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Abstract

Intelligent transportation (e.g., intelligent traffic light) makes our travel more convenient and efficient. With the development 

of mobile Internet and position technologies, it is reasonable to collect spatio-temporal data and then leverage these data to 

achieve the goal of intelligent transportation, and here, traffic prediction plays an important role. In this paper, we provide 

a comprehensive survey on traffic prediction, which is from the spatio-temporal data layer to the intelligent transportation 

application layer. At first, we split the whole research scope into four parts from bottom to up, where the four parts are, 

respectively, spatio-temporal data, preprocessing, traffic prediction and traffic application. Later, we review existing work on 

the four parts. First, we summarize traffic data into five types according to their difference on spatial and temporal dimen-

sions. Second, we focus on four significant data preprocessing techniques: map-matching, data cleaning, data storage and 

data compression. Third, we focus on three kinds of traffic prediction problems (i.e., classification, generation and estimation/

forecasting). In particular, we summarize the challenges and discuss how existing methods address these challenges. Fourth, 

we list five typical traffic applications. Lastly, we provide emerging research challenges and opportunities. We believe that the 

survey can help the partitioners to understand existing traffic prediction problems and methods, which can further encourage 

them to solve their intelligent transportation applications.
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1 Introduction

With the development of Internet and position technologies, 

there are more and more spatio-temporal data collected by 

governments or some transportation companies. For exam-

ple, Didi 1 and Uber 2, respectively, handle 30 million and 

18 million ride orders per day, and they would collect corre-

sponding trajectories if these orders are finished. It is natural 

to utilize the collected data to improve traffic problems and 

bring convenient transportation services to people. In other 

words, the target is to make transportation intelligent from 

collected spatio-temporal data. One main way to achieve 

the goal is based on traffic prediction using spatio-temporal 

data. Thus, the traffic prediction problem has attracted much 

attention of both academic and industry. Moreover, with the 

help of big data and artificial intelligent, there exists a wide 

spectrum of work on the traffic prediction problem. In this 

paper, we aim to give a comprehensive survey on the traffic 

prediction problem, from the collected spatio-temporal data 

to many intelligent transportation applications.

First of all, it is significant to understand what the traf-

fic prediction problem means. Therefore, we will use some 

examples to show the concept of traffic prediction:

– Traffic status prediction: It is popular to use the navi-

gation system of the electronic map to avoid congested 

roads when we plan to leave one place for another. The 

key ability to achieve the target is to predict which roads 

will be congested in the future time. In other words, we 

need to predict the traffic status for each road. However, 

it is typical to measure traffic status with average traffic 

speed or travel time. The slower the traffic speed or the 

more the travel time, the worse the traffic status. There-
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fore, the traffic status prediction can be regarded as the 

traffic speed or travel time prediction, which are regres-

sion problems. Moreover, we can measure the traffic sta-

tus with different types (e.g., smooth, light congestion 

and heavy congestion) by splitting the traffic speed into 

different continuous intervals, where predicting the traffic 

status becomes a classification problem.

– Traffic flow prediction: Recently, there exist some stomp 

events caused by excessive traffic. The main reason is 

that the government cannot monitor and guide the flow 

of people in time. Hence, it is significant to predict traffic 

flows in future time. Moreover, traffic flow can be divided 

into two types: network-based and region-based. The 

first type infers the number of vehicles collected by loop 

detector sensors, which are installed on both endpoints of 

the roads. As for the second type, we split the whole city 

into different regions and regard the number of crowds 

leaving one region for another as the region-based traf-

fic flow. Therefore, the region-based traffic flow can be 

further divided into in-flow and out-flow. For example, if 

there are 100 people leaving the region A for the region 

B, both A’s out-flow and B’s in-flow would increase 100.

– Travel demand prediction: Transportation companies 

provide online taxi service for users. They need to pre-

dict people’s travel demands in order to better dispatch 

vehicles for different regions. For example, they should 

dispatch more vehicles to residential areas during the 

morning rush hour. In contrast, they should dispatch 

more vehicles to office zones during the evening rush 

hour. Generally, predicting travel demands is based on 

regions, so we also call it region-based travel demand 

prediction.

In summary, the above three kinds of traffic prediction prob-

lems, respectively, correspond to perspectives of the follow-

ing three groups: crowds, governments and related compa-

nies. Hence, how to solve these traffic prediction problems 

becomes more and more important in the field of transporta-

tion. In other words, the traffic prediction is the indispensa-

ble way to make transportation intelligent based on spatio-

temporal data. Therefore, we survey the traffic prediction 

problem by looking from spatio-temporal data to intelligent 

transportation applications in this paper. As shown in Fig. 1, 

we mainly consider four parts: data, preprocessing, traffic 

Fig. 1  The overview of traffic prediction
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prediction problems and traffic applications. Next, we will 

give a brief overview on four parts.

Spatio-temporal data. As mentioned before, the traffic 

prediction is based on collected spatio-temporal data, such as 

road network and historical traffic data. Actually, the spatio-

temporal data, related to traffic prediction problems, include 

road network, region-based traffic (e.g., regional flows and 

travel demands), network-based traffic (e.g., intersection 

flows, road speed and travel time), trajectory, POI features, 

event data, meteorological data and temporal data (holiday, 

date and timestamp). As shown in Table 1, inspired by [1, 2], 

the above spatio-temporal data can be broadly categorized 

into the following five categories: 

(1) SO (Spatial-Only data). The data only include spatial 

features and have no temporal features, such as the POI 

information and the road network in a city.

(2) TO (Temporal-Only data). The data only include tem-

poral features and have no spatial features, such as the 

date, the timestamp and the holiday.

(3) STS (Spatio-temporal Static data). For this kind of data, 

there is no change in both the spatial dimension and the 

temporal dimension, such as event data.

(4) SSTD (Spatial Static Temporal Dynamic data). The 

data can be regarded as a sequence in the temporal 

dimension and keep static in the spatial dimension. 

The components include traffic flows, travel demands, 

travel time, traffic speed and meteorological data (i.e., 

weather).

(5) SDTD (Spatial Dynamic Temporal Dynamic data). The 

data can be regarded as a sequence in both the spatial 

and temporal dimensions, such as trajectories. We will 

discuss more details in Sect. 2.

Preprocessing. Before using collected data to solve the 

traffic prediction problem, we need to preprocess the data, 

which involves map-matching, data cleaning, data storage 

and data compression as follows.

– Map matching: Map matching is an operator to convert 

spatial data with latitude/longitude coordinates into 

road networks. For example, we can use map match-

ing techniques to convert a taxi’s trajectory (a.k.a., GPS 

sequence) into a road sequence, by which we can further 

compute traffic flows on the corresponding roads. Hence, 

it is significant to apply effective map matching methods 

for collecting traffic data.

– Data cleaning: It is inevitable to generate errors when 

collecting spatio-temporal data. For example, GPS points 

may be shifted from their real positions. Hence, through 

the data cleaning technology, we can correct historical 

GPS points for predicting the future traffic.

– Data storage: With the increase in collected spatio-

temporal data, it is non-tractable to efficiently manage 

them. For example, some travel time prediction meth-

ods leverage the average travel time of similar historical 

trajectories, so efficiently finding similar trajectories is 

significant for these methods. Here, we aim to survey 

different methods focusing on how to store and retrieve 

big spatio-temporal data.

– Data compression: Big spatio-temporal data would 

cause heavy overhead for communication, computing 

and storage. However, some traffic prediction problems 

do not really need all data. For example, when comput-

ing the region-based traffic flows, we only need to record 

the number of trajectories coming from one region to 

another, so it is insignificant to record the whole trajec-

tory information. To address this issue, one method is to 

compress spatio-temporal data. Here, we aim to survey 

different methods focusing on how to effectively and effi-

ciently compress spatio-temporal data.

In summary, the quality of preprocessing collected data has 

great influence on the effectiveness of solving traffic pre-

diction problems. Hence, we will elaborate on the detail of 

existing work in Sect. 3.

Traffic prediction problems. Generally, there are three 

kinds of traffic prediction problems—traffic classification, 

traffic generation and traffic forecasting. Absolutely, the 

three kinds of problems correspond to three kinds of pre-

diction tasks, which can be summarized as follows.

– Traffic classification: The traffic classification problem 

focuses on how to design effective methods to classify 

given traffic data. For example, given a taxi’s ongoing 

trajectory, we can use some classification methods to 

judge whether the trajectory is normal or not and thus 

can remind the driver to correct the route in time. This 

is a typical binary classification task. Also, there exist 

some multiple classification problems. For instance, dif-

ferent modes of transportation (e.g., walking, bus, sub-

way and taxi) should generate different kinds of trajec-

tories. Therefore, given different kinds of trajectories, 

it is also significant to divide them into different kinds 

Table 1  Comparison of different spatio-temporal data

Spatial Temporal Components

SO Static None POI information, road network

TO None Static Holiday, date, timestamp

STS Static Static Event data

SSTD Static Dynamic Flow, demand, travel time,

Velocity, meteorological data

SDTD Dynamic Dynamic Trajectory
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of modes. To solve the classification problem, existing 

studies mainly focus on machine learning methods. More 

specifically, these machine learning methods can be split 

into two kinds: The first is called traditional learning 

methods, such as HMM (hidden Markov model [3]), CRF 

(conditional random field [4]) and DT (decision tree [5]), 

while the second is called deep learning methods, such 

as CNN (convolutional neural network [6]) and RNN 

(recurrent neural network [7]).

– Traffic Generation: Obviously, the traffic generation 

problem means generating some traffic data. The rea-

son of studying this problem is threefold. Firstly, with 

the development of deep learning techniques, more and 

more deep learning models are designed to solve traf-

fic prediction problems, and these models require large 

scale of training data to improve their accuracy. How-

ever, it is not easy to collect real-world traffic data for 

ordinary people, so generating data is an effective way 

to address this issue. Secondly, some applications (e.g., 

ride-hailing and taxi dispatching) need to evaluate some 

approaches on a transportation environment. However, 

it is unrealistic to use real-world environment due to the 

lack of all kinds of real-world traffic data. Hence, it is 

useful to simulate the environment by generating some 

kinds of traffic data. Thirdly, we need to consider privacy 

protection when using collected real-world data to train 

traffic prediction models. Therefore, how to avoid dis-

closing users’ privacy without reducing the effectiveness 

of trained models is one of the research hot spots. In sum-

mary, these reasons make the generation problem split 

into two parts. One is called simulation, while the other is 

called completing. For the target of simulation, we try to 

use collected data to simulate the transportation environ-

ment, where we would infer the distribution of traffic data 

and generate unseen data from other sparse data. Hence, 

some machine learning methods, such as Bayes [8], are 

used to generate data or data distributions. As for the 

target of representation and modeling, we try to model 

and represent traffic data with hidden codes, from which 

we can complete unavailable or sensitive data with fake 

data. More specifically, there are mainly deep learning 

methods, such as KNN (K-nearest neighbors) [9], GAN 

(generative-adversarial networks) [10] and RNN.

– Traffic Forecasting: The last significant prediction task 

is to forecast the value of some traffic data, such as traf-

fic speed, traffic flows, travel demands and travel time. 

Actually, all of these problems belong to two catego-

ries, region-based and network-based, according to traf-

fic data’s formats. Firstly, in region-based problems, we 

regard a city as different disjoint regions and compute 

or estimate related traffic data (e.g., regional flows and 

travel demands) for each region. For example, the gov-

ernment needs to monitor the crowd flows from one 

region to another for avoiding the public security prob-

lem caused by the over gathering of crowds. Secondly, 

in network-based problems, we would consider the con-

straint of road networks. Specifically, these traffic data 

(e.g., intersection flows, road speed and travel time) are 

related to road networks. For example, when we plan to 

go from one position to another, we would prefer to select 

the route whose travel time is the least. Here, the travel 

time should be estimated by designing some effective 

models.

In summary, traffic prediction problems have a wide cover-

age, and we will elaborate on the detail of existing work in 

Sect. 4.

Traffic application. How can we benefit from traffic pre-

diction? The basic answer is to implement rich and varied 

traffic applications, such as ride-hailing, taxi dispatching, 

business location, anomaly detection and route planning, 

based on which the transportation of our city would also 

be intelligent.

– Order dispatching: It is more and more popular to enjoy 

online taxi services, which are provided by transporta-

tion companies, such as Uber, Didi and Lyft. One core 

problem is to effectively and efficiently assign large scale 

of taxi orders to drivers. Given large scale of orders, we 

should design methods to solve the dispatching problem 

for getting a global optimal solution.

– Ride sharing: Ride sharing is becoming a popular mode 

of transportation with profound effects on the industry. 

Recent. Given a sharing request, we could estimate the 

travel time from each candidate car’s location to the pick-

up and then assign the request to the one with the least 

travel time. However, it is time-consuming to traverse all 

available candidates. Therefore, when considering larger 

requests, we need to design more complex methods to 

make the trade-off between effectiveness and efficiency.

– Business location: With the development of smart city, it 

is more and more popular to leverage find right location 

to set up a shop or restaurant. Here, one possible solu-

tion is based on the crowd flow prediction of regions. 

Intuitively, the larger the crowd flows are, the better the 

regions are. In addition, this also can benefit the selection 

of billboard locations.

–  Spatio-temporal anomaly detection: Actually, we can 

convert the anomaly detection problem into a two clas-

sification problem and then apply some traffic classifica-

tion methods to solve the problem.

– Route Planning: It is useful to recommend an optimal 

route for a given departure-destination pair. Similar to 

taxi dispatching, we can select the route, whose travel 

time is the least, as the recommendation. Here, we should 

predict the travel time.
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In summary, many applications based on different traffic 

prediction are used to make our transportation convenient. 

We will elaborate on the detail of existing work in Sect. 5.

Contribution and Paper Structure. In this paper, we 

survey a wide spectrum of work on traffic prediction prob-

lems as shown in Fig. 1. First, we review different types of 

traffic data in Sect. 2. Second, we review how to preprocess 

(e.g., store, compress, clean and map-match) these traffic 

data in Sect. 3. Third, we divide existing traffic prediction 

problems into different kinds and then review related meth-

ods in 4. Fourth, we review some transportation applica-

tions for showing the intelligence of current transportation. 

Fifth, we provide emerging challenges of traffic prediction 

in Sect. 6. Finally, we conclude the paper in Sect. 8.

Difference with Existing Surveys. Although there are 

some surveys [1, 11–19], they only focused on some aspects 

of traffic prediction, but did not give a complete survey and 

did not cover most recent works. At first, Wang et al. [18] 

only survey the management and analytics of trajectories, 

which is one kind of spatial dynamic temporal dynamic 

data, so they lack the discussion on other kinds of spatio-

temporal data. Similarly, many other surveys just focus on 

one special kind of traffic prediction problems. For exam-

ple, Tang et al. [19] focus on the methodology review about 

the clearance time prediction of road incidents, while the 

authors in [1, 11, 16] just focus on surveying the traffic flow 

prediction using machine learning methods. Hence, they 

cannot give a broad review on the whole domain of traffic 

prediction. In addition, the authors in [15, 17] survey data 

mining tasks based on spatio-temporal data, instead of traf-

fic prediction. At last, the authors in [12–14] only give a 

brief survey on some traffic estimation problems and ignored 

many current related work.

2  Spatio-Temporal Data

In this section, we first given a figurative example to explain 

all spatial-temporal data we can leverage for the traffic pre-

diction. Then, we study some existing related work, from 

which we can deduce the difference of used data for different 

traffic prediction problems.

2.1  Data Example

As shown in Fig. 2, there is a road network, whose roads 

with different traffic status are painted in different colors. 

In particular, we use three kinds of colors (i.e., green, yel-

low and red) to, respectively, denote three kinds of traffic 

status (i.e., smooth, light congestion and heavy congestion). 

In addition, we sample five points, which are marked with 

A, B, C, D and G, respectively. The difference among these 

points is that A, B and G are three road interactions, while 

C and D are not. Specifically, there is a trajectory stating 

from C to D. Also, we sample two regions, denoted as E 

and F, to show region-based traffic prediction. On the one 

hand, the gray dashed line linking E and F means the region-

based travel demand. On the other hand, the purple arrows 

represent region-based traffic flows. Moreover, each region 

contains some POI information (e.g., bus stations), which 

are also related to the traffic prediction. Inspired by [20, 21], 

we can also incorporate context data for traffic prediction, 

such as event data (e.g., traffic accident) and meteorological 

data (e.g., weathers). At last, traffic is changed over time, so 

we need to consider the temporal data, such as holiday, date 

and timestamp.

Therefore, as mentioned before, the spatial-temporal data 

mainly include road network, POIs, region-based traffic, net-

work-based traffic, trajectory, event data and temporal data. 

In particular, as shown in Table 1, we can further divide 

them into five kinds: SO (Spatial-Only data), TO (Temporal-

Only data), STS (Spatio-Temporal Static data), SSTD (Spatial 

Static Temporal Dynamic data) and SDTD (Spatial Dynamic 

Temporal Dynamic data).

2.2  Reviewing Related Work

At first, Zheng et al. [2, 22] propose the concept of urban 

computing, which focuses on all computing problems of a 

city, including traffic prediction problems. Also, they list 

many related spatio-temporal data, such as geographical 

data (POIs and road network) and traffic data. In particu-

lar, they further split these data into two kinds: point data 

and network data. For example, POIs belong to point data, 

while road networks are network data. Later, Zheng [23] 

only focus on trajectory data mining problems. Hence, they 

study how to manage and analyze trajectory data. Specifi-

cally, when solving the travel time of a given trajectory, the 

methods can be divided into two groups depending on the 

availability of the data source: One is called loop-detector-

data approach [24–26], and the other is called floating-car-

data approach [27, 28]. In other words, they further divide 

the trajectory data into loop-detector-data and floating-car-

data. The loop-detector-data means the data are collected 

Fig. 2  The road network at a certain moment
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by loop detectors built under the cross of roads, while the 

floating-cat-data are collected by sampling from cars’ GPS 

points. At last, when surveying the field of spatio-temporal 

data mining, Atluri et al. [29] consider four kinds of spatio-

temporal data: event data, trajectory data, point reference 

data and raster data. Here, point reference data correspond 

to traffic or meteorological data collected at moving ST 

reference sites (e.g., measuring surface temperature using 

weather balloons), while raster data correspond to traffic 

or meteorological data collected at fixed ST grids (e.g., air 

quality of Earth’s surface collected by ground-based sen-

sors). Similarly, Wang et al. [17] follow and extend the work 

in [29] and classify the spatio-temporal data into five types: 

event data, trajectory data, point reference data, raster data 

and videos. However, when reviewing the view data, they 

just focus on reviewing related works from the perspective 

of data mining and video data analysis falls into the research 

areas of computer vision and pattern recognition, and hence, 

they do not cover the spatio-temporal data type of videos.

In summary, spatio-temporal data contain various types 

of spatial- and/or temporal-related data, and all of them can 

be divided into five kinds ( SO , TO , STS , SSTD and SDTD ) 

we have mentioned.

3  Preprocessing

In this section, we, respectively, elaborate map-matching, 

data cleaning, data storage and data compression techniques 

for spatio-temporal data.

3.1  Map-matching

The map-matching technique is design to convert spatial 

data with latitude/longitude coordinates into road networks. 

Therefore, we only need to focus on these spatial data with 

the representation of latitude/longitude coordinates, such 

as trajectories. Existing surveys [23, 55, 56] have surveyed 

many existing map-matching techniques. For example, Xi 

et al. [55] split the problem into two types: position match-

ing and curve matching. However, this survey is too old to 

cover many latest work. Similarly, Zheng et al. [23] and 

Chao et al. [56] also ignore some existing effective methods.

In this paper, we would bring a broader view on the map-

matching problem. As shown in Table 2, we divide existing 

methods into five types of techniques: �����-�������� , 

����-�������� , �����������-����� , �����-����� and 

��������-����� . To better compare these methods, we 

provide three features: Geometric , Topological and Global . 

Geometric means that we should consider the geometric 

information of spatial data, such as the Euclidean distance. 

Topological means that we should consider the topological 

structure constraint of road networks. Global means that 

we should consider the global optimal matching instead of 

greedy local optimal solutions for matching a sequence of 

GPS points onto roads.

Firstly, the �����-�������� methods leverage some 

distance functions to match sampled GPS points on road 

networks. In particular, some methods [30, 31] just consider 

matching a GPS point on the nearest road by computing 

the Euclidean distance, and some work [32–34] focus on a 

trajectory by sequently matching each point of the trajec-

tory onto a road with some greedy strategies. Differently, 

Quddus et al. [32] compute the shortest path between sam-

pling points when finding the next matched road. Totally, all 

�����-�������� methods ignore the Global feature.

Secondly, the ����-�������� methods  [35–40] are 

designed to match trajectories onto road networks. Specifi-

cally, they compute the similarity between a partial/whole 

trajectory with its matched road/path, and the similarity 

is measured by the distance between a trajectory and its 

matched path. Some works [38, 39] aim to match an entire 

trajectory with a road network by computing the Euclidean 

distance. Differently, other work leverage sequence similar-

ity functions to compute the distance. For example, Fréchet 

distance is the most commonly used distance function [35, 

40] since it considers the monotonicity and continuity of 

the sequence. However, this distance can be dominated by 

these noisy points when a trajectory includes many noisy 

points. To address this issue, Zhu et al. [36] leverage the 

LCSS (longest common subsequence) function to compute 

the similarity, where they select the matched route, who has 

the maximum LCSS similarity, as the final result. In addi-

tion, Zheng et al. [37] use historical map-matched data to 

answer new map-matching queries by assuming people tend 

to travel on the same path when given origin and destination 

points. In particular, for a given trajectory, they first find 

similar historical trajectories as candidates and then use a 

scoring function to decide the optimal route.

Thirdly, to improve the robustness of map-matching, 

�����������-����� methods [41–43] make explicit pro-

visions for GPS noise and consider multiple possible paths 

through the road network to find the best one. In particu-

lar, Ochieng et al. [41] develop an improved probabilistic 

Table 2  Comparison of different map-matching methods

Technique Geometric Topological Global Examples

�����-�������� Yes/no Yes/no No [30–34]

����-�������� Yes/no Yes Yes [35–40]

�����������-����� No Yes Yes [41–43]

�����-����� Yes Yes Yes/no [44–48]

[49–52]

��������-����� Yes Yes Yes/no [53, 54]
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map-matching algorithm, whose main characteristic is tak-

ing into account the error sources associated with historical 

trajectory of the vehicle and topological information on the 

road network and so on. Differently, pink et al. [43] repre-

sent the road network topology with a stochastic finite state 

machine, where every edge in the digital map is represented 

by one state for each driving direction, and then, they esti-

mate the distribution with historical data. At last, fuzzy logic 

is one technique that is an effective way to deal with quali-

tative terms, linguistic vagueness and human intervention. 

Quddus et al. [42] develop a map matching algorithm based 

on fuzzy logic theory, where the inputs are from the global 

positioning system augmented with data from deduced reck-

oning sensors to provide continuous navigation.

Fourthly, �����-����� methods leverage some powerful 

models to solve the map-matching problem, such as par-

tial filter [47, 49], HMM (hidden Markov model) [44–46, 

48, 50], CRF (conditional random field)  [51] and WGT 

(weighted graph technique)  [52]. PF is a local optimal 

model. Specifically, PF is to recursively estimate the prob-

ability density function (PDF) of the road network section 

around the observation as time advances. In other words, 

once getting a new observation, the PDF for the road net-

work section around the new observations is calculated and 

the area with the highest probability is determined as the 

matched region. Differently, HMM, CRF and WGT are three 

kinds of global optimal models. At first, HMM is the most 

popular used model, which simulates the road network topol-

ogy and meanwhile considers the reasonability of a path. 

They regard the sampled trajectory as the observation and 

the vehicle actual location on the road, which is unknown, 

are the hidden states. The major difference between vari-

ous HMM-based algorithms is their definition of emission 

probability and transition probability. For example, Some 

works [45] prefer a candidate pair whose distance is similar 

to the distance between the observation pairs, while others 

consider velocity changes [48] and turn restriction [50]. To 

avoid the selection bias problem, Hunter et al. [51] lever-

age the model CRF. However, both HMM and CRF have 

no recovery strategies for the match deviation. Since once 

a path is confirmed, it will be contained by all future candi-

date paths. To address this issue, the WGT mode, aiming to 

build a weighted candidate graph for inferring the matched 

path, is used [52]. In the candidate graph, the edge weight is 

computed by some score function, so it can be adapted for 

the matched deviation.

Finally, with the help of historical matched data, there are 

many work focusing on leverage learning methods to solve 

the problem. In particular, Sharath et al. [53] learn a score 

function to evaluate candidate grids around the observed 

location at each timestamp. Considering the powerful fitting 

ability of neural networks, Zhao [54] learn a sequence-to-

sequence neural network to directly convert a sequence of 

locations into a sequence of roads. Notably, the former work 

is a local optimal method, while the latter is not.

3.2  Data Cleaning

The target of data cleaning is to solve some data problems, 

which can result in the inaccuracy and inefficiency of traffic 

prediction. Actually, data problems are composed of data 

missing, data outlier and data imbalance, so we will review 

existing work following the three problems.

Data missing: Spatio-temporal data often suffer from 

missing values due to some complex reasons, such as hard-

ware failures, software bugs and human errors. The direct 

solution is to fill missing values. For example, Lee et al. [57] 

design a factorial hidden Markov model to recover missing 

values, while Yi [58] combine many empirical statistic mod-

els (e.g., inverse distance weighting and simple exponential 

smoothing,) with user-based and item-based collaborative 

filtering to collectively fill missing value for geo-sensory 

time series data. However, these methods cannot better 

capture both spatial and temporal features among readings 

and unavoidably ignore the global correlations of data. To 

address this issue, some researchers [59, 60] treat raw data 

as a matrix and propose various matrix completion/recovery 

methods to estimate the missing values by capturing their 

inherent low-rank structure.

Data outlier: Collecting outlier data is another com-

mon problem caused by some complex reasons. The pro-

cess of solving this problem includes two steps: identify-

ing outlier and repairing data. On the one hand, many work 

are proposed to detect spatial and temporal outliers. Some 

researchers regard data, whose values are different from their 

spatial or temporal neighborhoods, as spatial outliers, and 

then apply different methods to construct local neighbor-

hoods and assign anomaly scores. For example, Knorr and 

Lu [61, 62] use spatial distance measures to compute anom-

aly scores for spatial objects; while Shekhar and Kou [63, 

64] use graphical distance measures for spatial objects. To 

extend spatial outlier detection to spatio-temporal data, 

some researchers [65] leverage some algorithms, such as 

DBSCAN, to cluster normal data and then report the data 

with no conformed clusters as outliers. On the other hand, 

how to repair spatio-temporal data is also discovered by 

some researchers. For example, Mauder et al. [66] define 

the dissimilarity between the raw data and its repaired state 

and then propose some rules of spatial or temporal distortion 

to minimize the dissimilarity. However, their method only 

considers local minimum without taking the whole repairing 

space into account. To address this issue, Zhou et al. [67] 

propose a novel robust spatio-temporal tensor recovery 

(STTR) method to deal with both missing data and outliers. 

In particular, they organize the data as a multi-way array 
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(i.e., tensor) and incorporate domain knowledge about the 

structure of the underlying data for repairing anomaly data.

Data imbalance: Data imbalance actually means the 

imbalance of data distribution or data label. On the one 

hand, some roads with heavy traffic would collect dense traf-

fic data, while others only correspond to sparse data, and 

this phenomenon is called data distribution imbalance. On 

the other hand, there are many vehicle trajectories and few 

pedestrian tracks when training a classification model, and 

this phenomenon is called data label imbalance. To handle 

the data distribution imbalance, Zheng et al. [68] design a 

semi-supervised learning method, which solve the problem 

of the sparse training data, which is caused by the lack of 

air monitoring stations. Also, some researchers focus on 

solving the data label imbalance. Beckmann et al. [69] first 

leverage the KNN-based undersampling methods to solve 

the problem. In addition, Wang et al. [70] further design a 

K-labelsets ensemble method based on mutual information 

and joint entropy; while Gong et al. [71] present a ensemble 

method using random undersampling and ROSE sampling 

to solve the imbalance classification problem.

3.3  Data Storage

With the increase in spatio-temporal data volumes, how to 

store these data becomes increasingly challenging. One main 

solution is to leverage some distributed systems to store data. 

Hence, based on this characteristic, existing work can be 

divided into two kinds: based on single machine and based 

on distributed system.

Single machine: The goal of storing spatio-temporal data 

is to make it easy to query. Specifically, to achieve this goal, 

many researchers study how to build index for supporting 

efficient queries. At first, R-tree [72] is designed to index 

spatial objects with multi-dimensional information such as 

geographical coordinates, rectangles or polygons. There are 

two kinds of approaches to extend R-tree to index spatio-

temporal data. The first method regards the time as the third 

dimension and then build a 3D-Rtree, such as STR-tree and 

TB-tree [73]. The drawback of this method is that the over-

lap among different objects still keeps on increasing as time 

goes by, which would result in the inefficiency of querying 

data. The second method first splits a time period into mul-

tiple time intervals and then builds R-tree index for spatio-

temporal data in each time interval. In particular, if some 

parts of an index are not changed over time, they would 

be shared by different time intervals. In particular, the rep-

resentative index structure is multiple version R-tree, such 

as Rt-tree [74], HR-Tree [75] and H+R-tree [76]. Another 

popular structure for indexing spatial data is grid index [77]. 

Intuitively, they split the spatial space into disjoint grids, 

and thus, different spatial objects would belong to differ-

ent grids. Also, Wang et al. [78] extend this structure to 

support spatio-temporal data (e.g., trajectories). In addition, 

some queries focus on road networks. For example, Zhong 

et al. [79] propose the G-tree structure to manage road ver-

tices and support for efficiently finding the shortest path 

between any two road vertices on a road network.

Distributed system: Recently, how to achieve paral-

lel computation with multi-machines has attracted many 

researchers’ attention. One popular parallel framework is 

called Map-Reduce, based on which the distributed system 

Hadoop [80] is created. Later, two distributed systems Spa-

tial-Hadoop [81] and Hadoop GIS [82] are designed for spa-

tial data analytics, where the two systems are implemented 

based on Hadoop. To support spatio-temporal data analyt-

ics, Tan et al. [83] further design a Hadoop-based storage 

system, which is called Clost. With the popularity of in-

memory computing, a new distributed system Spark [80] 

is proposed. Spark has its architectural foundation in the 

Resilient Distributed Dataset (RDD), a read-only multi-set 

of data items distributed over a cluster of machines. The 

latency of Spark-based applications may be reduced by sev-

eral orders of magnitude compared to Hadoop MapReduce 

implementation. Naturally, some researchers extend Spark to 

support managing spatio-temporal data. For example, Geo-

Spark [84] and Simbda [85] are two useful systems for pro-

cessing spatial data. Differently, GeoSpark does not support 

Spark SQL [86] or the DataFrame API, while Simba can 

support. In addition, there are some works [87–89] focusing 

on distributed trajectory analytics with Spark, such as simi-

larity search and join. Differently, Yuan et al. [89] consider 

the structure of road networks when processing trajectory 

analytics.

3.4  Data Compression

Sometimes, due to the heavy cost of communication, com-

puting and data storage, it is unnecessary to record all spa-

tio-temporal data in a fine-grained manner, especially when 

collecting the trajectory data for a moving object. To save 

cost with reducing a litter precision, many researchers have 

studies how to compress trajectories data. Depending on 

whether the fully trajectory is generated before the process 

of compression, these works can be divided into two types: 

Offline and Online.

Firstly, Offline methods can be further divided into two 

categories: simplification-based and road network-based. 

Simplification-based methods aim to reduce some unneces-

sary points from the raw trajectory data. For instance, Doug-

las–Peucker algorithm [90] iteratively uses an approximate 

line to replace the raw trajectory until the error is beyond a 

given threshold. In addition, the authors in [91, 92] directly 

remove extra points from trajectory when the sampling rate 

is high. However, this way can reduce the resolution of data 

analytics. To address this issue, Zhang et al. [92] also define 
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an error ratio to bound the loss of simplification, which is 

similar to Douglas–Peucker algorithm. Road network-based 

methods enhance the quality of compression using the road 

network. The authors in [93] match each trajectory onto 

roads and then represent it with a sequence of roads. Later, 

they use Huffman coding to represent each road, and thus, 

a trajectory would be represented as a concatenation of the 

codewords and is significantly more effective than raw data. 

Regarding the sequence of roads, the authors in [94] apply 

string compression methods to solve the problem.

Secondly, online methods aim to compress trajectory 

data in a timely fashion. There are two types of algorithms: 

window-based and moving attribute-based. In particular, 

window-based algorithms [95, 96] maintain a growing slid-

ing window for fitting spatial points with a line segment and 

continue to grow the sliding window until the approxima-

tion error exceeds some error bound. Differently, moving 

attribute-based algorithms consider the attributes of moving 

objects, such as speed and directions, as main factors for 

online compressing trajectories. For example, Potamias  [97] 

uses last two locations and a given threshold to build a safe 

area. If a new spatial point is located in the safe area, they 

consider the point as redundant, and thus, discard it; other-

wise include it in the final trajectory.

4  Tra�c Prediction

Traffic prediction problems include three types: traffic clas-

sification, traffic generation and traffic forecasting. In this 

section, we will elaborate existing work on these problems.

4.1  Traffic Classification

Traffic classification means leveraging different methods to 

classify given spatio-temporal data, such as GPS points and 

trajectories. In particular, according to the difference of used 

techniques, related work can be split into two types: tradi-

tional learning methods and deep learning methods.

Traditional learning. One important traffic classification 

problem is to detect transportation modes based on given 

spatio-temporal data. In particular, given collected trans-

portation information of a moving object, the correspond-

ing task is to classify the motion of the object. For exam-

ple, Krumm et al. [98] leverage the hidden Markov model, 

which takes the sequence of wireless signals as the inputs 

for a device, to determine whether the device is moving or 

not. Also, Timothy et al. [99] use the hidden Markov model 

to categorize a user’s mobility into three types: stationary, 

walking and driving. In most cases, one single trip may con-

tain some different transportation modes, so many research-

ers first split each trip into different segments and then lever-

age different methods to classify each segment into different 

modes. For instance, Zhu et al. [100] aim to monitor the 

status of a taxi. They define the status with three states: 

Occupied, Nonoccupied, and Parked. Specifically, given a 

trajectory of a taxi, they first find Parked points and then 

split the trajectory by these Parked points. Later, they extract 

features (e.g., road networks and points of interest (POIs)) 

and locally learn a probability classifier to classify each seg-

ment into either Occupied or Nonoccupied. Globally, they 

apply a hidden semi-Markov model to mining travel pat-

terns. Similarly, Zheng et al. [101, 102] split a trajectory into 

continuous segments and then design decision tree classifier 

to classify each segment into four kinds: Driving, Biking, 

Bus and Walking. Here, the extracted features for each seg-

ment include the heading change rate, stop rate, and veloc-

ity change rate. Considering that GPS points are sampled 

from cars passing through road networks, Liao et al. [103] 

and Patterson et al. [104] first divide trajectories into 10-m 

segments and then leverage CRF (conditional random field) 

model to map-match segments onto road networks. Hence, 

they use matched road information to classify raw trajec-

tory into a sequence of activities (such as Walk, Driving 

and Sleep) and identify the corresponding user’s significant 

places(e.g., home, work and bus stops), simultaneously. Dif-

ferently, Yin [105] designs a hierarchical DBN (dynamic 

Bayes network) model to detect the sequence of activities 

based on a user’s wireless signals, where the high-layer class 

is inferred based on lower-layer inferred results. At last, 

Stenneth et al. [106] propose a transportation mode detection 

framework by integrating collected GPS information and 

knowledge of the underlying transportation network, where 

the transportation network information include real-time 

bus locations, spatial rail and spatial bus stop information. 

Based on this framework, they can apply five models, a.k.a., 

Bayesian net, decision tree, random forest, Naïve Bayesian 

and multilayer perceptron, to distinguish between motorized 

transportation modes such as bus, car and aboveground train 

with such high accuracy.

Deep learning. With the development of deep neural net-

works, many researchers try to apply different deep learning 

methods to solve the traffic classification problem. In par-

ticular, these methods, respectively, belong to three types: 

CNN-based and RNN-based.

CNN-based. The convolutional neural network (CNN) 

technique plays an important role in improving the classifi-

cation accuracy of images [107]. Therefore, many research-

ers in the domain of intelligent transportation try to lever-

age CNN techniques to solve transportation classification 

problems related to images. For example, Nolte et al. [108] 

focus on the condition of the road surface and train two dif-

ferent convolutional neural network models to classify the 

photo taking on the road surface, which helps enabling an 

early parameterization of vehicle control algorithms. Simi-

larly, Ramanna et al.  [109] leverage CNN techniques to 
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classify photographs taken from road cameras by weather 

conditions, where photographs would be labeled as dry, wet, 

snow and so on. Pamula et al. [110] try to detect the traf-

fic condition based on video surveillance data. Here, they 

also leverage CNN to classify the traffic condition based on 

observed video contents. RNN-based. The recurrent neu-

ral network (RNN) technique is designed to model sequen-

tial data. Therefore, there are some works studying how to 

apply this technique to solve the classification problem in the 

domain of transportation. At first, Liu et al. [111] apply the 

RNN model to solve the transportation mode classification 

problem. In particular, they design an end-to-end classifi-

cation framework based on the bidirectional LSTM (long 

short-term memory), which is one kind of RNN architecture. 

Also, Qin and Nawaz  [112, 113] apply the LSTM model to 

recognize or learn transportation modes. Differently, before 

using the LSTM model to capture the temporal dependencies 

characteristics on the feature vectors, they first uses a CNN 

model to learn appropriate and robust feature representa-

tions for transportation modes recognition. To accelerate 

the learning speed and enhance the accuracy of transporta-

tion mode detection, Wang et al. [114] utilize the residual 

architecture [115] beyond the LSTM model. Finally, Liu 

et al. [116] consider both spatial information and temporal 

information for trajectory classification. They apply another 

RNN architecture GRU to model the spatio-temporal cor-

relations and irregular temporal intervals prevalently present 

in spatio-temporal trajectories.

4.2  Traffic Generation

Traffic generation is an important way to simulate trans-

portation environments and provide sufficient data for other 

traffic prediction problems. Hence, all related works belong 

to two types: simulation and completing. Simulation aims 

to generate some data to simulate actual scenarios based on 

historical observations, while completing means generat-

ing data to represent unavailable data for other prediction 

problems.

Simulation. Most researchers study the platform con-

struction of traffic environments. In particular, they first 

use Bayes technique to compute related data distribution 

based on historical traffic data and then use the distribu-

tion to simulate different traffic conditions. For example, 

Brinkhoff et al. [117] produce a platform to generate mov-

ing objects, where they combine a real network with user-

defined properties of the target dataset. In [118], a simulator 

is presented to help to prepare and to perform the simula-

tion of traffic scenario, which includes network generation, 

demand generation and traffic generation. Similarly, Lon 

et al. [119] design a specialized platform to test algorithms 

for pickup-and-delivery problems. Also, Adnan et al. [120] 

design a simulator to model millions of agents over a large 

range of mobility decisions. At last, The simulator proposed 

in [121] is designed specifically for ridesharing by including 

components and routines common to ridesharing algorithms.

Completing. On the one hand, some people study how 

to generate an individual data for solving other prediction 

problems. For example, Wang et al. [122] generate routes to 

estimate the travel time from an origin point to a destination 

point. They leverage the kNN technique to find the near-

est historical route, whose origin and destination points are 

similar to given origin and destination points, to compute 

the travel time. However, the kNN technique cannot work 

when historical data are too sparse. To address this issue, 

Song et al. [172] leverage GAN (generative adversarial net-

works) to generate human mobility routes. They design two 

representative discriminator and generator networks, where 

the discriminator network contains four layers of convolu-

tional neural networks for capturing essential location fea-

tures. On the other hand, some people focus on the modeling 

of spatio-temporal data, by which they can generate fake 

data to replace actual data for avoiding privacy disclosure. 

For example, Wu et al. [173] model the trajectory data with 

RNN and hence encode a trajectory into a hidden code. In 

particular, they regard each trajectory as a road sequence and 

then make full advantage of the strength of RNN to capture 

variable length of the sequence. Meanwhile, they consider 

the constraints of topological structure on road networks 

when modeling trajectories.

4.3  Traffic Forecasting

The forecasting problems prefer to predict certain future 

traffic states. As shown in Table 3, we survey six types 

of problems: ��-������-���� ,  ����-������-���� , 

������-������ , ��������-���� , �������-���� and 

�������-����� . In particular, existing related work can 

be roughly divided into two categories: non-learning and 

learning methods. More specifically, learning methods 

can be further divided into traditional-learning and deep-

learning methods. In details, these methods contain differ-

ent techniques. For example, non-learning methods include 

kNN and HA (historical average), and traditional-learning 

methods include regression, DT (decision tree) and HMM 

(hidden Markov model). In addition, five features (i.e., road 

network, environmental data, spatial property, temporal 

property and nonlinearity) are considered when reviewing 

these techniques. Firstly, the structure of road network is 

a significant constraint when handling traffic prediction on 

roads or intersections. Secondly, environment data, such as 

weather, play an important role in traffic prediction. Thirdly, 

spatial properties (e.g., POIs, roads and maps) also influ-

ence the traffic. For example, the traffic in business district 

is totally different from the traffic in residential district. 

Fourthly, temporal properties (e.g., holiday information, 
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events) may be useful for the effectiveness of traffic fore-

casting. For example, the pattern of traffic on weekends is 

different from that on weekdays. Fifthly, there exits complex 

nonlinearity relationship between inputs and outputs when 

estimating future traffic, so whether handling nonlinearity is 

one way to measure the effectiveness of different forecasting 

methods. In summary, we survey existing work based on the 

above five features as follows.

OD Travel Time. The ��-������-���� problem aims 

to estimate the travel time for a given OD input, which 

consists of an origin point, a destination point and a depar-

ture time. At first, the authors in [122] leverage the kNN 

technique to select historical trajectories, whose origin and 

destination points are similar to given OD input and then 

compute the average value of selected trajectories as the 

estimated result. Later, some people utilize the deep neural 

network to solve the problem. MLP (multilayer perceptron), 

also known as multilayer fully connected neural network, 

is used to estimate the OD travel time in [123]. In particu-

lar, the authors first use MLP to estimate the travel distance 

based on given origin and destination points and then use 

MLP to estimate the travel time based on the estimated dis-

tance and given departure time. However, these methods 

ignore some features (e.g., the structure of road network), 

so other deep neural networks are applied to address this 

issue. For example, Li et al. [124] use the residual neural 

network (ResNet) to encode each given OD input, as well as 

the features about road network, spatial properties, temporal 

properties and so on. Considering the usefulness of histori-

cal trajectories, Yuan et al. [125] utilize LSTM and CNN 

techniques to design an auxiliary model to encode historical 

trajectories, by which the estimated travel time would be 

accurately affiliated to a trajectory. Similarly, they consider 

the features about the environmental data, the temporal and 

spatial properties, as well as road networks.

Path Travel Time. The ����-������-���� problem is 

defined to estimate the travel time for a given path/route 

on road networks. Hence, all existing works consider road 

networks. At first, similar to OD travel time estimation, 

Rahmani et al. [126] leverage kNN methods to select nearest 

neighbors of historical sub-trajectories to compute the travel 

time. Considering the ineffectiveness of using historical 

data due to its sparseness, Wang et al. [127] model different 

drivers’ travel times on different road segments in different 

time slots with a three-dimensional tensor and then fill in 

the tensor’s missing values through a context-aware tensor 

decomposition (TD) approach. However, this method cannot 

capture the dynamic of travel patterns. Other people regard 

Table 3  Comparison of different traffic forecasting methods

Problem types Techniques Examples Consider 

road network

Consider envi-

ronmental data

Consider spa-

tial property

Consider tem-

poral property

Handle 

nonlin-

earity

OD- kNN [122] × × × × ×

Travel- MLP [123] × × × × ✓

Time ResNet,LSTM,CNN [124, 125] ✓ ✓ ✓ ✓ ✓

Path- kNN,TD,Regression [126–129] ✓ × × × ×

Travel- DT,HMM [130, 131] ✓ × × × ✓

Time CNN,LSTM,W-D [132–134] ✓ ✓ ✓ ✓ ✓

Generative [28, 135–137] ✓ × × × ✓

HA,ARIMA,ensemble [138, 139] × × × × ×

Travel- MLP [140] × ✓ × ✓ ×

Demand CNN+RNN [21, 141–145] × ✓ ✓ ✓ ✓

GCN,GAT [146–149] ✓ ✓ ✓ ✓ ✓

Regional- HA,ARIMA,ensemble [138, 150] × × × × ×

Flow CNN [151] × ✓ × × ✓

CNN+LSTM [152, 153] × ✓ × × ✓

HA,ARIMA,ensemble [138, 154–157] × × × × ×

Network- Autoencoder [158] × × × × ✓

Flow GCN,Attention [159–161] ✓ × × × ✓

GCN+RNN [162, 163] ✓ × × × ✓

Meta-learning [164] ✓ × ✓ × ✓

Traffic- HA,ARIMA [138] × × × × ×

Speed CNN,LSTM,FNN [165–170] ✓ × × × ✓

LSTM+GCN [171] ✓ ✓ ✓ ✓ ✓
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the problem as a linear regression problem [128, 129], which 

corresponds to learning-based methods and takes as input the 

given path/route. Differently, the authors in [129] consider 

the temporal dynamic, which would learn different weights 

for different time slots. However, both of them learn the 

linear weight of corresponding regression models, so they 

cannot handle the nonlinearity. To address this issue, other 

machine learning methods, such as DT (decision tree [130]) 

and HMM (hidden Markov model [131]), are applied to 

solve the problem. In particular, they partition the whole 

path into a sequence of links and then estimate each link’s 

travel time. The authors in [130] independently estimate 

each link via some boosting techniques (such as AdaBoost 

and gradient boosting tree), while the authors in [131] model 

the whole sequence via the HMM technique. However, these 

traditional methods ignore some useful features, such as spa-

tial and temporal properties. There are thereby some works 

focusing on leveraging deep learning techniques (e.g., CNN 

and LSTM) to solve the problem. For example, the authors 

in [132, 133] first regard the given route as a sequence of 

segments. Then, they leverage CNN model to encode each 

segment for capturing local spatio-temporal correlations, 

based on which they further leverage RNN model to encode 

the whole route. Also, they encode external data (e.g., envi-

ronmental data, spatial and temporal properties) for better 

estimation. In addition, there is a related work [134] utilizing 

the Wide-Deep (W-D) model to solve the problem. They 

divide inputs into different parts, which are, respectively, 

encoded by different wide (e.g., affine transformation) and 

deep (e.g., MLP and LSTM) models. At last, some research-

ers would prefer the distribution of travel time rather than 

the value. In particular, Hunter et al. [28] model the route 

by a generative distribution model and then apply the EM 

(expectation maximization) to learn the model’s parameters. 

Similarly, Asghari et al. [135] learn the travel time prob-

ability distributions from historical data for each and every 

edge/link on road networks and then jointly compute the 

distribution for the whole path/route. Differently, the authors 

in [136] avoid blasting trajectories into small fragments and 

instead assign distributions to paths rather than simply to the 

edges/links. Also, the authors in [137] apply deep learning 

methods to generate probability parameters for correspond-

ing generative models.

Travel Demand. The ������-������ problem aims to 

predict the future transportation requests for each region of a 

city. At first, the ensemble of some basic models is proposed 

in [139] combining five base learners (i.e., Time-Varying 

Poisson Process, Fading-Factor TVPP, ARIMA, L1-regular-

ized Vector AutoRegressive process with exogenous varia-

bles and Drift-Aware VAR process) to improve the effective-

ness. Later, with the help of deep learning, Wang et al. [140] 

apply the MLP model and the residual network architecture 

to forecast both travel supply and travel demand. In addition, 

other complicated deep learning techniques (e.g., CNN and 

RNN) are employed to solve the problem. Specifically, many 

researchers [21, 141, 143–145] regard the historical traffic 

demands as a sequence. Then, they leverage CNN models 

to encode the data at each time step and further leverage 

RNN (e.g., LSTM and GRU) models to encode the whole 

sequence for capturing sequential features. The difference 

among these methods mainly locates in the processing of 

other useful informations. For example, Yao et al. [21] fur-

ther encode each region by taking the semantic similarity 

among regions into account, while [141, 143, 145] further 

encode contextualized features, such as spatial and temporal 

properties. In addition, Kuang et al. [142] regard histori-

cal traffic demands as a 3D tensor and then apply 3D-CNN 

model to encode the data, and they also apply multi-task 

learning technique to enhance the performance. However, 

the above deep learning methods cannot capture some graph 

features, such as road networks. To address this issue, some 

people [146–149] apply graph neural networks (e.g., GCN 

and GAT) to capture graph features. For instance, Geng 

et al. [146] build three graphs, respectively, considering 

neighborhood, function similarity and connectively among 

different regions, to capture complex spatial dependency. 

Also, they further apply RNN model to capture temporal 

dependency.

Regional Flow. The ��������-���� problem is defined 

to forecast future traffic flows among regions. At first, the 

authors in [150] utilize the ensemble of some base learn-

ing methods (e.g., AdaBoost and random forest) to predict 

traffic flows. Later, Zhang et al. [151] first leverage deep 

learning methods to solve the flow prediction problem. In 

particular, they split the whole city into disjoint regions and 

then define inflow and outflow for each region. Regarding 

historical traffic flows as pictures, where each region cor-

responds to a pixel, they apply the CNN model to encode 

them. In addition, they consider some environmental data as 

external features in their whole model. However, they ignore 

the sequential characteristics among historical data. There-

fore, other researchers regard the traffic data at each times-

tamp as a picture and regard all timestamps as a sequence 

of pictures. Specifically, the authors in [152, 153] first apply 

the CNN model to encode the data in each timestamp and 

then apply the LSTM model to encode the whole sequence. 

In addition, considering that the influence of each histori-

cal traffic flow has different influences on the future traffic 

flow, Yao et al. [153] leverage the MLP model to encode the 

future environmental data and then compute the attention 

value between the future encoded results with each histori-

cal encoded traffic data. Hence, they consider each attention 

value as the corresponding weight for each historical times-

tamp, where the weight can represent the influence.

Network Flow. The �������-���� problem focuses on 

the flow passing through each intersection on road networks. 
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Except for general time series forecasting methods (i.e., 

HA and ARIMA), there are other traditional learning meth-

ods. For example, Jin et al. [154] leverage PCA (principal 

component analysis) and SVR (support vector regression) 

techniques to predict network traffic flows. They use PCA 

to reduce the dimension of traffic data by outputting eigen-

flow data. After that, they apply SVR to predict the eigen-

flow data, based on which they reconstruct the flow data. 

Also, Tang et al. [155] leverage the SVR method to solve 

the problem, but they enhance the method with some denois-

ing algorithms. They further combine one kind of denoising 

algorithm (ensemble empirical mode decomposition) and 

the fuzzy C-means neural network (FCMNN) to improve 

prediction accuracy [156]. To predict for multivariate traffic 

flows, Yan et al. [157] adopt a weighted Frobenius norm to 

estimate similarity between multivariate time series, where 

the weights are determined by the PCA method. Recently, 

most people rethink the traffic flow prediction based on deep 

architecture models. At first, Lv et al. [158] use a stacked 

autoencoder model to learn generic traffic flow features, and 

the model is trained in a greedy layer-wise fashion. Later, 

taking into the structure of road networks, the authors 

in [159–161] leverage GCN models to predict the network 

flows. In particular, Fang [159] build the spatio-temporal 

block to encode historical traffic data, where the block con-

tains multi-resolution temporal module and a global corre-

lated spatial module. Wang et al. [160] propose a two stream 

network, where the first stream corresponds to a novel graph-

based spatio-temporal convolutional layer, aiming to extract 

features from a graph representation of traffic flow, while the 

second stream predicts the dynamic graph structures, and 

the predicted structures are fed into the first stream. Guo 

et al. [161] propose two parts of modules to encode histori-

cal data: The first part leverages the attention mechanism to 

capture the dynamic spatio-temporal correlations in traffic 

data, while the second part uses the GCN technique to cap-

ture the spatial patterns and common standard convolutions 

to describe the temporal features. Also, some people [162, 

163] consider the sequential features among historical net-

work flows, so they further append RNN models to encode 

historical data. Specifically, Li et al. [162] model the traffic 

flow as a diffusion process on a directed graph and introduce 

diffusion convolutional recurrent neural network (DCRNN), 

a deep learning framework for traffic forecasting that incor-

porates both spatial and temporal dependencies in the traf-

fic flow. Differently, Wang et al. [160] first leverage spa-

tial GNN to encode historical data and then leverage GRU 

model to encode the whole sequence. They finally use the 

transformer model to further encode the output of the GRU 

model. At last, the meta-learning method is also applied 

for capturing the dynamic dependency among traffic flow 

data [164]. The advantage is that they consider the spatial 

properties of road networks.

Traffic Speed. The �������-����� problem aims to 

forecast the speed of cars on roads. Similar to other traffic 

forecasting problems, instead of using general time series 

prediction methods (i.e., HA and ARIMA), people recently 

apply many deep learning methods. Firstly, some people 

only consider apply different deep models to encode his-

torical traffic data. For example, Ma et al. [166] convert the 

spatio-temporal traffic data into images describing the time 

and space relations of traffic flow via a two-dimensional 

time-space matrix, which is encoded by the CNN model. Cui 

et al. [168] propose a deep stacked bidirectional and unidi-

rectional LSTM neural network architecture, which consid-

ers both forward and backward dependencies in time series 

data, to predict network-wide traffic speed. In addition, a 

bidirectional LSTM layer is exploited to capture spatial fea-

tures and bidirectional temporal dependencies from histori-

cal data. The authors in [165, 167] take advantage of both 

RNN and CNN models by a rational integration of them. In 

particular, they first use the CNN model to capture topology 

aware features, and then, the periodicity and context factors 

are also considered to further improve accuracy by applying 

the LSTM model. To forecast the traffic speed for multi-step 

ahead, Tang et al. [169] propose an evolving fuzzy neural 

network with two proposed learning processes, where the 

first is to cluster inputs and the second is to optimize param-

eters in the Takagi–Sugeno-type fuzzy rules. Also, similar 

to [170], they consider the influence of periodic component 

in the raw speed data. However, the above methods ignore 

many contextualized features, such as spatial and temporal 

properties. Therefore, Liao [171] take into many implicit 

but essential factors for predicting traffic speed, where they 

integrates these data as follows. Firstly, they consider offline 

geographical and social attributes, such as the geographical 

structure of roads or public social events. They apply the 

GCN model to encode the information. Secondly, they con-

sider online crowd queries, which are regarded as a sequence 

and encoded by the LSTM model.

5  Tra�c Application

Making it possible to achieve intelligent transportation, 

many applications should be developed based on traffic pre-

diction. In this paper, we survey five broadly used appli-

cations, which are, respectively, called ride sharing, order 

dispatching, business location, anomaly detection and route 

planning. In addition, these applications heavily rely on the 

performance of traffic prediction techniques. For exam-

ple, before dispatching taxi orders, deciding ride sharing 

strategies or planning routes for users, we should estimate 

the travel time or traffic speed on road networks. In other 

words, the more accurate the predicted future traffic states, 
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the better these traffic application services. Next, we will 

elaborate them.

5.1  Ride Sharing

More and more people are pleasant to share their ride with 

others due to the full use of resources and the environmental 

friendliness. The goal of ride sharing is to maximize the 

profit or the number of customers being served, which is 

greatly influenced by traffic states, such as traffic speed and 

travel time. Hence, accurately forecasting these traffic states 

would improve the effectiveness of ride sharing algorithms. 

Similar to the survey in  [121], we also review an exact 

offline method and some online methods.

The actual offline method is called Branch-and-Bound 

(BB), which is a general method to solve mixed-integer lin-

ear programs (ILP). As the ride sharing problem can be for-

malized as an optimization problem about mixed-integer lin-

ear programs, BB can be extended to solve the ride sharing 

problem [174, 175]. In particular, BB would build a search 

tree to explore solutions. At first, they construct the tree’s 

root node by solving the relax problem associated with ILP. 

Later, they iteratively search and construct other nodes for 

getting optimal solutions as follows: (1) Branch: Create two 

child nodes for every node that represents a non-integer solu-

tion. Each child takes the same relaxed problem as its parent. 

And both child nodes represent two new relaxed problems, 

each with one less binary variable. (2) Bound: Solve each 

new relaxed problem to obtain new solutions.

The online methods include two kinds: search-based 

and join-based. Firstly, search-based methods would search 

the optimal matched vehicle for each order with the way 

of one-by-one. Specifically, Jung et al. [176] select nearest 

vehicles to assign orders, where they measure them based 

on distance. However, small distance cannot correspond 

to optimal matches because inserting customers into some 

vehicles’ schedule would influence vehicles’ current cus-

tomers’ routes. Hence, many people [177–179] first try to 

insert a customer’s route into candidate vehicles and then 

select the vehicle with the least cost to actually insert the 

customer’s route. Considering that the time complexity of 

trying all candidates is too large, Huang et al. [180] design 

the kinetic tree (KT) to improve the efficiency. They only 

remember the valid schedules for a vehicle by pruning inva-

lid ones from the kinetic tree. To improve the quality, Cheng 

et al. [181] consider a replace procedure when matching 

orders and vehicles. Secondly, join-based methods would 

batch orders into a set and then assign orders all at once. 

More specifically, the join-based methods consist of two 

kinds of frameworks: the initialize-improve framework and 

the group-assign framework. In the initialize-improve frame-

work, people usually use a heuristic method to get a set of 

initial assignments and then try to use additional procedures 

to improve the assignments. For example, people have apply 

simulated annealing (SA), a single-solution meta-heuristic 

for general optimization problems, to the ride sharing prob-

lem [176]. In particular, they random initialize the assign-

ments. Then, they select a random customer and reassign 

it to a different valid vehicle and use customer insertion to 

adjust the route. Differently, other researchers [182] apply 

the greedy randomized adaptive search procedure (GRASP) 

meta-heuristic method. In particular, they initialize the 

assignments of orders based on some probabilities. In the 

group-assign framework, people [183, 184] optimally assign 

vehicles to shareable groups of customers. Generally, the 

group-assign framework achieves higher-quality assign-

ments than the initialize-improve framework.

5.2  Order Dispatching

The target of order dispatching is to effectively and effi-

ciently match taxi orders and vehicles. Generally speaking, 

existing work can be split into two types: rule-based and 

reinforcement-learning.

Rule-based approaches address the order dispatching 

problem by either centralized or decentralized ways. Lee 

et al. [185] and Lee et al. [186] implement the centralized 

method by the rule of “first-come, first-served.” Specifically, 

they regard the pick-up time/distance as the criterion and 

find the nearest option from a set of homogeneous drivers 

for each order. However, they ignore the potential optimal 

matching for each driver due to that there would be more 

suitable orders in the waiting list for a driver. To improve 

the global performance, Zhang et al. [187] combinatorially 

match multiple driver-order pairs within a short time win-

dow. Here, they distinguish different drivers by considering 

their long-term behavior history and short-term interests. 

For solving the problem in the decentralized setting, Seow 

et al. [188] divide drivers and orders into small groups and 

then simultaneously assign orders to driver within each 

group. Specifically, drivers conduct negotiations by sev-

eral rounds of collaborative reasoning to decide whether 

to exchange current order assignments or not. However, it 

suffers from the limit of scalability due to the large commu-

nication cost among drivers. Alshamsi and Abdallah [189] 

also propose a system to support the negotiations between 

agents (drivers) to re-schedule allocated orders. In addition, 

they consider a sophisticated design of feature selection and 

weighting scheme as criteria to evaluate each driver-order 

pair.

Reinforcement-learning (RL) methods are recently popu-

lar for solving these sequential decision-making problems. 

Without additionally hand-crafted heuristics, they can learn 

an optimal policy based on observations and rewards pro-

vided by the environment. For example, Xu et al. [190] first 

propose an RL-based algorithm to dispatch resource in a 
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global and more farsighted view. However, it cannot better 

model interactions between multi-drivers and multi-orders 

due to its single-agent setting. In contrast, Li et al. [191] 

address the order dispatching problem using multi-agent 

reinforcement learning (MARL), which follows the distrib-

uted nature of the peer-to-peer ride sharing problem and 

possesses the ability to capture the stochastic demand-sup-

ply dynamics in large-scale ride sharing scenarios. Also, 

Jin et al. [192] build a multi-agent reinforcement learning 

framework, but they split the whole city into disjoint region 

cells and treat each region cell as an agent. To coordinate the 

agents from different regions to achieve long-term benefits, 

they leverage the geographical hierarchy of the region grids 

to perform hierarchical reinforcement learning.

5.3  Business Location

Select optimal locations to place retail store, charging sta-

tion or billboard can increase business profit. Naturally, traf-

fic data such as traffic flows and travel time play a signifi-

cant role in solving this problem. For example, Karamshuk 

et al. [193] try to find the optimal placement of retail store 

with location-based social network. They explore how the 

popularity of retail store is shaped and conclude that the 

popularity is affected by the fusion of geographic and mobil-

ity features, which can extracted from traffic flows. There-

fore, predicting future traffic states would provide basic data 

for algorithms of selecting business locations.

As for solving the site selection of charging stations, aim-

ing to reduce the detour distance, Li et al. [194] leverage 

historical trajectory data and spatial features of road net-

work to design a deployment framework. In particular, they 

formalize the problem as an ILP (integer linear program-

ming) optimization problem, which is NP-hard. Similarly, 

Liu et al. [195] convert the problem as a multiple-objective 

optimization problem, where they aim to maximize the over-

all revenue and minimize the overall driver discomfort.

Another significant business location problem is billboard 

placement, which aims to maximize the influence of bill-

boards on passengers, also known as the influence maximi-

zation problem, where the influence is defined by the traf-

fic flows. Guo et al. [196] focus on finding k buses, whose 

trajectories have maximum expected influence on audience, 

to deploy billboards. Liu et al. [197] try to select optimal 

placements (a vertex or edge who contains many traffic 

flows) on road networks to place outdoor billboards. Zhang 

et al. [198] consider the constraint of the total budget. They 

design a model on range and one-time impressions to solve 

the problem. However, their model have not considered the 

relationship between the influence effect and the impres-

sion counts for a single user. Hence, Zhang et al. [199] fur-

ther propose a logistic influence model to address it. Wang 

et al. [200] also consider the constraint of budget, and they 

use a divide-and-conquer strategy to improve the efficiency 

of placing billboards on road networks. Taking into account 

many factors (e.g., the customers’ interest, the cooperation 

and competition among billboards) influencing the benefit 

of billboards, Lou et al. [201] formulate the dynamic adver-

tising problem to maximize the commercial profit. More 

specifically, they first use the vehicular data (e.g., trajecto-

ries and preferences) to extract potential customers’ implicit 

information. Then, they use the multi-agent deep reinforce-

ment learning technique to propose an advertising strategy, 

by which the advertiser could determine the advertising pol-

icy for each billboard and maximize the commercial profit.

At last, some people focus on the general business loca-

tion problem without any scenario. They try to select a set 

of facilities from the candidate set to maximize the influence 

with/without a cost budget. For example, Wang et al. [202] 

use the filtering-verification framework to prune many 

inferior candidate locations. Differently, Zhang et al. [203] 

formulate the problem as a geodemographic influence maxi-

mization problem, which is NP-hard. Hence, they propose a 

greedy algorithm with an approximation ratio.

5.4  Spatio-Temporal Anomaly Detection

Detecting spatio-temporal anomaly has been broadly stud-

ied. The target of this task is to identify the rare spatio-

temporal data which are different from the majority. In 

other words, this task is one kind of classification problems. 

Hence, some traffic prediction techniques can be applied to 

solve some spatio-temporal based anomaly detection prob-

lems. In this paper, we focus on the task on three typical 

types of spatio-temporal data: event data, meteorological 

data and trajectory data.

Event data. Traffic conditions usually are influenced 

by casual events: such as car accidents, sports games and 

concerts. Thus, Sun et al.  [204] have proposed a CNN-

based model to detect the non-recurring traffic conges-

tions caused by anomaly events. Also, Zhu et al. [205] use 

the CNN model to detect traffic accidents based on traffic 

flows. Differently, Zhang et al. [206] implement DBN (deep 

belief network) and LSTM models to detect event tweets 

related to traffic accidents based on social media data. At 

last, Chen et al. [207] study the relationship between traffic 

accidents and human mobility. In particular, they design a 

stack denoise autoencoder model to learn hierarchical fea-

ture representation of human mobility for predicting traffic 

accident risk level.

Meteorological data. At first, Liu et al. [208] utilize the 

deep learning model to detect climate extreme events, such 

as hurricanes and heat waves, based on climate image data. 

Also, Kim et al. [209] propose a framework to detect climate 

extreme events and reconstruct high-resolution climate data 

from the low-resolution climate data. In particular, they use 
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the CNN model to locally detect the extreme events, while 

designing a pixel recursive super-resolution model to recover 

coarse climate data. However, the number of extreme cli-

mate data is too sparse to train an effective model. Racah 

et al. [210] apply the semi-supervised model to improve the 

localization of extreme weathers. In particular, they present 

a multi-channel spatio-temporal CNN architecture by lever-

aging temporal information and unlabeled data.

Trajectory data. Detecting anomaly trajectory can help 

to identify criminal behaviors of taxi drivers [211, 212]. 

Generally, the anomaly trajectory from an origin point to 

a destination point is defined as the trajectory that appears 

with a low frequency. Many methods identify anomaly by 

computing the similarity among trajectories. In particular, 

they use the similarity to find the most dissimilar trajecto-

ries in a dataset. For example, Chen et al. [213] compute 

the similarity score between a given trajectory with exist-

ing trajectory that having the same origin and destination 

points in a dataset and then compare the score with a prede-

fined threshold to determine whether the given trajectory is 

anomaly or not. Differently, Lee et al. [214] partition each 

trajectory into a set of line segments and then detect the 

anomaly by computing the similarity between different sets 

of line segments.

5.5  Route Planning

Route planning is one core component of intelligent trans-

portation. Generally speaking, planning routes consist of 

two levels of tasks. On the one hand, we should be able to 

recommend proper tour routes for users. On the other hand, 

we can provide some suggestions to the construction of the 

transportation infrastructure. For example, we can help to 

plan bus routes or build new roads for relieve traffic conges-

tion. Therefore, we survey existing work according to the 

above classification. By the way, both the two tasks rely on 

the prediction of some traffic states, such as traffic flows and 

travel time.

Tour route. The popular way to recommend tour routes 

is to find existing trips similar to given contexts, such as spa-

tial proximity, text relevance and photographs. For example, 

Lu et al. [215] first leverage the geo-tagged photographs to 

recover travel clues and then recommend routes based on 

users’ preference. In contrast, many people try to recom-

mend popular routes. At first, Wei et al. [216] propose a 

search algorithm to find top-k popular trajectories, which 

pass through users’ given regions. Later, Chen et al. [217] 

first leverage existing trips to build a tour network by linking 

hot areas with routes and then discover popular routes from 

the network with a traffic flow detection algorithm. At last, 

Wang et al. [218] implement an interactive route planning 

system, which can enable dynamic suggestion based on the 

click-based feedback from POIs displayed on the map.

Transportation infrastructure. Chen et al. [219] cluster 

all points of collected taxi trajectories and detect “hot spots” 

as recommended bus stops. In addition, they generate bus 

routes between any two stops with taxi trajectories. Also, 

Pinelli et al. [220] build transportation networks by comput-

ing traffic flows based on taxi trajectories. Differently, Wang 

et al. [221] leverage k nearest neighbor search method to 

find the route, whose distance is the least, to suggest the bus 

route of a given origin point and a given destination point. 

Hence, governments can build roads according to the net-

works. At last, Bao et al. [222] aim to suggest the building 

of bike lanes. In particular, they plan bile lines under the 

constraint of a budget and the number of connected compo-

nents. In this paper, the authors propose a greedy network 

expansion algorithm, which can iteratively construct new 

lanes to reduce the number of connected components until 

the budget is met.

6  Emerging Challenges and Opportunities

In this section, we summarize some research challenges and 

opportunities in traffic prediction.

6.1  Complex Characteristics of Spatio-Temporal 
Data

Not only structured data but also unstructured data (e.g., pic-

tures, texts, audios and videos) are used to predict traffic. For 

example, Liao et al. [171] consider the query information 

(text data) as auxiliary information when predicting traffic 

speed. Therefore, it requires to fuse multi-mode data. Audios 

and texts indicate the sequential characteristic, so we can 

use sequence encoding techniques (e.g., RNN and attention) 

to learn or extract their features. Pictures and videos have 

be handled in the domain of compute vision by the CNN 

technique, so we can apply it to related traffic data. At last, 

some social media data, such as geo-tagged twitters, have 

influence on the traffic prediction, and we can utilize the 

graph-based models (e.g., GNN) to learn or extract related 

features, due to the graph structure of social network.

Collected data are often unevenly distributed. For exam-

ple, there exit dense traffic on some roads, while others are 

sparse, which would cause the difficulty of sparse traffic pre-

diction due to the lack of training data. To address this issue, 

the possible way is to adopt some advanced techniques, such 

as zero/few-shot learning and meta learning.

6.2  AI-enhanced Spatio-Temporal Data 
Preprocessing

It becomes popular to utilize AI techniques to enhance data-

based managements [223–244]. Naturally, these techniques 
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can be transferred to help the management of spatio-tempo-

ral data. (a) It is inefficient to clean data with handcraft rules, 

so we can design different learning models to address dif-

ferent data problems. (b) Similar to [245] and [246], which 

build learned indexes to accelerate the query on large scale 

of multi-dimensional data, we can use learned indexes to 

improve the distributed storage of spatio-temporal data. (c) 

Data compression can be regarded as the generative prob-

lem, so we can use generative learning models (e.g., VAE 

and GAN) to address this problem.

6.3  Joint Traffic Prediction

Most existing work proposes different models to solve differ-

ent types of traffic prediction problems. Although they con-

sider various features, such as the spatio-temporal properties 

and environmental data, the relationship between different 

types of traffic data has not been significantly used. For 

example, as claimed in [247], if there are increasing travel 

demands in a region, the traffic flows in the region would 

also increase in a near future. Hence, we need to handle the 

traffic prediction problem by jointly considering different 

types of traffic data. Also, the opportunity of improving the 

performance of traffic prediction is to address the challenge 

of joint traffic prediction. The challenge is twofold. On the 

one hand, different types of data correspond to different for-

mats, so we need to address the issue that different formats 

should be fused. On the other hand, the influence or relation-

ship between different types of traffic data is asymmetric, so 

how to model it becomes difficult.

6.4  Interpretable and Automatic Deep Traffic 
Prediction Models

As described in Sect. 4, many traffic prediction models 

are implemented with deep learning techniques. However, 

most of these models just like “black-box” for getting pre-

diction results. In contrast, making decision on the building 

of intelligent transportation should depend on reasonability 

and interpretability of traffic prediction results. It is thereby 

significant to design interpretable deep learning models. In 

addition, training a deep learning model is always expensive 

due to the heavy exploration of hyper-parameters in mod-

els. Therefore, how to automatically design effective and 

efficient models would be a significant topic in the traffic 

prediction community.

6.5  Unified Intelligent Transportation System

The final target of traffic prediction is to make real transpor-

tation intelligent. In other words, we could gain conveni-

ent travel services no matter when and where we need. To 

achieve this goal, we need to build an unified intelligent 

transportation system, which can manage, analyze and min-

ing all spatio-temporal data. However, there exist some 

challenges. (a) How to make different data sources be trust, 

because we need different organizations or companies to 

share their data to the unified system. The opportunity is 

that some useful techniques (e.g., federal learning) seem to 

be useful. (b) It is expensive to handle the change of online 

traffic, especially the update of maps. Therefore, it is a big 

challenge to guarantee the efficiency of associated services.

6.6  Performance Benchmarks and Pre-train Models

Notably, most studies related to traffic prediction just build 

task-oriented datasets, such as trajectories. However, urban 

traffic data include many complex factors or features. 

Hence, how to construct a completed and unified dataset 

is significant for the development of the traffic prediction. 

In addition, the essential operation of most learning-based 

methods for traffic prediction is to learn the vector repre-

sentation of spatio-temporal data. Therefore, similar to the 

pre-training model of representation learning in the field of 

NLP (Natural Language Processing), such as BERT [248] 

and GPT-3 [249], we can also pre-train a general model to 

represent spatio-temporal data.

7  Public Spatio-Temporal Datasets

Thanks to some enterprises and researchers in this field, 

there are quite a few real spatio-temporal datasets that are 

publicly available:

– GAIA Open Dataset3: Didi provides academic commu-

nity with real-life, high-quality anonymized data. In the 

website, they provide not only raw order-related datasets 

(e.g., orders, trajectories and voice data), but also self-

processing transportation index datasets (e.g., travel time 

index and transportation energy index). In addition, they 

build benchmark datasets for some popular transportation 

data mining competitions, such as KDD CUP 20204 and 

CCF BDCI 20205.

– Open Street Map (OSM)6: Road networks are broadly 

applied in many traffic prediction problems. OSM pro-

vides the way to access the road network all over the 

world. Also, we can extract the road network for each 

special city.

3 https ://outre ach.didic huxin g.com/resea rch/opend ata/.
4 https ://www.kdd.org/kdd20 20/kdd-cup.
5 https ://www.dataf ounta in.cn/speci al/BDCI2 020.
6 https ://www.opens treet map.org/.

https://outreach.didichuxing.com/research/opendata/
https://www.kdd.org/kdd2020/kdd-cup
https://www.datafountain.cn/special/BDCI2020
https://www.openstreetmap.org/
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– Taxi Trajectories: There are plenty of taxi trajectories 

released from some research projects. For example, 

Yuan et al. [250] provide a dataset, which is a sample 

of trajectories from Microsoft Research T-Drive pro-

ject, generated by over 10,000 taxicabs in a week of 

2008 in Beijing. In addition, the taxi service trajectory 

prediction challenge 20157 also provides an accurate 

dataset describing complete year (from 01/07/2013 to 

30/06/2014) of the (busy) trajectories performed by all 

the 442 taxis running in the city of Porto.

8  Conclusion

In this paper, we review extensive studies on traffic predic-

tion. In particular, these studies run from the spatio-temporal 

data layer to the intelligent transportation application layer. 

We first summarize the traffic prediction use cases and then 

propose the overview of traffic prediction, which includes 

four parts: spatio-temporal data, preprocessing, traffic pre-

diction and traffic application. First, we review different 

types of traffic data. Second, we survey all of existing work 

on how to preprocess these traffic data. Third, we summa-

rize the challenges for traffic prediction and also survey all 

of existing techniques about addressing these challenges. 

Fourth, we discuss how to implement traffic applications 

to make the transportation intelligent. Finally, we provide 

emerging challenges and opportunities.
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