory for multicore systems,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 36, pp. 337–348,

ACM, 2008.

[71] J. Lin, H. Zheng, Z. Zhu, Z. Zhang, and H. David,

“DRAM-level prefetching for fully-buffered DIMM:

Design, performance and power saving,” in ISPASS,

pp. 94–104, IEEE, 2007.

[72] S. Liu, S. Memik, Y. Zhang, and G. Memik, “A power

and temperature aware DRAM architecture,” in DAC,

pp. 878–883, IEEE, 2008.

[73] J. Trajkovic, A. Veidenbaum, and A. Kejariwal,

“Improving SDRAM access energy efficiency for low-

power embedded systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 7, no. 3,

p. 24, 2008.

[74] D. Yoon, M. Jeong, and M. Erez, “Adaptive granularity

memory systems: a tradeoff between storage efficiency

and throughput,” in ISCA, pp. 295–306, ACM, 2011.

[75] D. H. Yoon, J. Chang, N. Muralimanohar, and

P. Ranganathan, “BOOM: Enabling mobile memory

based low-power server DIMMs,” in ISCA, pp. 25 –36,

june 2012.

[76] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled

DIMM: building high-bandwidth memory system using

low-speed DRAM devices,” in ISCA, pp. 255–266, ACM,

2009.

[77] N. Aggarwal, J. Cantin, M. Lipasti, and J. Smith,

“Power-efficient DRAM speculation,” in HPCA,

pp. 317–328, IEEE, 2008.

[78] C. Isen and L. John, “Eskimo-energy savings using

semantic knowledge of inconsequential memory

occupancy for DRAM subsystem,” in MICRO, pp. 337–

346, IEEE, 2009.



[79] S. Mazumdar, D. Tullsen, and J. Song, “Inter-socket

victim cacheing for platform power reduction,” in
Computer Design (ICCD), 2010 IEEE International

Conference on, pp. 509–514, IEEE, 2010.

[80] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,

and W. Wolf, “Energy savings through compression

in embedded java environments,” in Proceedings of the
tenth international symposium on Hardware/software

codesign, CODES ’02, pp. 163–168, ACM, 2002.

[81] R. Tremaine, P. Franaszek, J. Robinson, C. Schulz,

T. Smith, M. Wazlowski, and P. Bland, “IBM memory

expansion technology (MXT),” IBM Journal of Research
and Development, vol. 45, no. 2, pp. 271–285, 2001.

[82] L. Yang, R. P. Dick, H. Lekatsas, and S. Chakradhar,
“Online memory compression for embedded systems,”

ACM Trans. Embed. Comput. Syst., vol. 9, pp. 27:1–

27:30, Mar. 2010.

[83] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and

O. Mutlu, “Memory power management via dynamic
voltage/frequency scaling,” in Proceedings of the 8th

ACM international conference on Autonomic computing,

ICAC ’11, (New York, NY, USA), pp. 31–40, ACM,
2011.

[84] M. Ghosh and H. Lee, “Smart refresh: An enhanced
memory controller design for reducing energy in

conventional and 3D Die-Stacked DRAMs,” in MICRO,

pp. 134–145, IEEE Computer Society, 2007.

[85] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR:

Retention-aware intelligent DRAM refresh,” in ISCA,
pp. 1 –12, june 2012.

[86] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the
DRAM refresh count for merged DRAM/logic LSIs,” in
Proceedings of the 1998 international symposium on Low
power electronics and design, pp. 82–87, ACM, 1998.

[87] K. Patel, L. Benini, E. Macii, and M. Poncino, “Energy-
efficient value-based selective refresh for embedded
DRAMs,” Integrated Circuit and System Design. Power
and Timing Modeling, Optimization and Simulation,
pp. 909–909, 2005.

[88] S. Phadke and S. Narayanasamy, “MLP aware
heterogeneous memory system,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE),
2011, pp. 1–6, IEEE, 2011.

[89] J. Stuecheli, D. Kaseridis, H. Hunter, and L. John,
“Elastic refresh: Techniques to mitigate refresh penalties
in high density memory,” in MICRO, pp. 375–384, IEEE,
2010.

[90] C. Lin, C. Yang, and K. King, “PPT: joint
performance/power/thermal management of DRAM
memory for multi-core systems,” in Proceedings of
the 14th ACM/IEEE international symposium on Low
power electronics and design, pp. 93–98, ACM, 2009.

[91] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang,
“Thermal modeling and management of DRAM memory
systems,” in ISCA, vol. 35, ACM, 2007.

[92] S. Liu et al., “Hardware/software techniques for DRAM
thermal management,” in HPCA, pp. 515–525, 2011.

[93] S. Khaitan et al., “Fast parallelized algorithms for
on-line extended-term dynamic cascading analysis,” in
IEEE/PES PSCE, pp. 1–7, 2009.


