
BIG DATA MINING AND ANALYTICS

ISSN 2096-0654 0 1/0 5 pp 8 5 – 1 0 1

Volume 3, Number 2, June 2020

DOI: 10.26599/BDMA.2019.9020015


C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Survey of Data Partitioning and Sampling Methods to

Support Big Data Analysis

Mohammad Sultan Mahmud, Joshua Zhexue Huang, Salman Salloum�, Tamer Z. Emara, and

Kuanishbay Sadatdiynov

Abstract: Computer clusters with the shared-nothing architecture are the major computing platforms for big data

processing and analysis. In cluster computing, data partitioning and sampling are two fundamental strategies to

speed up the computation of big data and increase scalability. In this paper, we present a comprehensive survey

of the methods and techniques of data partitioning and sampling with respect to big data processing and analysis.

We start with an overview of the mainstream big data frameworks on Hadoop clusters. The basic methods of data

partitioning are then discussed including three classical horizontal partitioning schemes: range, hash, and random

partitioning. Data partitioning on Hadoop clusters is also discussed with a summary of new strategies for big data

partitioning, including the new Random Sample Partition (RSP) distributed model. The classical methods of data

sampling are then investigated, including simple random sampling, stratified sampling, and reservoir sampling. Two

common methods of big data sampling on computing clusters are also discussed: record-level sampling and block-

level sampling. Record-level sampling is not as efficient as block-level sampling on big distributed data. On the

other hand, block-level sampling on data blocks generated with the classical data partitioning methods does not

necessarily produce good representative samples for approximate computing of big data. In this survey, we also

summarize the prevailing strategies and related work on sampling-based approximation on Hadoop clusters. We

believe that data partitioning and sampling should be considered together to build approximate cluster computing

frameworks that are reliable in both the computational and statistical respects.

Key words: big data analysis; data partitioning; data sampling; distributed and parallel computing; approximate

computing

1 Introduction

An overwhelming volume of data is now being

generated from business transactions, computer

� Mohammad Sultan Mahmud, Joshua Zhexue Huang, Salman

Salloum, Tamer Z. Emara, and Kuanishbay Sadatdiynov are

with National Engineering Laboratory for Big Data System

Computing Technology, Shenzhen University, Shenzhen

518060, China, and Big Data Institute, College of Computer

Science and Software Engineering, Shenzhen University,

Shenzhen 518060, China. E-mail: fsultan, zx.huang, ssalloum,

tamer, kuanishbayg@szu.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2019-05-30; revised: 2019-09-23;

accepted: 2019-09-25

simulations, mobile devices, sensors, satellites, social

media, and so on. This massive quantity of data can be

used to produce high-value information for decision-

support, forecasting, business intelligence, research on

data-intensive science, and other fields of application.

Traditional technologies, such as data warehousing and

Structured Query Language (SQL)-based Relational

DataBase Management Systems (RDBMSs), have

become impractical for handling such a tremendous

volume and complexity of big data[1–3]. It is hard or

impossible to use a single machine to analyze terabyte-

scale datasets, so scalable distributed computing

architectures have become a common design choice



86 Big Data Mining and Analytics, June 2020, 3(2): 85–101

for big data analysis frameworks. In these frameworks,

data partitioning and sampling are two fundamental

strategies for scaling-out and speeding-up big data

analysis algorithms. The survey presented in this

paper gives a concise summary of the most common

methods of partitioning and sampling to support big

data analysis on Hadoop clusters.

“Big data” is a label used when the size of

the data itself becomes part of the problem. A

common strategy for big data analysis on computing

clusters is divide-and-conquer[3, 4]. The MapReduce

computing model[5] is used to apply this strategy in

the mainstream big data analysis frameworks[6–9],

such as Apache Hadoop (http://hadoop.apache.org/)

and Apache Spark (http://spark.apache.org/). These

frameworks implement a shared-nothing architecture

(https://www.oreilly.com/learning/processing-data-in-

hadoop) where each node is independent in terms

of both data and resources. On Hadoop clusters, the

Hadoop Distributed File System (HDFS)[10] organizes

and replicates a big data file as small distributed data

blocks. Studies have shown that when the data size is

large enough, parallelization based on distributed data

blocks can result in a linear speed-up as computing

resources increase in the cluster[11]. In fact, cluster

computing frameworks can be scaled easily by adding

more machines to the computing cluster. However, the

growth rate of data may quickly exceed the available

resources. Furthermore, scaling-out a computing cluster

requires additional costs and the necessary investment

may not be always available in practice[12].

A promising approach to reduce the cost of

cluster computing and increase the efficiency of

big data analysis is approximate computing[13–17],

which uses only a subset of the input data to

produce approximate results while achieving low

latency and efficient resource utilization[18–20]. Over the

past decade, sampling-based approximation techniques

have been applied for Approximate Query Processing

(AQP) and the statistical analysis of big data on

computing clusters[16, 21–23]. In addition, sampling

techniques are essential in exploratory data analysis,

statistical estimation, and predictive modeling[24, 25].

Nevertheless, sampling from big data is a challenge

when considering the block-based organization and the

high costs of memory, I/O, and communication on

computing clusters with a shared-nothing architecture.

Given the impact of data partitioning and sampling

methods on the efficiency and effectiveness of

sampling-based approximate big data analysis, we

present a concise overview of these methods with

respect to big data on Hadoop clusters. On Hadoop

clusters, big data is partitioned into small data

blocks in HDFS. HDFS blocks are the units of

storage, transmission, and processing. Consequently,

the partitioning strategy affects the performance of any

operation, including sampling. For instance, conducting

record-level sampling on HDFS files with many HDFS

blocks requires loading the entire data into memory

and launching many map tasks (equal to the number

of HDFS blocks in the file) to select records from all

of the blocks. On the other hand, without considering

the statistical properties of the data, the sequential

partitioning in HDFS means that there is no guarantee

that HDFS blocks are random samples. Consequently,

block-level sampling of HDFS files may produce biased

results. Thus, the partitioning and sampling strategies

should be considered to guarantee the quality of

approximate results from HDFS data. In this paper,

our objective is to help researchers to get started with

data sampling and partitioning to support approximate

big data analysis. We consider only structured big data

stored in HDFS and focus on the volume dimension of

big data.

The remainder of this paper is organized as follows.

Section 2 gives an overview of big data analysis

frameworks on cluster computing. The most common

data partitioning and sampling techniques are given in

Sections 3 and 4, respectively. An emerging paradigm

for big data analysis on computing clusters is presented

in Section 5. The challenges of big data partitioning

and sampling for approximate cluster computing are

discussed in Section 6. Finally, Section 7 concludes this

survey.

2 Big Data Analysis Frameworks

In this section, we start with an overview of

cluster computing for big data analysis. We then

briefly describe two most common big data analysis

frameworks, Apache Hadoop and Apache Spark.

2.1 Overview of cluster computing for big data

analysis

To cope with the ever-increasing data volume in a

range of different application areas, cluster computing

with a shared-nothing architecture has become a

common paradigm for building big data analysis

frameworks[6, 26, 27]. In a shared-nothing architecture,



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 87

each node in the computing cluster is independent in

terms of both data and computation. The MapReduce

computing model[5, 28] is the underlying model in the

mainstream big data analysis frameworks[6, 7]. A big

data file is divided into small non-overlapping data

blocks and distributed on the nodes of the computing

cluster with HDFS. These blocks are then processed

with a parallel, distributed algorithm with two general

operations: Map and Reduce. The Map operation

processes the distributed data blocks independently and

the Reduce operation integrates the Map results to

produce the global result for the entire dataset. Figure 1

illustrates the MapReduce model.

Big data technologies include distributed file

systems[29, 30], distributed computational systems[31],

and Massively Parallel Processing (MPP) systems[32, 33].

Distributed file systems, such as Google File System

(GFS)[34], HDFS[10], and Microsoft Cosmos[35], provide

scalable and fault-tolerant storage solutions. Recent

advances in these frameworks (e.g., MapReduce[5, 28],

Hadoop[10], and Cosmos/Dryad[35, 36]) have simplified

the development of large-scale and the distributed

data-intensive applications. Moreover, higher-level

programming languages and conceptual data models

have been proposed, such as Scope[36], DryadLINQ[37],

Pig[38], Dremel[39], Hive[40], Jaql[41], and Tenzing[42].

Hadoop-based computing clusters have become the

norm for big data management and analysis in a

range of different application areas. Apache Hadoop

and Apache Spark are two most widely used big data

analysis frameworks in both academia and industry[6–9].

Next, we provide a brief description of these two

frameworks before discussing big data partitioning and

sampling.

Fig. 1 MapReduce model.

2.2 Apache Hadoop

Apache Hadoop is one of the most well-established

platforms supporting the distributed and parallel

processing of massive data. It provides a general

partitioning mechanism to distribute aggregation

workload across different machines using the

MapReduce computing model. It is a multi-purpose

engine, but not a real-time and high-performance

engine because of the high throughput latency in

its implementations. The Hadoop platform contains

the Hadoop kernel, Hadoop MapReduce, HDFS, the

resource manager (YARN), and a number of projects

(e.g., Hive and HBase). The Hadoop MapReduce

framework[5, 28] provides a highly efficient and reliable

programming environment for processing large volume

distributed datasets.

2.3 Apache Spark

Apache Spark[43] is another open-source and large-

scale data processing framework. Spark introduced

the core abstraction, Resilient Distributed Dataset

(RDD)[44], for distributed in-memory data-parallel

computing. RDDs are read-only, immutable, and fault-

tolerant collections of elements (objects) distributed or

partitioned across a set of nodes in a cluster. RDD

supports two types of operations: transformations and

actions. Transformations (e.g., map() and filter()) are

deterministic but lazy operations that define new RDDs

without immediately computing them. Actions (e.g.,

reduce(), count(), and collect()), on the other hand,

launch the computation on RDDs and then return the

output to the driver program or store it in a persistent

storage system. For more details, see Fig. 2, in which

A, B, C, D, E, F, and G are RDDs.

Fig. 2 Data sharing using Spark RDD.



88 Big Data Mining and Analytics, June 2020, 3(2): 85–101

3 Data Partitioning

Data partitioning is a fundamental operation in

distributed systems to manage and process big data

on computing clusters. In this section, we first briefly

review the basic methods of data partitioning. Then,

we elaborate on horizontal partitioning and discuss

its classical schemes. Finally, we discuss big data

partitioning on Hadoop clusters.

3.1 Overview of data partitioning

The purpose of data partitioning is either query

processing in databases systems or data-intensive

computing in big data analysis frameworks. It was first

used in centralized databases[45–49]. Das et al.[50] and

Baker et al.[51] investigated solutions for distributed

database systems. A workload-aware partition was

proposed by Kamal et al.[52] Partitioning solutions for

big data applications on NoSQL data-stores were also

proposed in Refs. [52, 53]. As Fig. 3 shows, there are

three major categories of data partitioning methods:

horizontal, vertical, and functional partitioning.

In horizontal partitioning, the records of the

dataset are divided into disjoint subsets where each

subset has the same columns as the entire dataset

(see Refs. [48, 50, 54, 55] for more details). This

idea started from parallel database systems, and is

also known as sharding. Notable implementations

of horizontal partitioning are Apache HBase

(https://hbase.apache.org/), IBM Informix (https://

www.ibm.com/analytics/informix), MongoDB (https:

Fig. 3 Data partitioning methods.

//docs.mongodb.com/), MySQL Cluster (https://www.

mysql.com/products/cluster/), MySQL (https://www.

mysql.com/), Oracle NoSQL database (https://www.

oracle.com/technetwork/database/nosqldb/), Spanner

(https://cloud.google.com/spanner/), and Teradata

(https://www.teradata.com/). There are various schemes

for horizontal partitioning, including range, hash, and

random schemes. In vertical partitioning, the columns

of the dataset are divided into subsets that share a

key column (see Refs. [45, 46, 53, 56–58] for more

details). The columns are divided according to their

pattern of use. For example, frequently accessed

columns might be placed in one vertical partition and

less frequently accessed fields in another partition.

Vertical partitioning methods can be classified into

two subcategories: optimal solution under restrictive

assumptions and heuristic approach. Horizontal and

vertical partitioning can also be combined to divide the

dataset according to the target application or workload;

that is called hybrid partitioning. For example, an

e-commerce system might divide the data into two

separate subsets: one to store invoice data and the

other to store product inventory data. This is sometimes

known as functional partitioning[59] and is used to

improve isolation and data access performance, such as

by separating read-write data from read-only data.

3.2 Horizontal data partitioning

In this paper, we focus on horizontal partitioning to

distribute datasets with a large number of records.

There are three main horizontal partitioning schemes

that are commonly used for big data on computing

clusters: hash, range, and random. In addition, there

is a special kind of hash partition called a round-robin

partition. Figure 4 shows how a dataset can be divided

with each of these schemes.

� Hash partitioning: In a hash partition, records

are divided into subsets by hashing the record key and

mapping the hash value of the key to a partition. There

are multiple methods for this mapping. A common

Fig. 4 Horizontal partitioning schemes.



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 89

method is a round-robin, which is to mod the hash

key with the number of partitions, with the result

being the partition ID (with 0 as the first index). It

is important to understand that hash-based partition

provides a key-wise independent guarantee, because if

records have the same key value then they must have

the same hash value. Thus, they will be mapped to the

same partition. However, a hash-based partition does

not guarantee order among partitions. The round-robin

method guarantees a balanced partitioning, in which

subsets are equivalent in size.

� Range partitioning: Range partitioning segments

data according to a prescribed range over consecutive

ranges of the underlying dataset, and is one of the

best partitioning methods to use when global order

is required. It provides both a key-wise independent

guarantee and partition-wise ordering. Therefore,

anything that could be implemented using a hash-

based partition can also be implemented using a range

partition. Range partitioning requires a set of key-

ranges to be predefined. In a distributed environment,

how to choose partition boundaries is a challenge. It

is especially difficult for massive scale data analysis

because typically no statistics about the key distribution

over the machines are available at the beginning of the

partition. Range partitioning therefore requires a cost-

effective and accurate way to determine the partition

boundaries and involves a tradeoff of accuracy and cost.

� Random partitioning: In a random partition,

the records are divided randomly into subsets using a

random number generator to determine where to put

each record. While random partitioning can produce

approximately equal-sized subsets, similar to round-

robin, it requires extra processing to calculate a random

value for each record.

Table 1 shows a comparison of different horizontal

partitioning schemes. Each scheme has its advantages

and drawbacks regarding the performance of workload

in responsiveness, storage, and processing cost. Also,

many works have presented a blended approach to

partitioning, for example Ref. [59]. The random and

round-robin partitioning methods provide a guarantee

of balanced partitions.

3.3 Big data partitioning on Hadoop clusters

Data partitioning is a key issue in big data analysis

frameworks. It is used to control the parallelism

and achieve scalability to large computing clusters.

However, it is a computationally expensive operation

when working with big data[60]. In fact, the efficiency

and effectiveness of big data queries and analysis

algorithms are greatly affected by the data partitioning

scheme[60–66]. On Hadoop clusters, data partitioning

is basically the responsibility of HDFS[10]. When

importing a big data file into HDFS, the file is

sequentially divided into small blocks of a fixed

storage size determined with byte range. In Apache

Spark, the initial step is importing HDFS blocks

into the RDD in-memory data structure. An RDD

can be partitioned and repartitioned using different

methods, such as hash, range, and custom partitioning.

Range partitioning is also applied in BerkeleyDB

(https://www.oracle.com/database/berkeley-db/), HBase

(https://hbase.apache.org/), and MongoDB (https://

docs.mongodb.com/), whereas hash-based partitioning

is applied in CouchDB (http://couchdb.apache.org/),

Clustrix (http://www.clustrix.com), DynamoDB (https:

//aws.amazon.com/dynamodb/), Riak (http://basho.

com/products/riak-kv/), VoltDB (http://voltdb.com/

overview), and many other data stores.

Table 1 A comparison of data partitioning schemes.

Scheme Strength Limitation

Round-robin
– Sequential scan of the entire dataset – Both point and range queries are complicated to process.

– Well-balanced data partition

Hash

– Sequential scan of the entire dataset – Not well-suited for range queries

– Best suited for point queries based – Also, not well-suited for point queries on non-partitioning

partitioning attributes (only one partition attributes

has to be searched)

Range

– Sequential scan of the entire dataset – Execution skew might occur because of all processes in one

– Well-balanced data partition or a few partitions.

– Well-suited for both point and range queries

(only one or few partitions has to be searched)

Random

– Sequential scan of the entire dataset – It requires extra processing to calculate random values.

– Approximately balanced data partition – Records are distributed in random, and no

order is followed.



90 Big Data Mining and Analytics, June 2020, 3(2): 85–101

In big data exploration and analysis, we can look at

data partitioning as a preprocessing step that prepares

the data for subsequent exploration and analysis tasks.

For these tasks, the statistical properties of the data

should be considered when partitioning big data in order

to guarantee the accuracy of the results. A key problem

with data partitioning on Hadoop clusters is that HDFS

does not consider these statistical properties, such as

the probability distribution. For instance, sequentially

dividing a big dataset into small data blocks in HDFS

does not guarantee that each block is a random sample

in the case that the data are not randomly ordered

in the original dataset. In such case, using HDFS

blocks directly to estimate statistics and build models

may lead to statistically incorrect or biased results.

Another key issue is data skew, which describes the

uneven distribution of the records leading to tasks with

different execution times[67–69]. On computing clusters,

the performance strongly depends on how evenly data

are distributed among the nodes. In fact, this may

happen on both the Map side, due to imbalanced

input data, and the Reduce side, due to imbalanced

intermediate data[70–72]. Sampling has been employed

with data partitioning to alleviate the effect of data skew

and guarantee load balancing[60, 73], as we discuss in

Section 4.3. There is also the problem of imbalanced

data, which is a major challenge to machine learning

algorithms[74]. Classical data partitioning methods do

not consider the class or key distribution.

While range and hash partitioning are the most

common methods, random partitioning is necessary to

guarantee that the data is uniformly distributed across

the nodes. One work on distributed data randomization

on Hadoop clusters is Cloud OnLine Aggregation

(COLA)[75]. It introduces a preprocessing stage to

randomize data in HDFS using a MapReduce job. In

the Map operation, a random number between 1 and

P (the number of HDFS blocks) is assigned to each

record in the data. Then, each record is written to the

assigned block in the Reduce operation. After that,

block-level sampling can be used for online aggregation

by sequentially reading the randomized blocks from

HDFS. In addition to the general random partitioning

scheme, sampling-based data partitioning is required to

make the distributed data blocks reflect the statistical

properties of the entire dataset. This is done, for

instance, by making each HDFS block a simple random

sample or stratified random sample of the entire data. A

promising work in this direction is the Random Sample

Partition (RSP)[76], which is a distributed data model

to represent a big dataset as a set of non-overlapping

data blocks, called RSP blocks. Each RSP block is a

random sample of the entire dataset. An RSP can be

generated from an HDFS file using a two-stage data

partitioning method[77, 78]. Each RSP block is created

by combining approximately equal random slices from

all of the original HDFS blocks.

As Fig. 5 shows, RSP blocks preserve the probability

distribution of the entire dataset. This partitioning

operation can be scheduled to run offline on the

computing cluster. An RSP is saved as an HDFS-RSP

file with metadata storing the RSP block information,

including the size and location. An RSP-based Big Data

Management System (BDMS) has been formulated

by Emara and Huang[78]. Moreover, an open source

of a Spark library to represent HDFS blocks as a

set of RSP blocks has been developed in Ref. [79].

Selecting an RSP block from an HDFS-RSP file

is equivalent to drawing a random sample directly

from the original HDFS. The RSP model reduces

the sampling time from hours to seconds on small

computing clusters. Consequently, data scientists can

use RSP blocks directly in sampling-based approximate

big data analysis. This solves a key issue on Hadoop

clusters because completely random disk access can

be five orders of magnitude slower than sequential

access[80].

4 Data Sampling

Sampling is an essential strategy to reduce the burden

of big data volume. In this section, we start with an

overview of the random sampling strategy commonly

used in data science. Then, we briefly review four

key sampling schemes. After that, we discuss big data

sampling on Hadoop clusters.

4.1 Overview of data sampling

The goal of random sampling is to obtain representative

small subsets that can be processed efficiently to

explore and analyze the data[81, 82]. Data scientists often

use small random samples to obtain sample statistics,

Fig. 5 Random sample partition distributed data model.



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 91

assess the quality of estimators, and test statistical

models with different algorithms. Random sampling is

also fundamental in statistical estimation procedures,

such as the bootstrap[83]. In fact, random sampling has a

long history of use in databases[84, 85], but it is becoming

more important in the big data era, when handling

an entire dataset all at once may not be possible

considering the ever-increasing volume of data. Data

quality is often more important than data quantity

when using a sample to make an estimate or build

a model[86]. In addition, using small random samples

allows for greater attention to data quality and enables

deeper data exploration[87]. Furthermore, random

sampling is essential in approximate and incremental

computing[81, 88], as we discuss in Section 5.

Many researchers have considered sampling-based

approaches to estimate various statistics in the context

of database systems and data streams[89–94]. Rojas et

al.[95] suggested data exploration on smaller but better-

selected samples generated from sampling techniques

other than random sampling. Kandel et al.[96] pointed

out that the data scientists they interviewed were

concerned about using data sampling in big data,

because of the bias it could introduce into their analysis.

In the same vein, Lin and Ryaboy[97], who noted that it

is easy to make errors when sampling from a big dataset

and that it runs contrary to the objective of big data

analysis, also suggested using as much data as possible

and running experiments at scale.

4.2 Data sampling methods

There are a range of different methods to draw a sample

from a dataset. Choosing between these methods, which

are known as sampling schemes, depends mainly on

the target application or workload. In the following,

we introduce key sampling schemes and methods

commonly used in data science. Table 2 summarizes the

sampling methods.

� Bernoulli sampling: In this scheme, each item

in the dataset has an equal probability to be included

in the sample[98]. This sampling scheme operates

without replacement, where each data item is selected

independently for the sample[99]. Consequently, the

sample size is random and not fixed. Thus, it is difficult

to estimate the processing latency over Bernoulli

samples. To overcome this limitation, simple random

sampling scheme can be used.

� Simple random sampling: This is a flexible

and general method for constructing a synopsis of

data items, and is one of the most common sampling

techniques[100–102]. In this scheme, each data item has

an equal chance to be included in the selected sample.

Simple random sampling performed with replacement

allows each data item to appear multiple times in the

sample; sampling without replacement allows each data

item to appear at most one time. However, simple

random sampling does not ensure that each group in

the original data is considered fairly in the sample.

Stratified sampling can be used to overcome this

limitation.

� Stratified sampling: This is a sampling scheme in

which the original data is divided into a homogeneous

disjoint set of groups (strata); from each group (stratum)

a random sample is drawn and these are combined

to build the sample of the original data[103]. Stratified

sampling ensures that data items from each group are

considered fairly in the sample and no group will

be overlooked. Compared to simple random sampling,

stratified sampling provides higher statistical precision

and reduces the sampling error. It also requires a smaller

sample size to achieve the same accuracy as simple

random sampling, thus further improving performance

and utilizing less computing resources.

� Reservoir sampling: This is done without

replacement from a big array (list) in a single pass,

where the length of the array is indeterminate or

unbounded[104]. Reservoir sampling receives data items

from an array and maintains a sample in a buffer called a

reservoir. If the dataset consists of an unknown number

of items, or too many to fit into storage, then simple

random sampling does not work, and reservoir sampling

can be used. The reservoir sampling technique has been

used extensively in large-scale data mining applications

(see Refs. [105–107] for more details).

Table 2 A summary of common sampling methods.

Method Description

Simple random sampling[100–102] Data items are selected with equal probability and the sample size is fixed.

Bernoulli sampling[98, 99] Data items are selected with equal probability but the sample size is random.

Stratified sampling[103] Data items are divided into strata and a sample is drawn from each stratum.

Reservoir sampling[104] Data items are added to a reservoir of a fixed size.

Bootstrapping[83, 108] Multiple samples are drawn with replacement and used for statistical estimation and diagnosis.



92 Big Data Mining and Analytics, June 2020, 3(2): 85–101

� Bootstrap method: This is a classical method

to assess the variability of a sample statistic. It uses

multiple samples with replacement from the observed

dataset[83, 109]. However, bootstrapping on big datasets

requires high computational and storage costs as

it depends on repeatedly drawing samples of sizes

comparable to the original dataset and computing

estimates from all these samples.

4.3 Big data sampling on Hadoop clusters

To employ the previous sampling methods on Hadoop

clusters, we need to consider the special block-based

architecture of cluster computing frameworks. Thus, we

can discuss two common ways to get random samples

from big datasets stored in HDFS depending on whether

the sampling units are individual records or blocks of

records.

� Record-Level Sampling (RLS): This depends

on the random selection of individual records from

the dataset, and is an expensive operation in cluster

computing frameworks that implement a shared-

nothing architecture[60]. Record-level sampling goes

through all of the records sequentially, and is

thereby highly time-consuming. It requires a complete

pass over the entire distributed big dataset and

results in communication and I/O costs. For a large

HDFS file, record-level sampling is not efficient

because it reads the data record-by-record. This

operation becomes more challenging when many

disjoint random samples are required, as in ensemble

methods[24, 110] and statistical estimation methods like

the bootstrap. The Bag of Little Bootstraps (BLB)

is one approach to scale the classical bootstrap

method to big data by drawing samples of small

sizes[108, 111]. However, obtaining small disjoint random

samples is still a challenge in cluster computing

frameworks[112]. Spark supports sampling on RDDs.

In particular, Spark’s sampling functions can be

classified into two categories: simple random sampling

using the sample() function and stratified sampling

using sampleByKey() and sampleByKeyExact(). Spark

implements these sampling functions in a batch fashion,

where all data items are first accumulated in a batch, and

then the actual sampling is carried out. In addition, the

divide-and-conquer strategy is used to scale sampling

algorithms to big data on computing clusters, as in

Refs. [113, 114]. Sampling is also used as fundamental

strategy to solve the data skew problem on Hadoop

clusters, as in Ref. [115].

� Block-Level Sampling (BLS): This method

considers that a big dataset is stored as a set of

disjoint data blocks[116], each containing a small subset

of records. In this case, a block instead of a record

is randomly selected during the sampling process.

Block-level sampling is appealing in cluster computing

frameworks, since HDFS data blocks are the units of

both storage and processing in these frameworks. In

contrast to record-level sampling, block-level sampling

requires significantly fewer block accesses for the same

sample size. However, the results obtained from block-

level samples may be biased or incorrect because the

data in HDFS blocks may be correlated. The same

problem arises with RDDs in Apache Spark using

partition-level sampling. Furthermore, the entire RDD

should be read into memory in order to obtain a

block-level sample. The RSP model[76] solves these

problems by making HDFS blocks into ready-to-use

random sample data blocks. RSP blocks have unbiased

and consistent estimators. Hence, RSP blocks can

be used directly in statistical estimation and predictive

modeling, especially when analyzing big data requires

more than the available resources to meet specific

application requirements.

In the absence of a statistical summary, drawing

a random sample from a distributed dataset is a

nontrivial task, because we cannot perform sampling

arbitrarily. Experts have also suggested that using

multiple sampling strategies on the same dataset

would enable a more effective evaluation of a dataset.

Therefore, this domain is in need of more research to

find better solutions.

5 Approximate Cluster Computing for Big

Data Analysis

Approximate computing has become a common

and necessary paradigm to cope with the ever-

increasing data volume on computing clusters. In this

section, we first present an overview of approximate

computing. Then, we elaborate on the sampling-

based approximation approach for big data analysis on

Hadoop clusters.

5.1 Overview of approximate computing

Data is growing exponentially, and even faster

than Moore’s law predicts of computational power.

Nowadays, modern services use big data analysis

systems to mine and extract valuable patterns and trends

from data. Handling these data is quite expensive.



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 93

Recently, approximate computing has emerged as a

promising solution to reduce the computing resources

usage, processing time, and even energy consumption

of big data analysis frameworks[13, 14, 19, 20, 22, 117, 118].

Unlike traditional computing, approximate computing

is done over a small synopsis of the data instead of the

entire dataset. Many data algorithms are amenable to an

approximate result rather than an exact one[119].

In fact, it is sometimes impossible to obtain exact

results, either due to the underlying algorithm, e.g.,

machine learning algorithms, or due to the data

generation process, given that real-world datasets

often have noise that affects the results. Approximate

computing makes a trade-off between accuracy and

efficiency. This trade-off can be depicted as a “runtime–

resources usage–accuracy” triangle as shown in Fig. 6.

Due to the growth of digital data being faster than

the growth of computational power, approximate

computing is emerging as an essential technique

for big data analytics with interactive response

times. Approximate computing is sometimes

combined with incremental computing where the

data is processed incrementally and the results are

updated accordingly. This technique is also known as

incremental approximate computing, see Fig. 7 for

more details.

There are various approximation techniques that have

been proposed in databases for approximate query

processing, including sampling, sketching, histograms,

and online aggregation[21, 116]. These techniques have

been recently extended to big data on computing

clusters. Sampling, in particular, has been adopted

in cluster computing frameworks, as discussed in

Section 5.2.

5.2 Sampling-based approximation on Hadoop

clusters

Sampling is one of the most commonly used techniques

to enable approximation on Hadoop clusters[103, 120]. We

introduce the current big data frameworks for sampling-

Fig. 6 Approximate computing trades-off accuracy with

run-time and resources.

Fig. 7 Distributed approximate computing.

based approximate computing on Hadoop clusters as

follows.

� Early Accurate Result Library (EARL)[121] is

an extension of Hadoop that provides early estimation

results. It uses online uniform sampling from HDFS

files with the bootstrap method to incrementally

evaluate the accuracy.

� ApproxHadoop[20] uses multi-stage sampling to

enable approximation in Hadoop MapReduce.

� ApproxSpark[122] uses multi-stage sampling

or adaptive stratified reservoir sampling to enable

approximation in Apache Spark. It supports both

record-level and block-level sampling (called data

item-level and partition-level, respectively in Ref.

[122]). However, block-level sampling leads to

larger error bounds since the data in the RDD is not

necessarily randomized.

� BlinkDB[19] is a distributed sampling-based

approximate query engine that supports SQL-based

aggregation queries with error and time bounds.

� BlinkML[123] enables approximate machine

learning by training a model on a small sample instead

of the entire data and providing error bounds on the

accuracy of the approximate model. It supports models

that rely on maximum likelihood estimation, such

as linear regression, logistic regression, max entropy

classifier, and Probabilistic Principal Component

Analysis (PPCA). To obtain a sample, BlinkML uses

online uniform sampling without replacement. If

the dataset cannot fit into memory, BlinkML either

uses Bernolli sampling or offline samples from a

pre-shuffled dataset.

� IncApprox[119] is a stream data analytics system

which depends on both approximate and incremental

computing to incrementally update an approximate

output for data analysis tasks.



94 Big Data Mining and Analytics, June 2020, 3(2): 85–101

� Sapprox[124] depends on the distribution of the

dataset in the file system for approximation. It collects

the occurrences of subsets in an offline preprocessing

stage and uses these to facilitate online sampling. It uses

cluster sampling with unequal probability to address the

data skew problem.

� RSP approach[76] is a new approach for

approximate big data analysis using the RSP distributed

data model. It depends on a step-wise process to

analyze data in batches of RSP blocks. Each batch is

a block-level sample of RSP blocks that are processed

using sequential algorithms in a data-parallel fashion.

With this approach, a few RSP blocks are enough to

obtain approximate results that are equivalent to those

built from the entire dataset. The RSP approach has

been applied to different tasks in predictive modeling

and exploratory data analysis (see Refs. [125, 126] for

more details).

� ApproxIoT[127] depends on edge computing

resources to enable sampling-based approximation in

IoT with an online hierarchical stratified reservoir

sampling algorithm.

Table 3 presents a summary of key big data frameworks

for sampling based approximate computing.

6 Discussion

Since cluster and approximate computing are two

common and necessary paradigms for big data analysis

frameworks, efficient and effective data partitioning

and sampling techniques are fundamental for big data

analysis. In this section, we further discuss the current

challenges of enabling approximate cluster computing

and scaling algorithms for big data.

� Bottlenecks of cluster computing in big data

analysis: Although the mainstream big data analysis

frameworks employ the data-parallel model to run

scalable algorithms on computing clusters, analyzing an

entire dataset may exceed the available resources in a

computing cluster. Since the rate of data production is

outracing technology scaling, the ever-increasing data

volume can quickly exceed the memory of a computing

cluster. Hadoop MapReduce is efficient for algorithms

that scan the entire big dataset once. However, for

iterative data analysis algorithms, it becomes inefficient

because of heavy I/O and communication costs[128].

Apache Spark with its in-memory computing model is

much faster than the disk-based cluster computing in

Hadoop MapReduce[43]. Therefore, it is very efficient

for iterative algorithms. Nonetheless, if the memory is

not large enough to hold all of the data blocks of a big

dataset, the computation will dramatically slow down.

� Sampling-based big data partitioning:

Conventional data partitioning methods (e.g., range and

hash) and data partitioning techniques in distributed

file systems (e.g., sequential partitioning in HDFS) do

not necessarily satisfy the requirements of data analysis

tasks. These methods do not consider the statistical

properties of the data which may lead to very poor

results. Therefore, it is essential to develop statistically-

aware data partitioning methods in big data analysis

frameworks. This enables the effective and efficient

use of HDFS data blocks to obtain approximate results

using sequential algorithms. However, high-quality data

partitioning is one of the most expensive operations for

distributed computing because typically no statistics

are available about the data distribution. Big data

analysis requires a not only computationally efficient

but also statistically effective approach at both the data

management and analysis level.

� Online big data sampling: It is straightforward

to obtain a random sample when data are centralized

Table 3 A summary of frameworks for sampling-based approximation on Hadoop clusters.

Framework Description

BlinkDB[19] Approximate distributed query processing engine that uses stratified sampling

ApproxHadoop[119] Uses multi-stage sampling for approximate MapReduce job execution

EARL[121] Uses online uniform sampling from HDFS files with the bootstrap method

ApproxSpark[122] Uses multi-stage sampling or adaptive stratified reservoir sampling

Supports both record-level and block-level sampling

BlinkML[123] Uses online uniform sampling without replacement

If the dataset cannot fit into the memory, either uses Bernoulli sampling or offline samples

IncApprox[119] A stream data analytics system which depends on both approximate and incremental computing

Sapprox[124] Uses it to facilitate online sampling

RSP approach[76] Approach for approximate big data analysis

Depends on a step-wise process to analyze data in batches of RSP blocks

ApproxIoT[127] Sampling-based approximation in IoT with an online hierarchical stratified reservoir sampling algorithm



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 95

and the size is known. However, in the big data era,

many applications deal with data that are distributed and

unbounded. Drawing a random sample from distributed

data becomes difficult for two main reasons. First,

when the size of data is unknown, it is not possible

to predetermine sampling probability. Second, data are

distributed on different machines and it is not feasible to

collect it to a central machine for sampling. Combined

these challenges give rise to the question of how to

obtain a random sample from distributed data efficiently

with a guarantee of sample uniformity. Classical

sampling techniques (e.g., random) require a full scan

of the dataset each time to generate a random sample,

and are therefore ineffective and cumbersome given the

increasing volume of the data stored in a distributed

system. Current big data systems are mainly targeted

toward batch processing (data-in-rest). In contrast to

classical offline sampling (batches), online sampling

from a massively distributed dataset is difficult. In this

regard, partitioning a big dataset into small subsets (i.e.,

data blocks), each being a random sample of the entire

dataset, is a fundamental operation for big data analysis.

� Ensemble methods for big data analysis: As

mentioned above, divide and conquer is a common

strategy in current big data analysis frameworks. The

big data ensemble model is different from the classical

ensemble model. In big data analysis, an ensemble

model integrates results of different subsets or samples

of data, whereas a classical ensemble combines the

results of different models or algorithms on the same

dataset to produce a robust result. Therefore, the key

question for data partitioning is how to aggregate

the results from these subsets. It is theoretically and

practically necessary to find appropriate ensemble

functions (consensus function) for distributed datasets.

� Approximate big data analysis: It is difficult or

impractical to process an entire big dataset, especially

on small computing clusters. In extreme cases, it is not

even possible to store the entire input dataset. Thus,

a key research question is whether the entire data

needs to be used to find properties and reveal

insights, or if a subset is sufficient. To meet the

challenge, we may apply incremental approximate

computing in the distributed computing cluster to

achieve efficiency. Understanding theoretical trade-offs

between accuracy and sample size is another important

open research issue. With incremental approximate

computation, big data can be analyzed incrementally

to obtain approximate results that are asymptotically

equivalent to those computed using entire dataset. In

this way, computational resources and time can be

decreased significantly. A reliable combination between

cluster computing and approximate computing requires

addressing key issues, such as sample selection, sample

size, accuracy measures, and aggregation functions.

Considering the impact of sampling and partitioning

on the performance and accuracy of sampling-based

approximation on Hadoop clusters, we end this section

with the following Research Questions (RQs):

RQ1: How can we draw a random sample from

a massively distributed dataset on Hadoop clusters,

considering that memory may never be sufficient to hold

an entire big dataset, since data growth rate is faster than

technology scaling?

RQ2: How can we quickly obtain a random sample

partition from a big dataset so that data scientists can

directly use random sample data blocks to explore and

analyze big data using their preferred techniques and

libraries?

RQ3: How can we aggregate the local results from

random sample data blocks of a big dataset for different

data analysis and mining algorithms?

RQ4: How much data (portion size) is sufficient

from an entire big dataset to approximate a result that

is equivalent to the result from the entire dataset?

7 Conclusion

Data partitioning and sampling can provide tremendous

benefits by improving the scalability, manageability,

and performance of big data analysis algorithms on

computing clusters. In this paper, the partitioning

and sampling techniques for big data analysis were

reviewed. While the key classical partitioning schemes

are employed on computing clusters, new sampling-

based partition models have become fundamental to

increase scalability. Furthermore, this is essential to

guarantee the quality of the selected samples and this

to yield more accurate approximate results. In addition

to data partitioning and sampling, key projects in

sampling-based approximation for big data analysis

were briefly reviewed. Also, we highlighted the critical

technical challenges of partitioning and sampling to

support approximate big data analysis on computing

clusters.

Acknowledgment

This research was Supported in part by the National

Natural Science Foundation of China (No. 61972261)

and the National Key R&D Program of China (No.

2017YFC0822604-2).



96 Big Data Mining and Analytics, June 2020, 3(2): 85–101

References

[1] R. Cattell, Scalable SQL and NoSQL data stores, ACM

SIGMOD Record, vol. 39, no. 4, pp. 12–27, 2011.

[2] K. Bakshi, Considerations for big data: Architecture and

approach, in Proc. of 2012 IEEE Aerospace Conference,

Big Sky, MT, USA, 2012, pp. 1–7.

[3] X. Chen and M. Xie, A split-and-conquer approach for

analysis of extraordinarily large data, Statistica Sinica,

vol. 24, no. 4, pp. 1655–1684, 2014.

[4] N. Lazar, The big picture: Divide and combine to conquer

big data, Chance, vol. 31, no. 1, pp. 57–59, 2018.

[5] J. Dean and S. Ghemawat, MapReduce: Simplified

data processing on large clusters, in Proceedings of

the 6th Symposium on Operating System Design and

Implementation (OSDI’04), San Francisco, CA, USA,

2004, pp. 137–150.

[6] D. Singh and C. K. Reddy, A survey on platforms for big

data analytics, Journal of Big Data, vol. 2, no. 1, p. 8,

2014.

[7] H. V. Jagadish, J. Gehrke, A. Labrinidis,

Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan,

and C. Shahabi, Big data and its technical challenges,

Communications of the ACM, vol. 57, no. 7, pp. 86–94,

2014.

[8] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,

A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.

Franklin, et al., Apache spark: A unified engine for big

data processing, Communications of the ACM, vol. 59,

no. 11, pp. 56–65, 2016.

[9] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z.

Huang, Big data analytics on apache spark, International

Journal of Data Science and Analytics, vol. 1, no. 3,

pp. 145–164, 2016.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The

Hadoop distributed file system, in Proceedings of the

2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), Incline Village, NV, USA,

2010, pp. 1–10.

[11] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y.

Ng, and K. Olukotun, Map-reduce for machine learning

on multicore, in Proceedings of the 19th International

Conference on Neural Information Processing Systems

(NIPS’06), Cambridge, MA, USA, 2006, pp. 281–288.

[12] D. Quoc, Approximate data analytics systems, PhD

dissertation, Technische Universität Dresden, Dresden,

Germany, 2017.

[13] R. Nair, Big data needs approximate computing:

Technical perspective, Communications of the ACM,

vol. 58, no. 1, pp. 104–104, 2015.

[14] S. Mittal, A survey of techniques for approximate

computing, ACM Computing Surveys, vol. 48, no. 4,

pp. 1–33, 2016.

[15] D. A. Reed and J. Dongarra, Exascale computing and big

data, Communications of the ACM, vol. 58, no. 7, pp. 56–

68, 2015.

[16] C. E. Otero and A. Peter, Research directions for

engineering big data analytics software, IEEE Intelligent

Systems, vol. 30, no. 1, pp. 13–19, 2015.

[17] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta,

R. Nair, J. Oh, D. A. Prener, S. Shukla, V. Srinivasan,

and Z. Sura, Approximate computing: Challenges and

opportunities, in Proc. of 2016 IEEE International

Conference on Rebooting Computing (ICRC), San Diego,

CA, USA, 2016, pp. 1–8.

[18] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann,

and M. Rinard, Managing performance vs. accuracy

trade-offs with loop perforation, in Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering

(ESEC/FSE’11), Szeged, Hungary, 2011, pp. 124–134.

[19] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica, BlinkDB: Queries with

bounded errors and bounded response times on very

large data, in Proceedings of the 8th ACM European

Conference on Computer Systems (EuroSys’13), Prague,

Czech Republic, 2013, pp. 29–42.

[20] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D.

Nguyen, ApproxHadoop: Bringing approximations

to MapReduce frameworks, in Proceedings of the

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems

(ASPLOS’15), Istanbul, Turkey, 2015, pp. 383–397.

[21] K. Li and G. Li, Approximate query processing: What

is new and where to go?, Data Science and Engineering,

vol. 3, no. 4, pp. 379–397, 2018.

[22] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar,

M. Jordan, S. Madden, B. Mozafari, and I. Stoica,

Knowing when you’re wrong: Building fast and reliable

approximate query processing systems, in Proceedings

of the 2014 ACM SIGMOD International Conference

on Management of Data (SIGMOD’14), Snowbird, UT,

USA, 2014, pp. 481–492.

[23] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer,

V. Hilt, and T. Strufe, Streamapprox: Approximate

computing for stream analytics, in Proceedings of

the 18th ACM/IFIP/USENIX Middleware Conference

(Middleware’17), Las Vegas, NV, USA, 2017, pp. 185–

197.

[24] O. Sagi and L. Rokach, Ensemble learning: A survey,

Data Mining and Knowledge Discovery, vol. 8, no. 4,

pp. 1–18, 2018.

[25] S. Basiri, E. Ollila, and V. Koivunen, Robust, scalable,

and fast bootstrap method for analyzing large scale data,

IEEE Transactions on Signal Processing, vol. 64, no. 4,

pp. 1007–1017, 2016.

[26] V. K. Singh, M. Taram, V. Agrawal, and B. S. Baghel,

A literature review on Hadoop ecosystem and various

techniques of big data optimization, in Proceedings

of International Conference on Data and Information

Systems (ICDIS’17), Amarkantak, India, 2017, pp. 231–

240.

[27] I. Polato, R. Ré, A. Goldman, and F. Kon, A

comprehensive view of Hadoop research–systematic

literature review, Journal of Network and Computer

Applications, vol. 46, pp. 1–25, 2014.



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 97

[28] J. Dean and S. Ghemawat, Mapreduce: Simplified data

processing on large clusters, Communications of the

ACM, vol. 51, no. 1, pp. 107–113, 2008.
[29] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and

R. Campbell, A survey of peer-to-peer storage techniques

for distributed file systems, in Proceedings of the

International Conference on Information Technology:

Coding and Computing (ITCC’05) – Volume II, Las

Vegas, NV, USA, 2005, pp. 205–213.
[30] P. Bzoch and J. Safarik, State of the art in distributed

file systems: Increasing performance, in Proc. of 2011

Second Eastern European Regional Conference on the

Engineering of Computer Based Systems, Bratislava,

Slovakia, 2011, pp. 153–154.
[31] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, 3rd ed. New York, NY, USA:

Springer-Verlag, 2011.
[32] D. Taniar, High performance database processing, in

Proc. of 2012 IEEE 26th International Conference on

Advanced Information Networking and Applications,

Fukuoka, Japan, 2012, pp. 5–6.
[33] S. Vijayakumar, A. Bhargavi, U. Praseeda, and S. A.

Ahamed, Optimizing sequence alignment in cloud using

Hadoop and Mpp database, in Proceedings of the

2012 IEEE Fifth International Conference on Cloud

Computing (CLOUD’12), Honolulu, HI, USA, 2012,

pp. 819–827.
[34] S. Ghemawat, H. Gobioff, and S.-T. Leung, The google

file system, ACM SIGOPS Operating Systems Review,

vol. 37, no. 5, pp. 29–43, 2003.
[35] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

Dryad: Distributed data-parallel programs from

sequential building blocks, in Proceedings of the

2nd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2007 (EuroSys’07), Lisbon, Portugal,

2007, pp. 59–72.
[36] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,

D. Shakib, S. Weaver, and J. Zhou, Scope: Easy

and efficient parallel processing of massive data sets,

Proceedings of the VLDB Endowment, vol. 1, no. 2,

pp. 1265–1276, 2008.
[37] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,

P. K. Gunda, and J. Currey, Dryadlinq: A system

for general-purpose distributed data-parallel computing

using a high-level language, in Proceedings of the 8th

USENIX Conference on Operating Systems Design and

Implementation (OSDI’08), San Diego, CA, USA, 2008,

pp. 1–14.
[38] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins, Pig latin: A not-so-foreign language for data

processing, in Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data

(SIGMOD’08), Vancouver, Canada, 2008, pp. 1099–

1110.
[39] S. Melnik, A. Gubarev, J. J. Long, G. Romer,

S. Shivakumar, M. Tolton, and T. Vassilakis,

Dremel: Interactive analysis of web-scale datasets,

Communications of the ACM, vol. 54, no. 6, pp. 114–

123, 2011.

[40] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,

N. Zhang, S. Antony, H. Liu, and R. Murthy, Hive

a petabyte scale data warehouse using hadoop, in

Proceedings of the 2010 IEEE 26th International

Conference on Data Engineering (ICDE’10), Long

Beach, CA, USA, 2010, pp. 996–1005.
[41] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,

M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita,

Jaql: A scripting language for large scale semi structured

data analysis, Proceedings of the VLDB Endowment,

vol. 4, no. 12, pp. 1272–1283, 2011.
[42] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,

V. Lychagina, Y. Kwon, and M. Wong, Tenzing: A

SQL implementation on the MapReduce framework,

Proceedings of the VLDB Endowment, vol. 4, no. 12,

pp. 1318–1327, 2011.
[43] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia,

Learning Spark: Lightning-Fast Big Data Analytics, 1st

ed. Sebastopol, CA, USA: O’Reilly Media, 2015.
[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,

Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing, in Proceedings of the

9th USENIX Conference on Networked Systems Design

and Implementation (NSDI’12), San Jose, CA, USA,

2012, p. 2.
[45] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou,

Vertical partitioning algorithms for database design,

ACM Transactions on Database Systems, vol. 9, no. 4,

pp. 680–710, 1984.
[46] D. W. Cornell and P. S. Yu, An effective approach

to vertical partitioning for physical design of relational

databases, IEEE Transactions on Software Engineering,

vol. 16, no. 2, pp. 248–258, 1990.
[47] W. W. Chu and I. T. Ieong, A transaction-based approach

to vertical partitioning for relational database systems,

IEEE Transactions on Software Engineering, vol. 19,

no. 8, pp. 804–812, 1993.
[48] C. Curino, E. Jones, Y. Zhang, and S. Madden, Schism:

A workload-driven approach to database replication

and partitioning, Proceedings of the VLDB Endowment,

vol. 3, no. 1, pp. 48–57, 2010.
[49] C. Curino, E. P. Jones, R. A. Popa, N. Malviya,

E. Wu, S. Madden, H. Balakrishnan, and N. Zeldovich,

Relational cloud: A database-as-a-service for the cloud,

in Proc. of 5th Biennial Conference on Innovative Data

Systems Research (CIDR), Asilomar, CA, USA, 2011,

pp. 235–240.
[50] S. Das, D. Agrawal, and A. El Abbadi, Elastras:

An elastic transactional data store in the cloud, in

Proceedings of the 2009 Conference on Hot Topics in

Cloud Computing (HotCloud’09), San Diego, CA, USA,

2009, pp. 1–5.
[51] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,

J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,

Megastore: Providing scalable, highly available storage

for interactive services, in Proc. of Conference on

Innovative Database Research (CIDR), Asilomar, CA,

USA, 2011, pp. 223–234.



98 Big Data Mining and Analytics, June 2020, 3(2): 85–101

[52] J. Kamal, M. Murshed, and R. Buyya, Workload-aware

incremental repartitioning of shared-nothing distributed

databases for scalable OLTP applications, Future

Generation Computer Systems, vol. 56, pp. 421–435,

2016.

[53] S. P. Phansalkar and A. R. Dani, Transaction aware

vertical partitioning of database (TAVDP) for responsive

OLTP applications in cloud data stores, Journal of

Theoretical and Applied Information Technology, vol. 59,

no. 1, pp. 73–81, 2014.

[54] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,

G. Kakivaya, D. B. Lomet, R. Manne, L. Novik, and

T. Talius, Adapting microsoft SQL server for cloud

computing, in Proc. of 2011 IEEE 27th International

Conference on Data Engineering, Hannover, Germany,

2011, pp. 1255–1263.

[55] S. Ahirrao and R. Ingle, Scalable transactions in cloud

data stores, in Proc. of 2013 3rd IEEE International

Advance Computing Conference (IACC), Ghaziabad,

India, 2013, pp. 116–119.

[56] S. B. Navathe and M. Ra, Vertical partitioning for

database design: A graphical algorithm, ACM SIGMOD

Record, vol. 18, no. 2, pp. 440–450, 1989.

[57] J. H. Son and M. H. Kim, An adaptable vertical

partitioning method in distributed systems, Journal of

Systems and Software, vol. 73, no. 3, pp. 551–561, 2004.

[58] W. Zhao, Y. Cheng, and F. Rusu, Workload-driven

vertical partitioning for effective query processing over

raw data, arXiv preprint arXiv: 1503.08946, 2015.

[59] Y.-F. Huang and C.-J. Lai, Integrating frequent pattern

clustering and branch-and-bound approaches for data

partitioning, Information Sciences, vol. 328, pp. 288–

301, 2016.

[60] M. Vojnovic, F. Xu, and J. Zhou, Sampling-based range

partition methods for big data analytics, Technical Report

MSR-TR-2012-18, Microsoft Research, Redmond, WA,

USA, 2012.

[61] A. Chakrabarti, S. Parthasarathy, and C. Stewart,

Green- and heterogeneity-aware partitioning for data

analytics, in Proc. of IEEE Conference on Computer

Communications Workshops, San Francisco, CA, USA,

2016, pp. 366–371.

[62] S. Phansalkar and S. Ahirrao, Survey of data partitioning

algorithms for big data stores, in Proc. of 2016 Fourth

International Conference on Parallel, Distributed and

Grid Computing (PDGC), Waknaghat, India, 2016,

pp. 163–168.

[63] A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J.

Elmore, A robust partitioning scheme for ad-hoc query

workloads, in Proceedings of the 2017 Symposium on

Cloud Computing (SoCC’17), Santa Clara, CA, USA,

2017, pp. 229–241.

[64] J. Wang, Q. Xiao, and J. Yin, DRAW: A new

Data-gRouping-AWare data placement scheme for data

intensive applications with interest locality, IEEE

Transactions on Magnetics, vol. 49, no. 6, pp. 2514–

2520, 2013.

[65] K. H. K. Reddy and D. S. Roy, DPPACS: A novel

data partitioning and placement aware computation

scheduling scheme for data-intensive cloud applications,

The Computer Journal, vol. 59, no. 1, pp. 64–82, 2016.

[66] D. Yuan, Y. Yang, X. Liu, and J. Chen, A data placement

strategy in scientific cloud workflows, Future Generation

Computer Systems, vol. 26, no. 8, pp. 1200–1214, 2010.

[67] K. Slagter, C.-H. Hsu, Y.-C. Chung, and D. Zhang,

An improved partitioning mechanism for optimizing

massive data analysis using MapReduce, The Journal of

Supercomputing, vol. 66, no. 1, pp. 539–555, 2013.

[68] Q. Chen, J. Yao, and Z. Xiao, Libra: Lightweight

data skew mitigation in MapReduce, IEEE Transactions

on Parallel and Distributed Systems, vol. 26, no. 9,

pp. 2520–2533, 2015.

[69] M. He, G. Li, C. Huang, Y. Ye, and W. Tian,

A comparative study of data skew in Hadoop, in

Proceedings of 26th International Conference on

Network, Communication and Computing (ICNCC’17),

Kunming, China, 2017, pp. 1–6.

[70] Z. Tang, W. Lv, K. Li, and K. Li, An intermediate

data partition algorithm for skew mitigation in spark

computing environment, IEEE Transactions on Cloud

Computing, doi: 10.1109/TCC.2018.2878838.

[71] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, A study

of skew in MapReduce applications, in The 5th Open

Cirrus Summit, Moskow, Russia, 2011, pp. 1–5.

[72] Z. Tang, X. Zhang, K. Li, and K. Li, An intermediate

data placement algorithm for load balancing in spark

computing environment, Future Generation Computer

Systems, vol. 78, no. 1, pp. 287–301, 2018.

[73] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, and X. Cui, Sampling-

based partitioning in MapReduce for skewed data, in

Proc. of 2012 Seventh ChinaGrid Annual Conference

(CHINAGRID’12), Beijing, China, 2012, pp. 1–8.

[74] S. del Ro, V. Lpez, J. M. Bentez, and F. Herrera, On

the use of MapReduce for imbalanced big data using

random forest, Information Sciences, vol. 285, pp. 112–

137, 2014.

[75] X. Ci and X. Meng, An efficient block sampling

strategy for online aggregation in the cloud, in Proc.

of International Conference on Web-Age Information

Management (WAIM 2015), Qingdao, China, 2015,

pp. 362–373.

[76] S. Salloum, J. Z. Huang, Y. He, X. Zhang, T. Z. Emara, C.

Wei, and H. He, A random sample partition data model

for big data analysis, arXiv preprint arXiv: 1712.04146,

2017.

[77] C. Wei, S. Salloum, T. Z. Emara, X. Zhang, J. Z.

Huang, and Y. He, A two-stage data processing algorithm

to generate random sample partitions for big data

analysis, in Proc. of International Conference on Cloud

Computing (CLOUD 2018), Seattle, WA, USA, 2018,

pp. 347–364.

[78] T. Z. Emara and J. Z. Huang, A distributed data

management system to support large-scale data analysis,

The Journal of Systems and Software, vol. 148, pp. 105–

115, 2019.



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 99

[79] T. Z. Emara and J. Z. Huang, RRPlib: A Spark library for

representing HDFS blocks as a set of random sample data

blocks, Science of Computer Programming, vol. 184,

pp. 1–7, 2019.

[80] A. Jacobs, The pathologies of big data, Communications

of the ACM, vol. 52, no. 8, pp. 36–44, 2009.

[81] G. Cormode and N. Duffield, Sampling for big data:

A tutorial, in Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining (KDD’14), New York, NY, USA, 2014,

pp. 1975–1975.

[82] J. Acharya, I. Diakonikolas, C. Hegde, J. Z. Li,

and L. Schmidt, Fast and near-optimal algorithms

for approximating distributions by histograms, in

Proceedings of the 34th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems

(PODS’15), Melbourne, Australia, 2015, pp. 249–263.

[83] B. Efron and R. J. Tibshirani, An Introduction to the

Bootstrap. New York, NY, USA: Chapman & Hall, 1993.

[84] F. Olken and D. Rotem, Random sampling from

database files: A survey, in Proceedings of the 5th

International Conference on Statistical and Scientific

Database Management (SSDBM’1990), Charlotte, NC,

USA, 1990, pp. 92–111.

[85] F. Olken, Random sampling from databases, PhD

dissertation, University of California at Berkeley,

Berkeley, CA, USA, 1993.

[86] P. Bruce and A. Bruce, Practical Statistics for Data

Scientists: 50 Essential Concepts. Sebastopol, CA, USA:

O’Reilly Media, Inc., 2017.

[87] W. S. Cleveland and R. Hafen, Divide and recombine

(d&r): Data science for large complex data, Statistical

Analysis and Data Mining: The ASA Data Science

Journal, vol. 7, no. 6, pp. 425–433, 2014.

[88] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and

S. Suri, Macrobase: Prioritizing attention in fast data, in

Proceedings of the 2017 ACM International Conference

on Management of Data (SIGMOD’17), Chicago, IL,

USA, 2017, pp. 541–556.

[89] S. Chaudhuri, R. Motwani, and V. Narasayya, Random

sampling for histogram construction: How much is

enough?, ACM SIGMOD Record, vol. 27, no. 2, pp. 436–

447, 1998.

[90] G. S. Manku, S. Rajagopalan, and B. G. Lindsay,

Random sampling techniques for space efficient online

computation of order statistics of large datasets, in

Proceedings of the 1999 ACM SIGMOD International

Conference on Management of Data (SIGMOD’99),

Philadelphia, PA, USA, 1999, pp. 251–262.

[91] M. Charikar, K. Chen, and M. Farach-Colton, Finding

frequent items in data streams, in Proceedings of the

29th International Colloquium on Automata, Languages

and Programming (ICALP’02), Málaga, Spain, 2002,

pp. 693–703.

[92] S. Guha and A. McGregor, Space-efficient sampling, in

Proceedings of the Eleventh International Conference on

Artificial Intelligence and Statistics (AISTATS 2007), San

Juan, PUR, USA, 2007, pp. 169–176.

[93] F. Kuhn, T. Locher, and S. Schmid, Distributed

computation of the mode, in Proceedings of the Twenty-

seventh ACM Symposium on Principles of Distributed

Computing (PODC’08), Toronto, Canada, 2008, pp. 15–

24.

[94] A. Kirsch, M. Mitzenmacher, A. Pietracaprina, E. Upfal,

and F. Vandin, A rigorous statistical approach for

identifying significant itemsets, in Proceedings of

the IEEE International Conference on Data Mining

(ICDM’08), Pisa, Italy, 2008, pp. 1–10.

[95] J. A. R. Rojas, M. Beth Kery, S. Rosenthal, and A. Dey,

Sampling techniques to improve big data exploration,

in Proc. of 2017 IEEE 7th Symposium on Large Data

Analysis and Visualization (LDAV), Phoenix, AZ, USA,

2017, pp. 26–35.

[96] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer,

Enterprise data analysis and visualization: An interview

study, IEEE Transactions on Visualization and Computer

Graphics, vol. 18, no. 12, pp. 2917–2926, 2012.

[97] J. Lin and D. Ryaboy, Scaling big data mining

infrastructure: The twitter experience, SIGKDD

Explorations, vol. 14, no. 2, pp. 6–19, 2013.

[98] C. T. Fan, Development of sampling plans by using

sequential (item by item) selection techniques and digital

computers, Publications of the American Statistical

Association, vol. 57, no. 298, pp. 387–402, 1962.

[99] P. J. Haas, Data-stream sampling: Basic techniques

and results, in Data Stream Management, Data-

Centric Systems and Applications Book Series. Berlin,

Heidelberg, Germany: Springer, 2016, pp. 13–44.

[100] T. E. Oliphant, Scipy: Open source scientific tools for

python, Computing in Science and Engineering, vol. 9,

no. 3, pp. 10–20, 2007.

[101] M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten, The weka data mining

software: An update, ACM SIGKDD Explorations

Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, et al., Scikit-learn: Machine

learning in python, The Journal of Machine Learning

Research, vol. 12, no. 10, pp. 2825–2830, 2011.

[103] M. Al-Kateb and B. S. Lee, Stratified reservoir sampling

over heterogeneous data streams, in Proceedings

of the 22nd International Conference on Scientific

and Statistical Database Management (SSDBM’10),

Heidelberg, Germany, 2010, pp. 621–639.

[104] J. S. Vitter, Random sampling with a reservoir, ACM

Transactions on Mathematical Software, vol. 11, no. 1,

pp. 37–57, 1985.

[105] C. C. Aggarwal, On biased reservoir sampling in the

presence of stream evolution, in Proceedings of the

32nd International Conference on Very Large Databases

(VLDB’06), Seoul, Korea, 2006, pp. 607–618.

[106] M. Dash and W. Ng, Efficient reservoir sampling for

transactional data streams, in Proc. of Sixth IEEE

International Conference on Data Mining–Workshops

(ICDMW’06), Hong Kong, China, 2006, pp. 662–666.

[107] V. Malbasa and S. Vucetic, A reservoir sampling



100 Big Data Mining and Analytics, June 2020, 3(2): 85–101

algorithm with adaptive estimation of conditional

expectation, in Proc. of International Joint Conference

on Neural Networks, Orlando, FL, USA, 2007, pp. 2200–

2204.

[108] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan,

The big data Bootstrap, in Proceedings of the 29th

International Coference on International Conference on

Machine Learning (ICML’12), Edinburgh, UK, 2012,

pp. 1787–1794.

[109] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,

Classification and Regression Trees. Boca Raton, FL,

USA: CRC Press, 1984.

[110] L. Breiman, Bagging predictors, Machine Learning,

vol. 24, no. 2, pp. 123–140, 1996.

[111] M. I. Jordan, On statistics, computation and scalability,

Bernoulli, vol. 19, no. 4, pp. 1378–1390, 2013.

[112] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, and N. Villa-

Vialaneix, Random forests for big data, Big Data

Research, vol. 9, pp. 28–46, 2017.

[113] X. Meng, Scalable simple random sampling and stratified

sampling, in Proceedings of the 30th International

Conference on International Conference on Machine

Learning (ICML’13), Atlanta, GA, USA, 2013, pp. 531–

539.

[114] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade,

and C. Dachsbacher, Efficient parallel random

sampling–vectorized, cache-efficient, and online,

ACM Transactions on Mathematical Software, vol. 44,

no. 3, pp. 1–14, 2018.

[115] E. Gavagsaz, A. Rezaee, and H. H. S. Javadi, Load

balancing in reducers for skewed data in MapReduce

systems by using scalable simple random sampling, The

Journal of Supercomputing, vol. 74, no. 7, pp. 3415–

3440, 2018.

[116] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine,

Synopses for massive data: Samples, histograms,

wavelets, sketches, Foundations Trends Databases,

vol. 4, no. 1, pp. 1–294, 2012.

[117] Q. Xu, T. Mytkowicz, and N. S. Kim, Approximate

computing: A survey, IEEE Design Test, vol. 33, no. 1,

pp. 8–22, 2016.

[118] Y. Shi, X. Meng, F. Wang, and Y. Gan, HEDC: A

histogram estimator for data in the cloud, in Proceedings

of the 4th International Workshop on Cloud Data

Management (CloudDB’12), Maui, HI, USA, 2012,

pp. 51–58.
[119] D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and

R. Rodrigues, IncApprox: A data analytics system for

incremental approximate computing, in Proceedings of

the 25th International Conference on World Wide Web

(WWW’16), Montral, Canada, 2016, pp. 1133–1144.
[120] M. N. Garofalakis and P. B. Gibbon, Approximate query

processing: Taming the terabytes, in Proceedings of the

27th International Conference on Very Large Data Bases

(VLDB’01), Roma, Italy, 2001, p. 725.
[121] N. Laptev, K. Zeng, and C. Zaniolo, Early accurate

results for advanced analytics on MapReduce,

Proceedings of the VLDB Endowment, vol. 5, no. 10,

pp. 1028–1039, 2012.
[122] G. Hu, D. Zhang, S. Rigo, and T. D. Nguyen,

Approximation with error bounds in spark, arXiv preprint

arXiv: 1812.01823, 2018.
[123] Y. Park, J. Qing, X. Shen, and B. Mozafari, BlinkML:

Approximate machine learning with probabilistic

guarantees, in Proc. of the 45th International Conference

on Very Large Data Bases, Los Angeles, CA, USA,

2018, pp. 1–18.
[124] X. Zhang, J. Wang, and J. Yin, Sapprox: Enabling

efficient and accurate approximations on sub-datasets

with distribution-aware online sampling, Proceedings of

the VLDB Endowment, vol. 10, no. 3, pp. 109–120, 2016.
[125] S. Salloum, J. Z. Huang, Y. He, and X. Chen, An

asymptotic ensemble learning framework for big data

analysis, IEEE Access, vol. 7, no. 1, pp. 3675–3693,

2019.
[126] S. Salloum, J. Z. Huang, and Y. He, Exploring and

cleaning big data with random sample data blocks,

Journal of Big Data, vol. 6, no. 1, p. 45, 2019.
[127] Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee,

ApproxIoT: Approximate analytics for edge computing,

in Proc. of 2018 IEEE 38th International Conference

on Distributed Computing Systems (ICDCS), Vienna,

Austria, 2018, pp. 411–421.
[128] M. Elteir, H. Lin, and W. Feng, Enhancing MapReduce

via asynchronous data processing, in Proc. of 2010

IEEE 16th International Conference on Parallel and

Distributed Systems, Shanghai, China, 2010, pp. 397–

405.

Mohammad Sultan Mahmud is currently

a PhD candidate at Shenzhen University,

China. He received the master degree from

King Mongkut’s University of Technology

North Bangkok, Thailand, in 2014, and

the bachelor degree from BGC Trust

University Bangladesh, Bangladesh, in

2008. Mr. Mahmud was awarded the

Outstanding Doctoral Student of Shenzhen University in 2017

and Shenzhen Universiade International Scholarship in 2018.

Also, he received Information Technology-King Mongkut’s

University of Technology North Bangkok scholarship for two

years in 2012. His current research focuses on big data mining

and distributed and parallel computing.

Joshua Z. Huang received the PhD degree

from the Royal Institute of Technology,

Sweden, in 1993. He is a distinguished

professor of the College of Computer

Science & Software Engineering at

Shenzhen University. Also, he is the

director of Big Data Institute and

the deputy director of the National

Engineering Laboratory for Big Data System Computing

Technology. His main research interests include big data

technology and applications. Prof. Huang has published over

200 research papers in conferences and journals. In 2006,

he received the most influential paper award in the First

Pacific-Asia Conference on Knowledge Discovery and Data



Mohammad Sultan Mahmud et al.: A Survey of Data Partitioning and Sampling Methods to Support Big : : : 101

Mining. Prof. Huang is known for his contributions to the

development of a series of k-means type clustering algorithms in

data mining, such as k-modes, fuzzy k-modes, k-prototypes, and

w-k-means, that are widely cited and used, and some of which

have been included in commercial software. He has extensive

industry expertise in business intelligence and data mining, and

has been involved in numerous consulting projects in Australia

and China.

Salman Salloum received the PhD degree

from Shenzhen University, Shenzhen,

China, in 2019, and the MS degree from

Damascus University, Damascus, Syria,

in 2013. He is currently an associate

researcher with the College of Computer

Science and Software Engineering,

Shenzhen University, Shenzhen, China.

From 2007 to 2014, he had worked as an instructional designer

and a project manager in ePedia-SY, a digital content company in

Syria. He was also a tutor at Syrian Virtual University from 2012

to 2014. His current research is focused on cluster computing

and approximate computing for big data analysis.

Tamer Z. Emara is currently a PhD

candidate at Big Data Institute, Shenzhen

University, China. In 2015, he got the MS

degree from Mansoura University,

Egypt. Also, he received the BS

degree from Tanta University, Egypt,

in 2005. He is now a lecturer at the Higher

Institute of Engineering and Technology,

Kafrelsheikh, Egypt. His main research interest is big data

management. He is a member of IEEE and ACM.

Sadatdiynov Kuanishbay currently is a

PhD candidate at Shenzhen University,

China. He received the BS and the

MS degrees from Tashkent University of

Information Technologies, Uzbekistan, in

2012 and 2014, respectively. His research

interests include edge computing, network

architecture, and big data analysis.


