
Peer-to-Peer Netw Appl (2008) 1:18–28
DOI 10.1007/s12083-007-0006-y

A survey on peer-to-peer video streaming systems

Yong Liu · Yang Guo · Chao Liang

Received: 25 June 2007 / Accepted: 6 December 2007 / Published online: 10 January 2008
© Springer Science + Business Media, LLC 2008

Abstract Video-over-IP applications have recently at-
tracted a large number of users on the Internet. Tra-
ditional client-server based video streaming solutions
incur expensive bandwidth provision cost on the server.
Peer-to-Peer (P2P) networking is a new paradigm to
build distributed network applications. Recently, sev-
eral P2P streaming systems have been deployed to
provide live and on-demand video streaming services
on the Internet at low server cost. In this paper, we
provide a survey on the existing P2P solutions for live
and on-demand video streaming. Representative P2P
streaming systems, including tree, multi-tree and mesh
based systems are introduced. We describe the chal-
lenges and solutions of providing live and on-demand
video streaming in P2P environment. Open research
issues on P2P video streaming are also discussed.

Keywords P2P streaming · Live · Video-on-demand

1 Introduction

Video-over-IP applications have recently attracted a
large number of users over the Internet. In year 2006,

Y. Liu (B) · C. Liang
ECE Department, Polytechnic University, Brooklyn,
NY 11201, USA
e-mail: yongliu@poly.edu

C. Liang
e-mail: cliang@photon.poly.edu

Y. Guo
2 Independence Way, Thomson Lab, Princeton,
NJ 08540, USA
e-mail: Yang.Guo@thomson.net

the number of video streams served increased 38.8% to
24.92 billion even without counting the user generated
videos [1]. Youtube [30] alone hosted some 45 terabytes
of videos and attracted 1.73 billion views by the end of
August 2006. With the fast deployment of high speed
residential access, such as Fiber-To-The-Home, video
traffic is expected to be the dominating traffic on the
Internet in near future.

The basic solution for streaming video over the
Internet is the client-server service model. A client
sets up a connection with a video source server and
video content is streamed to the client directly from
the server. One variation of client-server service model
is the Content Delivery Network (CDN) based video
streaming. In CDN based solution, the video source
server first push video content to a set of content de-
livery servers placed strategically at the network edges.
Instead of downloading from the video source server, a
client is normally directed to a nearby content delivery
server to download the video. CDN effectively shortens
the users’ startup delays, reduces the traffic imposed
on the network, and serves more users as a whole.
Youtube employs CDN to stream video to end users.
The major challenge for server based video streaming
solutions, though, is its scalability. A video session with
good quality requires high bandwidth. With the current
video compression technology, the streaming rate for a
TV quality video is more than 400 kilo-bits-per-second.
The bandwidth provision, at video source servers or in
CDNs, must grow proportionally with the client pop-
ulation. This makes the server based video streaming
solutions expensive.

Peer-to-Peer (P2P) networking has recently emerged
as a new paradigm to build distributed network ap-
plications. The basic design philosophy of P2P is to



Peer-to-Peer Netw Appl (2008) 1:18–28 19

encourage users to act as both clients and servers,
namely as peers. In a P2P network, a peer not only
downloads data from the network, but also uploads
the downloaded data to other users in the network.
The uploading bandwidth of end users is efficiently
utilized to reduce the bandwidth burdens otherwise
placed on the servers. P2P file sharing applications,
such as [4, 10], have been widely employed to quickly
disseminate data files on the Internet. More recently,
P2P technology has been employed to provide media
streaming services. Several P2P streaming systems have
been deployed to provide on-demand or live video
streaming services over the Internet [6, 25, 26, 32].
Our recent measurement study [16] of a P2P live video
streaming system shows that, in early 2006, more than
200, 000 simultaneous users watched the live broadcast
of an 4-hour event at bit rates from 400 to 800 kpbs. The
aggregate required bandwidth reaches 100 gigabits/sec,
while Akamai reportedly has roughly 300 gigabits/sec
bandwidth in its entire network at the end of year 2006.

P2P streaming systems can be broadly classified into
two categories based on the overlay network struc-
ture. They are tree-based and mesh-based. The tree-
based systems, such as ESM [6], have well-organized
overlay structures and typically distribute video by ac-
tively pushing data from a peer to its children peers.
One major drawback of tree-based streaming systems
is their vulnerability to peer churn. A peer departure
will temporarily disrupt video delivery to all peers in
the subtree rooted at the departed peer. In a mesh-
based P2P streaming system, peers are not confined
to a static topology. Instead, the peering relationships
are established/terminated based on the content avail-
ability and bandwidth availability on peers. A peer
dynamically connects to a subset of random peers in
the system. Peers periodically exchange information
about their data availability. Video content is pulled by
a peer from its neighbors who have already obtained
the content. Since multiple neighbors are maintained
at any given moment, mesh-based video streaming sys-
tems are highly robust to peer churns. However, the
dynamic peering relationships make the video distrib-
ution efficiency unpredictable. Different data packets
may traverse different routes to users. Consequently,
users may suffer from video playback quality degra-
dation ranging from low video bit rates, long startup
delays, to frequent playback freezes.

In the rest of the article we give a survey on the exist-
ing P2P media streaming systems. The P2P live stream-
ing systems are described first in Section 2, followed
by the P2P video-on-demand systems in Section 3.
You will see how different design requirements in-
fluence the system architectures. Within each section,

representative systems are used as examples to show
both tree-based and mesh-based system architectures.
Finally, the paper is concluded with some open research
problems for P2P video streaming in Section 4.

2 P2P live streaming

Video streaming can be classified into two categories:
live and on-demand. In a live streaming session, a live
video content is disseminated to all users in realtime.
The video playbacks on all users are synchronized. To
the contrary, video-on-demand users enjoy the flexi-
bility of watching whatever video clips whenever they
want. The playbacks of the same video clip on different
users are not synchronized. In this section, we intro-
duce several P2P live streaming systems using different
overlay structures. P2P video-on-demand systems will
be described in Section 3.

2.1 Tree-based systems

In early days of the Internet, IP level multicast was
proposed as an efficient way to stream audio and video
to a group of users. In an IP multicast session, the video
source server is connected to all users participating in
the session by a multicast tree formed by IP routers in
the network. Unfortunately, largely due to the router
overhead of managing multicast groups and the com-
plexity of transport control for multicast sessions, IP
level multicast was never widely deployed in the In-
ternet. Instead, the multicast function has been imple-
mented recently at application layer. Video servers and
users form an application level overlay networks to
distribute video content.

2.1.1 Single-tree streaming

Similar to an IP multicast tree formed by routers at the
network level, users participating in a video streaming
session can form a tree at the application layer that
is rooted at the video source server (see Fig. 1). Each
user joins the tree at certain level. It receives the video
from its parent peer at the level above and forward
the received video to its children peers at the level
below. Early examples of single-tree based streaming
include Overcast [18] and ESM [6]. Figure 1 illustrates
an application layer streaming tree with ten peers.

There are two peers at level 1 and receiving video
directly from the server. Four peers at level 2 re-
ceive video from their parents at level 1, and three of
them forward received video to four peers at the bot-
tom level.



20 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 1 Application layer multicast tree for P2P video streaming

Given a set of peers, there are many possible ways
to construct a streaming tree to connect them up. The
major considerations include the depth of the tree and
the fan-out of the internal nodes. Peers at lower levels
of the tree receive video after peers at upper levels.
To reduce the delays for peers at the bottom level, one
would prefer a streaming tree with fewest levels possi-
ble. In other words, the tree topology should fan out as
wide as possible at each level. However, constrained by
its uploading bandwidth, a peer on an internal node can
only upload video at the full rate to a limited number
of children peers. The maximum fan-out degree of a
peer is bounded by its uploading capacity. In fact, for
the purpose of load balancing and failure resilience, the
actual fan-out degree of a peer is normally set to be
below its maximum degree.

Other than tree construction, another important op-
eration for tree-based streaming is tree maintenance.
Users in a P2P video streaming session can be very

dynamic. A peer might leave the session at any time
either gracefully or unexpectedly, e.g. machine crashes.
After a peer leaves, all its descendants in the streaming
tree get disconnected from the video source server and
cannot receive the video any more. To minimize the
disruption, the streaming tree needs to be recovered as
soon as possible. Figure 2a illustrates a peer churn sce-
nario when one peer close to the source server leaves.
Five peers are disconnected from the video server. As
shown in Fig. 2b, the streaming tree is recovered by re-
assign affected peers to the server and other unaffected
peers.

Tree construction and maintenance can be done in
either a centralized or a distributed fashion. In a cen-
tralized solution, a central server controls the tree con-
struction and recovery. When a peer joins the system,
it contacts the central server. Based on the existing
topology and the characteristics of the newly joined
peer, such as its location and network access, the server
decides the position of the new peer in the tree and
notify it which parent peer to connect to. The central
server can detect a peer departure through either a
graceful sign-off signal or some type of time-out based
inference. In both cases, the server recalculates the tree
topology for the remaining peers and instruct them
to form the new topology. For a large streaming sys-
tem, the central server might become the performance
bottleneck and the single point of failure. To address
this, various distributed algorithms, e.g. [27], have been
developed to construct and maintain streaming tree in a
distributed way. However, it has been shown that tree-
based streaming still cannot recovery fast enough to
handle frequent peer churn.

Another major drawback of the single-tree approach
is that all the leaf nodes don’t contribute their upload-
ing bandwidth. Since leaf nodes account for a large
portion of peers in the system, this greatly degrades the
peer bandwidth utilization efficiency.

Fig. 2 Streaming tree
reconstruction after a
peer departure



Peer-to-Peer Netw Appl (2008) 1:18–28 21

2.1.2 Multi-tree streaming

To address the leaf nodes problem, Multi-Tree based
approaches have been proposed [5, 21]. In multi-tree
streaming, the server divides the stream into multiple
sub-streams. Instead of one streaming tree, multiple
sub-trees are constructed, one for each sub-stream.
Each peer joins all sub-trees to retrieve sub-streams.
Within each sub-tree, the corresponding sub-stream
flows down level by level from the source server to
all the leaf nodes. A peer has different positions in
different sub-trees. It might be positioned on an in-
ternal node in one subtree and on a leaf node in an-
other subtree. A peer’s uploading bandwidth will be
utilized to upload a sub-stream whenever it is placed
on an internal node in some sub-tree. To achieve high
bandwidth utilization, the number of sub-trees in which
a peer is placed on an internal node can be set to be
proportional to its uploading bandwidth.

In a fully balanced multi-tree streaming with m sub-
streams, the node degree of each sub-tree is m. A single
peer is positioned on an internal node in only one sub-
tree and only uploads one sub-stream to its m children
peers in that sub-tree. In each of the remaining m − 1
sub-trees, the peer is positioned on a leaf node and
downloads a sub-stream from its parent peer. Figure 3
shows an example of multi-tree streaming with 2 sub-
streams and 7 peers. The server partitions the video
stream into two sub-streams and push them to the left
and right sub-tree respectively. Peer 0, 1 and 2 are inter-
nal nodes in the left sub-tree and leaf nodes in the right
sub-tree. Similarly, peer 3, 4 and 5 are internal nodes
in the right sub-tree and leaf nodes in the left sub-tree.
Each peer has bandwidth of 1 and can simultaneously
uploads a sub-stream of rate 0.5 to two children peers.
Notice that peer 6 is a leaf node in both sub-trees and
doesn’t contribute to video uploading. This is because
the server contributes one unit of bandwidth and only

Fig. 3 Multi-tree based streaming with two sub-streams and
seven peers

six units of peer uploading bandwidth are needed to
stream to seven peers.

2.2 Mesh-based systems

In tree-based systems, a peer has only one parent in a
single streaming tree and downloads all content of the
video stream (or the sub-stream for the multi-tree case)
from that parent. This design introduces a single point
of failure. If a peer’s parent leaves, the peer, as well as
its descendants, cannot get streaming feed until it con-
nects to another parent. The management of streaming
trees is challenging in face of frequent peer churns.
Many recent P2P streaming systems adopt mesh-based
streaming approach [22, 24, 28, 31, 32]. In a mesh-based
streaming system, there is no static streaming topology.
Peers establish and terminate peering relationships dy-
namically. At any given time, a peer maintains peering
relationship with multiple neighboring peers. A peer
may download/upload video from/to multiple neigh-
bors simultaneously. If a peer’s neighbor leaves, the
peer can still download video content from remaining
neighbors. At the same time, the peer will find new
neighbors to keep a desired level of connectivity. The
high peering degree in Mesh-based streaming systems
makes them extremely robust against peer churn. A
recent simulation study [23] suggests that mesh-based
systems have superior performance than tree-based
systems. In this section, we briefly describe several key
design components in mesh-based systems.

2.2.1 Mesh formation and maintenance

Let’s first look at how peers in the same video session
form and maintain a mesh topology. Similar to P2P
file sharing systems like BitTorrent, a mesh streaming
system has a tracker to keep track of the active peers
in the video session. When a peer joins the streaming
session, it will contact the tracker and report its own
information, such as IP address and port number, etc.
Then the tracker will return a peer list that contains
the information of a random subset of active peers
in the session. The number of peers on a list ranges
from tens to hundreds. After receiving an initial list of
active peers, the peer will try to make connections to
some remote peers on the list. If a connection request
is accepted by a remote peer, the local peer will add
the remote peer into its neighbor list. After obtaining
enough neighbors, the local peer starts to exchange
video content with its neighbors. Figure 4 shows the
above initial setup process. To deal with frequent peer
arrivals and departures, a peer constantly updates its
peer list during the session. A peer can go to the tracker



22 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 4 Peer list retrieval from
the tracker server

to ask for a fresh list of active peers. It can also find
new peers by exchanging its peer list with its neighbors
through the established connections. If a peer leaves
the session gracefully, it will notify the tracker and its
neighbors such that its information can be removed
from their peer lists immediately. To handle unex-
pected peer departures, e.g. computer crashes, peers
regularly exchange keep-alive messages. A peer will
remove a remote peer’s information from its list if no
keep-alive message is received within a pre-configured
timeout period.

A peering connection is established based on the
mutual agreement between two peers at both ends.
Different systems have different peering strategies, i.
e., how many and which peers to connect to, when
and how often to switch neighbors, etc. The peering
decisions are normally made based on the following
considerations:

– the workload and resource availability on both
ends, such as the current number of connections,
uploading and downloading bandwidth, CPU and
memory usage;

– the quality of the potential connection, including
the packet delay and loss characteristics on the
network path between two peers;

– the content availability, i.e., how likely a remote
peer will have the content needed by the local peer.

Based on those criteria, a peer not only connects to
new neighbors in response to neighbor departures, but
also changes neighbors voluntarily to achieve better
streaming performance.

2.2.2 Data exchange

In tree-based systems, video streams flow from the
source to all peers along the streaming tree. In mesh-
based systems, due to the mesh topology, the concept
of video stream becomes invalid. The basic data unit in
mesh-based systems is video chunk. The source server
divides the video content into small media chunks, each
of which contains media data for a small time interval,

e.g., 0.1 second. Each chunk has a unique sequence
number. A chunk with lower sequence number con-
tains video with earlier playback time. Each chunk is
then disseminated to all peers through the mesh. Since
chunks may take different paths to reach a peer, they
may arrive at a peer out of order. For continuous
playback, a peer normally buffers received chunks in
memory and put them back in order before presenting
them to its video media player. Buffered chunks of one
peer can be uploaded to its neighbors. Depending on
the system design, a peer might keep several minutes
worth of video chunks in the buffer. For live streaming,
the sequence numbers of buffered chunks increases
steadily as the video playback progresses.

There are two major flavors of data exchange designs
in mesh-based systems: push and pull. In a mesh-push
system, a peer actively pushes a received chunk to its
neighbors who have not obtained the chunk yet. In tree-
based system, a chunk should always be pushed from a
peer to all its children peers in the streaming tree. How-
ever, there is no clearly defined parent-child relation-
ship in mesh-based system. A peer might blindly push
a chunk to a peer already having the chunk. It might
also happen that two peers push the same chunk to the
same peer. Peer uploading bandwidth will be wasted
in redundant pushes. To address that problem, chunk
push schedules need to be carefully planned between
neighbors. And the schedules need to be reconstructed
upon neighbor arrivals and departures.

One natural way to avoid redundant pushes is to
use pull instead of push. In a mesh-pull system, peers
exchange chunk availability using buffer maps period-
ically. A buffer map contains the sequence numbers
of chunks currently available in a peer’s buffer. Af-
ter obtaining buffer maps from its neighbors, a peer
can decide a chunk pull schedule that specifies from
which peers to download which chunks. Then it will
send requests to its neighbors to pull missing chunks.
Redundant chunk transmissions can be avoided since
a peer only downloads a missing chunk from only
one neighbor. Frequent buffer map exchanges and pull
requests do incur more signaling overhead and might
introduce additional delays in chunk retrieval. In Fig. 5,
peer 3 generates its buffer map indicating the chunk
availability in its buffer. Then it exchanges its buffer
map with peer 1 and 2. Missing chunks will be requested
and downloaded among all three peers.

3 P2P video-on-demand

Video-on-demand service (VoD) allows users to watch
any point of video at any time. Compared with live



Peer-to-Peer Netw Appl (2008) 1:18–28 23

Fig. 5 Buffer map exchange
and data pull among peers

Peer 1 Peer 3 

Peer 2 

Buffermap 
 Exchange 

Peer3 Buffermap 

Available Chunk 

Chunk 
Request 

Chunk 
Delivery 

Chunk 
Delivery 

Chunk 
Request 

streaming, VoD offers more flexibility and convenience
to users and truly realizes the goal of watch whatever
you want whenever you want. VoD has been identified
as the key feature to attract consumers to IPTV service.

In VoD service, although a large number of users
may be watching the same video, they are asynchronous
to each other and different users are watching different
portions of the same video at any given moment. Tree-
based P2P system is originally designed to function as
IP multicast at the application layer without underlying
network layer’s support. The users using tree-based
overlay is synchronized and receive the content in the
order the server sends it out. This is fundamentally dif-
ferent from the requirement imposed by VoD service.
How to accommodate asynchronous users using tree-
based P2P system is a challenging design issue.

Mesh-based P2P system is first introduced to dis-
tribute large files and then successfully applied to live
streaming. Typically a large file is divided into many
small blocks. The system throughput and the rate at
which the content can be distributed to users heavily
depend on the diversity of content blocks available
at different peers. The order at which the blocks are
received is different from peer to peer and is very
random. The challenges to offer VoD using mesh-based
P2P network is two folds. At the peer-level, the content
blocks have to be received before their playback time.
Ideally, the content blocks should be downloaded in
the same order as in the source file. At the system
level, the content sharing has to be enabled among
asynchronous peers and the overall system throughput
has to be high even with the per-peer downloading
constraint. Supporting VoD using mesh-based P2P is
again not straight-forward.

In the following, we present three representative so-
lutions that have been developed in the past to support
VoD using tree-based and mesh-based P2P system. As
described in the previous section, tree-based and mesh-
bashed P2P systems have their own pros and cons. Here

we focus on how to adapt these approaches to providing
VoD service.

3.1 Tree-based P2P VoD

Inspired by the patching scheme [11, 17] proposed to
support VoD service using native IP multicast, the au-
thors in [14] designed a scheme that uses tree-base P2P
system to support asynchronous users in VoD service.

Users are grouped into sessions based on their ar-
rival time. A threshold, T, is pre-defined. The users that
arrive close in time and within the threshold constitute
a session. Together with the server, users belonging to
the same session form an application-level multicast
tree, denoted as the base tree. The server streams the
entire video over the base tree as in tree-based P2P
live streaming. This complete video stream is denoted
as the base stream. When a new client joins the session,
it joins the base tree and retrieves the base stream from
it. Meanwhile, the new client must obtain a patch - the
initial portion of the video that it has missed (from the
start of the session to the time it joined the base tree).
The patch is available at the server as well as other users
who have already cached the patch. Users behave like
peers in the P2P network, and provide the following
two functions:

– Base Stream Forwarding: Users participate in the
tree-based overlay and forwards the received base
stream to its children. The base stream is shared
among all users in the tree.

– Patch Serving: Users cache the initial part of the
video and serve the patch to latecomers.

Figure 6 illustrates a snapshot of the above solution
when a new user arrives at time 40. It shows two
sessions, session 3 and session 4, starting at time 20.0
and 31.0, respectively, with the threshold equal to 10.
Each user is marked with its arrival time to the system.
A solid line with an arrow is used to represent the



24 Peer-to-Peer Netw Appl (2008) 1:18–28

Fig. 6 A snapshot of the scheme at time 40. Users belonging to
the same session form an application-level multicast tree together
with the server. Users in session 3 have finished patch retrieval;
while 3 clients in session 4 are still receiving the patch stream from
their parent patch servers

parent-child relationship in the base tree; and a dashed
line with an arrow is used to represent the patch server-
client relationship. The server and the clients in a ses-
sion form an application-level multicast tree to deliver
the base stream. At time 40, all clients in session 3
have finished the patch retrieval; while three clients in
session 4 are still in the process of receiving the patch
stream. Note that users belonging to different sessions
do not interact with each other.

Note that users are synchronous in the base tree. The
asynchronous requirement of VoD is addressed using
patching. In the following, we describe cache-and-relay

P2P VoD. It again employs tree-based approach, how-
ever, the asynchronous issue is solved by the content
caching at users.

3.2 Cache-and-relay P2P VoD

To efficiently utilize memory, a streaming server caches
a moving window of video content in the memory
so as to serve a batch of clients whose viewing point
falling into the caching window. This is so-called in-
terval caching technique [8, 20]. Cache-and-relay P2P
VoD applies the interval caching idea to solve the
asynchronous issue in tree-based P2P VoD. A peer
in a cache-and-relay P2P VoD system buffers a mov-
ing window of video content around the point where
they are watching. It serves other users whose viewing
point is within the moving window by continuously
forwarding the stream. Although a P2P tree is formed
among peers, their playback points are different and
the synchronization issues is successfully addressed.

Figure 7 illustrates a simple example of cache-and-
relay P2P VoD system. Here users are assumed to
watch the video from the beginning and cache 10
minutes worth of video data. User A arrived first at
time 1. Since there is no other users in the system, it
retrieves the video from the server directly. Later on,
user B and C arrived at time 3 and 8, respectively. Both
discover that user A’s buffer still covers the beginning
of the video. They manage to ask user A to forward the
stream from the very beginning. When user F joined
the system at time 50, however, the moving windows of
early arrivals have passed the video beginning. User F
is forced to retrieve the video from the server directly.

Fig. 7 DirectStream system.
a DirectStream system with
two clusters — one headed by
client A and the other headed
by client F. b DirectStream
system after the departure of
client A. No service from the
server is required from
now on



Peer-to-Peer Netw Appl (2008) 1:18–28 25

As time goes, latercomers are able to obtain the video
from user F and its descendants.

In this example, the users form two clusters, cluster
1 and cluster 2. A cluster represents a set of users that
are able to share a single stream out of the server. A
tree is established among the users of the same cluster.
For instance, user A, B, C and three other users form
the first cluster. The video stream is cached and relayed
along the path from the source all the way to the users
placed at the bottom of the tree. A parent user’s moving
buffer always covers the child peer’s playback point.

Interestingly, a cluster in cache-and-relay P2P VoD
evolves over time. For instance, user A was a member
of the cluster 1. However it left the cluster after finish-
ing the playback and forwarding the video to B and C
(see Fig. 7b). From now on, no video out of the server is
needed for cluster 1 users. In the extreme case, if users
arrive close in time, server only needs to stream the
video to the first user. The followers can form a chain
and obtain the service from early arrivals. Cache-and-
Relay approach proves to be a very scalable solution.

In both tree-based and cache-and-relay P2P VoD,
the construction of overlay tree and the handling of
peer churn remain to be key issues. For cache-and-
relay based P2P VoD, it also imposes extra constraints
where a user only has limited number of users who
can be its parents, i.e, users can be a candidate parent
only if its caching window cover the viewing point
of child user. A directory service is also required to
facilitate locating candidate parents. The works in [2, 7,
12, 15, 19] addressed various issues arisen in designing
cache-and-relay based P2P VoD service. Jin et al. [19]
derived bounds on the network cost of cache-and-relay
approach. Guo et al. [15] studied the workload posed
on the server and showed that the system scales even
if the peers behave no-cooperatively. In [12], the au-
thors further developed an application-level multicast
based directory service tailored for cache-and-relay
P2P VoD. Cui et. al [7] analyzed the server bandwidth
requirement and network-wide link bandwidth require-
ment under both sequential and non-sequential stream

access patterns. Their work shows that cache-and-relay
scheme defeats IP multicast-based VoD scheme in
terms of both server bandwidth consumption and net-
work bandwidth consumption. Finally, Sharma et al. [2]
introduced the prefetching technique into cache-and-
relay to overcome the peer churn, and examined its
impact on the server bandwidth requirement.

3.3 Mesh-based P2P VoD

Mesh-based P2P file sharing network achieves fast file
downloading by swarming. A file is divided into small
size data blocks. The server (typically called seed in the
mesh-based P2P network context) disperses the data
blocks to different users. The users download from
its neighboring peers the blocks that they currently
don’t have. To fully utilize users upload bandwidth
and hence achieve highest downloading throughput
possible, the data blocks at different users are better-off
to be different from each other so that there is always
something to exchange. This is so-called the diversity
requirement in mesh-based P2P system.

The diversity improves the systems overall through-
put. However, the effective rate at which users can play-
back a video file may not be good. This is obvious since
the data blocks are retrieved in a fairly random order
while the video blocks have to be played in sequential
order. Moreover, due to the asynchronous nature of
VoD service, the users are interested in different parts
of content at any given moment. The availability of
different content blocks is also skewed by users behav-
ior. Therefore the challenge of designing a mesh-based
P2P VoD scheme rests on the right balance between
the overall system efficiency and the conformation to
the sequential playback requirement for asynchronous
users.

BiToS [29] probably is the first attempt to design
a mesh-based P2P VoD service system and we use it
as an example of mesh-bashed P2P VoD service here.
A peer in BiToS has three components as shown in
Fig. 8. The received buffer stores all the data blocks that

Fig. 8 BiToS peer structure

123456789101112131415161819 17

Media
Player

Deadline Missed

6791011121314151819 17

High Priority SetRemaining Pieces Set Selection
 Process

Downloading

Downloaded

Not Available

Received Pieces



26 Peer-to-Peer Netw Appl (2008) 1:18–28

have been received so far. High priority set contains the
video blocks that close to their playback time yet have
not been downloaded. The remaining piece set contains
the blocks that have not been downloaded. The scheme
uses a selection process to decide which block to down-
load. A block in high priority set is downloaded with
probability p while the one in remaining pieces set is
downloaded with probability 1 − p. By setting the value
of p greater than 0.5, the blocks in high priority set are
favored to be downloaded earlier than the ones in the
remaining pieces set. Intuitively, the larger value of p
offers better chance for the blocks to arrive before their
playback time, while smaller value of p increases the
diversity of blocks and hopefully leads to better overall
system efficiency.

Although the scheduling at individual peers in mesh-
based P2P VoD may look similar to the one in mesh-
based P2P live streaming, the difference lies in the
fact that in VoD users are asynchronous and watching
different part of video. In P2P live streaming, peers are
interested in the similar part of video. Whatever data
units downloaded at a peer is also useful to other peers
that have not retrieved those data units. In P2P VoD,
if the video is downloaded in the order of playback, a
newly arrived user can make little contribution because
it doesn’t have the content other earlier arrived users
are looking for. Meanwhile, many earlier arrived users
can serve the content to the new arrival since they have
watch the beginning part of the video. In contrast, as
time goes on, a peer caches more and more data and
can serve more peers. However, the number of peers
that can upload content to this peer decreases since
some peers arrived before this peer may have finished
watching and left the system. How to optimally allocate
the resources across different parts of the video and
how to manage the overlay topology are important
design questions. The works [3, 13] divide the video into
segments with each segment containing a set of blocks.
The segments close to the playback point is given high
priority to download. [3] also employs network cod-
ing to improve the resource utilization efficiency. The
works in [9, 13] introduce the source server to help
out in case the video content is not available when the
playback time is imminent.

4 Conclusions and open issues

In this paper, we conducted a survey on the existing P2P
video streaming technology. We described several key
P2P streaming designs, including system topologies,
peering connections and data scheduling, that address
various challenges in providing large scale live and

on-demand video streaming services on top of the
best-effort Internet. Current deployments on the Inter-
net demonstrate that P2P streaming systems are capa-
ble of streaming video to a large user population at low
server cost and with minimal dedicated infrastructure.
However, there are several fundamental limitations of
existing P2P video streaming solutions.

First of all, the user Quality of Experience in current
P2P streaming systems are still not comparable to the
traditional TV services provided by cable and satellite
broadcasting companies. Specifically, P2P streaming
users normally experience much longer channel start-
up and channel delays. Video playback starts tens of
seconds after a user selects a channel. There are also
large playback lags among peers. Some peers watch
frames in a channel minutes behind other peers. Due to
the limited peer uploading capacity, most P2P stream-
ing systems only support video rate up to 400kbps.
Consequently, users only receive low resolution videos.
In addition, the video streaming quality is poor and
unstable when the number of peers watching the same
program is small. This makes it challenging to serve
long-tailed unpopular contents in P2P streaming sys-
tems. Those issues are interesting and challenging re-
search problems that need to be addressed to make
P2P video streaming services a real competitor for
traditional broadcast TV services.

Secondly, the increasing popularity of P2P streaming
has become a serious concern for ISPs. The huge user
base and high traffic volume of P2P streaming systems
pose a big challenge on ISPs’ network capacities. Most
current P2P streaming designs are not ISP-Friendly.
The peering connections and data exchanges among
peers are mostly driven by content availabilities. After
peers obtain some video data from the source server,
they randomly connect to multiple peers, local and
remote, and exchange data between different networks.
Unregulated P2P video exchanges significantly increase
the traffic volume on links within and between ISPs.
As a result, the video content distribution cost is es-
sentially shifted to ISPs without any profit for them.
How ISPs should manage and regulate the ever in-
creasing P2P video streaming traffic deserves further
investigation to maintain the stability of their network
infrastructures.

Lastly, playing the dual role of network service
provider and content service provider, several ISPs
have started to provide IPTV services by deploying IP
multicast and video proxy servers in their private net-
works. P2P streaming has been proved to be a scalable
streaming solution with low infrastructure requirement.
It will be beneficial for ISPs to integrate P2P technology
into their IPTV systems to significantly reduce their



Peer-to-Peer Netw Appl (2008) 1:18–28 27

server and network infrastructure cost. Many interest-
ing research problems need to be addressed to develop
an integrated IPTV solution for content providers, net-
work providers and IPTV users.

References

1. Accustream iMedia Research Homepage. http://www.
accustreamresearch.com

2. Abhishek Sharma AB, Matta I (2005) dpam: a distributed
prefetching protocol for scalable asynchronous multicast in
p2p systems. In: Proceedings of IEEE INFOCOM, March
2005

3. Annapureddy S, Guha S, Gkantsidis C, Gunawardena D,
Rodriguez P (2007) Is high-quality vod feasible using p2p
swarming? In: The 16th international world wide web Con-
ference (WWW2007), May 2007

4. BT. Bittorent Homepage. http://www.bittorrent.com
5. Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron

A, Singh A (2003) SplitStream: high-bandwidth multicast in
cooperative environments. In: Proceedings of ACM SOSP

6. Chu, Y-H, G.Rao S, Zhang H (2000) A case for end system
multicast. In: Proceedings of ACM SIGMETRICS

7. Cui Y, Li B, Nahrstedt K (2004) Ostream: asynchronous
streaming multicast in application-layer overlay networks. In:
IEEE Journal on selected areas in communications, January
2004

8. Dan A, Sitaram, D (1996) A generalized interval caching
policy for mixed interactive and long video enviroments.
In: SPIE multimedia computing and networking conference,
January

9. Dana C, Li D, Harrison D, Chuah C (2005) Bass: bittorrent
assisted streaming system for video-on-demand. In: Interna-
tional workshop on multimedia signal processing (MMsP)

10. EMULE. Emule Homepage. http://www.emule-project.net
11. Gao L, Towsley D (2001) Threshold-based multicast for con-

tinuous media delivery. In: IEEE transactions on multimedia,
December 2001

12. Guo Y, Suh K, Kurose J, Towsley D (2007) Directstream: a
directory-based peer-to-peer video streaming service. Tech.
rep., UMass CMPSCI Technical Report TR 07-30

13. Guo Y, Mathur S, Ramaswamy K, Yu S, Patel B (2006)
Ponder: providing commercial-quality video-on-demand ser-
vice using peer-to-peer network. In: Technical repot, corpo-
rate research, Thomson Inc., July 2006

14. Guo Y, Suh K, Kurose J, Towsley D (2003) P2cast: peer-to-
peer patching scheme for vod service. In: Proceedings of the
12th world wide web conference (WWW-03), May 2003

15. Guo Y, Suh K, Kurose J, Towsley D (2003) A peer-to-peer
on-demand streaming service and its performance evaluation.
In: Proceedings of 2003 IEEE international conference on
multimedia & Expo (ICME 2003), July 2003

16. Hei X, Liang C, Liang J, Liu Y, Ross K (2007) A measure-
ment study of a large-scale P2P IPTV System. IEEE Trans.
Multimedia, November 2007

17. Hua K, Cai Y, Sheu, S (1998) Patching: a multicast technique
for true video-on-demand services. In: Proc. of ACM multi-
media, September 1998

18. Jannotti J, Gifford DK, Johnson KL, Kaashoek MF, O’Toole
JW Jr (2000) Overcast: reliable multicasting with an overlay
network. In: Proceedings of operating systems design and
implementation, pp 197–212

19. Jin S, Bestavros A (2002) Cache-and-relay streaming media
delivery for asynchronous clients. In: International workshop
on networked group communication, October 2002

20. Kamath M, Ramamritham K, Towsley D (1995) Continu-
ous media sharing in multimedia database systems. In: Proc.
of 4th international conference on database systems for ad-
vanced applications (DASFAA’95), April 1995

21. Kostic D, Rodriguez A, Albrecht J, Vahdat A (2003) Bullet:
high bandwidth data dissemination using an overlay mesh.
In: Proceedings of ACM symposium on operating systems
principles

22. Magharei N, Rejaie R (2007) Prime: peer-to-peer receiver-
driven mesh-based streaming. In: Proceedings of IEEE IN-
FOCOM

23. Magharei N, Rejaie R, Guo Y (2007) Mesh or multiple-tree:
a comparative study of live p2p streaming approaches. In:
Proceedings of IEEE INFOCOM

24. Pai V, Kumar K, Tamilmani K, Sambamurthy V, Mohr, A
(2005) Chainsaw: eliminating trees from overlay multicast.
In: The fourth international workshop on peer-to-peer
systems

25. PPLive. PPLive Homepage. http://www.pplive.com
26. PPStream. PPStream Homepage. http://www.ppstream.com
27. Tran DA, Hua K, Do T (2003) ZIGZAG: An efficient peer-

to-peer scheme for media streaming. In: Proceedings of IEEE
INFOCOM

28. Venkataraman JCV, Francis P (2006) Multi-tree unstruc-
tured peer-to-peer multicast. In: Proceedings of 5th interna-
tional workshop on peer-to-peer systems

29. Vlavianos A, Iliofotou M, Faloutsos M (2006) Bitos: enhanc-
ing bittorrent for supporting streaming applicati ons. In 9th
IEEE global internet symposium 2006, April 2006

30. Youtube. Youtube Homepage. http://www.youtube.com
31. Zhang M, Zhao L, Tang JLY, Yang S (2005) A peer-to-

peer network for streaming multicast through the internet.
In: Proceedings of ACM multimedia

32. Zhang X, Liu J, Li B, Yum T-SP (2005) DONet/
CoolStreaming: a data-driven overlay network for live media
streaming. In: Proceedings of IEEE INFOCOM

Yong Liu has been an assistant professor at Electrical and
Computer Engineering department of Polytechnic University
since March, 2005. He received his Ph.D. degree from Electri-
cal and Computer Engineering department at the University of
Massachusetts, Amherst, in May 2002. He received his master

http://www.accustreamresearch.com
http://www.accustreamresearch.com
http://www.bittorrent.com
http://www.emule-project.net
http://www.pplive.com
http://www.ppstream.com
http://www.youtube.com


28 Peer-to-Peer Netw Appl (2008) 1:18–28

and bachelor degrees in the field of automatic control from the
University of Science and Technology of China, in July 1997 and
1994 respectively. His general research interests lie in modeling,
design and analysis of communication networks. His current
research directions include robust network routing, Peer-to-Peer
IPTV systems, overlay networks and network measurement. He
is a member of IEEE and ACM.

Yang Guo is a member of technical staff at Thomson Cor-
porate Research, Princeton, NJ. His research interests include
peer-to-peer networking and content distribution, IPTV service,
media streaming, real-time system, and network modeling and

performance evaluation. He received his B.S. and M.S. degrees
from Shanghai Jiaotong University, and his Ph.D. from Univer-
sity of Massachusetts at Amherst.

Chao Liang received his B.Engr. and M.Engr. degrees from
Department of Electronic and Information Engineering,
Huazhong University of Science & Technology (HUST), China,
in 2000 and 2002, respectively. He is currently a Ph.D. candidate
at the Department of Electrical and Computer Engineering,
Polytechnic University, Brooklyn, New York. His research
interests include network optimization in overlay and wireless
networks, corresponding algorithm and protocol design.


	A survey on peer-to-peer video streaming systems
	Abstract
	Introduction
	P2P live streaming
	Tree-based systems
	Single-tree streaming
	Multi-tree streaming

	Mesh-based systems
	Mesh formation and maintenance
	Data exchange


	P2P video-on-demand
	Tree-based P2P VoD
	Cache-and-relay P2P VoD
	Mesh-based P2P VoD

	Conclusions and open issues
	References



