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Abstract Calcitriol or 1,25-dihydroxyvitamin D3, the

hormonally active form of vitamin D, as well as vitamin

D analogs, has been shown to increase sensitivity to

ionizing radiation in breast tumor cells. The current studies

indicate that the combination of 1,25-dihydroxyvitamin D3

with radiation appears to kill p53 wild-type, estrogen

receptor-positive ZR-75-1 breast tumor cells through

autophagy. Minimal apoptosis was observed based on cell

morphology by DAPI and TUNEL staining, annexin/PI

analysis, caspase-3, and PARP cleavage as well as cell cycle

analysis. Induction of autophagy was indicated by increased

acridine orange staining, RFP-LC3 redistribution, and

detection of autophagic vesicles by electron microscopy,

while autophagic flux was monitored based on p62

degradation. The autophagy inhibitors, chloroquine and

bafilomycin A1, as well as genetic suppression of the

autophagic signaling proteins Atg5 or Atg 7 attenuated the

impact of the combination treatment of 1,25 D3 with

radiation. In contrast to autophagy mediating the effects of

the combination treatment, the autophagy induced by

radiation alone was apparently cytoprotective in that either

pharmacological or genetic inhibition increased sensitivity to

radiation. These studies support the potential utility of vitamin

D for improving the impact of radiation for breast cancer

therapy, support the feasibility of combining chloroquine with

radiation for the treatment of breast cancer, and demonstrate

the existence of an “autophagic switch” from cytoprotective

autophagy with radiation alone to cytotoxic autophagy with

the 1,25 D3–radiation combination.

Keywords Breast cancer . Vitamin D . Radiation .

Autophagy . Chloroquine

Abbreviations

1,25 D3 1,25 dihydroxyvitamin D3

DAPI 4′,6-diamidino-2-phenylindole

AO Acridine orange

AVOs Acidic vacuolar organelles

CQ Chloroquine

IR Ionizing radiation

TUNEL Terminal deoxynucleotidyl transferase dUTP

nick end labeling

TEM Transmission electron microscopy

BAF Bafilomycin A1

SS Serum starvation

PI Propidium iodide

FACS Fluorescence-activated cell sorting

Introduction

Radiation therapy is a widely used component of cancer

therapy and is a fundamental tool in the treatment of breast

cancer (along with surgery and chemotherapy). Exposure to

ionizing radiation (IR) leads to rapid generation of reactive
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oxygen species that produce DNA damage [1]. One of the

most lethal radiation-induced lesions in DNA is the double-

strand break [2], which can lead to growth arrest or cell

death by the activation of various signaling pathways.

Although radiation is a very effective modality in the

treatment of breast cancer, there is always some likelihood

of disease recurrence that may be due to tumor cells that

survive through disruptions in cell death pathways, increased

DNA repair capacity, and/or overactivation of cytoprotective

signaling pathways [3]. Thus, a primary goal of our work has

been to develop strategies to enhance the response to

radiation therapy using the active form of vitamin D,

calcitriol (1,25 D3) as well as analogs of vitamin D [4, 5].

Apart from the established role of vitamin D3 in regulation

of calcium homeostasis, numerous studies have shown that

the metabolically active form of vitamin D3, 1,25-dihydrox-

yvitamin D3, (1,25 D3) as well as vitamin D analogs can

enhance the response to chemotherapy in a variety of

malignancy models [6–9].

Autophagy is an evolutionary conserved process where-

by cytoplasmic proteins and cellular organelles are envel-

oped in autophagosomes and degraded by fusion with

lysosomes for amino acid and energy recycling [10]. There

is evidence that whereas autophagy can play a critical role

in cellular survival [11–14], it can also become a cellular

suicide pathway when apoptosis is defective and following

extreme stress conditions [15–17]. Furthermore, autophagy

is frequently activated in tumor cells following anticancer

therapies such as drug treatment and gamma irradiation [18]

and can either contribute to cell death or represent a

mechanism of resistance to these treatments [11, 12, 14,

19–23].

A number of studies have demonstrated that radiation

induces cytoprotective autophagy [12, 16, 22, 23]. However,

studies from our laboratory have indicated that autophagy is

the basis for radiation sensitization of MCF-7 breast tumor

cells by 1,25 D3 [5]. Studies by other investigators have also

demonstrated radiation sensitization through the promotion

of autophagy [24–26].

Autophagic cell death has been defined based on

characteristics such as (1) cell death occurring without the

involvement of apoptosis and necrosis; (2) increased

autophagic flux, rather than an increase of autophagic

markers; and (3) suppression of autophagy via both

pharmacological inhibitors and genetic approaches is able

to rescue or prevent cell death [27]. In the present

manuscript, we have established that autophagic cell death

is the mode of radiosensitization by 1,25 D3 in ZR-75-1

breast tumor cells. We were further able to demonstrate that

autophagy can actually have dual functions in the same

experimental system, acting both as a cytoprotective

mechanism for radiation alone and a cytotoxic mechanism

when radiation is accompanied by 1,25 D3.

Results

Sensitization to Ionizing Radiation by 1,25 D3 in ZR-75-1

Breast Tumor Cells

Initial studies assessed the influence of treatment with 1,25

D3 on sensitivity to radiation. Exposure of ZR-75-1 cells to

1,25 D3 alone had a modest impact on cell growth; at

day 3, control cells had doubled approximately 2.5 times,

whereas cells treated with 1,25 D3 had doubled approxi-

mately two times (Fig 1a). This is likely due to 1,25 D3’s

regulation of proteins involved in cell cycle progression

[28, 29]. Figure 1b shows that the combination of 1,25 D3

with radiation resulted in a reduction of viable cells (actual

cell killing) that was followed by growth arrest in the

residual surviving cell population; in contrast, radiation

alone appeared to inhibit cell growth without producing an

actual reduction in viable cell number (compared to control

growth in Fig. 1a).

Radiosensitization of ZR-75-1 breast cancer cells by

1,25 D3 was further assessed in clonogenic survival assays

using both single dose (Fig. 1c) and fractioned dose

radiation (Fig. 1d). When combined with 1,25 D3, there

was a pronounced decrease in clonogenicity compared to

radiation alone at all doses. As in the studies presented in

Fig. 1a, 1,25 D3 alone had a minimal impact on

clonogenicity, indicating that the sensitization to radiation

is likely not simply a result of additive toxicity.

Minimal Induction of Apoptosis by Radiation and 1,25 D3±IR

Figure 2 presents studies that were designed to assess whether

apoptosis was the basis for the radiosensitization by 1,25 D3.

Apoptosis was assessed by the terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) assay and 4′,6-

diamidino-2-phenylindole (DAPI) staining (Fig. 2a),

fluorescence-activated cell sorting (FACS) analysis for

annexin/propidium iodide (PI) staining (Fig. 2b), Western

blot analysis for both PARP and caspase-3 cleavage (Fig. 2c),

and FACS analysis for a sub-G1 population (Fig. 2d).The

TUNEL and DAPI staining data indicate that minimal

apoptosis occurs with either radiation alone or 1,25

D3+radiation. This result was confirmed by annexin V/PI

staining where there is minimal staining in quadrants Q2 and

Q4, which are indicative of early and late apoptotic cells; there

was also no evidence of necrosis (quadrant Q1). Furthermore,

with both radiation alone and 1,25 D3+radiation, there is no

indication of an increase in the sub-G1 population (Fig. 2d).

Cell cycle analysis also indicates that there is no mitotic

catastrophe, due to the lack of accumulation of cells with

DNA content greater than 4n [30, 31]. Staurosporine was

used as a positive control to demonstrate that ZR-75-1 cells

have the ability to undergo apoptosis (Fig. 2a, b).
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Autophagy Induction and Autophagic Flux by Radiation

Alone and 1,25 D3±IR

Autophagy has been shown to play an important role in cell

survival and cell death [32, 33]. To investigate whether

autophagy plays a role in radiation sensitization in the ZR-75-

1 cells, cells were stained with acridine orange (AO), and the

formation of punctate staining was monitored based on visual

assessment (Fig. 3a) as well as quantification using flow

cytometry (Fig. 3b, c). Figure 3b presents a representative set

of histograms for each treatment, while Fig. 3c summarizes

data from two replicate experiments. At 72 h post-irradiation,

there is an approximately fourfold increase in the percent of

acidic vacuolar organelles (AVOs) in cells that received

radiation treatment alone and an approximately fivefold

increase by the combination treatment; the increase produced

by 1,25 D3 alone did not achieve statistical significance

(Fig. 3c). Time course data suggest that autophagy is initiated

earlier in cells treated with 1,25 D3+IR, and autophagy is

sustained to a higher extent with 1,25 D3+IR treatment

compared to radiation treatment alone (Online Resource

1(S1)). The promotion of autophagy by both radiation alone

and 1,25 D3+radiation was confirmed by monodansylcada-

verine (MDC) [34] staining (Online Resource 1(S2)) and red

fluorescent protein-light chain 3 (RFP-LC3) redistribution

(Fig. 3d). Upon autophagy induction, RFP-LC3 displays

punctate staining in the cytoplasm and can be visualized

using confocal microscopy [35]. Quantification of RFP-LC3

puncta is presented in Fig. 3e. Consistent with AO staining,

there is essentially the same number of LC3 puncta per cell

for IR and 1,25 D3+IR treatment at 72 h. Transmission

electron microscopy (TEM) images also indicate the presence

of autophagosomes with the combination treatment as well as

with radiation alone (Fig. 3f).

Since the presence of autophagic vesicles does not

necessarily mean that the autophagosomes have fused with

the lysosome and that the contents of the autophagosome have

been degraded, autophagic flux was assessed by Western blot

analysis for p62 degradation. p62 binds directly to LC-3

(Atg8), a critical protein involved in autophagosome formation

to facilitate autophagic degradation [36–38]. Consistent with

the AO staining and electron microscopy data, there was no

p62 degradation with 1,25 D3 alone (Online Resource

1(S3)), while p62 degradation is shown with serum starvation

(SS), which was used as a positive control. In the case of

both radiation alone and 1,25 D3+radiation, p62 degradation

appears to be virtually complete within 72 h (Fig. 3g).

Residual Surviving Cells Are in a State of Senescence

In previous studies, we reported that MCF-7 cells undergo a

period of growth arrest/senescence following treatment with

radiation alone as well as in the residual surviving breast

tumor cell population following treatment with vitamin D

analog, EB1089+radiation [4]. Based on cell morphology

and β-galactosidase staining, residual surviving cells are
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Fig. 1 Sensitization to ionizing

radiation by 1,25 D3. a–b Viable

cell number was determined by

exclusion of trypan blue at

days 3 and 6 post-initial treat-

ment. a Cells were exposed to

100 nM 1,25 D3 continuously. b

Cells received fractionated doses

of 4×2 Gy (over a period of

2 days) or were treated concur-

rently with 1,25 D3 and 4×2 Gy

radiation. c–d Clonogenic sur-

vival assays with both single

dose and fractioned radiation,

with or without 100 nM 1,25

D3. Clonogenic survival was

assessed after 14 days. Values

shown are from a representative

experiment with triplicate sam-

ples for each

condition. *p<.05 compared to

control #p<.05 compared to IR

alone (b) *p<0.05 compared to

IR (c–d). Data are representative

of an average of three

experiments
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indeed in a state of senescence after both radiation alone and

1,25 D3+radiation treatment (Fig. 4a). To further confirm β-

galactosidase activity, 5-dodecanoylaminofluorescein di-β-D-

galactopyranoside (C12FDG), a fluorogenic substrate for β-

gal activity [39], was analyzed by FACS analysis, and

fluorescence intensity was measured (Fig. 4b and Online

Resource 2(S4)). For both experimental conditions, senes-

cence is most pronounced at 144 h posttreatment.

Effects of Pharmacologic Autophagy Inhibition on Cell

Viability After IR and 1,25 D3±IR

In efforts to confirm that autophagy is the basis for

sensitization by 1,25 D3, studies were conducted with the

autophagy inhibitors chloroquine (CQ) and bafilomycin A1

Fig. 2 Minimal induction of apoptosis by radiation and 1,25 D3±IR.

Cells were treated with 100 nM 1,25 D3 alone, fractionated doses of

radiation (4×2 Gy), or 1,25 D3 concurrently with radiation. a TUNEL

assay and DAPI-stained images were taken 72 h post-initial drug

treatment. b Annexin V- and PI-positive cells were analyzed by FACS.

Exposure to 500 nM staurosporine for 24 h was used as a positive

control. c Western blotting for cleavage of caspase-3 and PARP 72 h

post-initial treatment. Alpha tubulin was used as a loading control. d

Cell cycle distribution by flow cytometry 72 h post-initial treatment.

Data are representative of an average of three experiments
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Fig. 3 Autophagy induction and autophagic flux after IR and 1,25

D3±IR. Cells were exposed to 100 nM 1,25 D3 alone, radiation alone

(4×2 Gy) administered over a period of 2 days, or 1,25 D3

concurrently with radiation. a Acridine orange images were taken at

72 h post-initial treatment (1,25 D3,IR, or 1,25 D3+IR) using an

inverted fluorescent microscope. Cells with positive staining for AVOs

were monitored using flow cytometry 72 h posttreatment. b

Representative histograms of positive acridine orange staining for

each treatment. c Percentage of cells with positive acridine orange

staining represented as the mean±SE. d–e RFP-LC3 was assessed by

confocal microscopy 72 h posttreatment. f The presence of autophagic

vacuoles was confirmed by electron microscopy at 72 h. Autophago-

somes are indicated by the red arrows. g Autophagic flux was based

on the decline in p62 levels monitored by Western blotting post-

irradiation. β-Actin was utilized as a loading control, and SS was used

as a positive control for autophagic flux. Values shown are from a

representative experiment with triplicate samples for each condition.

*p<0.05 compared to control. Data are representative of an average of

three experiments
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(BAF). BAF prevents the fusion of the autophagosome with

the lysosome [33, 40], while CQ prevents the acidification of

the lysosome [41]. We identified concentrations of BAF and

CQ that would have little to no toxic effects, as indicated by

trypan blue exclusion as well as the MTT assay (Online

Resource 3(S5–S6)). Inhibition of the autophagy induced by

either radiation or 1,25 D3+radiation (specifically the

formation of acidified autophagic vesicles) was confirmed

through an assessment of AO distribution by flow cytometry

(Fig. 5a and Online Resource 3 (S7)).

Treatment with radiation concurrently with BAF or CQ

resulted in a significant enhancement of cytotoxicity as

0

200

400

600

800

1000

1200

0hr

72hr

144hr

1,25D3+IR

IR

1,25D3

M
e
d
ia

n
F

lu
o
re

s
c
e
n
t 
In

te
n
s
it
y

1,25D3 +IR 72hr 1,25D3 +IR 144hr 

1,25D3 72hr 1,25 D3 144hr Control 

IR 72hr IR 144hr

a

b

Fig. 4 Residual surviving cells in a state of senescence. Cells were

exposed to 100 nM 1,25 D3, radiation (4×2 Gy) administered over a

period of 2 days, or 1,25 D3 concurrently with radiation. Cells were

stained with β-galactosidase, and images were taken at 3 and 6 days

post-initial drug treatment or post-irradiation. a Data are representative

images from three experiments. b Cells were exposed to 1,25 D3,

radiation alone, or 1,25 D3+IR, and samples were stained as described

in “Materials and Methods” Section and analyzed by FACS analysis at

days 3 and 6 posttreatment. Values shown are from a representative

experiment with triplicate samples for each condition
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indicated by the decline in viable cell number (Fig. 5b).

These observations are consistent with the premise that

autophagy induced by radiation alone is cytoprotective. In

dramatic contrast, interference with autophagy in 1,25

D3+IR-treated cells results in reduced radiation sensitivity,

which is the expected outcome if autophagy mediates the

cytotoxicity of the 1,25 D3–radiation combination treat-

ment. In fact, the cell death induced by the combination

treatment is attenuated, and cell viability is restored to

levels similar to what is observed with IR treatment alone

(comparing Fig. 5b and c). These results were confirmed by

monitoring propidium iodide uptake by flow cytometry.

Radiosensitization by CQ appears to be a result of the

promotion of both apoptosis and necrosis (Online

Resource 3 (S8–S9)). Moreover, these findings indicate

the existence of both cytoprotective and cytotoxic func-

tions of autophagy in response to radiation in the same

experimental system.

Effects of Genetic Autophagy Inhibition on Cell Viability

in IR and 1,25 D3±IR-Treated Cells

To confirm the results generated with pharmacological

autophagy inhibition, additional studies were performed

using ZR-75-1 cells in which expression of either ATG-5 or

ATG-7 was stably suppressed by shRNA. Atg5 combines

with Atg12 in a multimeric protein complex that is required

for autophagosome formation, whereas Atg7 is an E1-like

enzyme involved in activating both LC3II (Atg8) and Atg5

[42]. Atg5 levels were reduced by approximately 77% and

Atg7 levels by approximately 60% (Fig. 6a). To determine

if this knockdown was sufficient to alter autophagic
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Fig. 5 Effects of pharmacologic autophagy inhibition on cell viability

in IR and 1,25 D3±IR-treated cells. a Cells were exposed to 4×2 Gy

radiation alone or concurrently with BAF or CQ, and percentage of

cells with positive AVO staining was monitored using flow cytometry

at 72 h posttreatment. b Cells were exposed to radiation in the absence

or presence of either BAF or CQ, and viable cell number was assessed

by trypan blue exclusion at days 3 and 6 posttreatment. c Cells were

exposed to 1,25 D3 concurrently with 4×2 Gy radiation in the absence

or presence of either BAF or CQ, and viable cell number was assessed

by trypan blue exclusion at days 3 and 6 posttreatment. Values shown

are from a representative experiment with triplicate samples for each

condition. *p<.05 compared to IR (b) **p<0.05 compared to 1,25

D3+IR (c). Data are representative of an average of three experiments
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function, autophagic flux was monitored by p62 degrada-

tion in ATG-5 and ATG-7 knockdown cells. Indeed, cells in

which ATG-5 or ATG-7 had been knocked down displayed

decreased autophagic flux compared to vector control cells

following SS (Online Resource 4 (S10)).

Initial studies were conducted to confirm that 1,25 D3, IR,

and 1,25 D3+IR treatment produced the same relative effects

in control cells expressing shRNA against GFP (shRNA GFP

control) as they did in the parental ZR-75-1 cells. A single

dose of 4-Gy radiation was used for these studies as we found

that this dose allowed us to more effectively distinguish the

effects of radiation alone from the combination treatment in

these genetically modified cells. Figure 6b shows transient

growth inhibition by 1,25 D3, while Fig. 6c indicates that

indeed 1,25 D3 sensitized shRNA control cells to IR

treatment. In the cells where ATG-5 was partially silenced,

sensitivity to radiation was increased compared to the

shRNA control cells, again indicating that autophagy is a

mode of cell protection for radiation alone (Fig. 6d, left

panel). In dramatic contrast, the impact of 1,25 D3+radiation

is blunted or attenuated when ATG-5 is suppressed, which

supports the cytotoxic actions of autophagy for the 1,25 D3

+radiation combination treatment (Fig. 6d, right panel).

The studies in the ATG-7 suppressed cells demonstrated an

essentially identical outcome as with the pharmacological

inhibitors CQ and BAF as well as with suppression of ATG-5.
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Fig. 6 Effects of genetic autophagy inhibition on cell viability in IR

and 1,25 D3±IR-treated cells. a ZR-75-1 cells were stably transfected

with either a lentivirus encoding shRNA against GFP (control) or with

a lentivirus for silencing expression of ATG-5 or ATG-7. Atg5 levels

are shown by Western blotting comparing control cells to those with

ATG-5 or ATG-7 knockdown. Beta-actin was used as loading control.

b–c shRNA control cells were treated continuously with 1,25 D3 (b),

a single dose of 4 Gy or concurrently with 1,25 D3 and IR (c), and cell

viability was assessed by trypan blue exclusion. d–e Cell viability was

assessed by trypan blue exclusion in cells receiving a single dose of

4 Gy IR or 1,25 D3+IR in ATG-5-silenced cells (d) or ATG-7-silenced

cells (e). Values shown are from a representative experiment

with triplicate samples for each condition. *p<.05 compared to IR,

**p<0.05 compared to 1,25 D3+IR. Data are representative of an

average of three experiments
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That is, sensitivity to radiation alone is increased, albeit quite

modestly, (Fig. 6e, left panel) while radiosensitization by

1,25 D3 is markedly attenuated (Fig. 6e, right panel).

Knockdown of ATG-5 or ATG-7 had no perceptible effect

on the capacity of 1,25 D3 treatment alone to moderately

inhibit cell growth (Online Resource 4 (S11) and (S12)).

Discussion

The current studies further establish the potential utility of

vitamin D as an adjuvant therapy for the treatment of breast

cancer and furthermore provide evidence that sensitization

to radiation by 1,25 D3 occurs through the promotion of

autophagy. Consequently, the combination treatment is

likely to be effective even in breast tumor cells that might

be resistant to apoptosis. Interestingly, 1,25 D3 appears to

switch the cells from a cytoprotective to a cytotoxic mode

of autophagy. Although either cytoprotective or cytotoxic

actions of autophagy have been reported in multiple

publications, to our knowledge, these are the first studies

in the literature to provide evidence for this type of

“autophagic switch.”

While 1,25 D3 treatment promotes cell killing in

response to radiation in ZR-75-1 breast cancer cells, our

studies do not support the involvement of apoptosis in

the actions of radiation alone or for the combination

treatment. Instead, our data support the promotion of

autophagic cell death as the mode of radiation sensiti-

zation by 1,25 D3. In confirmation of the conclusion

that sensitization to radiation by 1,25 D3 is a conse-

quence of the induction of cytotoxic autophagy, phar-

macologic and genetic interference with autophagy

resulted in increased cell survival, with viable cell

numbers essentially restored to levels observed after

treatment with radiation alone. Conversely, when

autophagy was blocked in cells irradiated in the absence

of 1,25 D3, there was clearly a decrease in cell viability,

supporting the induction of cytoprotective autophagy by

radiation alone. Our data further suggest that residual

surviving cells are in a state of senescence, which is

consistent with studies showing that radiation induces

senescence in tumor cells [43, 44].

Although the amount of autophagy induced appears to

be essentially the same in both IR and 1,25 D3+IR

treatment, we speculate that 1,25 D3 increases the rate

and extent of autophagic flux in radiation-treated cells and

that this increase mediates the radiosensitizing effects of

1,25 D3. This hypothesis is based on the fact that p62 is

degraded earlier and to a greater extent in 1,25 D3+IR-

treated cells compared to IR treatment alone. It is important

to emphasize that this system should provide the appropri-

ate experimental model to address the question of what

factors might distinguish cytoprotective from cytotoxic

autophagy, which is currently a fundamental question in

this field [27].

Our future studies will be designed to elucidate the

pathways by which 1,25 D3 sensitizes breast cancer cells,

and establish what factors determine whether autophagy

will be cytotoxic or cytoprotective. It is known that

autophagy is a multi-step process that appears to be

regulated by various signaling pathways [25, 45]. More-

over, activation of ER stress and mTOR signaling pathways

have been shown to be involved in autophagy induction

[46, 47]. Both pathways have been shown to be activated in

response to radiation [48], and studies have shown that

AKT/mTOR signaling is involved in 1,25 D3’s effects on

cell proliferation [49, 50]. The capacity of 1,25 D3 to

promote radiosensitization may involve its modulation of

proteins in one or both of these autophagy pathways.

Materials and Methods

Cell Lines

The p53 wild-type ZR-75-1 human breast tumor cell line

was obtained from ATCC. The ZR-75-1 ATG5 KD and

ATG7 KD cells were generated as indicated below.

RNA Interference

The siRNA sequence to target ATG-5 was obtained from a

previous publication [51]. The sequence of the siRNA was:

GCAACTCTGGATGGGATTG. It was ordered as a hairpin

oligonucleotide with the sense and antisense sequence

separated by a loop sequence and restriction sites at the 5′

and 3′ ends to facilitate cloning into System Bioscience’s

pSIH-H1-puro lentiviral shRNA vector (which uses the H1

promoter to drive expression). With the shRNA inserted

into this vector, lentivirus was produced in HEK 293TN

cells co-transfected with the followingvectors that encode

the necessary packaging components: pPack-Rev, pPack-Gag,

and pPack-VSVg (purchased from Systems Biosciences as a

mix). The virus shed into the medium was then used to infect

the ZR-75-1 cells. The latter were selected in medium with

1 μg/mL puromycin to enrich the infected cells. A 70% KD of

Atg5 in these cells was observed following selection. shRNA

control cells were generated in similar fashion except that the

siRNA sequence used was against the irrelevant Aequorea

victoria green fluorescent protein (GFP).

Mission shRNA lentiviral transduction particles for

ATG-7 (Sigma NM_006395) were purchased as a set of

five different shRNA viral particles. After infecting the ZR-

75-1 target cells with each of the five different viral

populations, each at three different MOIs, the cells were
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checked for Atg7 expression, and the culture that displayed

the greatest decrease in Atg7 expression was selected. The

Sigma particles that worked best were #TRCN0000007584

(at an MOI of 0.5), with shRNA directed against the

following sequence in the 3′UTR of ATG-7: GCCTG

CTGAGGAGCTCTCCA. The transduced cells were se-

lected within medium with 1 μg/mL puromycin to obtain

stable cell lines.

Cell Culture and Treatment

All ZR-75-1-derived cell lines were grown from frozen

stocks in basal RPMI 1640 supplemented with 5% FCS,

5% BCS, 2 mmol/L L-glutamine, and penicillin/streptomy-

cin (0.5 mL/100 mL medium). ZR-75-1/ATG5 KD and

ATG-7 KD cells were maintained using (1 μg/mL)

puromycin (Sigma p8833) for resistance. All cells were

maintained at 37°C under a humidified 5% CO2 atmo-

sphere. Cells were exposed to γ-IR using a 137Cs irradiator.

In our studies, cells were exposed to 100 nmol/L 1,25

vitamin D3 (Sigma D1530) alone or concurrently with

radiation treatment. In the cases where the radiation doses

were fractionated, four fractions of 2-Gy radiation were

administered over two consecutive days (two fractions

separated by 6 h on days 1 and 2).

Cell Viability and Clonogenic Survival

Cell viability was determined by trypan blue exclusion

at various time points after treatment. Cells were

harvested using trypsin, stained with 0.4% trypan blue

dye (Sigma T8154), and counted using phase contrast

microscopy. For clonogenic survival studies, cells were

plated in triplicate in six-well tissue culture dishes at the

appropriate density for each condition. After 14 days,

the cells were fixed with 100% methanol, air-dried, and

stained with 0.1% crystal violet (Sigma C3886). For

computing the survival fraction, groups of 50 or more

cells were counted as colonies. Data were normalized

relative to untreated controls, which were taken as

100% survival.

Terminal Deoxynucleotidyl Transferase-Mediated dUTP

Nick End Labeling Assay for Apoptosis

The method of Gavrieli et al. [52] was used as an

independent assessment of apoptotic cell death in combined

cytospins containing both adherent and nonadherent cells.

Cells were fixed, and the fragmented DNA in cells

undergoing apoptosis was detected using the In Situ Cell

Death Detection kit (Roche 11373242910, 03333566001),

where strand breaks are end labeled with fluorescein-dUTP

by the enzyme terminal transferase. Cells were then fixed to

glass slides using DAPI-containing Vectashield mounting

medium (Sigma D9542). Pictures were taken using an

Olympus inverted fluorescence microscope. All images

presented are at the same magnification.

Western Blot Analysis

After the indicated treatments, cells werewashed in phosphate-

buffered saline (PBS) and lysed using 500–1,000 μL M-PER

mammalian protein extraction reagent (Thermo Scientific

#78501) containing protease and phosphatase inhibitors for

5 min on a shaker. Protein concentrations were determined by

the Lowry method, and equal aliquots of protein (40 μg)

were separated using 12% SDS–PAGE. Proteins were

transferred onto a nitrocellulose membrane and using LI-

COR blocking buffer. Membranes were immunoblotted with

respective antibodies and then incubated with respective LI-

COR secondary antibodies. Proteins were visualized using

the LI-COR imaging system. Primary antibodies used were

anti-p62 (SQSTM1–Santa Cruz sc-28359), anti-ATG5

(APG5–Biosensis R-111-100), anti-ATG7 APG7–Santa Cruz

sc-33211, anti-ß actin (Santa Cruz sc-47778), anti α-tubulin

(Santa Cruz sc-5286), anti-caspase 3(Cell Signaling 9665),

and anti-PARP (Cell signaling 46D11). All primary antibodies

presented were used at a 1:1,000 dilution.

Detection and Quantification of Autophagic Cells by Staining

with Acridine Orange

As a marker of autophagy, the volume of the cellular acidic

compartment was visualized by AO staining [18]. Cells

were seeded in six-well tissue culture dishes and treated as

described above for the cell viability study. Seventy-two

hours following initial treatment, cells were incubated with

medium containing 1 μg/mL AO (Invitrogen A3568) for

15 min; the AO was then removed, cells were washed once

with PBS, fresh media was added, and fluorescent micro-

graphs were taken using an Olympus inverted fluorescence

microscope. All images presented are at the same magni-

fication. The number of cells with increased AVO was

determined by flow cytometry. Cells were trypsinized,

harvested, and analyzed by BD FACSCanto II using BD

FACSDiva software. A minimum of 10,000 cells within the

gated region were analyzed.

Detection of Autophagic Cells by Staining

with Monodansylcadaverine

The autofluorescent agent monodansylcadaverine (Sigma

Chemical) was used as a specific autophagolysosome marker

[34]. Cells were seeded in six-well tissue culture dishes and

treated as described above for the cell viability study. Seventy-

two hours following initial treatment, cells were incubated
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with medium containing 1 μg/mL MDC for 15 min; the MDC

was then removed, cells were washed once with PBS, fresh

media was added, and fluorescent micrographs were taken

using an Olympus inverted fluorescence microscope. Again,

all images presented are at the same magnification.

Cell Cycle Analysis by Propidium Iodide Staining

For the cell cycle analysis, tumor cells treated as described

above were trypsinized, fixed with 70% ethanol, and

stained with propidium iodide 72 h posttreatment. Protocol

was adapted from Darzynkiewicz et al. [53]. A minimum of

20,000 cells/events were analyzed.

FACS Analysis for Annexin V- and Propidium Iodide-Positive

Cells to Monitor Apoptosis and Necrosis

For the FACS analysis, cells treated as described above

were collected and labeled fluorescently for detection of

apoptotic and necrotic cells by adding 500 μL of binding

buffer, 5 μL of annexin V-FITC, and 5 μL of propidium

iodide to each sample. Samples were mixed gently and

incubated at room temperature in the dark for 15 min. The

number of cells with increased annexin/PI staining was

determined by flow cytometry and analyzed by BD

FACSCanto II using BD FACSDiva software. A minimum

of 10,000 cells within the gated region were analyzed.

Transmission Electron Microscopy

TEM services, including sample fixation, embedding, ultrami-

crotomy, and staining, were provided by the VCU Department

of Anatomy and Neurobiology Microscopy Facility. Sections

were imaged via Jeol JEM-1230 transmission electron micro-

scope equipped with a Gatan UltraScan 4000SP 4K×4KCCD

camera. The magnification of each image is indicated by the

scale bar at the bottom of the micrograph.

Cytochemical Detection of β-Galactosidase Staining

B-galactosidase-positive cells were detected by the method

of Dimri et al. [54]. Briefly, the monolayers of cells were

washed two times with PBS and then fixed with 2%

formaldehyde 1 0.2% glutaraldehyde (prepared in PBS) for

5 min. The cells were then washed again two times with

PBS. After the last wash, staining solution was added

[1 mg/ml5-bromo-4-chloro-3-inolyl-b-D-galactoside (X-gal)

in dimethyformamide(20 mg/mL stock), 40 mM citric acid/

sodium phosphate, pH 6.0, 5 mM potassium ferrocyanide,

5 mM potassium ferricyanide, 150 mM NaCl, 2 mM

MgCl2], and the cells were incubated at 37°C for 24 h.

After incubation, the cells were washed two times with PBS

and visualized using an Olympus inverted microscope.

FACS Analysis of β-Galactosidase Activity

Cells were treated as described above and analyzed using

fluorescent β-galactosidase activity marker C12FDG. The

protocol was adapted from Debacq-Chainiaux et al. [39]

RFP-LC3 Redistribution

The MCF7 RFP-LC3 construct was a generous gift from

Dr. Keith Miskimins. ZR-75-1 cells were stably transfected

with RFP-LC3 using the standard effectene (Qiagen)

protocol. Cells were treated as described above and

visualized using a Leica confocal laser scanning microscope.

Cells were counterstained with DAPI to visualize. Five fields

were counted for each treated condition to determine the

average number of LC3 puncta per cell.

Statistical Analysis

Statistical differences were determined using StatView statis-

tical software. The data were expressed as the means±SE (as

standard error of the mean). Comparisons were made using a

one-way ANOVA followed by Tukey–Kramer post hoc test.P

values ≤0.05 were taken as statistically significant.
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