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ABSTRACT Internet of Things (IoT) facilitates the integration between objects and different sensors to provide 
communication among them without human intervention. However, the extensive demand for IoT and its various 
applications has continued to grow, coupled with the need to achieve foolproof security requirements. IoT 
produces a vast amount of data under several constraints such as low processor, power, and memory. These 
constraints, along with the invaluable data produced by IoT devices, make IoT vulnerable to various security 
attacks. This paper presents an overview of IoT, its well-known system architecture, enabling technologies, and 
discusses security challenges and goals. Furthermore, we analyze security vulnerabilities and provide state-of-
the-art security taxonomy. The taxonomy of the most relevant and current IoT security attacks is presented for 
application, network, and physical layers. While most other surveys studied one of the areas of security measures, 
this study considers and reports on the most advanced security countermeasures within the areas of autonomic, 
encryption, and learning-based approaches. Additionally, we uncover security challenges that may be met by the 
research community regarding security implementation in heterogeneous IoT environment. Finally, we provide 
different visions about possible security solutions and future research directions.    

   
INDEX TERMS Attacks, Countermeasures, Encryption, Internet of Things, IoT Architecture, Learning-based Algorithm, 
Privacy, Security, Secure Communications, Taxonomy 

 
 

I. INTRODUCTION 

Internet of Things (IoT) generally refers to a world of 
networked smart objects, where every physical “thing” which 
has a digital element is interconnected. According to [1], IoT is 
defined as follows. 
 A dynamic global network infrastructure with self-configuring 

capabilities based on standard and interoperable 

communication protocols where physical and virtual ’Things’ 
have identities, physical attributes, and virtual personalities 

and use intelligent interfaces, and are seamlessly integrated 

into the information network. 
A similar definition is also provided in [2]. 

IoT enables the interconnectivity of billions of devices to aid 
computing and communications. Digital entities such as sensors, 
Radio-Frequency Identification (RFID), internet and localization 
technology make it possible to transform everyday objects into 
smart objects which are capable of interpreting and interacting 
with each other [2]. The embedded sensors in smart objects 

monitor, sense, and collect different kinds of data about 
equipment, environment, and human social life [3]. Despite the 
usefulness of IoT, there is a major concern of security 
susceptibility. The connections between humans, devices, 
sensors and services are universal and continuous. No matter how 
well-designed, intelligently configured, efficiently implemented 
and properly maintained a security system is, it will have to rely 
on human intervention and is not immune to security threats. 
Therefore, human element is required in designing cybersecurity 
solutions [4]. Although technological developments have further 
enhanced security solutions and made them fully protected in 
many cases, there is still an ongoing need for security solutions 
to evolve and develop in order to overcome new security 
challenges [5].  

Unlike conventional Internet Technology (IT) infrastructure, 
IoT devices are processor, memory, and power-constrained, and 
they are usually deployed in hostile, dynamic and heterogeneous 
environments. In comparison with conventional IT 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Idna%20Idris%20MY%5BAuthor%5D&cauthor=true&cauthor_uid=30029508
https://scholar.google.com/citations?view_op=view_org&hl=en&org=3918598370877205258
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infrastructures, IoT comprises of potentially numerous types of 
devices and networks. The main objective of IoT is to offer 
integration among software, sensors, interoperable 
communication protocols, network infrastructures, and physical 
objects [6]. The embedded devices offer a vast number of digital 
services that support daily human activities. Therefore, we can 
easily control, operate devices, and share data from long 
distances in real-time. However, the rapid and large-scale 
deployment of IoT devices poses a significant security concern. 
The authentication, authorization, system configuration, 
verification, access control, information storage and management 
verification, to name a few, are the main security challenges in 
the IoT realm. Vital information may leak or be tampered at any 
time. The security of IoT devices, the information they contain 
and users’ privacy are not guaranteed. In order to encourage 
wider deployment of IoT, robust security is essential to provide 
users with a sense of privacy of their personal information [7], 
[8].  

The surveys conducted in [9], [10]–[12], [14] reveal the 
security breaches and merciless of cyber-threats faced by 
organizations in the recent years. They reported the security 
breaches and attacks witnessed by large and small businesses in 
the United Kingdom. Figure 1 depicts the rate of security 
breaches experienced by large and small organizations between 
2014 and 2019 in the UK. IoT produces a massive amount of data 
for organizations and businesses, which makes it a target and an 
alluring venture for adversaries who seek to steal business 
information for ransom or other intents resulting in financial 
losses on the part of the organization. Since IoT is becoming a 
mission-critical element of small, medium, and large 
organizations and their businesses, security has become an 
essential component and a requirement of IoT. It is also evident 
that security solutions of IoT have improved over time [13], yet 
security threats are also evolving in more far-reaching and 
destructive ways. 

 

 
FIGURE 1.  The organizations experienced security breaches or attacks in 

the UK [9]–[11], [14]  

Several surveys on IoT security vulnerabilities and challenges 
have been published between the years of  2012 to 2020 [8], [15], 
[24], [25], [16]–[23], [26]. However, these surveys have not 
taken into consideration current attack categories such as multi-
dimensional attacks and other security challenges with IoT in 
terms of their attributes and diversities. Many studies only 
provided the taxonomy of attacks, whereas others focused only 
on specific types of security countermeasures for securing IoT. 

To the best of our knowledge, no other study on IoT security was 
done to combine learning-based, encryption and autonomic 
security countermeasures comprehensively. 

This paper presents different IoT application domains and their 
security threats, attacks and vulnerabilities. It also presents recent 
advances in IoT, including its architecture, enabling technologies 
and protocols. We highlight security challenges, goals and 
methods of security attack, and identify why IoT security differs 
from conventional IT security. We provide an extensive 
taxonomy of security attacks based on a three-layered 
(application, network and physical layers) IoT architecture. The 
objective of this survey is to explore, address and bring together 
the advanced security countermeasures including learning-based 
algorithms such as Machine Learning (ML) and Deep Learning 
(DL) techniques; autonomic approaches; and cryptographic or 
encryption methods. We give some insights into the suitability of 
implementing them in IoT. We aim to provide a user manual of 
those security aspects for a heterogeneous IoT environment by 
discussing the comparisons of existing solutions holistically. We 
further provide relevant insights and future research directions in 
order to guide researchers in their quest to address IoT security 
issues. The contributions of this paper are summarized as 
follows. 
 The study presents insights into IoT architectures and 

enabling technologies.  
 The survey discusses a systematic summary of the IoT 

security challenges and goals. 
 The paper provides a taxonomy of security attacks for 

three-layered IoT architecture.  
 It provides comprehensive and advanced security 

countermeasures, including learning-based, autonomic and 
cryptographic/encryption techniques towards securing IoT 
systems.  

 Finally, it provides insightful comparisons of existing 
countermeasures, discusses their applicability for different 
security attacks and provides future research directions. 

A. RELATED WORKS  

There are several review studies on the security of IoT. Some 
of these studies focused on security challenges, whereas others 
focused on security solutions based on different techniques and 
methodologies. The survey by Hassija et al. [27] provided 
several IoT security challenges and further discussed fog,  edge 
computing, block-chain and machine learning technologies as 
the various means of scaling up IoT security.  Another survey 
[28] focused on physical layer security, protocols and handover 
defenses for mobile-IoT. The authors compared the existing 
security measures for mobile-IoT applications. A systematic 
review study [29] investigated hardware and software-based 
security measures for IoT mobile computing devices. In [30], 
the authors highlighted several authentication methods for IoT 
and discussed various security verification mechanisms. They 
also provided future directions for research on authentication 
mechanisms.  

Chen et al. [31] reviewed existing security solutions for 
global positioning and location-based IoT. The study also 
presented security aspects of localization of IoT from policy, 
regulation and legal points of view. They went further to 
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provide relevant insights to a secured location-based IoT. The 
authors in [32] addressed security threats and vulnerabilities of 
network layers of IoT. Their work focused on existing machine 
learning-based intrusion detection system and analyzed them in 
terms of detection techniques and validation mechanisms. The 
study [33] examined insider IoT threats based on various data 
sources such as IoT deployment environments, IoT 
architectures. The authors compared different data sources from 
different IoT layers and investigated the limitations on potential 
utilization of the data sources and methodologies. Current 
security challenges on IoT technologies of commercial IoT 
environments have been reported in [34]. They addressed 
confidentiality, anonymity, resilience and self-organization 
attributes of security aspects for IoT.  

The authors in [35]  reported on the features and challenges of 
security in distributed IoT. In [36], the authors reviewed only the 
malware category of attacks, their analysis and detection 
techniques. The authors in [37] highlighted the key future 
prerequisites for providing security in a smart home. 
Furthermore, some studies focused on either the autonomic, 
learning-based or cryptographic security countermeasures. The 
authors in [38], classified existing self-secure mitigation 
techniques for security attacks into different IoT layers. They also 
identified some information security goals in the field of IoT, 
which were grouped under five categories: i) confidentiality; ii) 
integrity; iii) availability; iv) privacy, and; v) authenticity.  

The studies [26], [39]–[41] reviewed encryption mechanisms 
that provide security for IoT.  While the study  [26] provided a 
comparative study on symmetric cryptography, the authors in 
[39] analyzed and presented two main categories of encryption 
algorithms, namely symmetric and asymmetric, to establish 
secure communication. They highlighted both server-based and 

decentralized encryption protocol options for IoT. The authors in 
[42] compared different encryption primitives and proposed a 
suitable scheme using parameters that best fit user 
requirements. Some researchers surveyed recent developments 
in learning-based intrusion detection system for IoT. For 
instance, the studies [43], [44] reviewed machine and deep 
learning-based security solutions for IoT and identified the 
limitations of each method. The authors in [44] also provided 
future research challenges and directions. Table I recaps the key 
contribution of existing surveys on IoT security and provides a 
comparison with our survey together with exclusion/inclusion 
parameters. 

The existing surveys and reviews on IoT security focused on 
security challenges and discussed measures, which only focused 
on a specific type of methodology. Other studies focused on 
security challenges concerning mobile-IoT, location-based or 
commercial IoT.  Others yet focused on a specific type of security 
countermeasures such as either learning-based or cryptographic-
based measures. However, the existing studies have not taken 
into consideration current IoT attack categories such as multi-
layer attacks, security measures of IoT in terms of its 
characteristics and diversities. There is a need to undertake a 
holistic investigation of autonomic, learning-based and 
encryption-based IoT security countermeasures. To the best of 
our knowledge, the current study is the only survey that aims at 
providing a comprehensive and up-to-date analysis of security 
countermeasures within the current trends in cryptographic or 
encryption methods, learning-based strategies and autonomic 
approaches. The paper also aims to provide useful insights and 
opens a research gateway for future researchers who are 
interested in IoT security challenges and solutions. 

    
TABLE I 

RELATED SURVEYS ON IOT SECURITY    
Year  Author Contribution multi-

layer 
attacks 

Lear- 
ning 
meth- 
ods 

Auto- 
nomic 
appro- 
aches 

Encryp- 
tion 
meth- 
ods 

Meth- 
ods of 
atta- 
ck 

Layer-
based 
taxo- 
nomy 

2015 Ashraf et al., 
[38] 

Classifies and discusses self-secure techniques  for 
IoT  

         

2015 Nguyen et al., 
[39] 

Analyzes  and reports categories of encryption 
algorithm 

         

2017  Mushtaq et 
al., [42] 

Compares different encryption primitives           

2017 Chen et al., 
[31] 

Reports and discusses security solutions for 
location-based IoT 

         

2018 Al-Garadi et 
al., [43] 

Discusses ML/DL solutions for IoT           

2019 Chaabouni et 
al., [32] 

Addresses security issues and discusses ML-based 
solutions in network layer of IoT 

         

2019 Hassija et al., 
[27] 

Presents security solutions using fog,  edge 
computing, block-chain and ML approaches for 
IoT  

         

2019 Hussain et al., 
[44] 

Provides and analyzes learning-based security 
measures for IoT 

         

2020 Sharma et al., 
[28] 

Presents  solutions for security, privacy, and trust  
for Mobile-IoT 

         

2019 Nandy et al., 
[30] 

Highlights several authentication methods for IoT          

2019 Chaabouni et 
al., [32] 

Addresses security issues in network layer and 
discusses ML-based solutions 

         

2020 Kim et al., 
[33] 

Compares data sources from different IoT layers           

 Our Survey Provides layer-based attack taxonomy and 
discusses three areas of security countermeasure 
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B. ORGANIZATION  

The remainder of this paper is organized as follows. Section II 
provides an overview, architecture, enabling technologies and 
some state-of-the-art applications for IoT. Section III provides 
the IoT security challenges, security goals and types of security 
attacks. Section IV provides layer-based attack taxonomy for 
IoT. Section V offers state-of-the-art security countermeasures 
including learning-based methods, autonomic approaches and 
encryption techniques. Section VI provides discussion, and 
future research directions and Section VII concludes the study. 

II. OVERVIEW, ARCHITECTURE, ENABLING 
TECHNOLOGY AND APPLICATION DOMAINS IN IoT 

Despite the wide-ranging opportunities, IoT avails stakeholders 
and businesses, there are yet significant IoT security concerns 
that must be addressed. IoT applications generate a vast amount 
of data for individuals and organizations, which are prone to 
security attacks.  Since low-power IoT devices are commonly 
deployed in hostile physical environments, more robust security 
approaches must be implemented in addition to conventional IT 
security approaches. This section provides an overview of IoT, 
introduces its architecture, enabling technologies, protocols and 
some state-of-the-art application domains.  

A. OVERVIEW   

IoT enables the interconnectivity of several heterogeneous 
devices and networks using different communication 
technologies. According to [45], [46], communication may 
occur between machine-to-machine (M2M) or thing-to-thing 
(T2T), human-to-thing (H2T) or human-to-human (H2H) 
through different means of connectivity. IoT aims to provide 
smart and advanced services to its users through information 
networks formed by consistent integration of physical objects 
(e.g., personal computers, smartphones, wearable devices, 
washing machines, fridge, lights, microwave oven, and 
medicines). The objects are interconnected or connected to the 
internet or humans and are capable of transmitting real-time 
information about patients, property, traffic, and electricity 
[47]. These smart objects are also capable of delivering the 
collected lightweight data around the globe. Devices equipped 
with actuators can extract data, process them and boost the 
communication efficiency among smart objects.  

IoT is distributed and heterogeneous, and therefore, the issues 
related to security need to be given considerable attention. 
However, IoT is different from conventional IT in several 
contexts, including security. IoT also differs in terms of 
technology and deployment. IoT devices are connected under the 
constraints of low power and lossy networks (LLNs), which are 
weak in energy, memory and processing capabilities. Unlike 
typical IT infrastructure, IoT is globally connected through 
compressed Internet Protocol Version 6 (IPv6) [62] .  

Figure 2 presents security attack scenarios of some key IoT 
applications.  IoT applications are deployed in almost every 
aspect of our daily lives, including homes, hospitals and 
industries. Multiple sensors in an application area (e.g., smart 
home, smart hospital, smart industry and smart transportation) 

communicate with each other and transmit vital information.  
Considering a scenario where a driver uses a global positioning 
system (GPS) to navigate a destination in order to catch up with 
an urgent meeting; the car’s GPS device will usually be 
connected to multiple devices and utilizes different networks, 
which are exposed to cyber-attacks. An attacker can potentially 
bypass the firewall and may launch a denial-of-service (DoS) 
attack, making the navigation service unavailable or send a 
wrong signal that misleads the driver. In another scenario based 
on the same figure, remote operation of the smart home 
appliances exposes private data to an attacker, or the smart lock 
of the home could be broken to gain access to home appliances.  

In another scenario based on Figure 2, patients get treatment 
and medication at home or by the healthcare service provider 
from a remote hospital. However, the patient’s sensitive 
information may be at risk of being stolen or manipulated by the 
invader who bypasses the hospital firewall, sitting either at the 
local network or on the cloud internet. The highlighted scenarios 
present issues that are related to hacking, terrorism, and sabotage, 
which could potentially affect large-scale intelligent IoT 
infrastructures such as electricity, hospitals, offices, industries 
and buildings.  

B. ARCHITECTURE 

Given the continuous development and expansion, IoT requires 
a universal and adaptable architecture that suits its heterogeneity 
and the diverse scope of its application. Currently, there is no 
universally adopted architecture. Several researchers have 
proposed many different architectures for IoT [48]–[50]. The 
three-layered architecture outlines the critical concept of IoT. 
Figure 3 presents a typical architecture of IoT, which is divided 
into three basic layers together with their functionalities. The 
layers are presented and discussed next.   

1)   APPLICATION LAYER  

This layer consists of an array of smart IoT application solutions 
[21], [49], [51]. The IoT market has enormous potentials that 
attract the development of smart applications in almost every 
aspect. Many IoT applications have already been deployed in 
certain domains such as smart buildings, including homes and 
offices, smart cities, and wearable bands for health monitoring, 
smart traffic systems, environment monitoring, smart alarm 
system, and smart personal assistant. IoT application layer is the 
highest layer within the IoT architecture, which provides an 
interface between objects and networks. It offers a variety of 
functionalities such as data formation, presentation, monitoring 
of device conditions, notifications, alert, controlling device 
functions, management and processing of data, device 
performance optimization and autonomous operations, providing 
quality-of-service to end-users [52], [53]. A typical application 
layer includes a service support platform, middleware, 
computing and communication software [54]. A survey [55] 
presented facilities for practical applications of IoT.  The main 
goal of the IoT application layer is to provide different 
application services to the end-users. Data Confidentiality, 
Integrity, and Availability (CIA) should be guaranteed at this 
layer by securing applications from unauthorized access, 
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ensuring software/logs integrity and keeping the application 
services available at any time. During the processing of sensitive 
data, issues such as illegal access and malicious modification of 
data may arise [56]. This layer could also be susceptible to a 
number of security attacks such as Spoofing, Message Forging, 
Virus and Worms among others.  

2) NETWORK LAYER 

This IoT layer is comprised of software, protocols, and 
technologies that enable object-to-object and object-to-internet 
connectivity [52]. It is mainly formed using either local area 
network such as wireless and wired network, personal area 
network (e.g., ZigBee), near field communication (NFC), 
Bluetooth and wide area networks such as GSM, LTE, 5G, and 
cloud computing [49], [51], [57]. The variations of the IoT 
communication model have been outlined in [58], as M2M 
communications, machine-to-gateway model, machine-to-cloud 
communications, and back-end data-sharing model. The main 
function of this layer is to transmit gathered data in the form of a 
digital signal, which is collected from the physical layer of 
corresponding platforms via a connected network. This layer is 
vulnerable to a number of security threats and attacks [20]. 

Common attacks in this layer include Denial-of-Service (DoS), 
Sinkhole, Hello Flood, Blackhole, to name a few. It is essential 
for the network layer to have communication security for secure 
data transmission over a public network [59], [60]. 

3) PHYSICAL LAYER 

The bottom layer of IoT architecture is known as the physical 
layer. In IoT, this layer is also referred to as the perception layer 
[20], [49], [50]. It includes physical world objects and virtual 
entities. The main task of this layer is to collect data from the 
environment through various sensors. IoT devices are embedded 
with electrical and mechanical hardware components such as 
sensors, antennas, actuators, processors [52]. Smartphones, RFID 
technology [21], [51], wearable devices are capable of 
processing, identifying, connecting, communicating and storing 
data. In the perception layer, the sensors or RFID convert the 
collected raw data of the physical objects to the readable digital 
signals. IoT objects sense and gathers data from the physical 
world such as temperature, humidity, proximity, to name but a 
few.  However, this layer of IoT is prone to a lot of security 
attacks such as Jamming, Tampering and Collusion [20].  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 2.  IoT Security Attack Scenarios in Different Application Areas. 

 
 

C. ENABLING PROTOCOLS AND TECHNOLOGIES 

Numerous protocols interoperate, and thus, an appropriate 
communication system architecture should be used to ensure 

interoperation. Nevertheless, there are still issues with 
interoperability among diverse network technologies. Authors in 
[61] state that the standardization of the latest progress is the only 
way to the future development of IoT. Evolving new IoT-based 
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protocols and technologies will play a vital role in the coming 
years. The protocols used in conventional internet for data 
sharing are not compliant options for low power IoT constraint. 
Therefore, there have been some standardized protocols for IoT 
to connect smart things and end-user applications. IoT protocol 
stack, enabling elements are presented in Figure 3. This figure 
also demonstrates the functionalities of the protocols for each 
layer of IoT.  

The Constrained Application Protocol (CoAP) is a widely used 
ultralight standard for application layer of IoT. On the other hand, 
CoAPs are the secure version of CoAP. CoAPs utilizes Datagram 
Transport Layer Security (DTLS) to protect data between two 
applications [48], [52], [62], [63]. Message Queuing Telemetry 
Transport, MQTT for Sensor Networks (MQTT-SN), Data 
Distribution Services (DDS), Extensible Messaging and 
Presence Protocol (XMPP), Advanced Message Queuing 
Protocol (AMQP) are some other application layer protocols for 
IoT [52], [63]. A Quick Constrained Application Protocol 
Internet Connection (QUIC) is an IoT transport layer protocol 
used in experimental phases [64]. QUIC was designed by Google 
to offer security protection, flow control over User Datagram 
Protocol (UDP) and to avoid congestion as well as reducing 
transport latency by using congestion control mechanisms similar 
to TCP. IPv6 is one of the key internet layer protocols for IoT 
[62], [65]. IPv6 offers end-to-end IP datagram transmission for 
the packet-switched network through multiple IP networks. IPv6 
over Low Power Wireless Personal Area Network (6LoWPAN) 

is low power and low-cost communication network, which 
makes IoT devices to be connected to the internet through IPv6.  
Routing Protocol for Low Power and Lossy Networks (RPL) is a 
standardized IPv6 protocol for the constrained IoT networks [62]. 
RPL is the IPv6 routing protocol standardized for IoT [15], [36].  

IoT is envisioned to integrate different wireless technologies. 
Bluetooth Low Energy (BLE), Z-Wave, EPCglobal are some of 
the IoT physical layer protocols. RFID and NFC [66]–[69] are 
ultralight technologies for short-range communication for IoT. 
IEEE 802.15.4 is the Low-Rate Wireless Personal Area 
Networks (LR-WPANs) [69] utilized for IoT due to security, 
authentication, encryption, reliable communication, high 
message throughput, and to accommodate a huge number of 
nodes [70]. Bluetooth operates in the 2.4 GHz frequency and is 
one of the key technologies for short-range communication. 
IEEE 802.11 is another physical layer specification for Wireless 
Fidelity (WiFi) or   (WLAN). The energy consumption is higher 
in WiFi than that of Bluetooth and ZigBee [61]. Cellular 
technologies such as 2G (GSM), 2.5G (GPRS), 3G 
(UMTS/WCDMA, HSPA), 4G LTE, 5G can also be used for IoT 
communication. As all the protocols for IoT are designed for 
resource-constrained devices and networks, these protocols could 
be susceptible to security attacks to a large degree. The 
constrained devices are vulnerable to attacks from inside the 
6LoWPAN and internet. Therefore, lightweight security 
solutions are to be developed for these constrained devices and 
networks [71].

 

 
FIGURE 3.  An overview of IoT, architecture, functionalities, enabling technologies, and applications.
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D.  IoT APPLICATION DOMAINS 

IoT applications have become an integral part of our everyday 
lives. These applications are growing rapidly. IoT applications 
suffer from a number of security threats, privacy and trust 
issues, which vary from application to application, environment 
and industry. Effective security solutions should be enforced on 
different IoT domains based on the nature of applications and 
functionalities to ensure secure communication and let people 
enjoy the complete benefit of IoT without compromising their 
privacy.  This section presents some recent application domains 
and discusses their respective security issues, trust and privacy.  

 Smart Home: Some of the modern homes are 
equipped with smart and automated appliances, such as 
smart lighting, refrigerator, washer, air-condition, 
electric meter, alarm system and CCTV. For ensuring 
safety and security, these homes are powered by smart 
cameras, sensors, smart locks and alarm systems. These 
smart appliances can be operated through the internet 
from long distances. The usage of such smart 
technologies provide a high level of comfort in smart 
homes and enhance overall security, trust and privacy 
while reducing overall expenditure [72], [73]. To 
ensure security and to protect smart houses from theft 
or intrusion, criteria such as confidentiality, auto-
immunity, and reliability must be met [72].  IoT 
devices installed in smart homes should be password-
protected, and user login must be confidential.  

 Industrial IoT: The cyber-physical system is the basis 
of industrial IoT, which is capable of real-time 
monitoring, diagnosing and controlling physical 
process and production remotely. IoT-equipped smart 
industries and factories optimize production 
processes, enable the manufacture of smart products 
and provide knowledge-based smart services by 
utilizing resources with the help of the data gathered 
by the IoT system. The smart products are usually 
powered by RFID for digital identity that also can 
collect and store data [74]. However, the industrial IoT 
and its products attached with the digital entity are 
vulnerable to many security issues such as trust, 
privacy and confidentiality. They also introduce 
challenges such as standardization of production 
system, social and legal aspects. The diverse industrial 
IoT devices demand highly scalable addressing 
system, security solutions and data privacy. Due to 
resource limitations, the industrial IoT architecture 
demands low-cost, low-powered infrastructures, yet 
fully integrated with robust security solutions.  

 Smart City: The concept of a smart city comes from 
the integration of different IoT applications in various 
sectors. In a smart city, the integration of multiple 
services supports its stakeholders in a distributed and 
dependable manner [75]. However, providing privacy 
and trust among the stakeholders in the smart city 
applications remains an important issue. There are 

security issues related to hacking, terrorism, physical 
damage which could destroy the infrastructure of smart 
city applications in areas such as electricity supply, 
healthcare, corporate offices, factories and traffic 
systems [76].  

 IoT Healthcare System: It is one of the most 
prominent and fascinating application areas of IoT [77]. 
The smart hospital-based treatment or remote 
healthcare services have gained popularity in recent 
years. IoT medical services such as distant health 
monitoring, elderly care, chronic healthcare and fitness 
programs are some of the potentially rising applications 
[78]. However, a patient’s private and sensitive 
information may be at risk to be stolen or manipulated.  
Patient’s personal information is confidential, and thus, 
it is important to secure them from exposure to any 
unauthorized access. If the medical report of a patient is 
leaked and altered, the doctor may end up treating the 
patient erroneously, which can be lethal and life 
threatening for the patients. Patient’s data privacy and 
authentication are of immense importance; therefore, 
medical applications of IoT should be highly secured 
[79].  

 Smart Traffic System: The use of RFIDs and various 
sensors make urban driving pleasant and traffic 
management more efficient. Smart traffic applications 
of IoT give people a sense of ‘living in the future’. An 
IoT-enabled traffic system provides route information 
such as a number of cars in a certain route or lane; 
parking information such as availability and directions 
to the parking space; public transport information such 
as the number of occupants and availability of seats on 
a bus or train. Ultrasonic sensors are already in use in 
urban vehicles for safe driving [80]. However, the 
automation of the system may bring security and trust 
issues for passengers [81]. As smart cars, buses, trains 
among others are connected to the internet, the 
passengers’ data become exposed to the risk of being 
compromised. 

 Smart Grid: The smart electrical supply system is 
known as smart grid, which is mainly a network of 
electric transmission lines, transmitters, substations to 
distribute electricity across homes and businesses from 
the power plant in the most efficient way. Smart meters, 
sustainable energy resources, smart machines and 
efficient energy properties are some of the power 
functions of a smart grid [72], [82]. The use of IoT in an 
electric grid makes the energy distribution and 
management much more efficient through two-way 
communication and reduces the impact on climate [83]. 
Technological improvements in smart electric grid 
systems increase their security vulnerabilities and 
threats.  Authentication, confidentiality, trust, integrity, 
and availability represent the key areas of concerns that 
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should be addressed when dealing with a smart power 
grid. 

 Smart Farming: Integration of different sensors and 
RFID technologies make conventional agriculture, 
animal and fish farming smarter. Various sensors are 
capable of monitoring temperature, humidity, soil 
moisture, and microbial contaminants in smart 
farming [27]. Sensors and RFID attached to the 
animal’s body or fish farm are able to monitor health 
conditions, keep track of their activities and notify the 
stakeholder remotely. However, smart farming 
industries are prone to several security issues. The 
agricultural products can be damaged, or fishes and 
animals can be carted away if the security of such 
applications is not ensured.  

III. SECURITY CHALLENGES, GOALS AND METHODS OF 
ATTACK IN IoT 

Using the conventional and existing security approaches directly 
in the resource-constrained IoT devices is not straightforward. In 
short, the security approaches, models and architectures of the 
conventional network are designed based on the users’ 
perspective, which may not always be suitable for M2M 
communication. The security threats or attacks may be similar for 
both networks, but the solution techniques and approaches are 
different in each network [84]. The major security challenges, 
security goals and the methods of security attacks are presented 
next. 

A. SECURITY CHALLENGES 

This section provides the security challenges while 
implementing security in IoT for application, network and 
physical layers. Table II briefly summarizes the comparison 
between IoT and conventional IT security challenges. 

1) APPLICATION LAYER CHALLENGES 

Heavyweight software or security solutions may not be 
appropriate for IoT devices. Therefore, it is worth considering the 
following limitations before implementing security modules in 
IoT devices.  
 Embedded Software: Either a lightweight General-Purpose 

Operating System (GPOS) or Real-Time OS (RTOS) is 
embedded in low memory IoT devices [85], [86]. These IoT 
operating systems are equipped with tiny network protocol 
stacks, which may not come with adequate security modules. 
Hence, lightweight, robust, and fault-tolerant security 
modules should be designed for such thin software and 
protocol stacks [86], [87].  

 Security Patch: The deployment of IoT devices might be in 
a remote area. The sensing devices may not receive security 
patches or software updates without affecting functional 
safety.  A high cost may incur to update a security patch [8]. 
Mitigating potential security issues would not be possible 
remotely as IoT OS and protocol stack may not be able to 
receive and incorporate a new security patch. 

 Device and Data Volume: A large number of applications 
generate an enormous volume of data which impact the 
security and privacy on the data and devices [88]. A report 

shows that less than 10,000 household devices are capable 
of generating 150 million discrete data points per day [89].   

2) NETWORK LAYER CHALLENGES 

IoT network layer provides functionalities such as 
communication and data routing among different devices across 
the internet and within 6LoWPAN networks. However, the IoT 
network layer is prone to different routing attacks due to the 
following limitations.   

 Topological Changes and Mobility: IoT devices are 
mobile in many cases, and mobility is one of the main 
features of IoT. IoT devices may leave or join a network 
from anywhere at any time. The conventional security 
algorithm may not be suitable for such dynamic 
topological changes.  

 Scalability: An increasing number of new, dynamic IoT 
devices are daily springing into existence, and more 
devices are being connected to the global network. 
Existing security schemes and their properties are not 
scalable and suitable for such increasing number of IoT 
devices. 

 Diverse Communication Medium: Smart devices 
connect to private, public, global, and local networks 
through a range of wired and wireless communication 
mediums. Such diverse properties of wired and wireless 
links make it complicated to develop a comprehensive 
security scheme.  

 Multi-Protocol Networking: IoT devices might use IP or 
non-IP or combination of both network protocols at the 
same time for communication. It is hard to make a 
conventional security algorithm suitable for IoT devices 
considering multiple communication protocols. 
 

   TABLE II 
COMPARISON BETWEEN IT AND IOT SECURITY CHALLENGES 

Parameter IT IoT 

 Power, Memory, and 

Processor 

Powerful Constrained [90] 

Environment User-friendly Hostile, dynamic and 

heterogeneous [91] 

Diversity  Mostly 

homogeneous 

Heterogeneous [92], [93] 

Data volume Low Very high [89], [94], [95] 

Security 

Requirement 

Lightweight/ 

Heavyweight 

Lightweight [3], [90] 

Embedded software Heavy OS and 

software 

Lightweight 

GPOS/RTOS [85], [86] 

Protocols used HTTP, TCP 6LoWPAN, CoAP, RPL, 

DTLS [62] 

    

3) PHYSICAL LAYER CHALLENGES 
The IP-connected IoT heterogeneous devices are mostly 
resource-constrained, which makes it more prone to security 
threats and attacks. However, the existing heavyweight security 
solutions are not suitable to implement in IoT devices due to the 
following characteristics.  

 Processor, Memory, and Power: The battery-driven 
IoT devices are energy inefficient, and due to the limited 
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power, the processor/CPUs have relatively low clock 
cycle. Hence, devices are not computationally 
powerful. Heavy cryptographic algorithms cannot be 
implemented in such devices. Limited RAM and flash 
memory are embedded in an IoT device. Therefore, 
memory-efficient security schemes should be ported. 
The device may run out of memory after booting up the 
operating system if the heavyweight security schemes 
designed for the conventional network are implemented 
in IoT. For example, the classical public-key 
cryptography algorithms are heavyweight for key 
management in constrained IoT [59], [97].  

 Packaging: Some of the IoT applications might 
demand placements in remote locations, which may 
remain unattended. An adversary may capture and 
tamper with the IoT devices. Cryptographic information 
may then be extracted to modify the programs or to 
replace the devices with malicious nodes. Therefore, the 
tamper-resistant packaging of such IoT devices is 
required to overcome this issue [87].  

B. SECURITY GOALS 

The security goal/necessity of IoT is discussed in this section. 
The traditional and common security goals include 
Confidentiality, Integrity, and Availability (CIA). However, 
apart from this CIA triad, other requirements such as privacy, 
lightweight solutions, authenticity, and standardized policies 
have become very important. Figure 4 shows the security goals 
for IoT including lightweight security solutions, privacy and CIA 

triad. To achieve a secure communication for IoT, the following 
security principles should be considered. 

1) LIGHTWEIGHT SOLUTIONS  

Lightweight security solutions can be introduced as a unique 
feature since IoT devices are considered computationally less 
powerful and embedded with limited memory. The lightweight 
approach must be considered as a security requirement while 
designing, developing and implementing an encryption or 
authentication protocols for IoT [18]. For example, RFID tags in 
e-passport can suffer from un-traceability attacks; hence, 
lightweight yet robust security solutions must be designed for 
such ultralight protocols. As the security algorithms or protocols 
are meant to be run on IoT devices, these must be compatible 
with the device’s limited capabilities.  
2) AUTHENTICITY 

By addressing the constraints of IoT, it is essential to verify and 
validate the users involved in communication. A comprehensive 
review of authentication mechanisms has been presented in [30]. 
A lightweight authentication mechanism [88] is proposed 
recently for resource-constrained devices. RFID tags and NFC 
are few examples of such advanced innovations, which IoT 
devices may benefit from as an authentication scheme. An NFC 
based authentication mechanism has been proposed [98] to 
ensure that energy and processors are not in use at end nodes. 
Other than these, trust management, data, device, and user 
authentication are also important.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 4.  Security goals of IoT.
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 Context Authentication: Obtained sensed data and 
control information, functional properties, and states of 
the devices are to be authenticated as a pre-requisite. 

 Trust Management: Trust management plays an 
important role as it reduces risk factors and allows 
customer acceptance. Adaptive routing in the smart grid 
is entirely trust-based schemes for IoT components 
which is reported in [99]. Trust management does not 
only contribute to IoT security, but it also improves the 
overall network performance [100]. There are different 
data aggregation algorithms or machine learning 
approaches available to obtain trustworthy data in IoT 
[3]. 

 User and Device Authentication: IoT devices and the 
central unit should autonomously be able to authenticate 
a user identity that is demanding a certain action. In this 
process, a single-sign-on mechanism can be applied as 
once authenticated the users may interact with several 
devices.  

3) CONFIDENTIALITY  

Confidentiality is one of the key features for securing IoT. All 
information must be protected from unauthorized nodes during 
any transmission. This can be done by using a shared key, where 
both sender and receiver use this key to encrypt and decrypt data.  
 Storing data: The autonomic decision should be made to 

protect confidentiality during storage of vital data locally 
and in the cloud.  

 Security Keys: To upgrade the security key is challenging 
due to the constrained nature of IoT in order to provide 
confidentiality. Ample research effort is required to 
overcome the challenges to support the autonomic version 
of such key management schemes. Symmetric key schemes 
may support IoT with acceptable overhead [38].  

4) INTEGRITY 

Data integrity ensures that the information remains unchanged 
during transmission. A symmetric cryptographic algorithm is 
typically used to help data under transmission by creating 
signatures for them. Another approach, namely, Message 
Integrity Check (MIC), is used to verify the integrity of received 
data.  An autonomic security solution may provide an acceptable 
level of data integrity for IoT regardless of inadequate resources 
[38]. The autonomic decision-making integrity components are 
as follows. 
 Logs integrity: In case any alteration is observed, the 

autonomic system must have the ability to reveal the path by 
generating activity logs. The logs can be stored locally or 
centrally and for a short or long period of time [38].  

 Software Integrity: The system must ensure the integrity of 
the software that devices will run. It also should be able to 
monitor if any device is captured or pseudo-data is flooded 
on the network [38].  

5) AVAILABILITY 

Availability guarantees that the entire system, its components, 
functional properties, and required services are available at any 
time. The availability of these services and components may be 
hampered due to security attacks [18], [101]. Such attacks may 
physically harm IoT nodes and networks. The connected things 
should be available and functional whenever they are required. 

The following security goals on availability must be considered 
for constant data and system availability. 
 Fault Tolerance: The system must be able to use the self-

protection approach along with self-healing in case of a 
failure or an attack.  

 Scalability: IoT nodes can be organized hierarchically to 
support scalability. The packet flow can be centralized to 
achieve this feature [102]. 

6) PRIVACY  

Privacy refers to the state or condition in which data or service is 
meant to be accessed by an individual. To keep the nodes scalable 
and to consider various IoT applications, a robust privacy policy 
is required to be developed. IoT devices are equipped with RFID 
tags, which can be tracked easily. The privacy of those devices 
should be protected. Several research works have been done to 
provide privacy for IoT [103]–[107]. The privacy goals are 
categorized as follows  [38].  
 Non-Link-Ability: It refers to a specified private data that 

is not linkable to any user. Unauthorized users should not be 
able to create a profile from the personal data of other users. 
Group-signature-based mechanism is proposed to solve 
privacy non-link-ability issues in [107].  

 Location Privacy: It guarantees that the current or previous 
location of an IoT device is not revealed. An efficient 
privacy prevention framework for location privacy is 
presented in [103]. The authors proposed anonymous 
authentication for wireless body area networks. The 
proposed framework achieves low computation cost during 
the authentication process.  

 Data Privacy: Wearable devices connect the human body 
to the internet, thus personal information (e.g., healthcare) 
should be kept secured.  

 Device Privacy: RFID tags make the sensor nodes to be 
traceable and identifiable. Anonymous communication is 
required to hide the identity of devices for resource-
constrained communication protocols. The authors in [106] 
proposed a decentralized identifier based method to provide 
privacy for IoT devices. The authors claimed that the model 
could be deployed in small IoT devices.  

7) SERVICE LEVEL AGREEMENTS 

In order to protect and transmit data in an efficient way, there 
must be standardized policies and mechanisms to enforce the 
policies. It is also important to ensure that the standards and 
policies are applied to every entity in the network. All services 
should clearly identify a Service Level Agreement (SLA), which 
is one way of maintaining the policies and standards. Considering 
the nature of IoT, the classical SLAs may not be applicable; thus, 
there should be an autonomous decision on policies to meet SLAs 
according to diverse services. These policies are to be enforced 
in order to foster trust in the IoT paradigm.   

C. METHODS OF SECURITY ATTACK 

The representation of different types of attacks based on the 
properties of IoT assets and their available solutions are provided 
in this section. The adversary may be an insider or outsider of a 
network and can be a threat to these assets, such as 
communication channels, a protocol stack, devices, and personal 
information. Based on device, network, location or other 
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properties, the adversary performs malicious activities to 
interrupt IoT services, obtain unauthorized access or physically 
damage the device. The following sections provide the taxonomy 
of types of security attacks based on IoT assets and their 
properties according to the literature [87].   

1) DEVICE PROPERTY 

IoT devices are heterogeneous. Therefore, an invader may attack 
IoT devices based on device properties. Two such methods are 
given below.   
 Low-End Device Attack: Devices with low memory, 

power and computational capabilities are considered as low-
end devices. The attacker uses such devices to launch attacks 
on other IoT devices. For example, an adversary gets 
unauthorized access to a smart TV or smart refrigerator and 
may launch several attacks using wearable IoT devices such 
as smartwatch which may threaten privacy, integrity or 
confidentiality [108].  

 High-End Device Attack: A high-end device refers to a 
powerful and fully functional device. An adversary may 
launch attacks using high-end devices (i.e., PC, laptop) in 
order to gain access and cause damage to IoT devices and 
networks from anywhere.  

2) LOCATION PROPERTY 

IoT devices are connected globally and are prone to attacks from 
the internet or within 6LoWPAN networks. The methods of such 
attacks are as follows [109]. 
 Internal Attack: An adversary’s attack from a native 

network either using his/her own device or a compromised 
legitimate device. Such attacks may include routing attacks, 
namely Flooding, Blackhole, and Sinkhole attacks. 

 External Attack: Initiating an attack on IoT devices or 
networks, the attacker might be deployed outside and far 
from a native network. Examples of such attacks are Brute-
force, malware, Secure Sockets Layer (SSL), and Domain 
Name System (DNS) attacks. 

3) ATTACK LEVEL 

An adversary may attack IoT devices or network at different 
levels such as active or passive in order to either disrupt usual 
functionality or just to acquire vital information. The methods are 
described below.  
 Active Attacks: The direct attacks to interrupt the regular 

serviceability of IoT networks or devices are known as 
active attacks. DoS and Blackhole attacks are two examples 
of such attacks.  

 Passive Attacks: This type of attacks are launched to gather 
important information from IoT networks and devices, but 
the normal functionality of a device or network is not 
disrupted. They are also initiated to disrupt the IoT privacy 
such as eavesdropping and monitoring of data transmission 

4) ATTACK STRATEGY  

An attacker may belong to different interest groups. They may 
attack the IoT device or network using different strategies.  
 Physical Attacks: The attacks are launched in order to cause 

physical damage to IoT devices or change device 
configurations. Malicious Code Injection and Tampering are 
examples of physical attacks.  

 Logical Attacks: The attacks are initiated in order to make 
IoT devices or networks dysfunctional without doing any 

physical damage to them. Traffic analysis of the 
communication channel is the example of a logical attack. 

5) DAMAGE LEVEL  

IoT devices, networks, and applications are prone to a multitude 
of security attacks, which may cause different levels of damages. 
They may range from information leaks, service disruptions to 
physical damages of the IoT device. Two such methods are 
provided as follows.  
 Service Unavailability Attack: In the context of a service 

shut down, the power outage and other resource exhaustion 
may occur naturally, which in turn makes service 
unavailable. Service may be interrupted by such attacks (for 
instance, DoS attack). Thus, recovery mechanisms for such 
interruptions should be available [71]. Such intrusions can 
be detected using an effective Intrusion Detection System 
(IDS). 

 Interruption Attacks: In this type of attack, an invader sits 
between two IoT nodes, intercepts the communication and 
tricks them by communicating with both. In other words, the 
attacker listens to the private messages which are transmitted 
through private communication links. Eavesdropping, 
Alteration, Fabrication, and Man-in-the-Middle (MitM) 
attacks are examples of such kinds. These attacks may 
mislead or create confusion among IoT users. The intruder 
may alter or fabricate additional data. Such attacks can be 
made either externally or internally. RFID devices are 
vulnerable to such attacks.  

6) HOST-BASED ATTACKS  

The devices used in IoT are embedded with software that may 
contain private information, cryptographic keys and other 
sensitive information. The data can be targets of the attackers. 
Some of these attack methods are as follows.  
 User Credential: An adversary may trick a user into 

discovering their personal credentials such as usernames and 
passwords. User credentials should be protected or be shared 
in a secured manner. 

 Software Compromise: IoT devices and their embedded 
software are not much powerful. Therefore, the operating 
system and other software might be vulnerable to security 
threats. An adversary may take advantage of that and 
compromise the embedded software.  

 Hardware Compromise: An adversary can damage IoT 
devices by extracting hardware credentials such as keys, 
data, or program code that are embedded in the devices. 
Physical access is usually required to initiate such attacks. 
IoT devices should be tamper-resistant in order to remain 
protected from such attacks.  

7) PROTOCOL ATTACKS 

Malicious attackers compromise standard protocols of IoT 
devices and networks in order to disrupt communication among 
the devices. Examples of such attacks include the following.  
 Protocol Deviation: An adversary breaches and diverges 

from standard communication or application protocols and 
becomes an insider in order to launch attacks.  

 Protocol Disruption: An intruder may disrupt standard 
protocols such as synchronization, data aggregation or key 
management protocols from inside or outside of a network. 
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IV. LAYER-BASED ATTACK TAXONOMY 

IoT architecture comprises of different technologies which 
work independently to make a complete system. In the previous 
section, we considered the IoT’s three-layered architecture. In 
this section, we classify IoT attacks based on the three-layered 
architecture that consists of application, network and physical 
layers. Security attacks may lead to millions of dollars in losses 
to large business and intellectual property theft. The following 
sub-sections present the proposed attack taxonomy, which has 
been summarized in Figure 5. 
 

We have classified IoT attacks based on application, network 
and physical layers. Some attacks are categorized as multi-
layer/dimensional attacks as they exploit more than one layer of 
the IoT architecture; for instance, DoS or cryptanalysis attacks 
may take place in application, network and physical layers of 
IoT.  Table III provides an analytical comparison of different 
attacks in different IoT layers, the method of launching them 
and the impact of those attacks on IoT.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5.  Layer-based IoT security attack taxonomy. 
 

 
 

1) APPLICATION LAYER ATTACKS 

Since global standards and policies are yet to be established for 
IoT to govern the development and interactions for IoT 
applications, IoT application layer is still susceptible to many 
security attacks. Diverse applications of IoT use different 
authentication techniques, which makes it difficult to integrate 
them in order to ensure authentication and data privacy. The 
number of applications is growing, and a huge number of devices 
are being connected that will share a tremendous volume of data. 
Applications, which analyze those data or information, may have 
a large overhead and service may become unavailable due to 
security attacks. The major attacks on the IoT application layer 
and their impacts are described below. 
 Virus and Malware: These attacks are targeted at the system 

with the goal of breaching confidentiality. They usually 
occur in the form of applications such as Trojans, spams, and 
worms or other viruses [36], [110].  In IoT networks, 
smartphones, sinks or gateways and other high-end IoT 
devices are significantly at higher risk of these kinds of 
attacks than sensor-based motes. Furthermore, Bluetooth 
technologies such as 802.15.4 enabled devices are at high 
risk [38]. Therefore, mitigation of such viruses and malware 
in IoT applications must be taken into serious consideration.  

 Spyware: Spyware is a program that is installed on users’ 
IoT devices without the users’ consent. The main goal of this 
attack is to spy or monitor users’ behavior and gather 
sensitive information such as user IDs, passwords, 
keystrokes, and credit card information. Spyware generally 
does not cause any damage to the IoT devices or users 
directly; it mainly steals private information and sends back 
to the distributor [36]. The information is then used as the 
basis for marketing analysis or pop-up ads. Traditional 
spyware detection approaches are signature, behavior, and 
specification-based techniques. Signature-based techniques 
detect only known spyware; therefore, unknown spyware 
instances remain unattended [110].  

 Spoofing: An attacker may impersonate a node to launch a 
spoofing attack. A spoofing attack is one of the high-risk 
attacks due to its attacking method. With a suitable portable 
reader, a transmission might be recorded. As the attacker 
impersonates the node, the retransmission might appear 
from a valid node. This attack may exist in all three IoT 
layers. Spoofing attacks by impersonating of nodes are 
categorized as the attack of authentication, and it also 
violates the privacy principle [111].  
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 Code Injection: An attacker inserts malicious code into a 
smart application/system by misusing faulty programs   
[101]. The attacker launches such attacks in order to gain 
access, and steal users’ sensitive data, take over the system 
control or transmit worms [56]. Code injection attacks may 
take place in a variety of forms such as HTML script 
injection and shell injection. This attack may result in 
compromising users’ privacy, or a system may lose control, 
thereby resulting in a total system shutdown. 

 Message Forging: This attack occurs when a malicious 
node modifies or creates a message to deliver contents other 
than the original. It can be classified as a type of Replay 
attack in the case of modifying information synchronization.  

 Intersection: This attack is also known as a composition 
attack. It targets the system’s privacy by gaining secondary 
information from the system [25], [112]. The attackers 
gather such information from third party sources or public 
records [113]. The adversary targets and makes use of the 
non-linkable element. The anonymized data of the privacy 
information from different sources are then being used to 
link them. 

2) NETWORK LAYER ATTACKS 

IoT network layer communication is different from that of 
conventional internet due to M2M communication between 
heterogeneous devices. This layer may suffer from security 
compatibility issues and is prone to different security attacks such 
as Hello Flood, Sybil and Blackhole attacks. Examples of such 
attacks are as follows.  
 Hello Flood: Message flooding is one of the major attacks 

in the network layer, where, an attacker aims to exhaust 
network or node resources such as battery or bandwidth by 
sending a multitude of route establishment requests [57], 
[114]. Destination Oriented Directed Acyclic Graph 
(DODAG) Information Object Message, namely DIO, is 
used for advertising information about destination/root that 
is used to build the topology of RPL. Any node that received 
a hello message considers that it originates from within the 
network and marks it as a communication route. In this case, 
an attacker or intruder whose intention is to place his/herself 
as a neighbor of other nodes in the network may convince 
other nodes that it is a normal node. It means the attacker 
node will broadcast a hello message to all nodes on the 
network to let them know that the attacker is a neighboring 
node [57]. This may lead to bandwidth, and network 
throughput inefficiency as the attacker drops the incoming 
packets, and therefore, that packet(s) will be lost. Hello 
Flood may also result from unequal transmission areas. It is 
considered a low impact attack.  

 Replay Attack: This attack occurs commonly during 
synchronization to mislead the destination node such that a 
malicious node stores transmitted information, and only to 
retransmit it at a later time.  Missed frames retransmission 
request is usually made by transmitting packets repeatedly 
across a network with the sequence numbers to senders and 
receiver nodes. For example, it may occur during 
communication between an RFID reader and a tag. This 
attack exhausts network/system resources such as  RFID and 

back-end database resources (memory, battery and 
processor). Additionally, the adversary may broadcast the 
radio signal in order to gain reader grant access [115]. 
Replay attacks are classified as high-risk attacks, but they 
can be mitigated and prevented relatively easily. However, 
network efficiency will drop if the mitigation of this attack 
fails. 

 Sinkhole: In this kind of attack, an attacker trespasses and 
compromises a central node of a network in order to make it 
unavailable which leads to packet dropping as well as DoS 
attacks. The risk level of sinkhole attacks is higher than that 
of tempering attacks, where a few numbers of nodes are 
compromised. Regarding the infrastructure-based system, 
the sinkhole attacks could control the whole network.  

 Sybil Attack: Sybil Attack is launched by creating a node 
and presenting its own numerous identities in the network in 
order to gain huge influence, which in turn leads to the 
elimination of original active nodes from the routing table. 
Here, the system’s weakness depends on a few factors such 
as the ease with which those multiple identities are created, 
the level of influence to which the system agrees to take 
inputs from a trusted entity, which is not linked to a chain of 
trust. A survey on Sybil attacks and its available defense 
mechanisms for IoT is presented in  [116]. Based on the 
attacker’s skills, the authors categorized Sybil attacks into 
three different types, namely, SA-1, SA-2, and SA-3.  

 Clone ID: The name implies that the adversary clones the 
identity of legitimate IoT node in order to gain access to user 
data traffic [117]. The malicious clone node can be identified 
by storing the geographical location and identity of each 
node at 6BR (6LoWPAN border router). It can also be 
traced, using a distributed hash table.  

 Selective Forwarding (SF) attack: In SF attacks, a 
malicious attacker enters into a network and drops selective 
packets.  The adversary casually drops some packets and 
selectively forwards some to the next node. IoT networks are 
lossy by nature; therefore, it is difficult to identify the real 
reason for packet dropping [79]. This may lead to bandwidth 
deprivation and delay in the entire network [118]. This can 
result in compromising availability and confidentiality. 
Possible solutions to this attack may include redundancy 
checks and probing. Some solutions focus on providing 
network complete recovery, whereas others try to lessen the 
damage being caused [118].  

 Blackhole Attack: During a Blackhole attack, the malicious 
node drops all the packets that it encounters and the entire 
network operations get affected. This attack is classified as a 
high impact attack as it absorbs all routing information. An 
intruder floods out malicious routing information to claim 
the best route to the destination [57], [62]. The sender then 
chooses the malicious route to transmit the packets. The 
attacker frequently sends fake route-reply (RREP) to the 
sender.  The source node keeps transmitting its packets 
through the malicious route, the attacker drops all the 
packets, and he/she does not forward any traffic to the 
destination.  

 Eavesdropping/Traffic Analysis: These attacks can be 
active or passive. They act as pre-requisites of other types of 
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security attacks. A network is usually unaware of the 
existence of such attacks [119]. In active eavesdropping, an 
attacker transmits a control message to initiate the attacks, 
and the replies from the destination device are analyzed 
further to pave the way for other attacks. Passive 
eavesdropping, on the other hand, overhears the 
communication traffic to extract vital information from the 
transmission medium to launch other attacks. These attacks 
may affect users’ privacy and data confidentiality. 
Information can eavesdrop at either M2M, network or cloud 
layers [120]. Eavesdropping attacks are relatively easier on 
the M2M layer; however, the attacker can overhear only a 
selected part(s) of the system and most of the cases raw data 
is not as useful [121]. IoT devices on a wireless medium are 
greatly vulnerable to such attacks. MitM attack is one of the 
examples of an active attack, where the attacker acts as a 
router and connects with both sender and destination nodes 
independently, and transfers information between them. The 
vital information is captured to analyze further and modify.  

3) PHYSICAL LAYER ATTACKS 

The main components of the physical layer are sensors, RFID 
tags, WSNs, cameras, and so on. This layer of IoT suffers from a 
number of security attacks and threats. There are some solutions 
available to those attacks. However, implementing autonomic 
security solutions in the hardware at the physical layer is more 
robust and faster. Complex schemes are usually more costly and 
should be avoided. Lightweight approaches should be 
implemented in order to increase device lifetime and reduce 
complexity. Attacks in the physical layer are described as 
follows.  
 Tag Cloning: RFID tags can easily be cloned by an 

adversary. It may be done by attaining the required 
information by direct access to a device or using reverse 
engineering [56]. The literature [101] presented a tag cloning 
attack where an RFID reader is unable to distinguish 
between genuine and compromised tags.  

 RF Jamming: Radio Frequency (RF) jamming causes the 
sharing of wireless bandwidth to be ineffectual for the 
underlying devices. There is a significant threat level from 
jamming based attacks in IoT because of the feature of 
remote, unmonitored deployment of smart devices. It is a 
physical layer attack in which RFs are interrupted for 
interference and saturated noise signals. A DoS attack can 
result from RF signal jamming of underlying channels. 
Proper monitoring of the cognitive spectrum may prevent it 
[122].  

 Node Injection Attack:  This attack is a variation of the 
MitM attack. It is one of the most powerful attacks on the 
physical layer of IoT. The attacker injects or deploys 
additional node in between two or more IoT nodes in the 
network topology. The injected node takes part in 
communication and takes control of the traffic in the 
network [19].   

 Tampering: This attack violates confidentiality and 
accessibility. In this type of attack, the information of the end 
device is modified, added, or deleted by an attacker. The 
attacker physically captures and compromises an end node 

from the network. Thus, all information can be collected by 
the attacker. In addition, reprogramming, redeployment, and 
recovery of data from the field can be done by such an attack. 
An attacker recovers the format and type of transmitted 
information, then tampers and regenerates the same type of 
data [123]. Therefore, the precision of data generated by the 
network becomes remarkably doubtful. 

 Physical Damage: An attacker physically damages IoT 
nodes by removing or deactivating them. Hence, the service 
becomes unavailable [19]. As a result, the necessity of 
mitigation methods for such an attack is significant for IoT. 
Today, smart cities are packed with IoT elements such as 
sensors, cameras and smart lights that can easily be damaged 
or stolen by adversaries. The adversary tries to attack onto 
the interface of IoT nodes for shutting down or physically 
damaging them. A multitude of these attacks will cause the 
network to fail  [123]. 

 Exhaustion Attack: Jamming or previously mentioned DoS 
attacks may result in exhaustion attacks.  Particularly, the 
battery-operated devices may suffer from energy exhaustion 
if an attacker continuously attacks the network  [38]. 
Repeated attempts of retransmission may cause collisions in 
IoT MAC protocols, which leads to high-energy exhaustion. 
Exhaustion is considered as a high impact DoS attack and is 
linked to deactivation attacks in order to reduce the network 
size and permanently remove the nodes from the network. 

4) MULTI-LAYER/DIMENSIONAL ATTACKS 

The following attacks may take place in different layers based on 
their architectures and policies. These attacks are discussed 
below. 
 Cryptanalysis Attack: The cryptanalyst or attacker, in this 

kind of attack, tries to access an encrypted message without 
owning the encryption key [123]. A Brute-force attack is one 
of the cryptanalysis attacks in which the attacker 
systematically tries and guesses every possible passphrase or 
password combination. The cryptanalyst eventually finds 
the correct one to gain access to the system. The Known-
plaintext attack, Ciphertext-only attack and Chosen-
plaintext attack are some of the other examples of 
cryptanalysis attacks [123].  

 Side-Channel Information Attacks: During the process of 
the encryption operation, the attacker obtains information 
and performs a reverse-engineering process to gather the 
cryptographic credentials of an IoT device [124], [125]. 
This information can be gained from the encryption 
devices, not from plaintext or ciphertext during the 
encryption process. Side-channel attacks the use of some 
or all of the data to gain the key that the device is using. 
Timing attacks, power or fault analysis and 

electromagnetic attacks are some of the instances of such 
attacks. The adversary makes use of information leakages 
and recovers block cipher keys. The attacks can be 
succeeded by directly defeating the intrusion prevention 
system such as Boolean masking.  
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TABLE III 
ANALYTICAL COMPARISONS OF DIFFERENT ATTACKS 

Archite
cture  

Attack names Objective Method of attack Impact 
A

pp
lic

at
io

n 
la

ye
r 

Virus & Malware 
[126]–[128] 

To hack and attack 
confidentiality of application, 
steal user credential and 
system shutdown  

In the form of Trojans, Spams, 
Worms 

Cause damage or harm to IoT high-
end device, applications and 
Bluetooth technologies 

Spyware [129] 
To spy or monitor users’ 
activities and gain users’ 
credential 

In the form of the application 
installed in the user device 

Indirect harm to users or device 

Flooding [38], [100] To exhaust node resources  
By broadcasting a multitude of 
messages  

Reduces device lifetime 

Spoofing [130] 
To hamper authentication and 
user privacy 

By impersonating a node 
May cause losing trust and 
confidentiality 

Message forging [131] 
To send wrong information to 
the user 

By modifying or creating a message 
Mislead user by different message 
other than the original may cause 
great harm 

Code injection [132]–
[134] 

To steal user ID and password 
By injecting malicious code into an 
application 

Hack into users vital account 

Intersection [135], 
[136] 

To hamper system privacy  
By gaining the system’s secondary 
information  

May lead to other attacks 

N
et

w
or

k 
la

ye
r 

Hello flood [139], 
[140] 

To mislead routing path 
By broadcasting many invalid routing 
paths 

Hello message from intruder may 
mislead the routing and drop an 
important message  

Sinkhole [141]–[143] 
To launch several other 
attacks  

By making the central node of the 
network unavailable 

Network failure 

Replay [144], [145] 
To exhaust 
network/system/database 
resources 

By retransmitting packets 
Network failure or system 
unavailable 

Sybil [116], [146]–
[149] 

To eliminate original and valid 
node from the network  

By creating its own numerous 
identities  

Lead to dropping packets  

Clone ID [150] To gain and access user traffic 
By cloning identity of a legitimate 
node 

Missing of user data 

SF [151]–[154]  
To deprive bandwidth and 
delay network transmission  

By dropping certain incoming 
packets 

Compromising of availability and 
confidentiality 

Blackhole [155] To affect network operation By dropping all incoming packets The entire network may fail  

Eavesdropping & 
Traffic analysis [120] 

To gain information to launch 
other types of attacks 

Gain information by sending control 
message and make an analysis of the 
gained messages 

Affect user privacy and 
confidentiality  

Ph
ys

ic
al

 la
ye

r 
   

RF jamming [148]–
[154] 

To make the sharing 
bandwidth ineffective 

By interrupting radio frequency and 
by making interference  

May cause interference and noise in 
the signal. May lead to DoS attack  

Tag cloning [156] To make the victim confuse 
about genuine tags 

By replicating data from direct access 
to RFID device or by reverse 
engineering  

To hamper the authenticity of an 
object, cause financial loss, 
jeopardize personal safely 

Node injection [38] To take part in communication 
among the legitimate node and 
may  

By deploying additional node in a 
network topology  

Take control of the network traffic   

Tampering [160] To modify, add or delete data 
from end device 

By physical capture and compromise 
of an end node  

To hamper confidentiality and 
accessibility  

Physical damage [38] To deactivate the network or 
to make service unavailable to 
the user 

By removing node physically or 
deactivating a node by sending kill 
command 

Shutting down a network node 
makes service unavailable to the 
user 

Exhaustion  [161]  
To exhaust network resources  

By launching other attacks such as 
retransmission, flooding, repay 
attack.  

Reduces node and network lifetime.  

M
ul

ti-
la

ye
r 

at
ta

ck
s 

 

Side Channel 
Information Attacks 

To recover key information 
By time, power, fault analysis of a 
system 

Lead to other attacks 

DoS [137], [138] To make service unavailable  
One way is to attack by exhausting 
network 

Service unavailability may cause 
serious damage to large 
organization  

Cryptanalysis [162], 
[163] 

To find encryption key 
In the form of trial and error by 
guessing every possible key 

Break encryption system and gain 
access to ciphertext  
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 Man-In-The-Middle (MitM) attacks: The adversary sits 
between two IoT devices to monitor, control, get access to 
private information and interfere in communication 
between the two IoT nodes [164]. The MitM attacks are the 
kind of attacks, which can be devastating to all the IoT 
layers. In this case, the cryptanalyst tries to sit between two 
nodes to gain access to the ciphertext and break the 
encryption system to find the encryption key. The 
cryptanalyst then obtains access to the plaintext and 
possibly alter the message of those two parties without 
their consent.   

 DoS/DDoS: Denial-of-Service/Distributed (DoS) attack 
may shut down any IoT device, network or application and 
make service inaccessible to its users. These attacks may 
occur in many forms. One way to attack is by generating 
huge network traffic and broadcasting a tremendous request 
to the victim. The main purpose of this attack is to make 
devices, software, network services, and resources 
unavailable to the target consumers [56], [101]. 
Additionally, the adversary may leak users’ sensitive 
information. DDoS attack is more dangerous than that of the 
DoS attack, which combines a number of attacking 
platforms to invade one or more systems. The impact of DoS 
attacks in IoT gateway has been assessed in [137].  The study 
developed a prototype using wired and wireless interfaces to 
analyze the DoS attacks.  

V. COUNTERMEASURES FOR SECURITY ATTACKS IN 
IoT 

Each IoT layer is comprised of a set of security protocols, 
techniques, algorithms, and security kits employed to make it 
harder for an adversary to attack or hack into the system. A better 
understanding of these notions will enable the researchers to 
analyze the security breaches and the level of defense that is 
needed. In addition, Intrusion Detection Systems (IDS), Intrusion 
Prevention Systems (IPS), and other complete security solutions 
can be applied to protect IoT from security threats. This section 
brings together the existing countermeasures including learning-
based, encryption-based, autonomic, and other methods to secure 
IoT systems from application, network and physical layers. We 
present learning-based, encryption-based and autonomic 
approaches and discuss their relevance for constrained IoT.  

A. LEARNING-BASED COUNTERMEASURES  

Learning-based approaches have been extensively used in almost 
all areas, including intrusion detection because of their distinctive 
nature of resolving real-time problems.  Machine Learning 
(ML)/Deep Learning (DL) methods mainly learn from existing 
data and predict the future behavior of a system. It can improve 
system performance by classifying normal or abnormal behavior 
of a system. The performance of such learning-based models 
could be evaluated in terms of classification accuracy. There are 
four categories of a learning algorithm in practice, such as 
supervised, semi-supervised, unsupervised, and reinforcement 
learning. In this section, we gather and analyze some of the 
learning-based algorithms that are proposed to secure the IoT 
system. There are few studies done on ML and DL for IoT 
security. Interested readers can refer to the literature [165] for 

working principles and applicability of various ML/DL method 
in IoT security. In this segment, we are focusing on listing down 
and analyzing some advanced countermeasure approaches for 
IoT security based on learning algorithms.  

Various learning-based countermeasures are available for 
detecting intrusions in IoT, such as Decision Tree (DT), 
Recurrent Neural Network (RNN), Random Forest (RF), Deep 
Eigenspace Learning (DEL), Deep Belief Network (DBN), Auto-
Encoder (AE), Generative Adversarial Network (GAN), Support 
Vector Machine (SVM), Principle Component Analysis (PCA), 
Convolutional Neural Networks (CNN), and Artificial Neural 
Networks (ANN). Table IV presents some state-of-the-art 
learning-based security countermeasures for IoT in different 
layers. The table summarizes the objectives, advantages, 
performance accuracy, dataset used, and limitations of each 
learning-based security measures. The following subsections 
bring together and explain some state-of-the-art proposed 
methods based on ML/DL as countermeasures to various security 
attacks and intrusion in the IoT system for application, network 
and physical layers.  

 Countermeasures to Application Layer Attacks: A 
linear SVM algorithm is proposed in [128] to detect 
malware in Android. They analyzed the detection 
accuracy of SVM with other machine-learning 
algorithms in terms of malware detection and showed 
that the proposed approach outperforms other 
algorithms.  A novel distributed deep learning 
method was proposed to detect attacks in fog-to-things 
computing [166]. The results prove that deep-learning 
models are better than shallow models in terms of 
detection accuracy, false alarm rate, and scalability. 
The authors in  [167] proposed a  method with a 
combination of the Elman Neural Network and the 
SVM algorithm. They introduced Back Propagation 
Through Time (BPTT) algorithm to transform the 
processing of the network at various times into a 
forward network.  
The authors in [168] presented a three-layer 

architecture to detect impersonation attacks using the 
AWID dataset. First, the feature extraction is done 
using stacked sparse AE, and feature selection is done 
using SVM, DT, and ANN algorithms. Finally, normal 
or abnormal traffic is classified using the ANN 
algorithm. The experimental results showed that the 
support vector machine had better accuracy; however, 
it took the longest training time. 
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 Countermeasure to Network Layer Attacks: A Deep 
Belief Network (DBN) approach based on a Deep 
Neural Network (DNN) has been proposed in [169] to 
detect network attacks. They created a dataset using the 
Cooja simulator, which is trained to detect sinkhole 
attack, DDoS, Blackhole, and Wormhole attack. Their 
deep-learning model utilized supervised training and 
binary classification for identifying abnormal activities. 
The proposed intrusion-detection system can detect 
real-world intrusions effectively. They achieved an 
average precision rate of 95% and a recall rate of 97% 
for different attack scenarios. Optimum-Path Forest 
(OPF) based on the ML method using graph theory has 
been proposed to detect SF, sinkhole, and wormhole 
suspicious nodes [170].  The specification-based and 
anomaly-based agents were utilized in the router and 
root nodes, respectively, to analyze the behavior of the 
host node and incoming data packets. They achieved a 
detection accuracy of 96.02%. In [171], a Scale-Hybrid-
IDS-AlertNet based on the MLP-DNN model was 
compared with various existing datasets. The hybrid 
alert technique applied a highly scalable DL 
architecture to analyze the network and host-level 
activities. The proposed framework provides better 
accuracy than traditional machine learning classifiers. 
A simple DL algorithm was deployed to train the 

IRAD dataset, which was created using Cooja to 
detect version number, Blackhole, and Hello Flood 
attacks in [172]. After pre-processing, the datasets were 
labelled and mixed with attack and benign data. These 
datasets were then fed to a deep learning algorithm. The 
model achieved very high training accuracy of up to 
99.5% and F1-scores up to 99%. The authors in [168] 
presented a three-layer architecture to detect 
impersonation attacks using the AWID dataset. First, 
the feature extraction is done using stacked sparse AE, 
and then feature selection is made using SVM, DT, and 
ANN, and finally, the normal or abnormal traffic is 
classified using the ANN algorithm. The experiment 
results showed that the SVM had better accuracy; 
however, it took the longest training time.  

Authors in [173] utilized the restricted Boltzmann 
machine (RBM) algorithm to detect DoS, User to Root 
(U2R) and probing attacks. They used an RBM method 
for feature learning and then forwarded the weighted 
result to next RBM layer to form a deep belief network 
(DBN). Finally, the multi-class intrusion detection was 
performed with a softmax activation function. The 
authors benchmarked their detection results with [174] 
and the hybrid method [175], utilizing the same dataset. 
Their experiments provided a high accuracy of 97.9% 
compared with [175] and [174], which had an accuracy 
rate of 93.94% and 92.1%, respectively. 

 Countermeasures to Physical Layer Attacks: Q-
learning and Dyna-Q-based on RL are applied to detect 
physical-layer spoofing in [176]. This method is based 

on interactions between a receiver and Spoofers as a 
zero-sum spoofing detection game. Simulation results 
show that the spoofing detection is robust against 
environmental changes.  The authors of [177], [178] 
initiate a jamming attack using a deep neural network 
and proposed mitigation methods for this type of attack. 
This protection system does not adopt the information 
of the jammer and permits the transmitter to regulate its 
protection level on the fly based on its attained 
throughput.  

Dynamic watermarking [179], [180] is an algorithm 
that is capable of detecting and preventing cyber-
physical attacks such as data injection and 
eavesdropping. The method is based on Long Short-
Term Memory (LSTM) framework that allows IoT 
devices to extract a set of stochastic properties from 
their produced signals and dynamically watermarks 
these features into the signal. This algorithm enables the 
IoT gateway to authenticate the reliability of the signals 
effectively. However, authentication requires high 
computational resources. A scheme based on channel-
based machine learning was proposed in [181] to detect 
both Clone and Sybil attacks. Simulations and 
experiments have been carried out in real environments. 
Both results confirm that the accuracy rate of 
authentication of the method achieves 84% without 
requiring manual labeling. The authors in [125] 
proposed a  learning-based algorithm to detect side-
channel attacks and showed 82% and 90% detection 
accuracy on high-end and low-end IoT devices, 
respectively. 

 

B. AUTONOMIC APPROACHES 

Security approaches should be dynamic and with minimal human 
intervention. Although different security attacks/issues may 
require different security solutions, however, some researchers 
proposed self-secure/autonomic approaches. The term 
‘autonomic’ refers to ‘self-sufficient’ or ‘self-healing’, and ‘self-
protection’ mechanism, which manages the resources of the 
security system without user intervention [38]. Self-healing 
solution uses specific countermeasures after an attack has been 
detected, and self-protection is used to prevent the attacks before 
they happen. Self-protection refers to a system which is capable 
of identifying and protecting itself from random attacks. The 
combination of a self-healing and self-protecting mechanism is 
called a hybrid approach. This section presents and analyzes the 
possible solution approaches that are classified based on different 
IoT architectures. Different intrusion mitigation and detection 
approaches follow autonomous methods for securing for IoT.   

An autonomic manager module is used in self-sufficient 
mechanisms, which manages resource elements using a structural 
arrangement called MAPE (monitoring, analysis, planning, and 
execution) control loop.  Autonomic approaches are the most 
popular techniques for mitigating IoT attacks. The basic working 
principle is as follows. Sensors collect information from the 
environment. This symbolizes the monitoring segment of the 
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MAPE architecture. This information is being matched with 
recognized patterns and acute values for certain parameters at the 
analyzing module. The planning module is responsible for further 
planning system goals and objectives on the basis of system 
constraints.  Finally, the executing module implements the plan. 
In the autonomic approach, authentication and device identities 
are properly checked for self-protection. Table V shows the up-
to-date autonomic countermeasure approaches and summarizes 
the objectives, advantages and limitations of each approach. The 
following subsections explain some state-of-the-art autonomic 
approaches as countermeasures to various security attacks and 
intrusion in the IoT system for application, network and physical 
layers. 

 Countermeasures to Application Layer Attacks: In 
the MAPE architecture, viruses or malware patterns can 
be classified through analyzing them, and then they can 

be mitigated by executing the mitigation service(s) 
[126]. A constant vulnerability scan is one of the 
mitigation solutions, which applies risk mitigation 
services and malware pattern classification. The authors 
in [127] studied industrial mobile-IoT malware 
detection techniques and analyzed them in terms of 
static, dynamic, and hybrid approaches. A hybrid 
approach is proposed in [129] for detecting Spyware 
using and comparing various antivirus software. This 
technique is based on three parameters: description 
mapping, interface analysis and source code analysis. 
The parameters determine the malicious behavior of an 
application.  

 
 

 
 

TABLE V 
AUTONOMIC AND OTHER COUNTERMEASURES 

Ref.  Title  Objective Description  Advantage(s) Limitation(s)   

[129] Spyware 
Detection in 
Android… 

Detects Spyware Uses three parameters namely,   
description mapping, interface analysis 
and source code analysis 

Determines the 
malicious 
behavior 

Code obfuscation may affect the 
detection accuracy 

[132] GMSA : 
Gathering 
Multiple… 

Defends against 
Code Injection 
attack 

Used a tool called gathering multiple 
signatures approach (GMSA)  

Showed 99.45% 
of the accuracy  

High computational cost 

[136] A model for 
protecting… 

Resists 
Intersection attack  

A systematic design called Buddies in 
practical anonymity systems  

Can choose 
appropriate 
mitigation policy 
for each 
pseudonym 

If any buddy is offline, the user is 
unable to transmit data  

[139] Rate limiting 
client puzzle… 

Mitigates Hello 
Flood attack. 

A puzzle scheme used for authentication 
which can be included in the autonomic 
solution  

Autonomic 
solution 

Exhaust resource due to 
recursion of solving the puzzle 

[141] A specification-
based IDS… 

Mitigates 
Sinkhole attack.  

A semi-auto profiling RPL 
specification-based IDS  

Successfully 
mitigate attack 
when IDS agent is 
functional 

May not work if IDS agent is 
shutdown 

[148] Lightweight 
sybil attack… 

Detects Sybil 
attacks 

A lightweight detection scheme resides 
in the lower layer and supports variation 
of transmit powers  

Lightweight A powerful attacker may bypass 
the received signal strength 
indicator values  

[151] Defending 
Selective 
Forwarding… 

Detects SF attack Consists of detection and localization 
phases. A packet counter is used to 
monitor control messages from the 
wireless link. 

Prevents SF 
attacks 

May end up with few or no routes 
if eliminates the poor performing 
nodes from routing path  

[156] Deterministic 
Detection of… 

Detects Tag 
Cloning attack  

Deterministic detection used three 
protocols namely BASE, declone, and 
declone+.   

Can detect Tag 
Cloning attack for 
large anonymous 
RFID systems 

Demands both genuine and clone 
tags to be presented in a specific 
location at the same time  

[182] Wireless 
Jamming 
Localization… 

Detects Jamming 
attack 

Wireless devices’ hearing range in 
inside the Jammer area 
 

 Not able to handle combined 
Jamming attacks 

[160] IoT-based 
Efficient… 

 Tamper detection  A tamper detection (TD) mechanism for 
IoT real data for healthcare applications 

Great deal with 
security violations 

May not be efficient for other IoT 
application 

An autonomic solution is necessary to mitigate 
Spoofing attacks. A detection algorithm called 
Enhanced Location Spoofing detection using Audibility 
(ELSA) was developed for IoT [130].  The 
implementation of the proposed algorithm can be at the 

existing IoT backend server. The algorithm uses 
statistical decision theory. The authors in [132] 
proposed a tool called Gathering Multiple Signatures 
Approach (GMSA) to defend against code injection 
attacks and showed an accuracy of 99.45% for the 
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proposed algorithm. Readers also can refer to the 
framework proposed in [133] and [134] to detect this 
attack. A model called differential-linear cryptanalysis 
has been presented in [162] to evaluate a combined 
Cryptanalysis attack. The evaluation was done on a 
complex cryptographic security system.  
The authors in [163] investigated the patterns of 

various Brute Force attacks to help IoT researchers and 
administrators to further analyze the attack type. They 
utilized a time-sensitive statistical relationship approach 
to identify the pattern and its configuration. The various 
forms of forging attacks and their design and 
implementation were presented in [131]. They proposed 
an infrastructure supported detection approach for 
detecting Forging attacks in vehicular networks. 
Intersection attacks can be mitigated by using a self-
protecting approach. K-anonymity technique proposed 
by [135] to mitigate the intersection attacks. The authors 
in [136] proposed a systematic design for resisting an 
intersection attack called Buddies in practical 
anonymity systems. In this design, users are able to 
choose appropriate mitigation policies for each 
pseudonym. 

 Countermeasures to Network Layer Attacks: The 
existing security protocol is not suitable for IoT. The 
integration of autonomic approaches may protect the 
network efficiently. Existing studies [138] proposed 
Naïve Bayes classification-based IDS by using multi-
agents to detect misbehaving traffic of the network 
nodes to detect DoS attacks. Flooding attacks 
application can be mitigated using an automatic self-
protection mechanism by establishing connection 
barriers [38]. One way to mitigate Hello Flood attack is 
by means of a parameter, namely the link-layer metric, 
while selecting a default route [62]. The authors in [183] 
proposed a solution to recover exhausted bandwidth 
automatically to save resources and defend against 
Flooding attacks. However, due to continuous 
broadcasts of route requests by an intruder, the 
interference may not be prevented by this solution. The 
authors in [184] presented a fundamental solution for 
counter-measures which is an acknowledgement-based 
system. However, acknowledgement-based solutions 
require huge energy resources which IoT devices are 
not capable of supplying. A puzzle scheme in [139] was 
proposed to mitigate this attack. This scheme and the 
use of the authentication mechanism can be included in 
the autonomic solution to mitigate Hello Flood attacks.  
An IDS scheme known as a compression header 

analyzer intrusion detection system (CHA-IDS) is 
proposed in [140], which analyzes compression header 
information. This scheme is capable of eradicating both 
individual and combined routing attacks in 6LoWPAN. 
Several countermeasures exist to mitigate Replay 
attacks such as TDMA-based approach. However, 
TDMA-based countermeasures are vulnerable due to 
several attempts of retransmission where the authorized 

node’s time slot is consumed, and the packet gets lost. 
Other countermeasures are presented in [144], where, 
two separate methods are explained for both single and 
multi-hop routing. Data encryption is also an effective 
method against Replay attacks. The authors in [145] 
proposed a group authentication called TCGA approach, 
which changes the session key dynamically to confront 
the Replay attack. 
Many self-healing approaches have been proposed for 

sinkhole attacks. A semi-auto profiling RPL 
specification-based IDS proposed in [141] to protect 
from sinkhole attack. However, this system may fail to 
detect Sinkhole attacks due to the centralization 
approach. This detection mechanism becomes non-
functional if the IDS agent shuts down because of such 
attacks or low power. The authors in [142] proposed an 
IDS-based routing protocol using Link Quality 
Indication (LQI) and managed to detect the Sinkhole 
attacks for the network layer. However, once the 
detection occurs, such an autonomic system urges to 
take reactive action. Another IDS-based detection of 
Sinkhole attacks on 6LoWPAN for IoT called INTI has 
been presented in [143]. This scheme analyzes the 
behavior of IoT devices by associating reputation, 
watchdog and trust policies for detecting the adversary. 
A model [185] is  proposed to mitigate MitM attacks for 
software-defined IoT networks. The authors made use 
of traffic separation mechanism using deep packet 
inspection. They implemented the proposed model in 
Raspberry Pi. Combined with an intrusion detection 
technique, a hybrid routing protocol is designed and 
proposed in order to prevent MitM attacks [186]. The 
authors utilized a trusted third party to best deal with the 
performance difference of the protocol across various 
networks 
Sybil attacks are better mitigated using hybrid 

approaches. A Local Sybil Resistance (LSR) scheme 
has been presented in [146]. It studied the accessibility 
of a Roadside Unit (RSU) to detect and stand against 
Sybil attacks in vehicular networks. The authors in 
[147] aim to detect Sybil attacks for vehicular networks 
through workload and passive overhearing by 
preserving privacy and minimal network delay and 
overhead. A lightweight detection scheme mentioned in 
[148], which resides in the lower layer and supports 
various transmit powers and mobility. However, this 
scheme might not work well on all circumstances as the 
measures depend on the Received Signal Strength 
Indicator (RSSI) values; however, a powerful attacker 
may bypass the scheme. A comprehensive study of the 
behavior of a Sybil attack has been offered in [149], 
which may help to formulate an effective 
countermeasure to defend IoT from such attacks. 
Authors defined the defense mechanisms as Behavior 
Classification-Based Sybil Detection (BCSD), Mobile 
Sybil Detection (MSD), and Social Graph-Based Sybil 
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Detection (SGSD) [116] to defend against such attack 
in IoT.   
Another network layer attack is called the Clone ID 

attack that can be prevented by using the instances’ 
tracking number of each node. A lightweight and 
efficient mobile agent-based detection algorithm 
against the Clone ID attack is presented in [150]. A 
scheme presented in [151] consists of detection and 
localization phases to detect Selective Forwarding 
attack. In this scheme, a packet counter is used to 
monitor a sequence of control messages from the 
wireless link. A method called SVELTE was proposed 
for mitigating SF attacks in 6LoWPAN-based IoT. The 
authors designed and implemented their IDS in the 
Contiki operating system and evaluated using Cooja 
simulator [187]. Game theory-based detection model 
presented in  [152], [153] to model and detect SF attacks 
for wireless mesh networks (WMNs) efficiently. The 
authors in [154] proposed a solution, which allows 
breaking the data packets into a number of smaller 
pieces. Those smaller packets transmitted through 
specific routes detect the presence of an attacker. Some 
autonomic solutions such as message-based detection, 
redundancy and probing can be used to protect IoT from 
SF attacks.  
In [155], the Blackhole attack was studied and tested 

on the 6LoWPAN network. The simulation was done in 
ContikiRPL, using the Cooja simulator [188]. IDS and 
autonomic solutions for detecting, preventing, and 
confronting such attacks still require further research. 
An efficient sensor scheduling technique for protecting 
wireless transmission against eavesdropping attacks for 
the smart industry has been reported in [120]. In this 
scheme, a node with the capacity of the highest secrecy 
is scheduled in order to transmit data to its sink node. 

 Countermeasures to Physical Layer Attacks: The 
mitigation approaches of Jamming attack usually fall 
under the self-healing paradigm. The suitable 
mitigation method is executed by the system when a 
possible Jamming attack is assumed. Inside the jammer 
area, the hearing range of the wireless devices is 
analyzed using the technique proposed in [182]. In 
[189], [190], cancellation and the usage of different 
parts of the spectrum are introduced for neutralizing the 
jammer signals, whereas some attempt to estimate the 
position of the jammer for further action. Some of them 
have utilized autonomic computing [157]–[159] to 
detect jammer’s location. Node Injection is another vital 
attack in the physical layer. Monitoring and verification 
of device identity may prevent  
Node Injection attacks. A unified security solution that 

integrates both self-protecting and self-healing methods 
are required to detect and mitigate this attack 
appropriately. The authors in [156] proposed a 
deterministic detection and presented three protocols, 
namely BASE, DeClone, and DeClone+ in order to 
detect Tag Cloning attacks for large anonymous RFID 

systems. Tampering attacks can be mitigated by 
implementing the MAPE framework. For instance, 
nodes generate data packets which are monitored by the 
MAPE system periodically to see whether the node has 
been compromised or not. Suspicious data generation 
can be mitigated based on this data control method. For 
example, the system may remotely control the node for 
deleting data in it (i.e., security patch). A Tamper 
Detection (TD) mechanism has been proposed for IoT 
healthcare applications to deal with security violations 
[160]. 
Physical damage of IoT nodes is considered a high-risk 

attack and cannot effectively be protected using 
software methods. The software method may disable 
the remote kill command, but physical damage of the 
device cannot be stopped [38]. The only way to protect 
the smart devices is to ensure physical security by 
surrounding them with a protective case. The IoT 
devices should be monitored physically as these attacks 
are more physical. Exhaustion in end nodes can be 
prevented and mitigated through the use of timers, rate 
limitation and cross-layer designing cognitive 
adaptation [161]. The autonomic system decides on 
duty cycling and cognitive adaption, which protects the 
availability and prolongs network lifetime [38]. 

C. ENCRYPTION-BASED COUNTERMEASURES 

In this section, we discuss various existing symmetric and 
asymmetric cryptographic countermeasures for securing IoT. 
Cryptography is the representation of standard mathematical 
methods to defend against cybersecurity attacks against 
confidentiality, entity authentication, integrity and authentication 
[191]. The network of things is composed of several constrained 
nodes that communicate with each other using IPv6-6BR. The 
key properties of lightweight cryptography primitives [41], [42], 
[200], [201], [192]–[199] are listed in Table VI which 
summarizes different encryption algorithms and their 
characteristics including algorithm structures, key size, security 
strength and their implementation environment. Based on the 
literature, the security strength of cryptographic primitives can be 
measured as follows: low = below 55%; good = 55% to 69%; 
very good = 70% to 85%; excellent = 86% and above [41], [42], 
[200], [201], [192]–[199]. For instance, if an algorithm is capabe 
of providing 90% protection of a system then the security 
strength is considered excellent. The table also shows that the 
algorithms with larger key size provide very good or excellent 
security strength. Table VII summarizes some up-to-date 
encryption-based countermeasures for IoT. The table analyzes 
and presents the techniques used in the schemes, their objectives, 
advantages, limitations, and applied area. 

The following sections do not exactly follow the structure of 
reviews seen in sub-sections of learning-based and autonomic 
countermeasures for three layers of architecture as discussed 
before. The reason for discontinuing the same structure here is 
that we think those may not be fully applicable in the context of 
encryption-based security measures. The following variations of 
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encryption-based countermeasures are applicable to different 
attacks of IoT architecture.  

 Countermeasures using Symmetric Key 

Cryptography: This is also called secret-key 
encryption, where the sender and receiver share a single 
key for both encryption and decryption. Some of them 
are Advanced Encryption Standard (AES), Data 
Encryption Standard (DES), 3DES, International Data 
Encryption Algorithm (IDEA), Tiny Encryption 
Algorithm (TEA), Twofish, RC6  and Blowfish [40], 
[193], [196]. Various symmetric encryption 
distributions are available like Probabilistic Key 
Distribution where a shared symmetric key or bytes are 
selected randomly from a secured key pool and flashed 
at a constrained IoT device. In Deterministic Key 
Distribution, a key pool is created, and the keys are 
distributed homogeneously in such a way that a 
common key is utilized for every two nodes to 
guarantee secure connectivity.  
For Offline Key Distribution, either each node shares 

one key in the same network, or two nodes share 
network key pairwise depending on the utilized 
protocol. This scheme is also known as an offline key 
distribution. Another type of symmetric encryption is 
known as Server-Based Key Distribution [39]. In such 
schemes, two or more nodes and one or more trusted 
and powerful servers engage in message exchanges. 
The server acts as a Key Distribution Center (KDC). 
Many sessions can be created during communication 
process and each session can be secured through 
forward secrecy technique. Forward secrecy is an 
encryption technique for safeguarding communications 
conducted over the Internet. This method prevents an 
adversary to access past data from a set of transmission 
sessions. In forward secrecy, the key use in one session 
has no relation to the key use for another session.  
 A lightweight encryption algorithm has been proposed 
in [202],  which uses a chaos map-based key applied in 
The Field-Programmable Gate Array (FPGA). The 
scheme uses 1550 logic gates and 128 bit of key size 
and achieves 200 kbps of maximum throughput. In 
[203], a scheme which depends on the deployment 
knowledge is provided. This scheme gets rid of 
excessive key assignments. A mitigation technique 
[124] was proposed for side-channel attacks called 
leaky noise. The authors carried out a leakage 
assessment and characterized noise using statistical 
methods. They provided key recovery using Advanced 
Encryption Standard (AES).  However, the method is 
not robust in terms of mitigating the attacks. 
Authors in [204] proposed a solution in which they 

mapped the keys on two-dimensional states. The 
authors added a probability density function to it in 

order to offer better key connectivity. A lightweight 
image encryption algorithm using probabilistic cipher 
has been proposed in [205]. The scheme encrypts the 
visual contents using image encryption prior to 
transmission. The algorithm is capable of producing a 
number of ciphered images with limited processing and 
memory requirements and ensures a high level of 
security.  
There are several existing approaches based on the 

offline key distributed mechanism available, that may 
be applicable in the context of IoT. Few of such 
schemes namely, SPIN, BROSK and SNAKE [206] 
generate session key without the necessity of key server. 
A master secret key is shared among all nodes in the 
same network in these schemes. In the SNAKE scheme, 
two random nonces are hashed to obtain the secret key. 
The communicating nodes generate random nonce 
using a pre-shared key. In BROSK approach, the 
session key is constructed from a broadcasted nonce in 
the network.  
A standard IPsec is implemented into IP-based WSN 

using 6LoWPAN in [207]. In this work, the authors 
proposed a header compression mechanism to support 
both the Authentication Header (AH) and 
Encapsulation Security Payload (ESP) header. 
However, one drawback of offline key distribution 
schemes is, they do not support the re-keying services. 
The Protocol for Carrying for Network Access (PANA) 
has been proposed as a key distribution solution for IoT 
based on an external assisted server  [208]. Pre-shared 
key distribution is one of the authentication methods 
supported by Extensible Authentication Protocol (EAP) 
and PANA, and it uses EAP and runs over UDP. An 
improved version of PANA is proposed by Kanda et al. 
[209], which can be adopted by resource-constrained 
IoT. In this work, the authors have removed 
unnecessary PANA header fields and minimized the 
number of cryptographic primitives. However, it may 
reduce the code size for implementation, but it failed to 
provide a gain estimation, which might be achieved in 
terms of response time or consumption of the energy.  
The authors in [210] proposed a Secure Authentication 

and Key Establishment Scheme (SAKES) for IP-based 
M2M communication between an external internet host 
and a sensor node. In this scheme, the PBS authenticates 
the nodes using unconstrained 6LBR when it receives 
the node request. Diffie-Hellman (DH) [211] key 
agreement is then applied with the distant server, and 
the session key (SK) is calculated for the IoT device. 
Finally, using the SK, which the sensor node received 
from PBS, it can communicate securely with the server 
placed remotely. 
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TABLE VI 
PROPERTIES OF LIGHTWEIGHT CRYPTOGRAPHY PRIMITIVES DIFFERENT LAYERS 

Cryptogra
phy 
primitives 

Algorithm Key 
size/range 
(bits) 

Block 
size/range 
(bits) 

Code 
length 
(bits) 

Algorithm 
structure 

Security 
against attacks 

Security 
strength  

Layers: 
Software/ 
Hardware  

Sy
m

m
et

ri
c 

sc
he

m
e 

AES  
[40]–[42], 
[194], [196], 
[197] 

128/192/25
6 

128 2606 
Substitution–
permutation 
network 

MitM, Chosen Plaintext, Known 
Plaintext, Brute-Force, Side-
Channel attacks 

Very good 
SW and 
HW 

DES [40], [195] 64 64 - 
Balanced 
Feistel network 

Brute-Force attack Good HW 

3DES [42], 
[194] 

56/112/168 64 - Feistel network 
MitM, Brute-Force, Chosen 
Plaintext, Known Plaintext 

- 
 
HW 
 

Blowfish [41], 
[192] 

32–448 64 - Feistel network Brute-Force, Dictionary attack - SW 

HEIGHT [196] 128 64 5672 - - Good HW 

PRESENT [41] 80/128 64 936 
Substitution–
permutation 
network 

Brute-Force, MitM, Linear, 
Differential, Side-Channel attacks 

Excellent - 

TEA [41], 
[198] 

128 64 1140 Feistel network 
Brute-Force, MitM, Linear, 
Differential, Differential-linear, 
Side-Channel attacks 

Excellent - 

RC5 [195] 0–2040 32/64/128 
Varia
ble 

Feistel-
like network 

Brute-Force, MitM, Linear, 
Differential, Differential-linear, 
Side-Channel attacks 

 
Excellent 

SW and 
HW 

Simon [41] 
64/72/96/12
8/144/192/2
56 

32/48/64/96/
128 

- 
Balanced feistel 
network 

Brute-Force, MitM, Linear, 
Differential, Differential-linear, 
Distinguishing (known key), Side-
Channel attacks 

 
Good 

HW 

Speck [199], 
[200] 

64/72/96/12
8/144/192/2
56 

32/48/64/96/
128 

- 
Add–rotate–xor 
(ARX) 

Side-Channel attacks Good  SW  

A
sy

m
m

et
ri

c 
sc

he
m

e 

RSA [40], 
[194] 

1024 – 
4096 

1712–3760 900 
 
Public key  
 

Timing attacks, Adaptive Chosen 
Ciphertext, Side-Channel analysis 
attacks 

- 
SW and 
HW 

ECC [40], [41] 160 Variable 8838 
 
Public key 
algorithm 

Side-Channel Analysis, Backdoors, 
Quantum Computing attacks 

Excellent 
SW and 
HW 

DSA [41], 
[195] 

- - - 
 
Public key 
algorithm 

Authentication, Integrity, Non-
Repudiation, Chosen Plaintext 
attack 

Good SW 

MD5 [201], 
[212] 

128 512 - 
Public key 
algorithm 

Collision, Preimage, Birthday, 
Brute-force, Rainbow, Side-
Channel, Length Extension attacks 

Low SW 

DH [40], [193], 
[194] 

Variable - - 
Public key 
algorithm 

Eavesdropping and MitM attacks - 
SW and 
HW 

                                                
                                   

 Countermeasures using Asymmetric Key 

Cryptography: Asymmetric Key Cryptography 
(AKC) is a well-known approach to form an efficient 
and secure communication among nodes and is also 
known as Public-Key Cryptography (PKC) [213]. In the 
AKC, the sender encrypts a message using the 
recipient’s public key. The receiver decrypts the 
message by using his private key. Various asymmetric 
algorithms have been developed and implemented so 
far, such as Rivest–Shamir–Adleman (RSA), DH, 
Elliptic-Curve Cryptography (ECC), and Pretty Good 
Privacy (PGP). AKC is also used to create Message 
Digest-5 (MD5), and Digital Signature Algorithms 
(DSA) [40].  The major drawbacks of AKCs application 
for IoT are higher energy consumption and 
computation, and operating cost. Regardless of those 
drawbacks, researchers still pursue to apply AKCs in 

the IoT environment [39]. It is because AKCs is a very 
powerful tool to secure communication over the 
internet.  

In AKC, if a public key or private key is used to 
encrypt a message, the same algorithm and the 
matching private key or public key can only be able to 
decrypt that message [214]. There are many variations 
of AKC algorithms. Key Transport Based Scheme is 
similar to the conventional key transport scheme that 
emphasizes on the secure transmission of information 
using the public key. In order to establish a safe and 
secure communication between two nodes in IoT, a 
Certificate-Based Encryption algorithm is the best 
choice. Each node in IoT maintains a certificate signed 
by a well-known and trusted third party (i.e., a CA). In 
fact, the CA guarantees the trustable relationship 
between the nodes [39].  

https://en.wikipedia.org/wiki/Feistel_cipher
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Identity-Based Encryption (IBE) allows an arbitrary 
string to be the public key such as a receiver’s email 
address. In IBE, a Public Key Generator (PKG) 
generates the private key from its public key of each 
node. Attribute-Based Encryption (ABE) [215] has 
changed the traditional concept of public-key 
cryptography relatively recently. It is the extension of 
the IBE scheme. Key Agreement Based Scheme is 
another technique based on asymmetric primitives and 
key agreement protocols by sharing the secret key 
among two or more parties in IoT. 

NtruEncrypt [216] and Rabin’s approach [217] are 
examples of Raw Public Key (RPK) encryption 
methods that have been proposed for WSNs. Rabin’s 
approach is similar to the conventional RSA algorithm. 
This scheme consumes the same energy for decrypting 
messages like that of the RSA algorithm with the same 
level of security. As one squaring is needed for 
encrypting a message, this encryption scheme is much 
faster. A lattice-based cryptosystem, namely 
NtruEncrypt, is a substitute option to ECC and RSA 
algorithms. The scheme is most suitable and efficient 
for highly resource-limited things such as RFID tags 
and smartcards. With the inspiration from [218],  the 
authors in [219] proposed the IBAKA approach using 
pairing-based cryptography, which is mainly a 
combination of the IBE-ECDH scheme. However, in 
order to establish a session key, the IBE scheme is 
tailored into an Elliptic Curve Diffie-Hellman exchange 
(ECDH) [220] key exchange.  

Lightweight encryption for smart home, namely  LES 
[221] proposed for home applications and the scheme 
consists of two sub-algorithms, called “KEYEncrypt” 
for session key encryption and “DATAEncrypt” for 
encrypting data. The scheme achieves confidentiality, 
adaptability and reduces overhead costs. The feasibility 
of implementing Attribute-Based Encryption (ABE) in 
IoT is still under investigation. A CP-ABE based 
lightweight ABE security approach is proposed in 
[215]. A lightweight with a no-pairing method using the 
ECC scheme for IoT has been presented in [222]. This 
is an efficient scheme for broadcasting encryption and 
access control based on the ciphertext.   

A lightweight scheme has been proposed in [223], 
which aids distributed access control of Protected 
Health Information (PHI) among different healthcare 
applications by providing an efficient keyword search. 
Major heavy calculations are done by a semi-trusted 
computation center in the data encryption phase. The 
security of this scheme is based on Elliptic Curve 
Decisional Diffie–Hellman (ECDDH) technique. An 
efficient HIP-based lightweight encryption has been 

proposed to ensure end-to-end security for IoT [224]. It 
is a 6LoWPAN header compression of HIP packets. 
This scheme significantly reduces communication 
overhead, energy, and memory consumption. 

 Countermeasures using Hybrid Key Cryptography: 

Symmetric and asymmetric ciphers combined to form a 
cryptographic technique called Hybrid Key 
Cryptography (HKC). Hybrid schemes utilize the 
benefits of the strengths of both approaches [225]. A 
great number of researches have shown that the 
combination of symmetric and asymmetric 
cryptography utilizes the strengths of both schemes and 
makes it suitable for IoT networks [42], [226]–[228].  
However, more research works are still needed to 
improve hybrid security schemes to be a more 
lightweight and stronger solution at the same time. 
Existing hybrid schemes are advantageous for large 
hierarchical networks, which can utilize the benefits of 
both public and secret key schemes.  
There are numerous versions of hybrid cryptography 

available for resource-limited devices and networks. An 
Efficient and Hybrid Key Management (EHKM) [228] 
is a hybrid scheme which is mainly designed for 
heterogeneous WSNs. The lightweight public key 
encryption method, ECC is placed at cluster heads and 
BSs, while adjacent nodes in the same cluster use a one-
way hash function based symmetric encryption method. 
A hybrid lightweight encryption algorithm for IoT 
called LEA-IoT has been proposed in [229]. This hybrid 
algorithm utilizes asymmetric encryption based on a 
linear block cipher and symmetric encryption based on 
a conventional private key and achieves data security. 
Key generation time and data encryption-decryption 
time were calculated as the lowest. This scheme 
achieved a low-latency communication. 
Secure IoT (SIT) utilizes symmetric key encryption of 

64-bit block cipher with 64-bits key size and having five 
rounds. It is a lightweight hybrid solution based on 
Feistel and Substitution-Permutation (SP) networks 
[230]. Some researchers proposed Compressive 
Sensing (CS) technique to provide signal compression 
to make the scheme lightweight and encryption 
simultaneously. For instance, a Lightweight Secure 
Scheme (LSS) is proposed in [231] to secure IoT 
network from Chosen-Plaintext Attack (CPA) and to 
prolong the network lifetime. LSS consists of three 
stages; key generation stage where BS and IoT nodes 
generate random numbers, key exchange stage where 
BS and nodes exchange the number in a secure way, and 
compression/encryption stage to generate secret 
compressed samples in order to mitigate CPA.  
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VI. DISCUSSION 

In this paper, we have addressed the key security issues, presented 
existing advanced countermeasures and emphasized the areas that 
require further research. Figure 6 presents a taxonomy and 
summarized the methods of attack, respective actual attacks and 
their existing countermeasures. The following subsections provide 
an analytical discussion, suggest the appropriate security schemes 
for IoT, and proposes future research directions for the researchers. 

A.  DISCUSSION ON EXISTING SECURITY APPROACHES 

Several learning-based, autonomous, symmetric, asymmetric 
security schemes or mechanisms are mentioned above. However, 
not all of them are suitable for IoT. This section analyzes and 
discusses the advantages and trade-offs among existing 
countermeasures.  

 Learning-Based Countermeasures: The efficiency of 
learning-based approaches depends on attack detection 
accuracy, true and false-positive rates, F1-score and some 
other performance matrix. The training time of the model 
also plays an important role in the selection of the model. 
There are trade-offs among ML/DL-based algorithms. 
Deep learning algorithms can be trained on devices with 
relatively high processing and memory capabilities 
because they require large datasets and the structure of 
neural networks are complex. Machine learning 
algorithms, on the other hand, can be trained on devices 
with somewhat lower processor and memory properties. 
In terms of performance, the DL approaches provide 
higher accuracy and reliability compared to ML 
algorithms. Some learning algorithms are less 
computationally costly; some are complex in terms of their 
structures. Decision Tree algorithm, for example, can be 
constructed with only a few or several trees for either 
simple or complex classification. Naive Bayes classifiers 
are incapable of finding relationships among features to be 
learned from. Consequently, they classify the intrusions 
inaccurately. RNN algorithms suffer from vanishing 
gradients.  
Some learning-based algorithms (e.g., CNN and SVM) 

are capable of breaking cryptographic implementations. 
Further research is required to investigate these algorithms 
in terms of their purposes and performances. The structure 
of DL algorithms is more complex than that of ML 
algorithms and requires larger dataset to be trained on. The 
training time and computational complexity of  DL 
methods depend on how complex the structure is. There 
are various tools and inbuilt libraries available such as 
Keras, Tensorflow, and so on to automate the training 
process. Ensemble-based and stack-based DL algorithms 
are computationally costly. The deployment of these 
methods may create bottlenecks during real-time 
implementation. Therefore, designing and developing a 
learning-based algorithm must be taken into consideration 
in adapting it to the real implementation.   
Learning-based methods depend on the existing data or 

information from where the models learn and classify the 

incoming traffic as normal or abnormal. These datasets 
can be either smaller or larger. However, finding real-
world IoT-dedicated dataset to train learning-based 
algorithms is challenging. Machine learning algorithms 
require a smaller size of datasets to train the model 
compared to deep learning algorithms. Finding publicly 
available intrusion detection datasets is another challenge, 
as there are very limited datasets available on public 
platforms. Moreover, ML and DL algorithms may produce 
a higher false-positive rate if the dataset used in training is 
not realistic. High quality real-world and comprehensive 
IoT training datasets are required to train these methods. 
Generating high-quality training dataset remains a 
challenge for contemporary scholars in the field of IoT-
related academic investigations.  

 Autonomic Approaches: The autonomic approaches 
have the advantages of an automatic architecture where 
different modules accomplish different tasks to detect and 
mitigate attacks. It is encouraged to design security 
solutions where human physical intervention requirement 
is low instead of relying on a complete autonomic solution.  
Integration between software and network virtualization 
would help to achieve the CIA triad with self-healing and 
self-protecting capacity in the IoT environment. Some 
autonomic systems demand complex cognitive structures 
to provide a self-repair mechanism. However, due to the 
resource limitation, it is encouraged to design a 
lightweight and energy-efficient autonomic system for the 
IoT. IoT devices transfer data to other devices or to a 
central location; therefore, autonomic security solutions 
should be compatible with dynamic communication 
protocols and heterogeneous environments.   
Designing autonomic security without taking into 

consideration the complexity level will serve as a 
roadblock in terms of evaluating and implementing them 
in the IoT system. Existing self-securing standards may 
require a constant power supply to keep them operational. 
An intelligent power monitor and control system is 
required to keep the autonomic system up and running 
without having energy exhaustion. Developing a fully 
automated security solution remains a shared vision 
among researchers. Contemporary researchers are still 
working towards designing a complete, portable, and 
robust self-securing system. Currently, a fully autonomic 
solution does not exist, and such an anticipated solution 
remains under continuous research consideration. There is 
a need for more research in this vital field in order to 
develop a holistic, dynamic and robust autonomic security 
solution for current and future IoT architecture.  

 Encryption Algorithms: Whenever asymmetric 
cryptography is used, the light-duty nodes will experience 
performance inefficiency. On the other hand, the heavy-
duty nodes will lose the opportunity for better security 
implementation using symmetric cryptography. In order to 
resolve this dilemma, a security system should be able to 
adapt automatically to the cryptographic capabilities 
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[232]. Generating suitable small keys is challenging using 
public-key cryptography. The existing cryptosystems are 
designed to provide security for a specific security goal. 
However, achieving all the security goals simultaneously 
using conventional encryption-based countermeasure is 
not possible.  Research work has been initiated to provide 
quantum cryptography.  However, quantum cryptography 
is still at its infancy stage. Designing and developing such 
cryptosystems should take into consideration the 
compatibility issue that might arise with the diverse IoT 
technology and protocols. 
The main criteria for evaluating IoT key management 

schemes include computational, communicational, energy 
and storage complexity; connectivity; scalability and 
security resilience. These measures are usually used to 
validate the effectiveness of security schemes. 
Communication capacity refers to the number and size of 

packets transmitted and received by IoT nodes. 
Connectivity refers to the probability of connection for a 
pair of nodes that have the same pre-distributed key or set 
up a key path among them. The applied key scheme must 
be scalable so that the network supports adding or 
removing IoT nodes anytime. Resilience refers to the 
probability of an attacker compromising a link or whole 
network depending on the number of nodes captured by an 
attacker. These are important factors to evaluate the 
performance of the cryptographic schemes [235]. Due to 
less computational complexity, the symmetric-key 
techniques are commonly used as they are appropriate for 
the resource-limited characteristics of the IoT networks. 
However, the shortages of efficient symmetric key 
cryptography for IoT are also obvious. There is still some 
weakness in the existing approaches such as security 
resilience, connection probability and scalability. 

 

 

FIGURE 6. A relation diagram to present the methods of attack, actual attacks and their existing countermeasures. 
Infrastructure Supported Detection [131], MAPE [126], Linear SVM [128], IoT Malware Detection [127], ELSA [130], Hybrid Spyware Detection [129], BLOWFISH, 

PRESENT, HEIGHT, AES, 3DES, RSA, ECC, DSA, DH [233], [40], K-Anonymity Technique [135], BUDDIES [136], LSR [146], Lightweight RSS-Based Scheme [148], 
Privacy-Preserving Scheme [147], Game Theory [152], [153], [234], CHA-IDS [140], TCGA [145], INTI [143], Sensor Scheduling Technique [120], Mobile Agent-Based 

IDS [150], Determeministic Detection [156], Jammer Localization, Detection and Mitigation [157]–[159], [182], [189], [190] and Tamper Detection [160]. 
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Public key schemes, on the other hand, have more 
security strength (resilience), storage capacity, 
communication overhead, and scalability. Asymmetric 
approaches are more complex with mathematical 
calculations but provide much stronger security 
solutions. However, some researches proved that 
improved versions of public-key encryption schemes 
are suitable for low resource nodes [213], [236]. 
Furthermore, there is ongoing research to improve 
energy supply via ultra-low power circuitry in order to 
support continuous energy supply to IoT nodes. This 
can potentially address the problem of resource 
limitation and complex computational issues in public-
key cryptography. Moreover, with the improvements of 
lightweight public key schemes, it will no longer be 
impractical to utilize them in constrained environments 
[213].  More research work on the analysis of the 
strength of different schemes in the context of the IoT 
needs to be carried out. The research direction is, 
therefore, to secure IoT by combining encryption 
techniques to make it stronger, a lightweight and 
optimal solution for the heterogeneous IoT 
environment. 

B.  DISCUSSION ON IMPLEMENTATION CHALLENGES  

As mentioned in earlier sections, IoT devices are often 
deployed in remote areas and might be unattended, which may 
result in physical layer attacks in particular. The sensor-
equipped connected things are often battery operated, 
embedded with small memory chips, and limited computation 
and communication capabilities.  Therefore, there exists a 
roadblock in implementing complex and robust security 
protocols. Designing lightweight solution with all security 
features are also a challenge. The communication may take 
place via popular wireless technologies, which are easier to 
compromise and vulnerable to interference and interception 
attacks. DoS attack may result in a single point of failure and 
severe service unavailability due to centralized communication. 
Finally, providing a complete self-securing and autonomic 
security architecture is necessary, but it is incredibly 
challenging to implement because of the IoT features like 
resource-limited characteristics.  

C.  OPEN ISSUES AND RESEARCH DIRECTIONS 

Some works of literature indicate that the diversity and 
complexity in IoT might increase in the years to come. There 
are noteworthy approaches towards securing mission-critical 
applications on the go. Some of them may complicate the attack 
mitigation process and demand full automation in terms of 
securing the system independently or as a whole. A careful 
system-wide strategy for a unified security system is required 
for IoT. Our findings and future directions are outlined briefly in 
the following points. 

 More researches need to be conducted to develop a 
lightweight and robust trust management system for 
both ultra-low power and powerful devices. In addition 
to this, physical security, risk management, 

trustworthiness and intrusion detection should be 
ensured at all layers of IoT.  

 Although best practice security solution may require 
very low resources of IoT nodes since they are still 
prone to many devastating attacks.  

 A well-defined standard for security is needed for 
catering to diverse applications, industries, and 
businesses in a pragmatic way. Distinct security policies 
and frameworks are mandatory for ensuring stable and 
reliable communication to take place.  

 The security protocols should be improved in 
accordance with the application’s need. Information 
about the deployment location or identity of a device 
may require hiding from anonymous users. K-
anonymity approach may be suitable for performing 
that task for low- powered devices. Routing path is 
another crucial element to provide fast, secure 
communication, which is ensured by creating multiple 
paths to detect errors of the system and assist it to keep 
performing. 

 Real-time data analysis in the IoT node using 
appropriate ML and DL-based approaches can be 
developed before the transmission of data. 

 Learning-based algorithms are trained with datasets and 
may sometimes produce inaccurate output. The 
inaccuracy appears due to the lack of real-world dataset 
from the IoT environment or selection of inappropriate 
algorithm.  

 A more lightweight cryptographic algorithm can be 
designed for IoT hardware and end-to-end 
communication. The encryption algorithms can be 
combined with autonomic approaches to provide a 
holistic security solution for security threats for IoT 
applications.  

 Other than the security challenges we have mentioned 
in this study, there could be many more unique and 
lethal security threats in the years to come. Based on the 
frequency and severity of the attacks, a priority-based 
learning algorithm can be designed.  

 Future researchers can carry out research in designing 
hybrid approaches such as combining learning and 
encryption-based algorithms. For example, based on the 
available resources, the system should learn and adapt 
which encryption method to be utilized for detecting 
certain intrusion.   

 Right plans and strategies are essential while deploying 
IoT applications in public platforms.  

 All data should be encrypted before storing and 
transferring to IoT devices.  

 Quantum cryptography can be introduced for real-time 
encryption for resource-limited applications.  

 
VII. CONCLUSION   

In this paper, we have studied and presented an overview of IoT, 
its enabling technologies, and compared the factors related to 
implementing a comprehensive security approach in IoT with 
traditional internet. A focus has been given on security attacks 
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based on IoT architecture. Attack taxonomy and comparisons 
have been provided. It is important to consider IoT architecture, 
its limitations and diversity when providing comprehensive 
protection. Furthermore, we discussed the different factors 
related to the capacity and limitations of IoT in the design of 
security solutions. In this regard, we have considered the need for 
IoT security, including conventional Confidentiality, Integrity 
and Availability (CIA) triad.    

Unlike other studies we aggregated and discussed various 
advanced security countermeasures including cryptographic, 
autonomic, and learning-based schemes which ensure secure 
communication for IoT in contrast to existing surveys which 
considered only certain types of countermeasures. This survey 

study will serve as a useful manual for researchers to access a 
wide range of security attacks and solutions that may be of benefit 
to them. Finally, a discussion on existing approaches, 
implementation challenges and future research directions was 
also provided. Many researchers have proposed lightweight 
schemes for IoT, yet more research work in this field is needed 
to design a holistic, unified, and well-suited security 
countermeasures for the IoT as a whole. 

APPENDIX 

The following table presents the common and popular 
acronyms used throughout this paper.   

 

 
 

LIST OF ACRONYMS 
Acronyms  Definition  Acronyms  Definition  

IoT Internet of Things DL Deep Learning  
RFID Radio-Frequency Identification PCA Principle Component Analysis  
IT Internet Technology RNN Recurrent Neural Network  
DTLS Datagram Transport Layer Security  DEL Deep Eigenspace Learning  
MQTT Message Queuing Telemetry Transport DBN Deep Belief Network  
ML Machine Learning  CNN Convolutional Neural Networks  
DDS Data Distribution Services  DNN Deep Neural Networks  
XMPP Extensible Messaging and Presence Protocol  AE Auto-Encoder  
WiFi Wireless Fidelity  SVM Support Vector Machine 
BLE Bluetooth Low Energy  ANN Artificial Neural Networks 
UDP User Datagram Protocol  LSTM Long Short-Term Memory 
AMQP Advanced Message Queuing Protocol  RF Random Forest 
MIC Message Integrity Check  AES Advanced Encryption Standard 
IDS Intrusion Detection Systems DES Data Encryption Standard  
IPS Intrusion Prevention Systems IDEA International Data Encryption Algorithm 
LLN Low Power and Lossy Networks  TEA Tiny Encryption Algorithm  
DODAG Destination Oriented Directed Acyclic Graph  KDC Key Distribution Centre  
6LoWPAN IPv6 over Low Power Wireless Personal Area Network AKC Asymmetric Key Cryptography 
CIA Confidentiality, Integrity, and Availability  PKC Public-Key Cryptography  
SLA Service Level Agreement  RSA Rivest–Shamir–Adleman 
CoAP Constrained Application Protocol DH Diffie-Hellman 
RPL Low Power and Lossy Networks AH Authentication Header  
WLAN Wireless Local Area Network  RPK Raw Public Key  
SLA Service Level Agreement ESP Encapsulation Security Payload  
DNS Domain Name System ECDH Elliptic Curve Diffie-Hellman exchange  
MitM Man-in-the-Middle  HKC Hybrid Key Cryptography  
CPA Chosen-Plaintext Attack  ABE Attribute-Based Encryption  
DoS Denial-of-Service ECC Elliptic-Curve Cryptography  
SF Selective Forwarding MD5 Message Digest-5  
LSR Local Sybil Resistance  DSA Digital Signature Algorithms 
DT Decision Tree  PHI Protected Health Information 
RF Radio Frequency CS Compressive Sensing  
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