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ABSTRACT

Macroecology proceeds by identifying patterns and then identifying processes that cause those
patterns. Most of the processes that macroecologists study are local in nature and tend to
involve species interactions and speciation and extinction processes. In contrast, we propose
that several important macroecological patterns can be explained by very large-scale processes
that are primarily spatial in nature. Specifically, we suggest that the structure of abundance
across a species’ entire range combined with interspecific patterns in range location and global
abundance can explain the well-known macroecological patterns of: (1) a positive correlation
between range size and abundance, (2) the species–area relationship, (3) decay of species
similarity with distance and (4) the species abundance distribution. We show that spatial pro-
cesses produce these patterns through a combination of analytical and Monte Carlo analysis.
We also show that the connection is robust (indifferent) to the precise mathematical assump-
tions. Such a theory might be called a unified theory, because it explains multiple patterns with
a few processes. To differentiate among the growing number of unified theories, we suggest
that testing additional predictions over and above producing curves of the correct shape is
important. To this end, we present several novel, quantitative predictions and provide empirical
tests. In short, we provide an empirically grounded and tested theory, which suggests that
superimposing individual species ranges across space creates local community patterns.

Keywords: macroecology, species abundance distribution, species–area relationship, species
range, unified theory.

INTRODUCTION

Macroecology is the study of large-scale patterns and processes (Brown, 1995). One of the
key goals in macroecology is to identify the processes that underlie the patterns that are
found. Because of the difficulty of conducting controlled, replicated experiments at these
scales, theory plays an important role in identifying these processes. Recently, researchers
(Hanski and Gyllenberg, 1997; Harte et al., 1999; Gaston and Blackburn, 2000; Hubbell,
2001) have gone one step further and noted that theory can be used to tie together several
separate patterns that can be explained by a common, small set of processes. This is a
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‘unified’ theory, whether it be in physics or macroecology. Unified theories appeal strongly
to our sense of elegance and parsimony.

It should be noted that unified theories in macroecology are not new. Both Preston
(1962) and May (1975) noted a connection between two of the most important patterns in
macroecology, the species abundance distribution (hereafter SAD) and the species–area
relationship (hereafter SPAR). Indeed, mathematically, there must be a connection. If we
know the distribution of abundances, then we know what the sampling distribution should
look like. In particular, we know what the collector’s curve that plots number of species
sampled versus number of individuals sampled will look like. At very small scales and
assuming density of individuals per unit area is constant, then the species–area curve is
really nothing more than a collector’s curve (Preston, 1962; Rosenzweig, 1995; Hubbell,
2001). Hence, there is a tight mathematical link, at least at some spatial scales.

Given the fact that unified theories of macroecology are not novel and are now becoming
common, we must ask how we choose among the various theories proffered. Part of the
answer is that we may not have to completely choose – more than one mechanism can be in
operation and usually is in ecology. Furthermore, different unified theories may apply at
different spatial scales. Thus, it is important that we start attaching explicit spatial scales to
these theories. But we should not use this as an excuse to accept all unified theories offered.
One important criterion that we must examine is testability. A scientific theory is testable to
the extent that it makes predictions. The extent to which the predictions are new (i.e. not
explaining data that is already known) is important. So is the extent to which the predictions
are falsifiable. A prediction of a general curve shape where the parameters must be chosen
to maximize the fit to the data is much weaker than the prediction of a curve shape
where the parameters are derived from the theory. Similarly, a theory that makes a single
qualitative prediction is weaker than a theory that makes multiple qualitative predictions
and/or precise quantitative predictions.

In this paper, we present a unified theory of macroecology based on spatial structure of
abundance. Specifically, it relies on patterns at the very large spatial scales of entire species
ranges – that is, the scale of significant portions of continents. This contrasts with many
prior macroecological theories, which have relied on local processes such as population
dynamics and species interactions. Despite the large-scale patterns upon which our theory
is based, it makes predictions about relative abundance (SAD) at the scale of a community,
an area containing species that interact with each other and which is imprecise but on an
order of magnitude of hectares or square kilometres. This theory suggests a common set of
processes behind four well-known macroecological patterns. In the spirit of the previous
discussion, it is our intention to go further and make a strongly testable unified theory. We
will present three additional novel, more quantitative predictions and then test these using
empirical data on North American birds.

PREMISES

We start with three empirically well-documented facts:

Premise 1: Each species’ geographic range is located in space relatively independently of
the others

Four empirical studies have found that the modes of species abundance (and also range
boundaries when tested) are more often than not statistically indistinguishable from a
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random placement (Austin, 1987; Shipley and Keddy, 1987; Minchin, 1989; Hoagland and
Collins, 1997). For those taxa which are not random, they are usually clustered (under-
dispersed) (Austin, 1987; Shipley and Keddy, 1987; Minchin, 1989; Hoagland and Collins,
1997). Note: the fact that the placement fits a random model in no way implies that the
location of species is not a deterministic process based on climate and species interactions
(Pielou, 1977). Rather, it suggests that so many deterministic factors are involved that
statistical laws apply and that pairwise species interactions do not dominate.

Premise 2: Different species vary in global abundance according to a hollow curve

In this paper, we define global abundance to be the highest observed abundance at any single
location across the entire range. Results are very similar if we use total abundance (all
individuals in the range) or average abundance (averaged at each site where the species
are found). Each of these measures of global abundance demonstrates an interspecific
hollow curve distribution of abundances (i.e. a histogram gives a monotonically decreasing
function with apparent asymptotes at the y- and x-axes). This pattern is usually observed to
describe abundances in a local community, but it has also been recognized to describe the
distribution of abundances at a global scale – for example, Fig. 1 and results presented later
(see also references in Gaston, 1994, pp. 33–34; Gaston, 1996a).

Premise 3: Abundance across a range is structured according to a ‘peak-and-tail pattern’

We use the phrase ‘peak-and-tail pattern’ to describe a pattern of abundances across a range
that has a few (1–5) peaks of very high abundance which drop off rapidly but fairly
smoothly to a long tail which is 1–2 orders of magnitude lower in abundance than the
peaks. We know that species abundances vary significantly across their range (Darwin,
1859; Grinnell, 1922; Brown et al., 1995), being rare more often than common (Brown,
1995; Murray et al., 1999). Although a symmetric pattern with the peak in the centre (i.e.
Gaussian) is not uncommon (Austin, 1987; Brown, 1995; Brown et al., 1995, 1996), it is also
common to find asymmetric, non-centred and even multi-peaked distributions (Austin,
1987; Minchin, 1989; Sagarin and Gaines, 2002). The peak-and-tail description includes
these cases, while the stronger statement that abundances are normal or Gaussian across
their range (Whittaker, 1951) does not.

Hereafter, we call these three facts ‘premises’ of our model. We choose the term ‘premise’
carefully. It is stronger than the term ‘assumption’ – there is strong empirical evidence for
them. At the same time, we recognize that the three premises do not represent ultimate
mechanisms and hence avoid calling them mechanisms; there clearly must be a more
mechanistic explanation behind our three premises.

MATHEMATICAL MODEL

We now translate these three premises into the language of mathematics. As always in
mathematical models, there is a trade-off between analytical tractability and accuracy. To
address this, in each case we will perform robustness analysis to show that the loss of reality
caused by choosing simpler, more mathematically tractable descriptions does not affect our
results. Thus the three premises in mathematical terms are:

1. The location of the peak of each species range, µi, is distributed according to a Poisson
spatial process (Taylor and Karlin, 1998). Since there is considerable evidence that
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ranges of a few (but not most) taxa are clumped, we also perform Monte Carlo simula-
tions using a Neymann-Scott model (Stoyan and Stoyan, 1994). The clumping turns out
to make very little difference.

2. The peak abundance, NMAXi, of any species is distributed according to a log-normal
distribution. Other distributions probably fit better, but there is to date no consensus on
what is the correct distribution. In fact, rarely if ever has anyone tried to fit a distribution
other than the log-normal to a distribution of global abundance (as opposed to the more
commonly studied local abundance distributions, which has dozens of proposed dis-
tributions). There is demonstrably a good fit of the log-normal to the data (shown later
in the paper). As a form of sensitivity analysis, we will also use the power distribution
(p(x) = k(x/b)c) (Evans et al., 1993). The power distribution also possesses a hollow curve
shape. Although it fits our data less well than the log-normal, it is highly tractable

Fig. 1. The top graph is an empirically observed example of a local species abundance distribution
(SAD) for the BBS route at 100.217�W latitude, 48.883�N longitude in North Dakota near the
Canadian border. There are many species with a very low abundance (left side of graph). There are a
few species with a high abundance (right side of graph). This shape is sometimes called a ‘hollow
curve’. The bottom graph gives a species abundance distribution for global abundance. In this case,
global abundance is measured by abundance averaged across the range (AVGABUND), but the
pattern is similar for other measures of global abundance. Note that the global SAD also is dis-
tributed with a hollow curve, just as local SADs are. Our model predicts that these two curves should
have the same shape (although not the same scale). We examine quantitative evidence for this similar-
ity in the text.
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analytically. The fact that all of our Monte Carlo simulations perform very similarly
whether we use the log-normal or the power distribution suggests that our model is
robust to the exact shape of the distribution and especially to differences in distribution
on a log-scale. This suggests that the only requirement for our model to work is that a
hollow-curved distribution be used.

3. The ‘peak-and-tail’ structure of abundance does not have an obvious translation into simple
mathematics. Some authors have claimed that a Gaussian (bell) curve over space repre-
sents the abundance of each species over its range (Gauch and Whittaker, 1972; Austin,
1987; Brown, 1995). Others have argued for asymmetric and/or multi-peaked shapes
(Austin, 1987; Minchin, 1989; Sagarin and Gaines, 2002). For our analytical models,
we use a Gaussian curve. However, we also perform sensitivity analysis to determine
the dependence of our models on the Gaussian shape. In one case, we check our results
with Monte Carlo simulations using a sum of Gumbel extreme value distributions
(Evans et al., 1993) to represent a multi-modal, asymmetrical distribution of abun-
dances. This much more complicated distribution provides very similar results. In
another case, we can decouple our model entirely from the exact structure of abundance
within a range, as all we need to know is the distribution of range sizes. Details of
the robustness analyses are summarized in Table 1. Examining the inner workings of the
models suggest that all we really require is: (1) high, small peaks; (2) large, low tails; and
(3) a relatively smooth transition between the two. In parts of our model, we represent
space as one-dimensional and in other cases as two-dimensional.

Figure 2 pictorially presents these premises as used in the analytical models. Thus the
abundance at any point in space, say X, for the ith species is given by:

Ni(X) = NMAXi exp�−
||X − µi||

2

2σ
2
i

� (1)

where σi is a scaling constant for range size (representing the distance from the centre, µi, to
the inflection point where abundance drops off most rapidly).

We need to add one additional, technical assumption. This is because Gaussian curves
have infinite spatial extent (their tails go to infinity). To fix this, we assume that all species
ranges terminate (reach their edge) when the abundance drops to some fixed cut-off,
NMINi . This is the same criterion used to delimit range boundaries in the Breeding Bird
Survey (BBS) atlas (Price, 1970). Hence, the range boundary occurs on the circle {X: Ni(X) =
NMINi}.

FOUR QUALITATIVE PATTERNS

These three premises alone (plus the technical assumption) are enough to produce four
well-known and, in many cases, poorly explained macroecological patterns:

1. The positive correlation of range size with abundance
2. Species–area relationships (SPARs)
3. Species turnover (similarity decay) patterns
4. Species abundance distributions (SADs)

In short, superimposing individual species ranges across space creates local community
patterns. We will now briefly describe each of the four patterns and demonstrate through
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analytical and simulation models that our three premises generate them. A summary of the
logic of which premises produce which patterns can be found in Fig. 3.

Pattern 1

Many authors (Hanski, 1982; Brown, 1984; Gaston, 1996b) have noticed that the range
size of a species increases with various measures of abundance. Our model predicts
this correlation. Solving equation (1) algebraically for the radius at which Ni = NMIN and
assuming circular ranges so that RangeSize = πr2 = πx2, where x is chosen such that
Ni(x) = NMIN, gives:

RangeSize = 2πσ
2
i ln(NMAXi/NMIN) (2)

Table 1. A summary of the robustness tests performed

Mathematical
premises

Range size –
abundance
correlation
alternative SAD alternative SPAR alternative

1. Poisson
distribution of
range centres

N/A Neymann-Scott model
(Stoyan and Stoyan, 1994) of
a clustered random process
(λ = 5 and points placed
exponentially far away in an
isotropic fashion) which was
checked using V/M and A
measures of clustering
(Pielou, 1977) to verify that
it produced statistically
significantly clumped points

Same as SAD

2. Log-normal
distribution of
global
abundances

N/A Power distribution with shape
exponent of 0.298 (the MLE
estimate using the BBS
AVGABUND)

Same as SAD

3. Gaussian
shape of
abundance
across a range

Derived formula –
equation (2) – is
recognized as only
approximate

Sum of three Gumbel extreme
value distributions with peak
of each distribution chosen
randomly (multi-peaked with
each peak asymmetric)

Premise used only to
produce RADIUSi. Thus
the resampling method of
calculating RADIUSi

provides an alternative test

4. Minimum
population size

Exact formula
(equation 2) is
incorrect, but more
general qualitative
model described in
text still holds

Analytical model has no
lower limit. Monte Carlo
simulations performed with
and without limit

As above

Note: The robustness tests demonstrate that the simplifications made when translating the empirically observed
premises into mathematical language are not vital to the results of the models. In short, the models are robust to
fairly significant deviations of the mathematical details. The alternative mathematical assumptions described above
had no noticeable impact on the model results.
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If we assume σ and NMIN are constant across species, with NMAX varying (as per
Premise 2), then we get a monotonically increasing relationship that will produce a corre-
lation. We do not wish to place too much emphasis on the precise nature of formula (2)
for two reasons. First, the exact nature depends heavily on the assumption of a Gaussian
curve, something that is only approximately correct. Rather, we see this formula as a
mathematically simple example of a more general phenomenon – if abundance falls off
reasonably smoothly from a peak abundance to a fixed minimum abundance (NMIN), then
range size must be correlated with the peak abundance. Second, real-world examples of this
correlation contain far too much scatter to be able to test the exact nature of the relation-
ship (e.g. linear in log–log vs semilog). To this end, we note that if we allow σ and/or NMIN
to vary by species, we will still get a positive correlation, but the scatter approximates that
found in the real world (we performed this in a very simple Monte Carlo simulation where
σ varied according to a power distribution fit to the BBS range sizes).

Pattern 2

The species–area relationship (SPAR) describes the fact that the number of species found
fits a power law function of area (S = cAz). The z-values range from about 0.05 to 0.3 (if
the areas are sampled from within a single biogeographical province) (Rosenzweig, 1995).
Ecologists have known about SPARs longer and documented them more thoroughly than
any other macroecological pattern (Rosenzweig, 1995). Our simulations implement the
three premises and the technical assumption in a spatially explicit simulation (see Appendix
1 and Fig. A1 for details). Each simulation then draws progressively larger boxes around a
starting point and counts a species as present if the box intersects any part of its range. This
allows us to plot a nested species–area curve (see Fig. 4).

These simulations produce a power law SPAR. Over a very wide range of parameter
values, the SPARs have an average R2 of 0.91 for a linear regression in log–log space (i.e. a

Fig. 3. An idea map of which premises and assumptions lead to which resultant patterns. The three
premises are shown on the left, as are two technical assumptions. An arrow indicates that the
assumption/premise is necessary to produce the pattern pointed to. For example, producing the SAD
pattern depends only on premises 1, 2 and 3. The SPAR and decay of similarity patterns depend on
the two assumptions and premise 3 only through the distribution of range sizes.
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power law in arithmetic space), and the z-values range from about 0.05 to 0.25. The curves
also exhibit an acceleration in slope (concave upwards) at very large areas, a pattern that
is found repeatedly in nature (Rosenzweig, 1995; Hubbell, 2001). This model produces
completely horizontal SPARs (z = 0) at very small spatial scales because we ignore the
sampling effects and habitat heterogeneity that drive SPARs at this scale (Rosenzweig,
1995). Again, robustness analysis showed that the model was insensitive to the exact
mathematical assumptions (Table 1).

Pattern 3

Another well-documented pattern is the increasing decay of similarity in species com-
position with increases in geographic distance. Ecologists call this ‘species turnover’, ‘decay
of similarity’ or ‘β-diversity’ (in a slightly different context). When similarity is plotted

Fig. 4. The top figure shows a classic species–area relationship (SPAR) with log area (in km2) on the
x-axis and log number of species on the y-axis. The × symbols represent the simulation based on
the theory in this paper with parameters as specified in Appendix 1 and the resampling method used.
The dotted line is a straight-line (power law) fit to the simulation, whereas the dashed line is a
quadratic fit to the simulation. The bottom plot shows a similarity–decay relationship. The y-axis
plots similarity of species composition between an arbitrary starting point and various other points
along a transect from the starting point. In this plot, community similarity is calculated using the
Jaccard index. The x-axis plots linear distance in kilometres between the arbitrary starting point (here
the centre of the square in the simulation) and select other points along a transect from the starting
point (here chosen to be points due east of the starting point at various distances).
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against distance, we expect to see a roughly hyperbolic curve (rapid decline over short scales,
a slower decline over a long range of intermediate scales, and then an even slower decline
over very long scales) (e.g. Condit et al., 2002). We can use the same model that we used for
SPARs to simulate species turnover. Using the Jaccard measure of similarity between points
at different distances, we can plot a species similarity versus distance curve (see Fig. 4). We
did not fit the data to a particular curve, as there is no well-accepted, theoretically expected
curve. However, each simulation run is visually similar to those found in nature (i.e.
hyperbolic).

Pattern 4

Species abundance distributions (SADs) have puzzled ecologists for nearly a century. The
pattern is clear: in a given community, most species are rare and a few species are abundant
(Darwin, 1859; Preston, 1948; MacArthur, 1972). Plotting the number of species against the
number of individuals in each species (as in a probability distribution) yields a characteristic
hollow curve called a species abundance distribution (see Fig. 1). This same curve has been
plotted on a variety of different axes: log abundance on the x-axis sometimes but not always
gives a modal (humped) pattern (e.g. Preston, 1948), percent or percentile on the x-axis
gives a U-shaped distribution as the long, right tail bends up on the right (Raunkiaer,
1934; Hanski, 1982), while some authors plot abundance on the y-axis and numerical
rank (i.e. 1st, 2nd, 3rd, etc.) on the x-axis (Whittaker, 1965), but all are mathematically
equivalent.

It is easy to see how the three spatial premises we identify could lead to a SAD. If the
spatial abundance distribution across a single species range has a ‘peak-and-tail’ structure,
and if the centre of different species ranges are independently distributed, then sampling
at any point in space yields an assemblage containing many rare and few common species
(Fig. 2). This works because the tails are long – that is, the species are present in low
abundance at most sites and common at only a few. For an empirical example of how the
rank of a species within a community (i.e. the SAD) is driven by our premises, see Fig. 5.
A qualitatively similar idea was suggested by Enquist et al. (1995) and by Gauch and
Whittaker (1972).

This conceptual model can be made more rigorous by an analytical model which shows
that our three premises are by themselves sufficient to generate SAD curves like those seen
in nature. We use the same mathematical notation as before for simplicity (again see Fig. 2
and equation 1) and use a one-dimensional space (the interval [0,1]). Assuming a power
distribution of global abundances and with some algebra (see Appendix 2), we see that the
probability density function (pdf) for abundances of species at one location has the hollow
curve shape characteristic of SADs. In particular, it has a power distribution with the same
shape parameter as the distribution of global abundance. We will test this shortly.

We performed a series of Monte Carlo simulations to test the effects of perturbation from
the mathematical assumptions used in the analytical model. Table 1 summarizes tests
performed to demonstrate that our model is robust – that is, that the exact mathematical
translations that we identified above are not critical to our results. In addition to the
variations described in Table 1, we also performed Monte Carlo analysis with relatively
low (50) versus high (5000) species diversity and with range sizes (σ) constant or variable
between species. We found that none of these alternatives (individually or collectively)
modifies the results – we always get a hollow curve (well fit statistically by a power
distribution).

McGill and Collins478



EMPIRICAL CONFIRMATIONS

So far, we have shown through analytical models and Monte Carlo simulations that our
three premises (and the technical assumption) can produce curves whose shapes match the
four macroecological patterns often observed in nature (using eyeball tests or curve-fitting

Fig. 5. A plot of variation in abundance of the Dickcissel (Spiza americana, in the Cardinal family)
over its species range. At 11 selected points, each successively further from the peak abundance, the
pullouts show the ranks of the species in terms of local abundance within the community (1 is highest)
relative to total number of species in the community and the percentile of abundance within the
community (to adjust for communities that differ in number of species). A ‘ — ’ indicates that the
species is absent from that community even though it is within the range. Note that as we get further
from the peak, the abundance and local rank drop off; in particular, they drop off quite quickly from
the peak and then have a long tail of low abundance.
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with several free parameters). We will now present a number of additional tests of our
theory against empirical data.

For data, we used the North American Breeding Bird Survey (Patuxent Wildlife Research
Center, 2001; Price et al., 1995; Sauer et al., 1997) (see Appendix 3 for details and
for definition of the variables used herein). From it we obtained several results. First, we
will present results that confirm one of our three premises or one of our four patterns
specifically for birds of North America:

1. Premise 2: Different measures of global abundance are highly correlated with each other
(see Table 2). The total abundance of a species across its entire range, its average abun-
dance and its peak abundance are all highly correlated. This suggests that the concept
of global abundance is robust and lessens the need to be precise about the definition.

2. Premise 2: Interspecific distribution of global abundance has a hollow curve distribution
(see Fig. 1). Both a power and a log-normal distribution fit well (r2 = 0.93 and 0.997,
respectively). Maximum likelihood estimates for the parameters are c = 0.293 and µ = 3,
σ = 1.3, respectively. The hollow-curve variation in global abundances is an assumption
of our analytical model and it is here shown to be true for North American birds.

3. Pattern 1: Range size increases with a species’ global abundance. Regression of number of
routes versus ln(MAXABUND) gives an R2 = 0.16 with P < 0.001. Using an alternative
measure of range size (calculated as area in km2 of the convex hull), regression versus
ln(MAXABUND) gives a significant (P < 0.001) relation of range size = 1.15 × 106 km2

+ 872842 × log(MAXABUND) with an R2 = 0.13 (n = 457 for both regressions) (see
Fig. 6). This confirms the first macroecological pattern we are trying to explain as
being true in North American birds. As with other examples of this pattern, there is
considerable scatter.

4. Pattern 4: Interspecific distribution of local abundance (at a given site) fits both the power
and log-normal distributions well. When comparing the observed to the predicted
cumulative distribution functions (cdf), raw R2 and correlational R2 (Wilkinson, 1997,
p. 451) average 0.71 (0.52) and 0.90 (0.78) for the power distribution and 0.98 (0.95) and
0.98 (0.96) for the log-normal distribution, respectively (where the figures in parentheses
represent the lower limits of a 95% confidence interval).

NOVEL, QUANTITATIVE PREDICTIONS TESTED

We now move from confirmatory results in the previous section and from qualitative,
curve-fitting results in the section before that to a stronger test of our theory by examining
novel, quantitative predictions that our model makes and by testing them with the BBS data.

Table 2. Pearson correlation coefficients (r) between various measures of
global abundance

TOTABUND MAXABUND AVGABUND

TOTABUND 1.0000 0.8832 0.7114
MAXABUND 1.0000 0.8735
AVGABUND 1.0000

Note: All correlations are significant at P < 0.0001.
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1. For independently derived, a priori parameters, the SPAR model produces a SPAR similar
to that found in nature. We estimated all parameters of the SPAR model using primarily
BBS data (in particular, no parameters were chosen to maximize goodness-of-fit of the
curve or even using the data we were fitting to (see Appendix 1 for details). With these
a priori parameters, the SPAR model produces a SPAR that is nearly identical to
Preston’s (1960) classic empirical SPAR for North American birds (Fig. 7). Thus, the
model correctly generates the correct slope (z), intercept (c) and location and degree
of curvilinearity. The idea of calculating a species–area curve from randomly placed
species ranges is not novel, but this is the first time that such a simulation has produced
c and z values similar to those in nature without a free (fitting) parameter (cf. Leitner and
Rosenzweig, 1997; Maurer, 1999).

2. The shapes of the local and global abundance distributions are very similar. Our analytical
model for SADs made the novel prediction that the shape (degree of convexity) of the
local and global SADs should be the same. They are – when fitted with a power dis-
tribution, the global abundances (here we used AVGABUND, since it is not confounded
with the number of peaks) have a c parameter of 0.293, while the local abundances have
an average c of 0.289 with 95% of the values falling between 0.204 and 0.380. We use the
power distribution here because it has a single parameter, c, that directly corresponds to
shape only (as opposed to scale, etc.). The fact that the local abundances across 1000 sites

Fig. 6. Plot of species range size versus ln(abundance). The theory predicts an increasing linear
relationship. The data from the Breeding Bird Survey clearly show a positive relationship
(slope = 1.15 × 106, P < 0.001), but there is significant scatter (r2 = 0.13).
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all have a similar c value, which, in turn, is similar to the c value for global abundance, is
striking and suggests that global abundances may in fact drive local abundances to some
degree and through some unknown mechanism (e.g. source–sink population dynamics).
This is contrary to current thinking, which assumes that global abundances are merely
the sum of local abundances.

3. Local abundance increases with proximity to an abundance peak and with global abun-
dance. We sampled 1000 routes and looked at the local abundances at each of these
routes. This gave us a total of 76,581 species–route combinations. In particular,
log(local abundance) was correlated with global abundance (log(MAXBUND)) with
a mean Pearson correlation r = 0.47, and also with distance from peak (log(DIST))
with r = −0.41. Non-parametric Spearman rank correlations and other measures
of global abundance and distance from peak abundance gave very similar results.

Fig. 7. Predicted versus empirical SPAR. This graph shows the simulated SPAR model (× symbols
with line showing an average across 10 Monte Carlo simulations) versus Preston’s (1960) data for
birds of North America (� symbols). The line is nearly horizontal between the leftmost two points
as described in the text. Note that in this same region, the data for scales smaller than 104 km2 fall
below the line. This is because SPARs at small scales are driven by sampling effects and habitat
heterogeneity, which are not included in our model. The rest of the line is a fit of an exponential curve
in log–log space. Except at very small scales, we can see that the simulated data come extremely close
to the observed data, especially given that no fitting parameters were used. The simulation correctly
predicts the c value (intercept), z value (slope) and region and degree of curvilinearity.
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Over the 1000 routes, 95% of the Pearson r values are in the range 0.19–0.66 for
log(MAXABUND) and 0.00 to −0.65 for %DIST. All but eight of the 1000 routes
are significant at the P < 0.001 level for log(MAXABUND) and all but 26 routes are
significant at the P < 0.005 level for log(DIST). Fine-scale spatial autocorrelation could
be partly responsible, but the average distance for a given species in a given route from
its nearest peak is 682 km with a standard deviation of 694 km. Thus, the spatial
autocorrelation would have to be acting over very long distances. Indeed, spatial
correlation would have to be acting over the scale of the entire species range, just as we
have proposed in our model.

4. Our theory explains a large proportion of the variance in local relative rank. This is
clearly related to the previous test. Rank of a species (where 1 = most abundant) can be
predicted by:

RANK = c + c1 log(MAXABUND) + c2 log(DIST) + noise (3)

The average R2 (proportion of variance explained by the two variables) for 1000 routes
was 87%, with 95% of the values falling in the range 76–93%. All 1000 routes were
significant at the P < 0.001 level. Thus, local community importance of a species
is strongly determined by (or at least correlated with) events occurring hundreds and
thousands of kilometres away.

All the above results are conservative for at least two reasons. First, the algorithms for
identifying peaks and range boundaries were relatively crude. We found that humans
looking at range maps produced data that provided even stronger correlations than
those reported, but it was not possible to do this in a scaleable or patently objective
manner. Second, the BBS data are often at the wrong spatial scale for the process. In the
mountainous west, the Gaussian distribution of abundance across an altitudinal gradient
probably drives local abundance more than a Gaussian distribution of abundance across a
species range. This issue is confirmed by the fact that 48 of the 50 routes with the lowest
proportion of variance explained are in mountainous regions of the west. Shoreline/inland
and urban/rural gradients might also affect these results.

DISCUSSION

It is important to recognize the limits of the model. It fails to explain species–area relation-
ships (SPARs) on small scales where sampling and habitat heterogeneity are dominant
factors. It also fails to explain between a quarter to a half of the variation in local rank
and abundances in species abundance distributions (SADs). The remaining variation is
presumably due to local processes, including abiotic and biotic factors, which we do not
model.

Within these limits, the model has great explanatory power. This leads us to examine
what mechanisms (proximate or ultimate) underlie our three premises. So, having spent
time demonstrating how our three premises build up to produce four patterns, we now
reverse direction and explore the mechanisms behind the premises. Despite the fact that the
premises are well documented, their causes are still poorly known.

The first premise, independence of range locations, is not surprising due to a statistical
argument – the law of rare events (Taylor and Karlin, 1998). This law suggests that a great
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many things should be distributed across space according to a Poisson model, much like the
central limit theorem suggests that normal distributions should be common.

We do not understand the cause of interspecific variation in global abundance
(Premise 2). There is evidence that species usually retain their rare or abundant status over
long periods of time (McGowan and Walker, 1985; Boucot, 1996; Brett et al., 1996; Hadly
and Maurer, 2001), albeit subject to major community restructuring events (such as the
retreat of the glaciers). This suggests that relative global abundance might be an inherent
property of the species. As shown here and elsewhere (Brown, 1995; Gaston and Blackburn,
2000), it is strongly correlated with range size. It also seems to be correlated with high rates
of population growth (Kunin and Gaston, 1997; Duncan et al., 1999). We can rule out one
common explanation, body size. Global abundance is not strongly correlated with body
size. Regression of body size versus global abundance on BBS data is significant at
P < 0.0001 with a slope of −0.11, but the regression explains only 2.75% of the variance (see
also Brown and Maurer, 1987). Those traits that have been found to correlate positively
with large ranges all appear to fall into the general category of ‘weediness’ – high rates of
and allocation to reproduction, fast lives (short time to maturity, early death), high dispersal
abilities, living in marginal (often disturbed, low diversity) habitats, and being competitively
subordinate (Glazier, 1980; Gaston and Kunin, 1997; Rosenzweig and Lomolino, 1997;
Glazier and Eckert, 2002).

Neither do ecologists understand what causes the third premise: peak-and-tail spatial
variation in abundance across a range (Brown et al., 1996). One of the authors explores this
pattern and its possible mechanisms in considerable detail in another paper (B.J. McGill,
submitted). To date, three main theories have been proposed (Hengeveld and Haeck, 1981;
Brown, 1984): one based on physiological response surfaces, one based on dispersal and one
based on the Hutchinsonian niche and the central limit theorem. Physiological response
surfaces plot some component of fitness (such as fecundity) against an abiotic factor such as
temperature, light or nutrients. Gause (1932) presented some early physiological response
surfaces and suggested that they were Gaussian (bell-curved) in shape, which explained the
peak-and-tail pattern. Unfortunately, this has not held up. In the modern literature, most
physiological response surfaces are either Monod/Michaelis-Menton (Botkin, 1993; Pacala
and Kinzig, 2002) or parabolic (Botkin, 1993; Guttierez, 1996). These explain the peaks and
sharp drop-offs, but not the tails. The second proposed mechanism is dispersal, which
is modelled by diffusion equations. The solution to the diffusion equation gives a travelling
wave, which is Gaussian (Skellam, 1951; Turchin, 1998). However, this assumes the ability
to reach infinite abundance at one site and to grow in space without limits. Adding a
carrying capacity and finite boundaries gives a solution with a plateau and a sharp drop-off
but with no tails (Skellam, 1951; Kot, 2001). Recent work (B.J. McGill, submitted) has
shown that the addition of a long-tailed dispersal kernel (Clark, 1998) can create tails that
possess a source–sink structure at the scale of the species range (the tails occur in regions
where fitness is below 1.0). The time-scale of this large-scale source–sink dynamic may be
several generations (Maurer and Villard, 1994). Source–sink dynamics at the scale of the
species range is an old idea (Grinnell, 1904; Maurer and Villard, 1994; Lawton, 1996;
Maurer, 1999; Pulliam, 2000). The third theory points out that the Hutchinsonian niche has
many dimensions, and hence the physiological response surfaces along each dimension are
added or multiplied together, allowing an argument based on the central limit theorem to
cause the tails (Brown, 1984; Brown et al., 1995). Recent work (B.J. McGill, submitted)
suggests a fourth mechanism, trade-offs in several components of fitness along a single
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environmental gradient. For example, the trade-off between competitive dominance (pre-
sumably leading to increased food intake and hence fecundity) and environmental tolerance
(leading to increased survival) can combine to create a peak-and-tail structure. Testing these
mechanisms is highly challenging because of the spatial scales involved. Recent work offers
hope though. Laboratory physiology is beginning to be applied to problems at the scale
of species ranges (Davis et al., 1998), and improved molecular techniques provide hope for
tracking large-scale movements of individuals (Clobert et al., 2001). Ultimately, theory and
testing about these mechanisms must be traced to population dynamics (Maurer, 1994;
Maurer and Taper, 2002). In all likelihood, all four of these mechanisms are involved in
creating the peak-and-tail pattern.

There are several implications of this paper for conservation biology. If we are correct
that local SAD curves are structured primarily by where the community is located within
the independent ranges of the species, and not primarily by interspecific interactions or
local abiotic factors, then the design of reserves will have to be approached very differently.
Current analysis of the siting of reserves pays little if any attention to the position of
a reserve within the species range. The consequences of ignoring this depend on the
mechanisms that structure abundance across a species range (Premise 3). If the peak-and-
tail pattern is created purely by physiological responses, then limiting a species to a small
fraction of its former range might have no effects. But if dispersal plays a significant role in
structuring abundances across a range, then this would have radical effects. In particular,
large portions of the range would be sinks, and the species would be doomed in the long run
if a reserve was located within sinks and the sources were eliminated (Grinnell, 1904;
Lawton, 1993; Maurer and Villard, 1994; Lawton, 1996). The high variation in abundance
across a species range also suggests that we need to pay more attention to the abundance
of species and not just the presence or absence of species when we design reserves (Brown
et al., 1995). Much current work on locating reserves is based solely on presence/absence
data (Scott et al., 1993; Jennings et al., 1997). Finally, the abrupt transition in the scale at
which our theory fails to explain and then explains the SPAR may be of use (Fig. 7).
Specifically, this scale (about 104 km2) represents for North American birds the scale at
which a reserve is large enough to contain all the species whose species ranges intersect the
reserve. As discussed, smaller scales do not include either enough individuals or enough
habitat heterogeneity to provide a comprehensive sample of all the species that are
supported in the region. Determination of this scale for various taxa could provide a very
useful guideline for desirable reserve sizes. Admittedly, the resulting reserve size, at least
for birds, is quite large (Yellowstone National Park is about this size at approximately
9000 km2), but it may not be a coincidence that these very large reserves play such a vital
role in conservation.

CONCLUSIONS

In summary, we have presented a model using three well-documented premises, which
produces four qualitative, well-known patterns as well as three novel, quantitative pre-
dictions. We have endeavoured to provide a strong test of this theory. The main implication
of the success of our model is the need to understand what processes underlie our three
premises better. We hope that this work stimulates more research directed towards
understanding the processes driving variation in abundances across ranges and in global
abundance of species.
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APPENDIX 1: METHODS FOR SPAR

To show analytically that our model produces SPARs would require new results in stochastic
geometry, something we have been unable to accomplish.* Thus, we rely entirely on implementing a
Monte Carlo simulation of the three mathematical premises and the one technical assumption
described in the paper. In this description of the simulations, capital letters denote a model variable,
with bold face indicating an input variable. See Fig. A1 for a visual description of the model. We model
the spatial extent as a square of size WIDTH × WIDTH (the edges are not wrapped into a torus as in
some spatial simulations). Let S be the number of species occurring in this area. We place S different
points, µi, randomly in this square according to a two-dimensional Poisson process and let these
points represent the centre of the range for each species.

We then need to determine the RADIUSi of the range centred at each point. We can do this in
one of two ways. The simplest is to randomly resample from the actual ranges sizes observed in the

Fig. A1. A pictorial representation of the SPAR simulation model and its parameters. A continent of
dimensions WIDTH × WIDTH is created. Within this continent, the centres, µi, of species are placed
down randomly using a Poisson process. For each centre, a RADIUS is randomly sampled. One
alternative for the distributions of the radii is to resample from an empirical distribution of range
sizes. Another alternative is to use equation (2) and specify distributions for NMAXi, σi and the value
of NMIN. See the text for descriptions of the distribution of radii. Ranges are treated as circular. A
progressively larger series of boxes is drawn, each with a size of EXTENT × EXTENT where the
maximum EXTENT = WIDTH/2. In the above figure, box A has a species diversity of 3 (inside of two
ranges and intersects a third). Box B has a species diversity of 5 (the previous 3, one whose range is
completely included and one whose range it intersects). The total diversity of the continent, S, is 7.
S is an input parameter to the model.

* While this paper was in final revision, a manuscript was shared with one of us by Andrew Allen and Ethan White
at the University of New Mexico providing an analytical solution to the model described in this section, which we
had to solve by computer modelling. Their paper also appears in this issue (pp. 493–499).
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BBS – treating them as circles and calculating RADIUS = √(rangearea/π). Alternatively, we can use
equation (2). Then we must specify the distributions of σi and of NMAXi and the value of NMIN. We
use a power distribution to represent the distribution of σi, since range distributions are right-skewed
on a log scale. This gives us two parameters, Cσ (the exponent or shape of the power distribution) and
σmax (the largest value of σ). We model NMAXi as varying according to either a power distribution or
a log-normal distribution, as in the SAD model.

We performed sensitivity analysis on all of these parameters. In all cases, power-law SPARs were
produced. The z values varied over a relatively biologically reasonable range of 0.05–0.25. Only one
parameter has a large effect on the z values: the spatial scale of the RADIUS’s (although not the exact
distributional shape). Resampling ensures that we are using exactly what is found in nature. In the
non-resampling model, the parameter σmax and those that drive the distribution of NMAX are the
most critical. The intercept of the curve was sensitive primarily to the ratio of the number of species S
to the area (WIDTH × WIDTH).

To demonstrate that our model is robust to deviations in premise, we also ran Monte Carlo
simulations with all of the alternatives described in Table 2. In all cases, results were very similar
with these modified assumptions, indicating that the SPAR model is robust to variation in the
premises.

We derived the independent (i.e. non-curve-fitting) estimates of these parameters from the BBS data
as follows. We took WIDTH to be 3000 km – giving an area of 9 million km2, close to the size of
the continental USA and the part of southern Canada captured in the BBS. Surprisingly, there are a
great variety of estimates of the number of species of birds in this area, S, depending on time of year
and intensity of sampling. Since we were going to compare with Preston’s data set (Preston, 1960), we
needed to find an estimate of bird diversity in our target region which uses the same standards as
Preston: the number of birds which regularly breed there (Preston defines this as 9 out of 10 years as
estimated by an expert). We obtained an estimate of this by looking at Sibley (2000). Sibley covers all
birds encountered, not just those reliably breeding, so an adjustment is required. Preston lists 625
species living in the Nearctic (Canada and the USA, including Alaska but not Hawaii). Looking
at Sibley’s range maps, we count 549 species which summer or live year-round in the BBS area
(continental USA and southern Canada). Sibley includes 810 species living in a region which matches
Preston’s Nearctic. Thus we may assume that 549/810 = 67.8% of all species encountered in the
Nearctic are encountered in the target BBS area. Applying this to Preston’s 625 species that regularly
breed in the Nearctic, we get 67.8% × 625 = 424 species that regularly breed in the target area. As a
sanity check, we also perform an interpolation on Preston’s curve, by taking the three points closest to
9 × 106 km2 on his nearctic SPAR and fit a quadratic polynomial to estimate the species abundance in
North America arriving at 466.7 species. This result is fairly close and sensitivity analysis suggests that
the resulting SPAR is not too different for either of these estimates. We use the estimate S = 424 since
it was derived independently of that portion of Preston’s data which we are comparing our predicted
curve to.

We derived independent estimates for the distribution of RADIUS as follows. For the resampling
method of determining RADIUS, no parameters were needed. We simply used the range sizes
(defined as the convex hulls around all routes where the species was found converted into area in km2).
For the method using equation (2), we used NMAXi distributed as a log-normal with a mean of 3 and
standard deviation of 1.3 (MLE estimates for the global distribution of average abundance in the
BBS). The parameter σmax represents the distance from the peak to the inflection point of rapid
drop off in abundance on the largest range. We used σmax = 1044, derived by estimating the area where
the Red-winged blackbird (species with the largest fully occupied range) had an abundance > 50
(abundance where rapid drop off in abundance seemed to occur) by multiplying the number of routes
where the abundance was > 50 times the average area/good route (≈ 7000 km2) in the BBS (see Appen-
dix 3 for definition of a good route). We used a power distribution with an exponent Cσ = 0.5 (MLE
estimate for BBS range sizes) for the variation in σ. We used NMIN = 0.25, the middle of three values
used by Price et al. (1995).
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APPENDIX 2: SAD ANALYTICAL MODEL

The key trick in calculating the distribution of abundance, Ni, over all species, i, at a given location, x,
in the interval [0,1] is to note that Ni is symmetric in x and µi (see equation 1). Thus sampling all
species at one point is identical to sampling one species at all points (where the sampling is done with
NMAXi and µi retained as random variables).

This can now be solved using simple calculus and probability definitions (Lindgren, 1976,
pp. 85–87). Let F be a cumulative distribution function. Then the distribution of interspecific
abundances, Ni, at a point (say zero, without loss of generality) = the distribution of abundances of
one species where NMAX and µ are now random variables:

FN(n) = Pr{N ≤ n} = Pr{NMAX exp(−µ
2/2σ

2) ≤ n} = Pr{NMAX ≤ n exp(µ2/2σ
2)}

if we let R represent the region where 0 ≤ µ ≤ 1 and 0 ≤ NMAX ≤ n exp(µ2/σ2), then

FN(n) = ∫ ∫R fNMAX,µ (NMAX, µ) dNMAX dµ = ∫ ∫ R fNMAX(x) fµ (y) dNMAX dµ

(due to independence of NMAX and µ), so

FN(n) = �
1

0

�
nexp(µ2/2σ

2)

0

cNMAXc − 1 •1 dNMAX dµ = �
1

0

NMAXc �
0

nexp(µ2/2σ
2)

dµ = nc�
1

0

exp(cµ
2/2σ

2) dµ

or in conclusion

FN(n) = C(c,σ)nc

where C(c,σ) is a normalization constant depending in an increasing fashion on c and in a decreasing
fashion on σ.

Hence, N is distributed as a power distribution with shape parameter c. Note that if we start out
assuming that NMAX has a distribution other than a power distribution, we do not get the power
distribution for local abundance. A similar analytical approach with a uniform distribution of global
abundances also gives a hollow curve, as does Monte Carlo simulations with a log-normal
distribution.

APPENDIX 3: METHODS FOR BBS

The Breeding Bird Survey (Robbins et al., 1986; Sauer et al., 1997; Patuxent Wildlife Research Center,
2001) is conducted annually during the peak bird breeding season (May and June) and consists of
50 separate three-minute point counts over a 24.5 mile long route. Volunteers collect the data annually
at thousands of different sites across the entire continental USA and southern Canada. It is unique
in its spatial extent, which is important to this paper. The methods used do not give absolute species
abundances, only relative, but this is adequate for the purposes of this paper, since all uses of the data
are comparisons to other sites or species.

The 1966–2000 data set was downloaded on the internet via ftp (Patuxent Wildlife Research Center,
2001). The years 1996–2000 were averaged across time to remove sampling error and other noise while
still using a small enough temporal period to avoid problems with long-term trends of changing
abundance. This gave us a data set with abundance at 4852 routes for 1186 species. The BBS assigns a
route quality to each route/year pair. We used only routes that the BBS administrators considered
good for all 5 years, reducing us to 1401 routes. Thirty-seven species in the data are aggregate species
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(due to taxonomic splitting after data were collected) and a number of others were not observed in
our 5-year period. We eliminated these species, leaving us 564 species. Three measures of global
abundance were calculated: TOTABUND = sum of abundances at all good routes for a species,
MAXABUND = the largest abundance over any good route and AVGABUND = the average abun-
dance over all good routes where the species is found (abundance > 0). The mathematical model is
based on MAXABUND, the height of the peak, and we use this in regressions and correlations.
However, since MAXABUND is not independent of the number of peaks, we use AVGABUND to
represent the shape of the distribution of global abundances. We also calculated two measures of
range size: NUMRTS was the number of good routes at which the species was found, RANGEAREA
was the square kilometres inside the convex hull surrounding all good routes where the species was
found.

Most of our results come from randomly selecting 1000 good routes and, for each route, calculating:

• The observed cumulative distribution function (CDF) of bird abundances.
• The goodness-of-fit of the observed CDF with the CDF of several different theoretical dis-

tributions using two methods of calculating non-linear R2 (proportion of variance explained and
square of correlation coefficient of histograms) and the Kolmogorov-Smirnov statistic.

• For each species we calculated the nearest peak, the distance in kilometres, DIST, to the nearest
peak, and %DIST (the distance to the nearest peak divided by the length of a line passing from
the peak through the particular route to the edge of the range as calculated by the convex
hull method). Peaks were defined heuristically as any route with an abundance greater than
80% of the highest observed abundance over all routes (MAXABUND) on a log scale
(exp(0.80 × log(MAXABUND)).

All variables were log-transformed except %DIST. Both Pearson and Spearman correlations were
calculated and found to be similar. We present the Pearson correlations as they have a stronger
interpretation. Results did not vary substantially regardless of which measures of global abundance
or distance were used. In most cases, the statistics presented represent the mean and the 2.5th and
97.5th percentiles (i.e. includes 95% of routes) over the 1000 routes examined.
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