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Abstract We have previously tried to explain perceptual

inference and learning under a free-energy principle that pur-

sues Helmholtz’s agenda to understand the brain in terms of

energy minimization. It is fairly easy to show that making

inferences about the causes of sensory data can be cast as

the minimization of a free-energy bound on the likelihood

of sensory inputs, given an internal model of how they were

caused. In this article, we consider what would happen if

the data themselves were sampled to minimize this bound.

It transpires that the ensuing active sampling or inference is

mandated by ergodic arguments based on the very existence

of adaptive agents. Furthermore, it accounts for many aspects

of motor behavior; from retinal stabilization to goal-seeking.

In particular, it suggests that motor control can be under-

stood as fulfilling prior expectations about proprioceptive

The free-energy principle is an attempt to explain the structure and

function of the brain, starting from the fact that we exist: This fact

places constraints on our interactions with the world, which have been

studied for years in evolutionary biology and systems theory. However,

recent advances in statistical physics and machine learning point to a

simple scheme that enables biological systems to comply with these

constraints. If one looks at the brain as implementing this scheme

(minimizing a free-energy bound on disorder), then many aspects of

its anatomy and physiology start to make sense. In this article, we

show that free-energy can be reduced by selectively sampling sensory

inputs. This leads to adaptive responses and provides a new view of

how movement control might work in the brain. The main conclusion

is that we only need to have expectations about the sensory

consequences of moving in order to elicit movement. This means we

that can replace the notion of desired movements with expected

movements and understand action in terms of perceptual expectations.
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sensations. This formulation can explain why adaptive

behavior emerges in biological agents and suggests a sim-

ple alternative to optimal control theory. We illustrate these

points using simulations of oculomotor control and then

apply to same principles to cued and goal-directed move-

ments. In short, the free-energy formulation may provide an

alternative perspective on the motor control that places it in

an intimate relationship with perception.
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Hierarchical · Priors

List of symbols

� ⊇ {x̃, ṽ, θ , γ }, Unknown causes of sensory

� ⊇ {x̃, ṽ, θ, γ } input; variables in bold denote

true values and those in italics

denote variables assumed by

the agent or model

x̃(t) = [x, x ′, x ′′, . . .]T , Generalised hidden-states that
˙̃x(t) = f (x̃, ṽ, θ) + w̃ act on an agent. These are

time-varying quantities that

include all high-order temporal

derivatives; they represent a

point in generalised coordi-

nates of motion that encodes

a path or trajectory

ṽ(t) = [v, v′, v′′, . . .]T Generalised forces or causal

states that act on hidden

states

s̃(t) = g(x̃, ṽ, θ) + z̃ Generalised sensory states

caused by hidden states

θ ⊇ {θ1, θ2, . . .} Parameters of the equa-

tions of motion and sen-

sory mapping
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γ ⊇ {γ s, γ x , γ v} Parameters of the preci-

sion of random fluctuations

�(γ i ) : i ∈ s, x, v

w̃(t) = [w,w′, w′′, . . .]T Generalised random fluctua-

tions of the motion of hid-

den states

z̃(t) = [z, z′, z′′, . . .]T Generalised random fluctua-

tions of sensory states

ñ(t) = [n, n′, n′′, . . .]T Generalised random fluctua-

tions of causal states

�i := �(γ i ) = �(γ i )−1 Precisions or inverse covar-

iances of generalised ran-

dom fluctuations

g(x̃, ṽ, θ), f(x̃, ṽ, ã, θ) Sensory mapping and equa-

tions of motion generating

sensory states

g(x̃, ṽ, θ), f (x̃, ṽ, θ) Sensory mapping and equa-

tions of motion modeling

sensory states

a(t) Policy: a scalar function

of generalised sensory and

internal states

p(x̃ |m ), p(s̃ |m ) Ensemble densities; the den-

sity of the hidden and sen-

sory states of agents at equi-

librium with their environ-

ment.

D(q||p) =
〈

ln(q
/

p)
〉

q
Kullback-Leibler divergence

or cross-entropy between

two densities

〈〉q Expectation or mean of under

the density q

m Model or agent; entailing the

form of a generative model

H(X) = 〈ln p(x̃|m)〉p Entropy of generalised hid-

den and sensory statesH(S) = 〈ln p(s̃|m)〉p

− ln p(s̃|m) Surprise or self-information

of generalised sensory

states

F(s̃, µ) ≥ − ln p(s̃|m) Free-energy bound on sur-

prise

q(�|µ) Recognition density on

causes � with sufficient

statistics µ

µ = {µ̃(t), µθ , µγ } Conditional or posterior

µ̃ = {µ̃x , µ̃v} expectation of the causes

�; these are the sufficient

statistics of the Gaussian

recognition density

η̃(t) = [η, η′, η′′, . . .]T Prior expectation of general-

ised causal states

ξi = �i ε̃i : i ∈ s, x, v Precision-weighted general-

ised prediction errors

ε̃ =

⎡

⎣

ε̃s = s̃ − g(µ)

ε̃x = Dµ̃x − f (µ)

ε̃v = µ̃v − η̃

⎤

⎦ Generalised prediction error

on sensory states, the

motion of hidden states and

forces or causal states.

1 Introduction

This article looks at motor control from the point of view of

perception; namely, the fitting or inversion of internal mod-

els of sensory data by the brain. Critically, the nature of this

inversion lends itself to a relatively simple neural network

implementation that shares many formal similarities with real

cortical hierarchies in the brain. The idea that the brain uses

hierarchical inference has been established for years (Mum-

ford 1992; Rao and Ballard 1998; Friston 2005; Friston et

al. 2006) and provides a nice explanation for the hierarchi-

cal organization of cortical systems. Critically, hierarchical

inference can be formulated as a minimization of free-energy;

where free-energy bounds the surprise inherent in sensory

data, under a model of how those data were caused. This

leads to the free-energy principle, which says that everything

in the brain should change to minimize free-energy. We will

see below that free-energy can be minimized by changing

perceptual representations so that they approximate a poster-

ior or conditional density on the causes of sensations. In short,

the free-energy principle entails the Bayesian brain hypoth-

esis (Knill and Pouget 2004; Ballard et al. 1983; Dayan et al.

1995; Lee and Mumford 2003; Rao and Ballard 1998; Friston

2005; Friston and Stephan 2007). However, the free-energy

principle goes further than this. It suggests that our actions

should also minimize free-energy (Friston et al. 2006): We

are open systems in exchange with the environment; the envi-

ronment acts on us to produce sensory impressions, and we

act on the environment to change its states. This exchange

rests upon sensory and effector organs (like photoreceptors

and oculomotor muscles). If we change the environment or

our relationship to it, then sensory input changes. Therefore,

action can reduce free-energy by changing the sensory input

predicted, while perception reduces free-energy by changing

predictions. In this article, we focus in the implications of

suppressing free-energy through action or behavior.

Traditionally, the optimization of behavior is formulated

as maximizing value or expected reward (Rescorla and Wag-

ner 1972; Sutton and Barto 1981). This theme is seen

in cognitive psychology, in reinforcement learning models

(Rescorla and Wagner 1972); in computational neuroscience

and machine-learning as variants of dynamic programming,

such as temporal difference learning (Sutton and Barto 1981;
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Watkins and Dayan 1992; Friston et al. 1994; Daw and Doya

2006), and in behavioral economics as expected utility theory

(Camerer 2003). In computational motor control (Wolpert

and Miall 1996; Todorov and Jordan 2002; Todorov 2006;

Shadmehr and Krakauer 2008), it appears in the form of

optimal control theory. In all these treatments, the problem of

optimizing behavior is reduced to optimizing value (or, con-

versely, minimizing expected loss or cost). Effectively, this

prescribes an optimal control policy in terms of the value that

would be expected by pursuing that policy.

Our studies suggest that maximizing value may represent

a slight misdirection in explaining adaptive behavior, because

the same behaviors emerge in agents that minimize free-

energy (Friston et al. 2009). In brief, the minimization of free-

energy provides a principled basis for understanding both

action and perception, which replaces the optimal polices of

control theory with prior expectations about the trajectory of

an agent’s states. In Sect. 2, we review the free-energy princi-

ple and active inference. In Sect. 3, we show how active infer-

ence can be used to model reflexive and intentional behavior.

This section deals with visual and proprioceptive models to

demonstrate the key role of prior expectations in prescribing

movement. In Sect. 4, we consider the integration of visual

and proprioceptive signals in finessing the control of cued

reaching movements. Section 5 addresses how these prior

expectations could be learned and illustrates the acquisition

of goal-directed movements using the mountain-car problem

(Sutton 1996; see also Friston et al. 2009). Section 6 revisits

the learning of priors to prescribe autonomous behavior. We

conclude by discussing the relationship between active infer-

ence and conventional treatments of computational motor

control.

2 The free-energy principle

In this section, we try to establish the basic motivation for

minimizing free-energy. This section rehearses material that

we have used previously to understand perception. It is pre-

sented here with a special focus how action maintains a sta-

tionary relationship with the environment; and is developed

more formally than in previous descriptions (e.g., Friston and

Stephan 2007). The arguments for how perception decreases

free-energy can be found in the neurobiological (Friston et al.

2006; Friston 2008) and technical (Friston et al. 2008) litera-

ture. These arguments are reviewed briefly but only to a depth

that is sufficient to understand the simulations in subsequent

sections.

What is free-energy? In statistics and machine learning,

free-energy is an information theory quantity that bounds the

evidence for a model of data (Hinton and von Camp 1993;

MacKay 1995; Neal and Hinton 1998). Here, the data are

sensory inputs, and the model is encoded by the brain. More

precisely, free-energy is greater than the surprise (negative

log-probability) of some data, given a model of how those

data were generated. In fact, under simplifying assumptions

(see below), it is just the amount of prediction error. It is

called free-energy because of formal similarities with ther-

modynamic free-energy in statistical physics; where energies

are just negative log-probabilities (surprise) and free-energy

is a bound on surprise. In what follows, we describe the nature

of free-energy, and show why it is minimized by adaptive

agents.

We start with the premise that adaptive agents or pheno-

types must occupy a limited repertoire of physical states. For

a phenotype to exist, it must possess defining characteristics

or traits; both in terms of its morphology and exchange with

the environment. These traits essentially limit the agent to

a bounded region in the space of all states it could be in.

Once outside these bounds, it ceases to possess that trait (cf.,

a fish out of water). This speaks to self-organized autopoi-

etic interactions with the world that ensure these bounds are

respected (cf., Maturana and Varela 1972). Later, we for-

malize this notion in terms of the entropy or average sur-

prise associated with a probability distribution on the states

an agent experiences. The basic idea is that adaptive agents

must occupy a compact and bounded part of state–space and,

therefore, avoid surprising states (cf., a fish out of water—

sic). In terms of dynamical system theory, this set of states

is a random attractor (Crauel and Flandoli 1994). Given this

defining attribute of adaptive agents, we will look at how

agents might minimize surprise and then consider what this

means, in terms of their action and perception.

The free-energy principle rests on an ensemble density

p(x̃|m) on generalized states, x̃(t) = [x, x′, x′′, . . .]T , which

affect an agent, m. Generalized states cover position, veloc-

ity, acceleration, jerk, and so on (Friston 2008). This means

that states include the position or configuration of the agent,

its motion, and all influences acting on the agent: i.e., phys-

ical forces like gravity; thermodynamic states like ambient

temperature, or physiological states such as hypoglycemia.

Strictly speaking; the dimensionality of generalized states is

infinite because the generalized motion of each state exists

to infinite order. However, in practice one can ignore high-

order temporal derivatives because their precision vanishes

and they contain no useful information (i.e., their disper-

sion gets very large; see Friston 2008; Friston et al. 2008 for

details). In the simulations below, we only used generalized

states up to sixth order. In what follows, x(t) refers to a state

vector and x̃(t) denotes the corresponding generalized state

(i.e., the state and its generalized motion). Note that the den-

sity p(x̃|m) is conditioned on the agent or model. We will see

later that the model entails formal constraints on the motion

of an agent’s states (i.e., its state-transitions or policy). This

means the ensemble density is specific to each class of agent.

The ensemble density can be regarded as the probabil-

ity of finding an agent in a particular state, when observed
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on multiple occasions or, equivalently, the density of a large

ensemble of agents at equilibrium with their environment.

Critically, for an agent to exist, the ensemble density should

have low entropy. This ensures that agents occupy a lim-

ited repertoire of states because a density with low entropy

concentrates its mass in a small subset of state–space (i.e.,

its attractor). This places an important constraint on the

states sampled by an agent; it means agents must some-

how counter the dispersive effects of random forces, which

increase entropy. This increase is a consequence of the fluc-

tuation theorem (Evans 2003), which generalizes the sec-

ond law of thermodynamics and says that the probability of

entropy decreasing vanishes exponentially the longer a sys-

tem is observed. Adaptive agents resist the implicit dispersion

of their states through adaptive behaviors (like eating) that

maintain their milieu within physiological bounds. In sum-

mary, biological agents must resist the natural tendency to

disorder or increasing entropy; but how do they do this?

2.1 Active agents

At this point, we introduce the notion of active agents

(Schweitzer 2003) that sense some states (with sensory

organs) and can change others (with effector organs). We

can describe this exchange with the environment in terms of

sensory states s̃(t) like the activity of photoreceptors, internal

states µ̃(t) such as neuronal activity, and action a(t) encod-

ing peripheral motor control signals. Because agents only

sense external states of the world through a probabilistic map-

ping, they are hidden from the agent. We will, therefore, call

x̃ ∈ X hidden states and assume that they evolve according to

some complicated equations of motion, ˙̃x = f(x̃, a, θ) + w̃,

where w are random fluctuations. We will see examples of

this equation later, where x̃(t) represents the angular posi-

tion and speed of a joint, and θ encodes the elasticity and

viscosity of muscles. We will use an unusual convention in

which true hidden quantities are presented in bold and others

in italics.

Control (e.g., of saccadic eye-movements) is represented

by making the equations of motion a function of action. We

will see below that action depends vicariously on sensory

states and, therefore, constitutes a policy (from the point of

view of optimum control theory). It is this policy that resists

the increasing entropy of hidden states, because the only way

that the agent can change hidden states is through action. We

assume that agents do this by minimizing entropy until the

movement of states toward the agent’s attractor is balanced

by dispersion due to random fluctuations. Sensation (e.g.,

proprioception) can be described with a probabilistic map-

ping s̃ = g(x̃, θ) + z̃ from hidden to sensory states s̃ ∈ S,

where z represents sensory noise. Later, we will see exam-

ples were g(x̃, θ) maps from the trajectory of an object in

the visual field to the activity of photoreceptors. The equa-

tions of motion and sensory mapping are parameterized by

(generally non-overlapping) subsets of some time-invariant

parameters θ .

Under a sensory mapping, the entropy of the hidden states

is bounded by the sensory entropy and a sensory mapping

term, with equality in the absence of sensory noise (see

Appendix 1).

H(X |m) ≤ H(S|m) −

∫

p(x̃|m) ln |∂x̃g|dx̃

s̃ = g(x̃, θ) + z̃

˙̃x = f(x̃, a, θ) + w̃

(1)

where the respective entropies are

H(S|m) = −

∫

p(s̃|m) ln p(s̃|m)ds̃

H(X |m) = −

∫

p(x̃|m) ln p(x̃|m)dx̃

(2)

The second term depends on the collective sensitivity

|∂x̃g| := det(∂x̃g) of sensory inputs to changes in hidden

states, where ∂x̃g is the derivative of the sensory mapping

with respect to the hidden states. For simplicity, we will

assume that this sensitivity is uniformly high over the ranges

of states considered. This appeals to the principle of max-

imum information transfer (Linsker 1990), which has been

very useful in understanding the emergence of things like

receptive fields (e.g., Olshausen and Field 1996). Under this

simplifying assumption, the second term is constant, and it

is sufficient to minimize sensory entropy to minimize the

entropy of hidden states. This is important because the agent

has access to sensory states but not hidden states. Note that

agents cannot minimize sensory entropy by switching off

sensory channels; they can only act by changing hidden

states, not the sensory mapping per se.

Crucially, because the ensemble density on sensory states

is at equilibrium, it can be interpreted as the proportion of

time a single agent entertains these states (the sojourn time).

This ergodic argument (Anosov 2001) means that the sensory

entropy is the long-term average of the surprise − ln p(s̃|m)

experienced by a particular agent:

H(S|m) = lim
T →∞

−
1

T

T
∫

0

dt ln p(s̃(t)|m) (3)

This means that in order to minimize sensory entropy, one

needs to minimize surprise at all times (i.e., for all successive

sensory samples).

At this point, most (astute) people say “but that means

I should retire to a dark room and cover my ears.” How-

ever, is not quite that simple: Recall that entropy is aver-

age surprise and surprise depends on the agent. This means

that it might be surprising to find an agent in a dark room.
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It helps here to imagine that each class of agent (e.g., spe-

cies) has equations of motion that induce a random attractor

in state–space (more formally, a compact random invariant

set that attracts all trajectories; Crauel and Flandoli 1994).

Entropy decreases with the volume or measure of this set.

However, it is important not to confuse volume with shape

or topological complexity. The attractor could be very com-

plicated and space-filling but occupy a small volume (e.g.,

the states encountered while driving a car with a small mar-

gin of error). In this view, minimizing surprise ensures that

states evolve according to the expected flow, f(x̃, ã, θ) and

remain in the attractor (e.g., within physiological bounds). In

short, the ensemble and sensory entropy are lower bounded

by a random attractor entailed by an agent’s class. Agents try

to attain this bound by minimizing surprise, while learning

and natural selection may reduce the bound by optimizing the

attractor per se. This means the notion of a “dark room” agent

is a category error; in the sense that “dark room” or any fixed-

point attractors are not invariant under real world dynamics

and, therefore, cannot exist (e.g., at some point, you will

get thirsty). Perhaps the most potent examples of surprise-

reducing dynamics are found in physiology, which can be

understood largely in terms of homeostatic mechanisms that

avoid surprising trajectories of the internal milieu:

The fixity of the milieu supposes a perfection of the

organism such that the external variations are at each

instant compensated for and equilibrated … All of the

vital mechanisms, however varied they may be, have

always one goal, to maintain the uniformity of the con-

ditions of life in the internal environment … The sta-

bility of the internal environment is the condition for

the free and independent life (Bernard 1974).

This is closely related to perspectives on motor control and

sequence learning that “minimize deviations from the desired

state, that is, to minimize disturbances of the homeostasis of

the feedback loop.” See Wörgötter and Porr (2005) for a fuller

discussion. In summary, avoiding surprise is fundamental for

survival and speaks to the basic need of organisms to main-

tain equilibrium within their environment. However, there is

a problem:

2.2 Free-energy, action and perception

The problem faced by real agents is that they cannot quantify

surprise, because this entails marginalizing over the unknown

or hidden causes � ⊃ {x̃, θ} of sensory input that include

time-varying hidden states and time-invariant parameters

− ln p(s̃|m) = − ln

∫

p(s̃, �|m)d� (4)

However, there is an alternative and elegant solution to

minimizing surprise, which comes from theoretical phys-

ics (Feynman 1972) and machine learning (Hinton and von

Camp 1993; MacKay 1995). This involves minimizing a free-

energy bound on surprise that can be evaluated. Minimizing

this bound implicitly minimizes surprise because the bound

is always greater than surprise. The bound is induced by a rec-

ognition density q(�|µ), which is parameterized by its suf-

ficient statistics µ ⊃ µ̃(t) (e.g., mean or covariance). These

sufficient statistics are encoded by the internal states of the

agent (e.g., by neuronal activity and connection strengths).

The recognition density is a slightly mysterious construct

because it is an arbitrary probability density specified by the

internal states of the agent. Its role is to induce free-energy,

which is a function of the internal states and sensory inputs.

We will see below that when this density is optimized to min-

imize free-energy, it becomes the conditional density on the

causes of sensory data. In Bayesian inference, this is known

as the recognition density. In what follows, we summarize

the key ideas behind a large body of study in statistics and

machine learning referred to as ensemble learning or varia-

tional Bayes.

The free-energy bound is constructed by simply augment-

ing surprise with a non-negative divergence between the rec-

ognition density and conditional density p(�|s̃, m). This is

described Appendix 2. The resulting expression for free-

energy can be expressed in three ways (with the use of Bayes

rule and simple rearrangements):

• Energy minus entropy

• Divergence plus surprise

• Complexity minus accuracy

Mathematically, these correspond to:

F = −〈ln p(s̃, �|m)〉q + 〈ln q(�|µ)〉q

= D(q(�|µ)||p(�|s̃, m)) − ln p (s̃|m)

= D(q(�|µ)||p(�|m)) − 〈ln p(s̃|�, m)〉q

(5)

Here, 〈·〉q means the expectation or mean under the density

q and D(·||·) is the cross-entropy or Kullback–Leibler diver-

gence between two densities. The alternative formulations

in Eq. 5 have some important implications: The first shows

that free-energy is a scalar function of sensory data and the

recognition density at any particular time. This can be evalu-

ated by an agent; provided it has a probabilistic model of the

environment. This model is usually expressed as the product

of a likelihood and prior, p(s̃, �|m) = p(s̃|�, m)p(�|m).

We will see examples of this model later (e.g., the likelihood

model in Eq. 8).

The second formulation shows that minimizing the free-

energy, by changing internal states (i.e., the sufficient sta-

tistics of q(�|µ)), reduces the divergence between the

recognition and conditional densities. This makes the

recognition density an approximate conditional density. This

corresponds to Bayesian inference on the causes of sensory
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signals and provides a principled account of perception; i.e.,

the Bayesian brain (Helmholtz 1860/1962; Barlow 1969;

Ballard et al. 1983; Mumford 1992; Dayan et al. 1995; Rao

and Ballard 1998; Lee and Mumford 2003; Knill and Pouget

2004; Kersten et al. 2004; Friston and Stephan 2007; Deneve

2008). Finally, it shows that free-energy is an upper bound

on surprise because the divergence cannot be less than zero:

Optimizing the recognition density makes the free-energy

a tight bound on surprise; when the recognition and condi-

tional densities coincide, free-energy is exactly surprise and

perception is veridical.

The third equality shows that free-energy can be sup-

pressed by action, through its effects on hidden states and

the ensuing sensory signals. The key term here is the accu-

racy term, which is the expected surprise of sensory data

under the recognition density (under Gaussian assumptions,

this is just the amount of sensory prediction error). This

means action will change the motion of sensory states so

that they conform to conditional expectations. This min-

imizes surprise, provided perception makes free-energy a

tight bound on surprise. In short, the free-energy princi-

ple prescribes an optimum perceptual representation and

policy

µ(t)∗ = arg min
µ

F(s̃(t), µ(t))

a(t)∗ = arg min
a

F(s̃(t), µ(t))
⇒

∂µF(s̃, µ) = 0 ⇒ δµ

T
∫

0

dt F(s̃, µ) = 0

∂a F(s̃, µ) = 0 ⇒ δa

T
∫

0

dt F(s̃, µ) = 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ=µ∗

(6)

This policy reduces to sampling input that is expected

under the recognition density (i.e., sampling selectively what

one expects to experience). In other words, agents must nec-

essarily (if implicitly) make inferences about the causes of

their sensory signals and sample signals that are consistent

with those inferences. Technically, minimizing free-energy

ensures the variation of its path integral, with respect to small

variations in action or internal representations, is zero (see

Eq. 6). This time or path-integral is called Action (not to be

confused with action). Under ergodic assumptions, Action is

an upper bound on sensory entropy (see Eq. 3), which means

optimal action and perception minimize a bound on sensory

surprise and, implicitly, entropy.

The free-energy principle suggests that we should sample

the world to ensure our predictions become a self-fulfilling

prophecy. In this view, perception is enslaved by action to

provide veridical predictions (more formally, to make the

free-energy a tight bound on surprise) that guide active sam-

pling of the sensorium. This active sampling should not

be confused with active learning (Mumford 1992). Active

learning or sequential design tries to harvest data to make

recognition more precise using various criteria, based on

how data inform model parameter estimates; “these crite-

ria depend on the assumption that the hypothesis space is

correct, which may prove to be their main weakness” (Mum-

ford 1992). Under the free-energy formulation, this weakness

becomes the strength; if the environment delivers data that

are consistent with the agent’s model or hypothesis space,

then the agent must be at equilibrium with its environment.

2.3 Summary

In summary, the free-energy principle requires the internal

states of an agent and its action to suppress free-energy.

This corresponds to optimizing a probabilistic model of

how sensations are caused, so that the resulting predic-

tions can guide active sampling of sensory data. The req-

uisite interplay between action and perception (i.e., active

inference) engenders a policy that ensures the hidden states

that act on the agent have low entropy. Put simply, if

you search out things you expect, you will avoid sur-

prises. This recapitulates the notion that “perception and

behavior can interact synergistically, via the environment”

to optimize behavior (Verschure et al. 2003). Indeed, Distrib-

uted Adaptive Control (Verschure and Voegtlin 1998) relates

closely to the free-energy formulation, because it provides an

integrated solution to the acquisition of probabilistic models

and policies. Active inference is an example of self-refer-

enced learning (Maturana and Varela 1972; Porr and Wörgöt-

ter 2003) in which “the actions of the learner influence its own

learning without any valuation process” (Porr and Wörgötter

2003).

In machine learning and statistics, the free-energy is used

as a bound on the log-evidence for a model. This means, given

some data, one can optimize the model to maximize its evi-

dence; i.e., find the model that minimizes the surprise of some

fixed data. The free-energy principle turns this optimization

around and considers that the model (agent) is fixed and the

aim is to minimize surprise by re-sampling the data. This

minimization is mandated by the fact that average surprise is

entropy and agents must have a low entropy ensemble den-

sity. This argument rests on noting that the ensemble density

is formally identical to the marginal likelihood in statistics.

In the analysis of time-series data, one optimizes the model
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with respect to the path integral of free-energy over time (see

Friston 2008): Minimizing free-energy at each point in time

provides a stationary solution for Action (by the fundamental

lemma of variational calculus): this is basically Hamilton’s

principle of stationary Action. All that we are doing here is

noting that Action is a bound on the path-integral of surprise

and, under ergodic assumptions, entropy. This means find-

ing a minimum for Action implicitly finds a minimum for

sensory entropy. It is interesting to note that a tendency to

disorder or the second law of thermodynamics (which applies

only to closed systems) can be resisted by appealing to the

more general tendency of (open) systems to reduce their free-

energy (Gontar 2000; Evans 2003). A related treatment of

self-organization in non-equilibrium systems can be found in

synergetics; where “patterns become functional because they

consume in a most efficient manner the gradients which cause

their evolution” (Tschacher and Haken 2007). Here, these

gradients might be regarded as surprise. This section has tried

to establish the theoretical motivation for free-energy mini-

mization. We now turn to how this might be implemented in

the brain.

3 Active inference

In this section, we unpack the theory above to establish the

nature of processes underlying action and perception. In the

previous section, we saw that optimal action and perception

could be cast as minimizing free-energy and that free-energy

is defined in relation to a probabilistic generative model of

the world. In what follows, we will examine particular forms

of this model, which enable free-energy to be expressed in

terms of prediction errors (the mismatch between observed

sensory signals and those predicted by the model). This leads

to a formulation of action and perception as the suppression of

prediction errors (or surprise). By assuming the minimization

in Eq. 6 is implemented using gradient decent, we can then

write down differential equations that prescribe the dynamics

of action and recognition as functions of prediction error.

In order to see how active inference works, we must first

define an environment and the agent’s model of it. We will

assume that both can be cast as dynamical systems with addi-

tive random effects. For the environment, we have equations

of motion and a sensory mapping that describe the processes

generating sensory data

s̃ = g(x̃, ṽ, θ) + z̃

˙̃x = f(x̃, ṽ, a, θ) + w̃
(7)

This describes how sensory data are actually generated, while

the agent assumes that these data are generated by the fol-

lowing system:

s̃ = g(x̃, ṽ, θ) + z̃

˙̃x = f (x̃, ṽ, θ) + w̃

ṽ = η̃ + ñ

(8)

Equation 8 is just a way of expressing a generative model in

terms of equations that have a formal homology with the true

generative process (Eq. 7). In other words, Eq. 8 represents

a parameterized model of sensory input, which becomes a

probabilistic model, if the agent makes some assumptions

about the probability distribution of the random fluctuations

(see below). Note that we have partitioned the hidden states

into those that are autonomous ṽ(t) and those that are not

x̃(t) (cf. Eq. 1). The autonomous hidden states (e.g., exoge-

nous forces) allow us to model exogenous perturbations of

the agent’s state. In previous treatments (e.g., Friston et al.

2006; Friston 2005), we have called these casual states. Fur-

thermore, these forces are modeled as mixture of some deter-

ministic prior η̃(t) and random fluctuations ñ(t).

Equations 7 and 8 pertain to the same sensory states and

play a similar role. However, the first is the true stochastic

process generating states, and the second is a probabilistic

model of this process. The equations of motion and sensory

mapping may or may not have the same form, which means

the agent’s model of the world may be different from the real

process generating sensory data. Furthermore, we allow for

a difference between the true unknowns � ⊃ {x̃, ṽ, θ} and

those assumed by the model � ⊃ {x̃, ṽ, θ}.

Gaussian assumptions about the random fluctuations

{z̃, w̃, ñ} in Eq. 8 furnish three things; a likelihood model,

p(s̃|�) = N (g, �(γ s)), empirical priors on the general-

ized motion p(x̃ ′|ṽ, �) = N ( f, �(γ x )), and priors on the

forces, p(ṽ) = N (η̃, �(γ v)). Here, the inverse variances or

precisions � ⊃ γ i : i ∈ s, x, v determine the covariance

�(γ i ) of the generalized fluctuations. Note that the equa-

tions of motion for the true states depend on action, whereas

the generative model has no notion of action; it just produces

predictions that action tries to fulfill. However, the generative

model contains a prior on exogenous forces, which, as we will

see later, can be used to model the effects of action. Equa-

tion 8 is a simple hierarchical dynamic model in generalized

coordinates of motion. This sort of model is considered in

detail in Friston (2008). Recall that the equations generating

data (Eq. 7) and those of the generative model (Eq. 8) do not

have to be the same; it is this discrepancy that action tries to

cancel.

Given a probabilistic generative model, the free-energy

can now be minimized: This minimization obliges the agent

to infer the states of the world and learn the unknown

parameters responsible for its motion by optimizing the

sufficient statistics of its recognition density. This is per-

ceptual inference and learning and can be implemented

in a biologically plausible fashion as described in Friston

(2008). In brief, this scheme assumes that a mean-field
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approximation: q(�|µ) = q(x̃, ṽ|µ̃)q(θ |µθ )q(γ |µγ ) with

Gaussian marginals, whose sufficient statistics are expec-

tations and covariances. Under this Gaussian or Laplace

approximation, it is sufficient to optimize the expectations

because the covariances can be derived as a function of the

expectations. From now on, we assume that the sufficient

statistics are the conditional expectations of states, parame-

ters, and precisions, µ = {µ̃, µθ , µγ }, where the conditional

expectations of states µ̃(t) = {µ̃x , µ̃v} are in generalized

coordinates of motion. Using these (mean-field and Laplace)

approximations, we can formulate Eq. 6 as a gradient descent

that describes perceptual inference, learning, and action (see

Friston et al. 2008; Friston 2008 for details):

˙̃µx = Dµ̃x −
∂ F

∂µ̃x

≈ Dµ̃x −
∂ε̃T

∂µ̃x

ξ

˙̃µv = Dµ̃v −
∂ F

∂µ̃v

≈ Dµ̃v −
∂ε̃T

∂µ̃v

ξ

µ̈θ = −
∂ F

∂µθ

≈ −
∂ε̃T

∂µθ

ξ

ȧ = −
∂ F

∂a
= −

∂ε̃T
s

∂a
ξs

F ≈
1

2
ε̃T �ε̃ −

1

2
ln |�|

ξ = �ε̃

(9)

This equation is used in all the simulations of active infer-

ence described later. It has a simple form because the free-

energy in Eq. 5 reduces (effectively) to a sum of squared

errors because of our Gaussian assumptions about the ran-

dom fluctuations. The approximate equalities in Eq. 9 are due

to the fact that we are neglecting mean-field terms (and retain

only terms that depend on conditional expectations). The

derivative operator D is a block matrix with identity matri-

ces along the first diagonal such that x̃ ′ := [x ′, x ′′, . . .]T =

D[x, x ′, . . .]T = Dx̃ . The first pair of equations prescribes

recognition dynamics, in terms of how expected states change

over time. The second terms in these equations are free-

energy gradients. The first terms reflect the fact that we

are working in generalized coordinates; they ensure that
˙̃µ = Dµ̃ ⇒ ∂µ̃F = 0 when free-energy is minimized and

its gradient is zero (i.e., they ensure the motion of the expec-

tation is the expected motion). This scheme can be imple-

mented in a biologically plausible manner by assuming that

the activity of one population of neurons encodes the con-

ditional expectations µ̃(t) and another population encodes

precision-weighed prediction errors

ε̃ =

⎡

⎣

ε̃s = s̃ − g(µ)

ε̃x = Dµ̃x − f (µ)

ε̃v = µ̃v − η̃

⎤

⎦ (10)

The prediction errors ε̃(t) are just the difference between

sensory samples (resp. expected motion of hidden states)

and the predictions afforded by the sensory mapping (resp.

equations of motion) evaluated with the expected states and

parameters. The matrix �(µγ ) is the expected precision

(inverse covariance) of the random effects and effectively

boosts prediction errors in proportion to their precision (see

Friston 2008 for more details). Note that under the Laplace

assumption, minimizing free-energy corresponds to mini-

mizing prediction error. This sort of scheme is also called

predictive coding (Rao and Ballard 1998). Figure 2a shows

a schematic of the neuronal circuits that might implement

predictive coding of this sort. These circuits comprise neu-

ronal state-units or populations (white) that encode sensory

input and the conditional expectations of hidden states caus-

ing that input. Error-units are shown in red and encode the

prediction error for their corresponding state-unit. The dot-

ted lines are connections that are intrinsic to the model, and

solid lines represent coupling between action-units (black)

and effectors. The red lines convey prediction errors to the

state (and action) units, while the black lines pass predictions

to the error-units (and effectors). See, Friston (2008), for a

fuller description of the implicit message-passing scheme.

The solutions to the third line in Eq. 9 are the optimum

parameters that may be encoded in the brain with synaptic

efficiency (Friston 2008). These are second-order differential

equations because these expectations optimize Action (the

path-integral of free-energy), due to the fact we know a pri-

ori, that they do not change with time. The resulting changes

in synaptic efficacy are formally identical to Hebbian or asso-

ciative plasticity (under some simplifying assumptions; see

Friston 2008 for details). The final equation describes action

as a gradient descent on free-energy. The only way action can

affect free-energy is through changing the motion of sensory

signals. This means action must suppress sensory prediction

errors, ε̃s = s̃(a)−g(µ). Equation 9 embodies a nice conver-

gence of action and perception: perception tries to suppress

prediction error by adjusting expectations to furnish better

predictions of signals, while action tries to fulfil these pre-

dictions by changing those signals.

3.1 Motor control and prediction errors

Optimal behavior is a powerful guide for understanding

motor control. The notion of forward or generative models

has been established in this field for decades (Wolpert et al.

1995). Some have even used forward motor models to moti-

vate generative models in perception (Kawato et al. 1993).

Usually, forward models in the motor control literature are

used to finesse control, given motor commands prescribing

a desired movement trajectory (see Sect. 7). The free-energy

formulation offers a simpler view; prediction errors are not

there to finesse motor signals; they are the motor signals.
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In other words, there are no top-down motor commands; just

prior expectations about proprioceptive input that are fulfilled

at the spinal level, given a compliant environment and motor

plant (see Fig. 1). In this view, the central nervous system is

not divided into motor and sensory systems but is one percep-

tual inference machine that provides predictions of optimal

action, in terms of its expected consequences. This formula-

tion also specifies what movement kinetics should optimize;

the only thing that action can affect is the prediction error at

the sensory level. This means action can only suppress the

weighted sensory prediction error variance, ε̃T
s ξs = ε̃T

s �s ε̃s .

In generalized coordinates, these include prediction errors on

displacement, velocity, acceleration, jerk, etc. This ensures

smooth trajectories, because the variance of higher tempo-

ral derivatives measures the smoothness of trajectories. The

relative weighting of these error variances is controlled by

the optimized precision. This mixture of weighted error var-

iance is related formally to phenomenological cost functions

proposed to account for movement trajectories (cf. Todorov

and Jordan 1998; Nakano et al. 1999; Berret et al. 2008).

3.2 Summary

In this section, we have seen that minimizing free-energy

with respect to neuronal activity encoding the recognition

density can be formulated as a gradient decent. This leads

to recognition dynamics that suppress prediction error, mak-

ing them formally equivalent to predictive coding. Policies

are prescribed in exactly the same way; however, action can

only affect prediction error at the sensory level. This suggests

that sensory prediction errors generate motor command sig-

nals and predicts an intimate anatomical relationship between

primary motor and sensory systems. This is because motor

commands must emanate from sensory systems responsi-

ble for processing the proprioceptive consequences of move-

ment. Empirically, this is seen at cortical, subcortical, and

spinal levels. For example, the primary motor and sensory

cortex lie next to each other in the central sulcus and are

strongly interconnected (Huffman and Krubitzer 2001). At

a subcortical level, the superior colliculus provides a site of

convergence for sensory information (through direct projec-

tions from the retina) and predictions (from visual, parie-

tal, and frontal cortex to the intermediate and deep layers).

Neuronal discharges in deep layers, that initiate saccades,

define motor-fields that coincide with visual receptive fields

in superficial layers (Andersen 1989). Finally, at the spinal

level, the ventral (motor) and dorsal horn (proprioceptive)

are juxtaposed (see Fig. 1).

In summary, under active inference, perception tries to

explain away prediction errors by changing predictions,

while action tries to explain them away by changing the sig-

nals being predicted. This formulation suggests that motor

control may not be the selection of an action but an emergent

property of predictive coding, where proprioceptive predic-

tion errors are quenched by movement. In the next section,

we use the recognition dynamics above and see what sorts of

behavior emerge under active inference.

4 Simulations

4.1 Oculomotor control

In this section, we illustrate active inference using a series of

simple simulations of oculomotor control. These simulations

assume that the agent has already learned the parameters that

optimize its inference about sensory states. We use these sim-

ulations to focus on the nature of active inference and show

how it can lead to phenomena like retinal stabilization, ori-

entating responses, and pursuit movements. We then use the

same model to illustrate how active inference can lead to

intentional behavior that is prescribed by prior expectations

about sensory input.

4.1.1 Retinal stabilization and oculomotor reflexes

Here, we use a linear state–space model and a nonlinear sen-

sory mapping to generate high-dimensional sensory data. We

use the same model as a generative model for active inference

and explore the consequences of action under perturbation.

In this model, a single force perturbs the dynamics of two

hidden states to produce a damped transient. These states

control the location of object (a Gabor patch) in retinotop-

ic space. For simplicity, these states cause the eye to move

(as opposed to the object). Sensory signals are sampled by

photoreceptors on a sparse grid rectangular. The equations

of motion are linear and parameterized in such a way that the

perturbing force causes displacement in one direction. This

displacement is then communicated to the other direction,

to induce elliptical motion of the visual target. The sensory

mapping, on the other hand, is a highly nonlinear function

of the hidden states (direction of gaze or stimulus location)

because the visual stimulus has a nonlinear contrast profile.

We will use this system to ask what would happen under

different prior expectations about stimulus movement. This

generative process and model are given by Eqs. 7 and 8 where

g(x)i j = υ
(

i − 3
4

x1 − N
2

)

υ
(

j − 3
4

x2 − N
2

)

υ(x) = exp
(

− 1
4

x2
)

cos
(

2
3
πx

)

f(x) =

[

v + a

0

]

− 1
8

[

1 −4

2 1

]

x

g(x)i j = g(x)i j

f (x) =

[

v

0

]

− 1
8

[

1 −4

2 1

]

x

(11)
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Fig. 1 Schematic detailing the

components of the motor reflex

arc and how it might minimize

sensory prediction error

(free-energy) through action.

The basic idea here is that the

central nervous system provides

predictions about the expected

(proprioceptive) consequences

of movements, which action is

enslaved to fulfill. In the context

of sensorimotor reflexes, motor

signals emitted by ventral

efferents of the spinal cord try to

suppress prediction errors

induced by an unexpected firing

of stretch-receptors. However,

from the point of view of the

motor neurons, this prediction

error could also have been

mediated by a top-down

suppression of predicted

stretch-receptor discharge rates.

In short, sensory prediction

error controls movements and

top-down predictions control

sensory prediction error

T

s
s

a
a

ε
ξ

∂
= −

∂

s

µ

prediction From reflexes to action

( ( ) ( ))s s s a gξ µ= Π − a

( )g µ

action

s(a)

dorsal horn dorsal root

ventral root ventral horn

ξ

These equations, which specify the nature of the environment

and model, are used to simulate environmental dynamics

and the agent’s responses. This entails integrating the sto-

chastic differential equation 7 (to evaluate the environment’s

states) and the ordinary differential equation 9 (to evaluate

the agent’s states). See Appendix 3 for details of the integra-

tion scheme. Note that these equations are specified in terms

of states. The corresponding equations for generalized states

are derived easily using the chain rule (see Friston 2008; Eqs.

1 and 2).

In this example, a force or cause v(t) excites changes in

the hidden states through the equations of motion, f(x). The

hidden states (stimulus location in two dimensions) are then

mapped to sensory data and delivered to the agent, using state

and observation noise with log-precisions (inverse variances)

of four and eight respectively. A log-precision of four means

that the standard deviation is exp(−4/2) = 0.135. In all the

simulations below, we used relatively smooth noise for both

the generative process and model. This smoothness is con-

trolled by the precision of its higher derivatives, which were

chosen to give a Gaussian autocorrelation function with a

standard deviation of one half of a simulated time bin (usu-

ally 1/32 s). In this example, the sensory data are a nonlinear

function of stimulus location, generating 6×6 = 36 channels

of data. These functions can be thought of as receptive fields

that map the retinotopic location of the stimulus to the pattern

of excitation, g(x)i j in an N × N array of sensory receptors

(see Fig. 2), where i, j ∈ {1, 2, . . . N } : N = 6.

The agent then infers the hidden states (i.e., stimulus loca-

tion) by optimizing the sufficient statistics of its recognition

density, as described in the previous section (Eq. 9). The only

extra thing that we need to consider here is action, a(t), which

is part of the generative process but not part of the genera-

tive model. The only way that action can change free-energy

is by re-sampling sensory data to reduce sensory prediction

error. From Eq. 9, we can see that this just depends on sen-

sory prediction error and the changes in sensory signals with

action. Appendix 3 provides more details about the ensuing

dynamics for the interested reader.

Here, we have deliberately chosen to put action in oppo-

sition to the force, so that the agent can oppose perturbations

to its hidden states. By manipulating its prior expectations on

these perturbations, v(t), we can elicit very different behav-

iors from the agent. This is because the action is used to

explain away prediction error, and prediction error depends

upon the agent’s prior expectations. For example, if we
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Fig. 2 a Schematic showing the relationship of the generative model

(lower panel) to the generative process modeling oculomotor sampling

of the world. The schematic of the generative model used by the brain

comprises state-units or populations (white) that encode sensory input

and the conditional expectations of hidden states causing that input.

Error-units are shown in red and encode the prediction error for their

corresponding state-unit. The dotted lines are connections that are

intrinsic to the model, and solid lines represent coupling between action-

units (black) and effectors. The red lines convey prediction errors to

the state (and action) units, while the black lines pass predictions to

the error-units (and effectors). Please see Friston et al. (2008) for a

fuller description of the scheme implied by these circuit diagrams. In

this example, action causes eye movements which change the visual

information sampled by an array of photoreceptors (top panel). The

locations of these receptors are shown by the white dots, superim-

posed on the Gabor patch-like stimulus. Here, the states of the world

are the direction of gaze in two dimensions. b Upper left These are

the predicted sensory states and corresponding prediction error (red

lines); they represent the predicted sensory input over the 36 photo-

receptor channels induced by motion of the Gabor patch on the left.

This rather complicated set of transients is the prediction based on a

simple elliptical movement of the stimulus described by the expected

hidden states. Upper right The expected hidden states causing sensory

predictions. These can be thought of as vertical and horizontal displace-

ments in retinotopic space. The colored lines correspond to conditional

expectations, and the dashed gray lines to true values (superimposed in

this example). The gray regions correspond to 90% confidence inter-

vals based on the conditional covariance. Lower left The true (dotted

line) and conditional expectation (solid line) of the exogenous cause; a

Gaussian bump function of peristimulus time. In this example, the prior

was zero with a large prior variance. The conditional expectation con-

forms roughly to the true perturbation. Lower right Action (solid line)

and true cause (dotted line). In this instance, action does not change

very much because it is not needed to explain away prediction error.

This is because a priori the agent expects perturbations of unspecified

amplitude

induce a damped elliptical motion in the target, the agent will

sample the stimulus differently, depending upon whether it

expects the stimulus to move or not.

We first examined the responses of the agent under flat or

uninformative priors on the force. These priors were imple-

mented by making the agent expect large amplitude random

fluctuations (with a log-precision of ln µv
γ = −16) about

the prior mean η(t) = 0. This simply means that, a priori,

forces can be very large or small and the prior distribution is

very wide (i.e. flat). Under these priors, we would expect the

force and consequent motion to be perceived, because there

are no constraints on whether perturbations should be large or

small. Consequently, we would expect the perceived location

to change as it would in the absence of active sampling. The

results in Fig. 2 show this to be the case. Here, we perturbed

the system with a Gaussian bump function of peristimulus
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Fig. 3 As per the previous figure but now using informative priors on

the cause. These priors are induced by increasing the conditional log-

precision of random fluctuations in the cause; indicated by thick red line

in the lower panel of a. The ensuing priors drive action to explain away

prediction error. In this instance, action mirrors the real cause (circled

region in the lower right panel of b, so that their respective influences

cancel and there is an attenuation of perceived movement. Note that the

prediction error under these informative priors is larger (red lines). It

is this prediction error that drives action. a This shows the relationship

of the generative model (lower panel) to the generative process mod-

eling oculomotor sampling of the world. b Upper left These are the

predicted sensory states and corresponding prediction error (red lines);

upper right The expected hidden states causing sensory predictions:

The colored lines correspond to conditional expectations, and the gray

regions correspond to 90% confidence intervals. Lower left The true

(dotted line) and conditional expectation (solid line) of the exogenous

cause. Lower right Action (solid line) and true cause (dotted line)

time. It can be seen that the conditional expectation and

true location are roughly the same and that very little action

has been emitted. The results of this simulation should be

compared with those in Fig. 3. Here, we placed tight priors

(ln µv
γ = 16) on the force, so that the agent did not expect

any movement of the stimulus that, essentially, it is foveating.

When the stimulus actually moves, the consequent predic-

tion error is explained away by action, and the excursion of

the stimulus is countered almost immediately. The dynamics

of action can be seen in the lower right panel and, as antici-

pated, mirror the exogenous force so that it is opposed almost

exactly. The retinotopic trajectories with flat and informative

priors on exogenous forces are plotted in Fig. 4 for compar-

ison. These show that the excursion of the target has been

completely suppressed by precise expectations (of no pertur-

bations). Note that the only difference between the simula-

tions in Figs. 2 and 3 was that we increased the precision of

the priors on the force, as indicated by the thicker red line

at the bottom of the schematic in Fig. 3. We will return to

the key role of precision in controlling behavior in the next

section.

There are several interesting interpretations of this simple

demonstration: If we consider it in the light of vision, then

action corresponds to saccadic or reflexive eye movements.

Note that the agent can only move its eye in one direction,

although the motor plant entailed by the state equations of

the generative process couple the resulting movements in

both directions. Despite this, it is able to stabilize the image

of the stimulus under active sampling. In other words, the

image is stabilized in accordance with the prior expectation

of no movement. This may provide a nice metaphor for reti-

notopic stabilization through visual and vestibular oculomo-

tor reflexes (Tatler and Wade 2003). Alternatively, we could

consider the action as causing a shift in the sensory frame
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Fig. 4 The stimuli and trajectories with uninformative (Fig. 2) and tight

(Fig. 3) priors: The upper panel details the stimulus or target in sen-

sory space. Middle panels: These are the displacements of the stimulus

perceived under flat and informative priors. The displacement under

tight priors is re-plotted in retinotopic space in the top panel. Note the

shrinkage of the perceived excursion toward the prior expectation of

zero under tight priors (middle right). Lower panels: Action and causes

with (right) and without (left) tight priors. Here, action (solid blue line)

is engaged by informative priors to attenuate the perceived excursion

of the stimulus (dotted green line)

of reference that enables the agent to track a moving target.

This alternative perspective speaks to orientating or tracking

behavior that enables the perception of a moving target as if

it were stationary. Although the target may be moving, the

full extent of this movement is not registered by perception.

This is because the prediction error, under tight priors on

the perturbation, is explained away by action, and action is

not part of the perceptual model. In other words, from the

point of view of the agent, the target is not moving. This

suggests that orientating responses might be understood as

active sampling of the sensorium, which conforms to the

prior expectation that targets do not move. This is a simple

but generic example of the sort of behavior that emerges with

action under the free-energy principle.

4.1.2 Action and intended movements

In the previous simulations, we used an exogenous force with

flat priors to elicit behavior that rendered a moving target

stationary. What would happen if we switched the cause and

priors around? In other words, what would happen if we took

the real cause and used it as a prior expectation but did not

actually move the stimulus? (i.e., if we swapped η(t) and

v(t) in Eq. 11). In this instance, there would be the same

prediction error (with opposite sign) and an active response.

In this case, the prior expectation is that the target is mov-

ing and active sampling will ensure that expectation is met.

This means the agent should saccade away from the target

and then return, once the prior η(t) falls back to zero. The

results in Fig. 5 show an example of this, using a model in

which we replaced the nonlinear sensory mapping to sim-

ulated photoreceptors with a linear mapping to four oculo-

motor proprioceptors (see the schematic on the left). In this

case, action reproduces the prior expectation on the cause to

suppress prediction error (because they play the same role

in the generative process; see Eq. 11). The result is apparent

motion of the stimulus, shown in the upper panels of Fig. 6.

This should be contrasted with the corresponding action in
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Fig. 5 As per Fig. 3 but here the true cause and prior expectation have

been switched: i.e., the prior expectation is a Gaussian bump function,

and the true cause is zero. In this instance, action is in the reverse direc-

tion to fulfill the prior expectation, causing a saccade away from the

target and then back again. The resulting trajectory in retinotopic space

is shown in the next figure. In this example, sensory data were gener-

ated by proprioceptors in the oculomotor system, as opposed to simu-

lated photoreceptors: This is shown schematically in panel (a), which

shows the relationship of the generative model (lower panel) with the

generative process modeling oculomotor sampling of the world.

b Upper left: These are the predicted sensory states and correspond-

ing prediction error (red lines); upper right: The expected hidden states

causing sensory predictions. The colored lines correspond to condi-

tional expectations and the gray regions correspond to 90% confidence

intervals. Lower left: The true (dotted line) and conditional expectation

(solid line) of the exogenous cause. Lower right: Action (solid line) and

true cause (dotted line)

the Fig. 4 where action and forces mirror each other, thereby

canceling to mimic the flat prior.

This example suggests that movements can be induced by

prior expectations of their sensory consequences. In other

words, we only have to expect the sensory consequences of a

movement to make it happen. Prior expectations induce pre-

dictions about what we should be sensing and action automat-

ically moves sensory epithelia to fulfill these predictions. We

are not aware of the movement per se, but register its sen-

sory consequences that are encoded by prior expectations.

In this example, the priors were prescribed by us. In more

realistic hierarchical models, one would imagine that move-

ment-inducing expectations would arise as empirical priors

during inference on a more expansive set of multimodal sen-

sory inputs.

This form of movement specification is a little counter-

intuitive, but has some appealing and biologically plausible

properties. For example, if we only have to specify the con-

sequences of an intended or expected movement, then the

actual action will be robust to variations in the true generative

process or unexpected perturbations to that process. In other

words, specifying a movement in terms of what we want to

see, as opposed to what we want to do, automatically makes

behavior much more robust. In order to illustrate this, we

added an exogenous but late perturbation to the target stimu-

lus during the intended movement. This is a simple metaphor

for empirical studies of movement trajectories under pertur-

bation (e.g., Paulignan et al. 1991; Fourneret and Jeannerod

1998; Liu and Todorov 2007). The resulting inference and

action in Fig. 6 (middle panels) show that action (blue line)
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Fig. 6 These plots show the

trajectory of a perceived

stimulus location (left panels),

under movement induced by

priors and consequent action

(right panels). Upper row: This

corresponds to a movement

elicited by priors, where the

prior expectation is formally

identical to the true cause of the

previous simulations (see

Fig. 3). Middle row: These are

the results of a simulation where

a small exogenous perturbing

force was applied late in the

movement trajectory (arrow in

right panel). The impact on the

trajectory is almost

imperceptible (arrow in left

panel). In this instance, action

has compensated for the

unanticipated perturbation.

Lower row: Here, we doubled

the sensitivity of the motor plant

to command signals or action.

Note that action has

automatically compensated for

this change and that the ensuing

trajectory, as perceived, has not

deviated from its prior

expectation
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explains away the unexpected perturbation with relatively

little impact on the percept (green line). This means that the

perturbation was automatically discounted in terms of the

movement trajectory. As a final example of the robustness of

movement specification under active sampling, we changed

the motor plant by changing the sensitivity of movement to

action in the generative process; by replacing a → 2a in

Eq. 11. Again, because action is simply minimizing predic-

tion error, this had no effect on the perceived excursion of

the target. As seen in Fig. 6 (lower panels), the only effect

was evident in the amplitude of the action elicited. The agent

does not need to know about this change in the dynamics

of the motor plant because action is effectively exploiting

closed-loop feedback (cf. the equilibrium-point hypothesis

discussed later).

4.1.3 Summary

In these simulations, we have seen how active sampling can

mimic retinal stabilization or visual tracking behavior by

implementing a prior expectation that a visual target is sta-

tionary. Conversely, we can induce movement through action

by invoking prior expectations about movements. Critically,

specifying an action in terms of its sensory consequences

renders action robust to variations in the motor plant or

unexpected exogenous perturbations. This is because action

explains away prediction error, which is prescribed by the

prediction and prior expectations. The simulations in this

section used unimodal (visual or proprioceptive) models. In

the next section, we turn to sensorimotor integration in the

context of multimodal (visual and proprioceptive) inference.

4.2 Sensorimotor integration

In this section, we illustrate the Bayesian integration of pro-

prioceptive and visual signals to optimize computational

motor control of cued reaching movements (Körding and

Wolpert 2004; Disney et al. 2007; Kreisel et al. 2007; Bruyn

and Mason 2009; Diedrichsen and Dowling 2009). This

method highlights the ability of active inference to explain

multimodal integration in perception: through the conver-

gence of bottom-up sensory prediction errors that optimize

perceptual representations and multimodal integration in

action; through the convergence of top-down sensory predic-

tion error onto motor commands that optimize action. This

bilateral role of prediction errors joins sensory and motor

processing and provides a nice perspective on sensorimotor

integration. Our particular focus here will be the weighting of
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visual and proprioceptive signals to optimize action, which

emerges from the optimization of precision parameters dur-

ing recognition.

The model used in this section involves reaching to a target

using a two joint arm. The proprioceptive input corresponds

to the angle of both joints, (x1, x2), which are the hidden

states, while the visual input is modeled as the position and

brightness of a target and the location of the arm’s extremity.

We will treat the location (v1, v2) and brightness v3 of the

target as autonomous causal states and the location of the arm

as a function of hidden states, J (x). We ignore the complexi-

ties of extracting positional information from retinotopically

mapped visual input and assume that the agent has direct

access to locations of the target and arm in visual space:

g(x, v) = g(x, v) =

⎡

⎣

x

v

J

⎤

⎦ (12)

The dynamics of the arm conform to Newtonian laws, under

which action forces the angular position of each joint, with

angular inertia, mi . Both joints have an equilibrium posi-

tion at 90 degrees; with elasticity k = [8, 4] and viscosity

κ = [4, 2] giving the following equations of motion

f(x̃, v) =

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ′
1

ẋ′
2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x′
1

x′
2

(

a1 − k1

(

x1 − π
2

)

− κx′
1

)/

m1
(

a2 − k2

(

x1 − π
2

)

− κx′
2

)/

m2

⎤

⎥

⎥

⎦

(13)

However, the agent’s empirical priors had a very different

form: The agents’ generative model ignores elasticity and

assumes that the arm’s distal extremity accelerates toward

the target when, and only, when the target is illuminated

brightly. This prior expectation is encoded as an expected

force ϕ = v3([v1, v2]
T − J (x)) that acts on both joints

f (x̃, v) =

⎡

⎢

⎢

⎣

ẋ1

ẋ2

ẋ ′
1

ẋ ′
2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x ′
1

x ′
2

(ϕT J2 J T
2 O J1 − κ1x ′

1)
/

m1

(φT O J2 − κ2x ′
2)

/

m2

⎤

⎥

⎥

⎦

(14)

Here, Ji (x) corresponds to the relative position of the i-th

joint such that J = J1 + J2 and

J1 =

[

cos(x1)

sin(x1)

]

J2 =

[

− cos(−x2 − x1)

sin(−x2 − x1)

]

O =

[

0 −1

1 0

]

(15)

These priors on the dynamics of the hidden states cause the

arm to reach for the target in a reasonably graceful and plau-

sible way, when the target is brightened. Figure 8 shows a

typical simulation under fairly noisy proprioception. Here,

we modulated the brightness of the target with a Gaussian

bump function. When the target becomes bright the agent

believes its hand is drawn to the target. This belief induces

prediction errors on the generalized angular position (i.e.,

angular force), which action quenches by moving the joints

to comply with prior expectations. Note that sensory predic-

tions are visual and proprioceptive because the generative

model renders both modalities a function of hidden states,

like forces and torques. In other words, not only does the

agent expect to feel a torque but it also expects to see acceler-

ation of its arm. Once the brightness cue has disappeared, the

arm remains on target because the agent’s generative model

does not include elastic forces that would return to the arm

to its resting position. This necessitates persistent action to

resist elastic forces (see lower middle panel of Fig. 8). This

type of control is quite similar to the Passive Motion Para-

digm (Mussa Ivaldi et al. 1988) and the ensuing Kinematic

Network model. This model expresses kinematic transforma-

tions implied by elasticity to regularize the ill-posed problem

that arises from redundancy in motor control.

In this simulation, we used a relatively large amount

of sensory noise on the proprioceptive input (with a log

precision of four), while visual information was relatively

high precision (a log precision of eight). Despite this, the

movement trajectory was remarkably smooth and accurate.

This is because action is driven by both proprioceptive and

visual prediction errors (descending black arrows in Fig. 7).

Although the proprioceptive errors are noisy, the visual errors

are precise and can elaborate accurate predictions of hidden

states (see top left panel of Fig. 8) and precise motor com-

mands. This robustness to proprioceptive noise rests on opti-

mizing the expected precisions in both sensory modalities as

in Eq. 9. The ensuing optimization boosts visual prediction

errors relative to proprioception and ensures that the relative

contribution of both modalities is balanced in a Bayes opti-

mal fashion (for both action and perception). This aspect of

multimodal integration can be illustrated by examining the

expected precisions under factorial manipulations of visual

and proprioceptive noise.

Figure 9 shows the expected precisions for proprioceptive

µ
pro
γ and visual µvis

γ modalities and the associated move-

ments under all combinations of low (log precision of eight)

and high (log precision of four) levels of sensory noise. It

can be seen that the estimated precisions are almost exactly

correct for all four combinations. In terms of movement, it

is clear that vision can substitute for proprioception and vice

versa. Only when both modalities are noisy (i.e., imperfect

proprioception and obscuring the arm from sight), then reach-

ing is compromised. This is seen on the lower left, when the

arm flails around erratically, as might be seen in an excited

neonate.

4.2.1 Summary

In this section, we have reiterated the idea that apparently pur-

poseful or intentional movements can be prescribed purely in
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Fig. 7 Schematic of the simulated cued-reaching models. Right: Motor

plant, comprising a two-jointed arm with two degrees of freedom (hid-

den states) corresponding to the angular position of each joint. The

position of the arm’s extremity (red circle) is the sum of the vectors

describing the location of each joint. Here, exogenous causes are the

position and brightness of the target (green circle). The masses (angu-

lar inertia) of the first (shoulder) and second (elbow) joints were four

and two respectably, with viscosity coefficients of eight and four. The

elasticity of both was one quarter. Left: The agent senses the hidden

states directly and indirectly through the position of the finger in visual

space. In addition, visual input includes the causes representing target

location and brightness. Sensory prediction errors are passed to higher

brain levels to optimize the conditional expectations of the hidden states

(angular position of the joints). The ensuing predictions are sent back to

suppress sensory prediction errors. At the same time, sensory prediction

errors are also trying to suppress themselves by changing sensory input

through action. The red lines denote reciprocal message passing among

neuronal populations encoding prediction error and conditional expec-

tations, however, the black lines represent descending motor control

signals from sensory prediction error units. The equations implement

free-energy minimization or recognition, as described in the main text

terms of prior expectations. Here, these priors were encoded

by cue-dependent priors on the generalized motion of hidden

states (angular position) of an agent’s motor plant (a two-joint

arm). These priors are combined with multimodal sensory

evidence to provide predictions, which drive action. Criti-

cally, the evidence from different modalities is integrated in

an optimal way by weighting the ensuing prediction errors by

their optimized precisions. Both recognition and action rest

on prediction errors and their relative weighting. Sensory pre-

diction errors can derive from may modalities and sensory

epithelia. In general, these will converge through hierarchical

message passing to optimize perception and action in a bilat-

eral fashion. In active inference, perception speaks to action

through sensory prediction errors which optimize perception

through their bottom-up effects and optimize action by pro-

jecting down to motor control units in the oculomotor system

and spinal cord.

This section has shown how simple cued movements can

be elaborated by priors under the free-energy principle, with

a special focus on the role precision in optimizing multisen-

sory integration in motor control. In the next section, we show

how autonomous goal-directed movements can be learned by
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Fig. 8 Simulating cued movements: Left conditional expectations of

causal and hidden states using the same format as in Figs. 2, 3, and 5. In

this example, the proprioceptive input was quite noisy (gray lines in the

top left panel); necessarily producing large proprioceptive prediction

errors (red lines in the top left panel). Right: Ensuing movement trajec-

tory caused by action (solid lines in the adjacent lower panel). The red

circles indicate the initial and final position of the arm, which is seen

to reach the target (green circle) reasonably quickly and smoothly. The

black lines show the trajectory of the arm, and the colored lines show

the position vectors at each time step

optimizing the parameters encoding prior expectations about

movement trajectories.

5 Goal-directed behavior

This section deals with the optimization of action or poli-

cies under perceptual learning (cf. Grafton et al. 2008). In

the previous section, we specified the priors that led to cued-

movements. Here, we consider how these priors are learned.

In brief, we will show that quite complicated goal-directed

behaviors can be instilled through supervised learning by

placing an agent in a controlled environment so that it learns

what to expect. When replaced in an uncontrolled or native

environment, the agent seeks out the sensory states that it

has learned to expect. The result is an optimum policy that is

robust to perturbations and constrained only by the agent’s

prior expectations that have been established during training.

A controlled environment can be thought of as one in which

certain behaviors are enforced. In the context of reaching

movements, this control could be exerted by force channels

(e.g., Scheidt et al. 2000; Diedrichsen and Dowling 2009).

The model used in this section is a benchmark example in

dynamic programming: namely, the mountain-car problem.

These simulations have already been reported in Friston et al.

(2009) to illustrate how reinforcement learning can be cast

as free-energy optimization. Here, we reprise the simula-

tions but interpret them in terms of learning a motor policy

that manifests as goal-directed movements. The mountain-

car problem can be envisaged as follows: one has to move

a heavy weight away from the bottom of the well and keep

it there (Fig. 10). However, the weight is too heavy to sim-

ply to push it out of the well. This means that the only way

to move the weight to its desired location is to push it up

one side of the well and use its momentum to get it past the

steepest part of the other side. This represents an interesting

problem, when considered in the state–space of position and

velocity, (x, x ′); the agent has to move away from the target

location (x = 1, x ′ = 0) to attain its goal and execute a

very circuitous movement (cf., avoiding obstacles; Jax and

Rosenbaum 2007). This problem can be specified with the

sensory mapping and equations of motion

g = x̃

f =

[

ẋ

ẋ′

]

=

[

x′

b(x) − 1
4

x′ + v + σ(a + c(x̃))

]

b(x) =

{

−2x − 1 : x ≤ 0

−x2(1 + 5x2)−3/2 − x4
/

16 : x > 0

c(x̃) = θ1 + θ2x + θ3x′ + θ4xx + θ5xx′ + θ6x′x′

(16)

123



Biol Cybern (2010) 102:227–260 245

Fig. 9 Reaching under

different levels of sensory noise.

All panels show movement

trajectories using the same

format as in the previous figure.

The inset for each panel shows

the conditional expectations of

the precision (inverse variance

or noise level) of proprioceptive

and visual input. It can be seen

that movement is robust to

noise, unless both modalities

deliver degraded sensory

information. Lower row: Noisy

proprioceptive (angular joint

position) input. Right column:

Noisy visual information about

the location of the arm (e.g.,

partial occlusion)
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Fig. 10 Schematic of the

mountain car problem: Left The

landscape or potential energy

function that defines forces on

the weight. This has a minimum

at x = −0.5. The weight is

shown at its uncontrolled stable

position (transparent) and the

target position at the top of the

well on the right at x = 1

(vertical dotted line). Right:

Forces experienced by the

weight at different positions due

to the slope of the well (blue).
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As above, substitution of these functions into Eq. 7 provides

the equations used to simulate environmental dynamics and

generate sensory data. The first equality means that the agent

has a noisy sense of the weight’s position and velocity. The

second means that the forces on the weight, ẋ′(t) have four

components: a gravitational force b(x) = −∂xϕ(x), which is

just the spatial gradient of the potential energy function ϕ(x)

in Fig. 10 (left panel). The remaining three forces are friction

x′/4, an exogenous force v(t), and a controlling force that

is bounded by a squashing (logistic) function: −1 ≤ σ ≤

1. This force comprises action and state-dependent control,

c(x̃). Control is approximated here with a second-order poly-

nomial expansion of any nonlinear function of the states,

whose parameters are θ = {θ1, . . . , θ6}. When θ = 0 the

environment is uncontrolled; otherwise, the weight experi-

ences state-dependent forces that enable control.

In order to create a controlled environment, we simply

optimize the parameters of its equations of motion to max-

imize the probability that the goal is attained. This entails

adjusting the parameters to maximize the ensemble den-

sity, p(x̃|m) at the target location, as described in Friston

et al. (2009). The upper panels of Fig. 11 show the equilib-

rium densities without control (θ = 0; top row) and for the

controlled environment (θ = θQ ; middle row) in which the

goal attracts all trajectories. As anticipated, the trajectories in

Fig. 11 (middle row) move away from the goal initially and

then converge on it. This controlled environment now plays

host to a naïve agent, who must learn its dynamics through

experience.

5.1 Learning

The agent’s generative model of its sensory inputs comprised

the functions

g = x̃

f =

[

x ′

b − 1
4

x ′ + v + σ(η + c)

]

(17)

For simplicity, we assumed that f (x̃, ṽ, θ) was the same as

Eq. 16 but without action. The unknown causes in this model,

� ⊇ {x̃, ṽ, θ, γ }, comprise the states (position and veloc-

ity), exogenous force, parameters controlling state-depen-

dent acceleration, and precisions of the random fluctuations.

The agent was exposed to 16 trials of 32 s time-bins. Simu-

lated training involved integrating Eqs. 7 and 9 with θ = θQ

(see Appendix 3). On each trial, the weight was “pushed”

with an exogenous force, sampled from a Gaussian density

with a standard deviation of eight. This enforced a limited

exploration of state–space. The agent was aware of these per-

turbations, which entered as priors on the forcing term; i.e.

η̃ = ṽ. During learning, we precluded active inference, such

that the agent sensed the trajectory passively, as it left the

target state and returned to it.

Note that the agent does know the true states because

we added a small amount of observation error (with a log-

precision of eight) to form sensory inputs. Furthermore, the

agent’s model allows for random fluctuations on both posi-

tion and velocity. When generating sensory data, we used a

small amount of noise on the motion of the velocity (with a

log-precision of eight). After 16 trials, the parameters con-

verged roughly to the values that were utilized to construct the

control environment. This means that the agent expected the

weight to move along state–space trajectories that converge

on the target. These optimum dynamics have been learned

in terms of empirical priors on the generalized motion of

states encoded by µθ —the expected parameters of the equa-

tions of motion. These expectations are shown in the lower

row of Fig. 11 in terms of the trajectories they encode; i.e.,

f (x̃, ṽ, µθ ). It can be seen that the nullclines (lower right)

based on the parameters after training have a similar topology

to the controlled environment (middle right), ensuring that

the fixed-points that have been learnt are the same as those

required to attain the goal. Therefore, what would happen if

the agent was placed in an environment that did not conform

to its expectations?

5.2 Active inference

In order to demonstrate that the agent has learnt the opti-

mum policy, we placed it in an uncontrolled environment; i.e.,

θ = 0, and allowed action to minimize free-energy. We pre-

vented further perceptual learning by fixing the conditional

expectations of the parameters to µθ and the log-precisions to

µx
γ = µs

γ = 8. An example of active inference after learning

is presented in Fig. 12. Again, this involved integrating envi-

ronmental and recognition dynamics (Eqs. 7, 9), where these

stochastic differential equations are now coupled through

action. The colored lines show the conditional expectations

of the states, while the gray areas represent 90% confidence

intervals. These are tight because we used low levels of noise.

The dotted red line on the upper left corresponds to the pre-

diction error: namely, the discrepancy between the observed

and predicted states. The ensuing trajectory is superimposed

on the nullclines (middle panels) and shows the agent moving

the weight away from its goal initially, to build up the req-

uisite momentum. Once the goal has been attained, action is

still required because, in the uncontrolled environment, it is

not a fixed-point attractor.

In order to illustrate the robustness of this behavior, we

repeated the simulation while applying exogenous forces to

the weight (modeled with a random normal variate smoothed

with a Gaussian kernel of 8 s). Because the agent did

not expect these perturbations, they were explained away

by action and not perceived. Goal-directed behavior was
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Fig. 11 Left panels: Flow-fields and associated equilibrium densities

for an uncontrolled environment (top), a controlled or optimized envi-

ronment (middle), and under prior expectations after learning (bottom).

Notice how the flow of states in the controlled environment enforces

trajectories that start by moving away from the target location at posi-

tion x = 1 (with a small velocity). The red arrows denote the change in

state (position and velocity) prescribed by the parameters: this change

is f (x̃, ṽ) evaluated at x3 = 0.5. The ensemble density is the princi-

pal eigenfunction of the Fokker–Plank operator associated with these

parameters. For the controlled and expected environments, these are

low entropy equilibria, concentrated on the target location. Right pan-

els: These panels show the flow fields in terms of their nullclines. Null-

clines correspond to lines in state–space where the rate of change of

one variable is zero. Here, the nullcline for position is along the x-axis,

where velocity is zero. The nullcline for velocity is when the change in

velocity goes from positive (gray) to negative (white). Fixed points cor-

respond to the intersection of these nullclines. It can be seen that in an

uncontrolled environment (top), there is a stable fixed point, where the

velocity nullcline intersects the position nullcline with negative slope.

Under controlled (middle) and expected ( bottom) dynamics, there are

now three fixed points. The rightmost fixed-point is under the maximum

of the ensemble density and is stable. The middle fixed-point is halfway

up the hill, and the final fixed-point is at the bottom. Both of these are

unstable and repel trajectories so that they are ultimately attracted to

the target location. The red lines depict an exemplar trajectory, under

deterministic flow, from x = x ′ = 0. In a controlled environment, this

shows the optimum behavior of moving up the opposite side of the well

to gain momentum so that the target (green dot) can be reached

preserved (lower panels of Fig. 12), with mirror symmetry

between action and the displacing force it counters. Note

that action is greater because it exerts its effects through a

squashing function (see Eq. 16).

5.3 Optimal behavior and conditional precision

Optimal behavior depends on the expected precision of the

hidden state motion encoded by µx
γ . In this example, the
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Fig. 12 Top row: The left panel

shows the predicted sensory

states (position in blue and

velocity in green). The red lines

correspond to the prediction

error based on conditional

expectations of the states (right

panel). The associated

conditional covariance is

displayed as 90% confidence

intervals (thin gray areas).

Middle row: The nullclines and

implicit fixed points associated

with the parameters learnt by the

agent, after exposure to a

controlled environment (left).

The actual trajectory through

state–space is shown in blue;

(the red line is the equivalent

trajectory under deterministic

flow). The action causing this

trajectory is shown on the right

and shows a polyphasic

response until the desired

position is reached, after which

a small force is required to stop

the weight sliding back into the

well (see Fig. 10). Bottom row:

As per the middle row but now

in the context of a smoothly

varying perturbation (broken

line in the right panel). Note that

this exogenous force has very

little effect on the navigation of

state–space because it is

unexpected and countered by

action. These simulations used

expected log-precisions of eight
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agent was fairly confident about its prior expectations, but

did not discount sensory evidence completely (with log-pre-

cisions of µv
γ = µs

γ = 8). These conditional precisions

are important quantities, which control the relative influ-

ence of bottom-up sensory information relative to top-down

predictions. In a perceptual setting, they may mediate atten-

tional gain (cf., Abbott et al. 1997; Yu and Dayan 2005; Fris-

ton 2008). In active inference, they also control whether an

action is emitted or not (i.e., motor intention): Increasing

the relative precision of the hidden states causes more con-

fident behavior, whereas reducing it subverts action. This is

because prior expectations are discounted by sensory input

and are, therefore, not expressed at the level of sensory

predictions. In biological formulations of the free-energy

principle, modulatory neurotransmitters might encode the

precision of prior expectations (Friston 2008). In this context,
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Fig. 13 Inferred states, (top row) and trajectories through state–space

(bottom row) under different levels of conditional uncertainty or

expected precision. As in previous figures, the inferred sensory states

(position in blue and velocity in green) are shown with their 90% confi-

dence intervals, and the trajectories are superimposed on nullclines. As

the expected precision falls, the inferred dynamics are less accountable

to prior expectations, which become less potent in generating prediction

errors and action. It is interesting to see that uncertainty about the states

(gray area) increases, as precision falls and confidence is lost

a deficit in dopaminergic neurotransmission would reduce

the operational potency of priors to elicit action and lead to

motor poverty; as seen in Parkinson’s disease, schizophrenia,

and neuroleptic bradykinesia. Through progressively reduc-

ing the expected precision of the empirical priors that have

been instilled during training, we can simulate this poverty.

Figure 13 shows three phases: first a loss of confident behav-

ior, where the agent rocks backward and forward cautiously,

until it has more than sufficient momentum to reach its goal.

Second, a stereotyped behavior (corresponding to a quasipe-

riodic attractor), in which the agent prevaricates at the bottom

of the well (cf., displacement activity, motor stereotypy, or

perseveration). Finally, we get avolitional behavior, where

the agent succumbs to gravity (cf., bradykinesia or psycho-

motor poverty).

5.4 Summary

We have seen that agents can learn causal structure in the

environment and sample it in an adaptive and self-supervised

fashion. This results in behavioral policies that reproduce

those optimized by reinforcement learning and dynamic pro-

gramming. Critically, we do not need to invoke the notion of

reward or value to optimize these behaviors. It is sufficient

to induce prior expectations through perceptual learning that

prescribe goal-directed behavior in an unsupervised setting.

In the previous section, we considered the relative precision

among sensory signals in different modalities. Here, we kept

the sensory precision fixed and changed the precision of prior

expectations. Under active inference, the precision of sensory

information and empirical priors determine their relative con-

tribution to action. In this context, it is interesting to note that

a “mere expectation to move causes attenuation of sensory

signals” (Voss et al. 2008). This is consistent with a relative

increase in the precision and consequent amplitude of predic-

tion errors that mediate empirical priors. In this section, we

focused on goal-directed movements that had a fixed goal or

state. In the final section, we address the learning of behav-

iors that are specified not in terms of goals but in terms of

movement trajectories per se.

6 Learning autonomous behavior

In the previous section, we specified behavior in terms of a

target location in state–space. This is fine if we want agents
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to occupy specific states: i.e., if we want to induce action

with fixed-point attractors. However, real-world behaviors

are dynamic, calling for the optimization of state trajectories

of an autonomous and itinerant nature. In ethology, these

might correspond to a succession of states or sequences of

behaviors that are elicited with high-order operant condi-

tioning paradigms. In optimal control, an exemplar prob-

lem is bipedal walking (Prinz 2006; Manoonpong et al.

2007). Here, we set ourselves the task of instilling behav-

ioral trajectories in an agent that conform to one of the

simplest systems with autonomous dynamics, the Lorenz

attractor.

Using the same procedure as above, we used the follow-

ing generative process and model, whose equations of motion

have the form of a Lorenz system

g = x

f = 1
64

⎡

⎣

θ1x2 − θ1x1

θ2x1 − x3x1 − x2

x1x2 − θ3x3

⎤

⎦ +

⎡

⎣

v

0

0

⎤

⎦ + a

g = x

f = 1
64

⎡

⎣

θ1x2 − θ1x1

θ2x1 − x3x1 − x2

x1x2 − θ3x3

⎤

⎦

(18)

We set θ = θQ =
{

10, 32, 8
3

}

and initialized the conditional

expectations of the agent toµθ = 0 (with fixed log-precisions

of µs
γ = 8 and µx

γ = 16). In these simulations, we took the

hidden states to represent the position of an agent (or its arm)

in a three-dimensional (3D) Euclidean space. This means

that the agent moves under control as if it was on a Lorenz

attractor and comes to learn what trajectories to expect. After

16 trials of 512 time-bins (16 × 8 s of real time), the agent

was removed from its controlled environment and examined

for evidence of learning. The upper panels of Fig. 14 show

the ensemble density and flow of the training environment

and a typical 8-s trajectory (upper panels: θ = θQ). The

middle panels show the corresponding expectations of the

agent before (middle panels: θ = 0) and after (lower panels:

θ = µθ ) learning. It can be seen that before learning, the

agent expects to move toward a fixed point attractor; how-

ever, after learning, it expects to navigate its environment as

if it was on a Lorenz attractor.

Figure 15 shows that these expectations are fulfilled by

active inference, when placed in an unsupervised environ-

ment with θ = 0. Critically, the agent’s behavior is impervi-

ous to exogenous perturbations applied to the motion of the

first state (see Eq. 18); this perturbation was modeled with

a random Gaussian time-series smoothed with a Gaussian

kernel with a standard deviation of eight time-bins. Despite

these perturbations, the agent adheres to its concept of a Lor-

enz attractor. As above, the precision with which the agent

recapitulates its learned trajectories rests on a high degree of

confidence in its dynamical priors, assured by high values

of the log-precision, µx
γ . Although an almost trivial exam-

ple, this way of prescribing desired trajectories may have

pragmatic applications in engineering and robotics (cf., Prinz

2006; Manoonpong et al. 2007). This is because the trajecto-

ries prescribed under active inference are remarkably robust

to noise and exogenous perturbations.

6.1 Summary

The picture that emerges from these simulations is that an

effective way to instantiate desired movements is to induce

prior expectations through use-dependent plasticity in the

agent’s generative model, so that the expected movements are

reproduced automatically. The resulting priors might be the

basis of hand-path priming effects, in which hand movements

around obstacles induce a significant curvature in the trajec-

tory of the movement trajectories that persists after the obsta-

cle has been removed (Jax and Rosenbaum 2007). Indeed,

most neuro-rehabilitation therapies rely on motor training

and use-dependent plasticity, where the patient is guided in

the reproduction or forced to reproduce desired movements

with the paretic limb. (e.g., Kreisel et al. 2007). Interestingly,

this use-dependent plasticity rests on neuromodulatory trans-

mitter function (Bütefisch et al. 2002) of the sort that may

encode precision (Friston 2008).

Optimizing policies under the free-energy principle is not

limited to policies that are defined in terms of states with

utility. This is because the only things that are required to

teach an agent are exemplar trajectories. Heuristically, this

corresponds to showing the agent what it is like to be optimal

and then letting it fulfill its expectations in an unsupervised

setting. In fact, the only things needed to specify behavior

are the equations of desired motion. In principle, it may be

possible to prescribe desired kinematics, say during walking,

and then let the agent reproduce the associated trajectories

in an uncontrolled environment with random perturbations.

It is easy to imagine the attractor in Fig. 15 being replaced

by more complex and possibly itinerant attractors that have

desired context-sensitive properties and that could be learned

by adaptive agents.

7 Discussion

This article has suggested that active inference is mandated

by population dynamics and may provide a plausible expla-

nation for some aspects of motor behavior. In particular, it

suggests that motor control can be understood as prior expec-

tations about proprioception, which enslave the peripheral

motor system to fulfill them. Furthermore, active inference

provides a mechanistic account of how adaptive behavior
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Fig. 14 The behavior of an

agent that learns to be Lorenz

attractor depicted as in Fig. 11,

in terms of equilibrium densities

(left) and exemplar trajectories

(right). Top panels: Dynamics of

the supervised environment that

offers control of the agent so

that it can experience and learn

desired behavior. Middle panels:

Equivalent characterization of

behavior before training, when

the agent expects to be drawn to

a point attractor. Lower panels:

The same as in the previous row

but after learning, when prior

expectations about the

environment have been

transcribed from the controlled

environment by learning
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can emerge and suggests a simple alternative to dynamic

programming or reinforcement learning, when prescribing

desired behaviors. There is a vast literature on motor con-

trol and sensorimotor integration, which addresses a host of

issues in detail, relating theoretical and empirical perspec-

tives. We have only addressed some of these issues super-

ficially, using simple simulations to impart the intuitions

behind active inference. In the next section, we try to high-

light the implications of the ideas presented above for some

established areas of research.

7.1 Active inference and optimal control

Typically, dynamic programming and related approaches in

optimal control theory posit a value-function of every point in

state–space. This is the utility or reward expected under the

current policy and is the solution to the relevant Bellman

equation (Bellman 1952). A policy is then optimized to

ensure that states of high value are visited with greater prob-

ability. In control theory, value acts as a guiding function by

establishing gradients, which the agent can ascend (Bellman

1952; Sutton and Barto 1981; Friston et al. 1994). Similarly,

in discrete models, an optimum policy selects states with

the highest value (Watkins and Dayan 1992; Todorov 2006).

However, under the free-energy principle, there is no value-

function or Bellman equation to solve. The only states that

agents aspire to are those that they expect to frequent.

In brief, active inference replaces optimal polices with

prior expectations about state-transitions (e.g., movement

trajectories). These priors may be acquired (empirical priors)

through learning or may be innate (full priors) and optimized

by natural selection. In the mountain-car example, the prior

expectation (optimal policy) was acquired through learning

the equations of motion of a controlled environment. This
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Fig. 15 The behavior of an

agent that thinks it is a Lorenz

attractor portrayed using the

format in Fig. 2. However, this is

no ordinary attractor; its

trajectories are supported purely

by action (displayed as a

function of time in the lower

right panel). Action tries to

suppress prediction errors on

motion through its three

dimensional state–space (blue

line in lower left panel). These

prediction errors (red line in

upper left panel) are the

difference between sensed and

expected motion based on the

agent’s generative model and

expected hidden states (upper

right panel). Critically, this

autonomous behavior is very

resistant to random forces on the

agent. This can be seen by

noting that the first state has

been perturbed with a smooth

exogenous force (broken blue

line on the lower right). Note

that action counters this

perturbation and the ensuing

trajectories are essentially

unaffected
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can be regarded as a form of supervised learning, because the

environment was supplied by us to instill a particular behav-

ior. In Friston (2010), we show how the same behavior can be

elicited in an unsupervised setting, using prior expectations

that enforce exploration of state–space until states with high

utility are encountered. Similar adaptive behavior emerges

under isotropic sequence order learning in a closed-loop set-

ting (Porr and Wörgötter 2003). Both approaches rest on

eliminating stationary solutions to sensory-motor dynamics

that involve high-cost states. In sequence learning, this can be

implemented by eliminating withdrawal reflexes using pre-

dictive reflexes that are learned in a self-referenced fashion.

Does this mean active inference makes optimal control redun-

dant? Not necessarily: active-inference simply provides a

larger context, in which optimal policies become prior expec-

tations. It is possible that the brain solves some Bellman equa-

tions to specify optimal expectations (policies) that action

could pursue. Interesting developments in machine learn-

ing speak this notion; “Recently there is growing interest in

using probabilistic inference methods for decision making

and planning. Promising about such approaches is that they

naturally extend to distributed state representations and effi-

ciently cope with uncertainty”; see Toussaint (2009) for a ful-

ler discussion of probabilistic inference as a model of planned

behavior. There are also alternative self-referenced schemes

(e.g., Verschure and Voegtlin 1998; Wörgötter and Porr 2005;

Tschacher and Haken 2007) that may have greater ethologi-

cal and neuronal plausibility. This theme will be developed

further in a forthcoming article on value-learning and free-

energy.

The perspective on optimum policies as prior expectations

may call for a reappraisal of reinforcement learning as an

explanation for behavior and, in particular, the role of dopa-

mine in coding unpredicted reward (Montague et al. 1995;

Schultz et al. 1997; Doya 2002): If dopamine encodes pre-

cision through its classical neuromodulatory effects (cf., Yu

and Dayan 2005) how can this be reconciled with the view

that it encodes prediction error on reward? From a neuro-

biological perspective, it may be that dopamine does not

encode the prediction error of value but the value of predic-

tion error: i.e., the precision of prediction errors that drive

perception and action. If this idea is right, then it speaks to a

symmetry between the role of dopamine in optimizing preci-

sion in anterior (e.g., mesocortical and mesolimbic) systems
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Fig. 16 Schematic highlighting the differences in functional architec-

ture implied by the free-energy formulation and conventional motor

control theories. Both schemes rest on forward and inverse models (i.e.,

internal models) but their nature is fundamentally different. In the free-

energy formulation, action or motor commands are generated through

an inverse model by sensory prediction errors, whereas in conventional

formulations, motor commands are produced by an inverse model that is

driven by inferred and desired states. The red arrows denote ascending

or bottom-up effects and black arrows mean descending or top-down

message passing. The equations in the text boxes indicate the mapping

implicit in the corresponding model

trying to predict proprioceptive and interoceptive sensations

(i.e., value-learning) and the role of acetylcholine in optimiz-

ing hierarchical inference on exteroceptive input in posterior

(e.g., paralimbic and parietal) systems (i.e., attention; Disney

et al. 2007). Furthermore, this perspective on dopaminergic

function fits comfortably with a gating role for dopamine

(O’Reilly et al. 2002) in selecting the percepts that guide

action (Redgrave et al. 1999).

Another interesting aspect of precision is that it covers

generalized motion. This means that action is trying to sup-

press a mixture of [squared] sensory prediction error on posi-

tion, velocity, acceleration, and jerk etc., where the relative

contributions, encoded by µs
γ control the smoothness of the

trajectory. This mixture is formally similar to cost-functions

in the motor-control literature that try to account for smooth

motor trajectories that are observed empirically (Todorov and

Jordan 1998; Nakano et al. 1999; Berret et al. 2008).

7.2 Inverse models in motor control

In conventional motor control theory (Wolpert and Miall

1996; Todorov and Jordan 2002; Shadmehr and Krakauer

2008), there are two models, an inverse model and a for-

ward model. The inverse model maps from desired sensory

states to action or motor commands, while the forward model

maps from action to sensory consequences. In order to learn

the inverse model, one needs to evaluate the consequences

of action, which may be sensed with delays and noise. For-

ward models are used to finesse this learning, by provid-

ing surrogate prediction errors (i.e., the difference between

desired sensory consequences and those predicted by the

forward model). However, these forward models are not

generative models of sensory dynamics that are learned in

active inference. There is a fundamental difference between

the functional architecture implied by active inference and

conventional models of motor control (see Fig. 16). In con-

ventional models, action is not driven by sensory predic-

tion error but is specified by a control policy or inverse

model. This inverse model computes the optimum control

for achieving some desired states, which entails inverting

a generative model of how action changes hidden states. In

active inference, the corresponding inverse model determines

how sensory prediction errors influence action. This implicit

inverse model corresponds to the partial derivatives ε̃a in
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Eq. 9, which describes the change in prediction error with

respect to action; i.e., the change in sensory states with action.

In the examples above, we used the true generative process to

compute this mapping (see Eq. A3.3 in Appendix 3). How-

ever, real agents do not have access to the generative process:

Does this mean they have to learn an inverse model as in con-

ventional motor control theories? This is certainly possible;

however, in active inference, the inverse model is much sim-

pler than in conventional formulations, because it maps from

sensations to action, not from hidden states to action (see

Fig. 16). This is important because simple inverse mappings

can be hard-wired by evolution. For example, the mapping

from proprioception to action may be part of classical motor

reflex arcs.

In Fig. 7, the inverse mapping from proprioceptive (e.g.,

stretch receptor) signals to action is simple because specific

alpha and gamma motor neurons stretch specific muscle spin-

dles. In contrast, the mapping between action and visual input

is highly nonlinear and one-to-many. This means that the

inverse mapping from visual prediction error to action is

unlikely to be implemented in the spinal cord, as implied

by the descending black connection in Fig. 7. Would remov-

ing this connection preclude visual input from contributing

to sensorimotor integration? No; the proprioceptive predic-

tions driving action depend on conditional expectations about

hidden states of the body, and these expectations depend

on vision (they explain away visual prediction error). This

means that sensory prediction errors in all modalities can

affect proprioceptive predictions through conditional expec-

tations about the deployment and trajectory of the motor

plant. This key interplay between action and perception will

be the subject of a future article.

In short, the free-energy formulation replaces an inverse

model, mapping from inferred states of the world to action,

with the inversion of a much simpler mapping between action

and sensory consequences. This may be one way of under-

standing the prevalence of retinotopic maps (such as those

in the superficial and deep layers of the superior collicu-

lus), which enable changes in sensory input with small eye

movements to be inverted quickly and simply. The mapping

between action and proprioception is even simpler: Motor

neuron discharges in the ventral horn cause muscle spindles

to contract and change sensory prediction errors in dorsal

horn cells through classical motor reflex arcs (see Fig. 1). The

argument here is that action changes proprioceptive predic-

tion errors in a stereotyped and simple way. This may enable

the inverse mapping to be specified epigenetically in periphe-

ralorsubcortical systemsandconservedovercontextandphy-

logeny. The advantages of feedback control at the peripheral

(e.g., spinal) level include robustness to noise or incomplete

specification of the inverse model (Wolpert and Miall 1996).

Furthermore, generating command signals in the periphery

finesses many problems induced by temporal delays.

7.3 Forward models in motor control

In the free-energy formulation, recognition proceeds by

inversion of a generative or forward model mapping from

hidden states to sensations. In conventional motor control,

the forward model is used to generate predicted sensory con-

sequences of action. These ensuing sensory prediction errors

are used in state-estimation and as teaching signals to opti-

mize the inverse model or control policy. The mechanisms

of this estimation and learning vary but are formally related

to perceptual inference and learning (e.g., Kalman filtering

and associative plasticity); however, conventional schemes

only represent states, as opposed to the trajectories implicit

in generalized coordinates, which renders them sensitive to

temporal delays.

The key difference is that forward models in conventional

motor control include the effects of action whereas, forward

models in active inference do not. Action is not part of infer-

ence (i.e., inversion of a generative model) because it is a

known quantity; action is just there to explain away unex-

pected sensory prediction errors. This does not mean that

agents cannot learn about their motor plant. Indeed, the motor

plant is probably one of the most important aspects of the

environment for predicting sensory input (see Grafton and

Hamilton 2007). This may be reflected in the preoccupation

of infants with moving their limbs (and the role of rattles in

promoting multimodal learning). However, generative mod-

els of the motor plant are not conventional forward models

of motor control, because they map from causes to conse-

quences (not action to consequences). In other words, gen-

erative models allow exogenous causes of movement to be

perceived but not action per se (imagine a percept of action

in the absence of sensations).

7.4 Efference copy and corollary discharge

In modern treatments, efference copy refers to a copy of

the signals from the control policy (inverse) model that are

passed to the forward model to create corollary discharge sig-

nals (predicted sensory consequences of action; see Fig. 16

and Wolpert and Miall 1996). Corollary discharge is then

used to explain sensory input that can be attributed to action

(reafference). This enables the consequences of exogenous

influences (exafference) to be isolated. An example in lower

vertebrates is seen in electric fish (Bell and Grant 1989),

which send top-down corollary discharges to inhibit ascend-

ing sensory pathways. This allows the fish to disambiguate

between self-generated electric organ discharges and those

from other fish. However, in the free-energy formulation,

there is no need to remove the sensory consequences of action

because action is only there to explain away sensory predic-

tion errors. In the free-energy scheme, efference copy and

corollary discharge are simply the bottom-up and top-down
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signals that mediate perception. In other words, corollary dis-

charge can be understood as top-down predictions that inhibit

ascending sensory pathways by explaining away sensory pre-

diction error. Conversely, sensory prediction error units send

top-down signals to motor control units and ascending pre-

diction errors (efference copy) to optimize predictions (see

Fig. 16). If this interpretation of efference copy and corol-

lary discharge holds, then it highlights again the intimate

relationship between action and perception. A relationship

that is highlighted by formulations of the equilibrium-point

hypothesis, which suggest “action and perception are accom-

plished in a common spatial frame of reference” (Feldman

2009).

7.5 The equilibrium-point hypothesis

The equilibrium-point hypothesis (Feldman and Levin 1995)

suggests that movement is not controlled directly by the cen-

tral nervous system but by top-down signals that supply the

final point of a movement (in terms of the lengths of ten-

sor and extensor muscles). In this model, muscles and the

peripheral nervous system accommodate un-modeled forces

and viscosity automatically. This is closely related to the

current formulation, in which movements are prescribed by

top-down predictions and peripheral systems respond by

suppressing prediction error. Under the equilibrium-point

hypothesis, these predictions correspond to sensory input at

the equilibrium point. Under active inference, the predictions

are of the sensory trajectories that lead to the equilibrium

point. This difference is crucial, because it might account for

some difficulties with the equilibrium-point hypothesis: for

example, in explaining fast movements and overshoots.

Clearly, we have not touched on the detailed physiology

or mechanistic issues that are addressed by conventional ef-

ference copy or equilibrium-point models. However, the for-

mulation of sensory prediction error in terms of trajectories

(i.e., in generalized coordinates of motion) may be useful

for movement specification in terms of fixed-point attractors.

Generalized coordinates mean that movements are specified

as predicted trajectories, which include speed, acceleration,

jerk etc. This resolves some of the difficulties encountered

when considering neuronal propagation delays or unpredict-

ed changes in force or viscosity. In particular, it addresses

the challenge posed to the equilibrium-point hypothesis: “A

theory of movement should offer insight into why we make

movements the way we do and why we activate muscles

in particular patterns” (Gottlieb 1998). It is interesting to

note that recent equilibrium-point formulations focus on the

(coordinate) frames of reference that enable anticipation and

prediction: “Experimental data also imply that once a frame

of reference is chosen, its attributes are modified in a feed-

forward way, thus enabling the brain to act in an anticipatory

and predictive manner” (Feldman 2009).

7.6 Dynamic systems and optimal control

Generative models in the free-energy formulation are per-

ceptual models that preclude action as a potential cause of

sensory perturbations. Action per se is used to suppress unex-

plained prediction errors. This means that, from the point

of view of the agent, there is no difference between nav-

igating in a controlled and uncontrolled environment; the

agent does not know that the expected sensory trajectories

are being caused by its own action; it experiences the world

as if it were delivering predicable streams of sensory input.

This perspective could reconcile some differences between

dynamic systems and optimal control treatments of computa-

tional motor control: “The dynamic system approach empha-

sizes motor control as a process of self-organization between

an animal and its environment. … In contrast, optimal control

approaches view motor control as the evolutionary or devel-

opment result of a nervous system that tries to optimize rather

general organizational principles” (see Schaal et al. 2007). In

active inference, recognition dynamics optimize free-energy:

i.e., self-organizing dynamical exchanges with the environ-

ment that optimizes neural processes and connectivity under

a general free-energy principle. Crucially, free-energy and

surprise rest on prior expectations, which can only be opti-

mized by evolutionary or developmental processes.

8 Conclusion

In summary, we have shown how the free-energy principle

can be motivated from the need for agents to maintain their

exchange with the environment in equilibrium. We have con-

sidered behavior that would emerge under this principle and

have shown how it can be harnessed to optimize policies usu-

ally addressed with optimum control theory. Underpinning

this study is a unifying approach to action and perception:

perceptual learning and inference is necessary to induce prior

expectations about the sensorium and action is engaged to

resample the world to fulfill these expectations. This places

perception and action in intimate relation and accounts for

the both with the same principle. Furthermore, this principle

can be implemented in a simple and biologically plausible

fashion. The same scheme used in this article has been used

to simulate a range of biological processes: ranging from

perceptual categorization of bird-song (Kiebel et al. 2008)

to perceptual learning during the mismatch negativity para-

digm (Friston et al. 2006). Furthermore, all the simulations

in those cited articles and in this article use just one Matlab

routine (see Appendix 3). If these ideas are valid, then they

speak to a fundamental role for perception in action (Wolpert

et al. 1995; Shadmehr and Krakauer 2008; Bays and Wolpert

2007; Tseng et al. 2007; Wei and Körding 2009).
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Appendices

Appendix 1

Here, we show why the entropy of hidden states is bounded

by the entropy of sensory states and a sensory mapping term.

We then discuss why the minimizing sensory entropy is suf-

ficient to reduce the entropy of hidden states. The sensory

states s̃ ∈ S are an additive mixture of a function of the hid-

den states x̃ ∈ X plus some generalized random fluctuations

s̃ = g(x̃, θ) + z̃ (A1.1)

Because x̃ and z̃ ∈ Z are statistically independent, we have

(Eq. 6.4.6 in Jones 1979, p. 149)

I (S, Z) = H(S|m) − H(S|Z , m)

= H(S|m) − H(X |m) −

∫

p(x̃ |m) ln |gx̃ |dx̃

(A1.2)

Here and below a subscript denotes differentiation: i.e., gx :=

∂x g. In (A1.1) I (S, Z) = D(p(s̃, z̃|m)||p(s̃|m)p(z̃)) ≥ 0

is the mutual information between the sensory states and

noise. This non-negative cross-entropy or Kullback–Leibler

divergence (see Theorem 6.5; Jones 1979, p. 151) means

the entropy of the sensory states is always greater than the

entropy of the sensory map of hidden states

H(S|m) ≥ H(X |m) +

∫

p(x̃ |m) ln |gx̃ |dx̃ (A1.3)

The gradient gx̃ is of the sensory mapping with respect to

the hidden states. The integral n (A1.3) reflects the fact that

entropy is not invariant to a change of variables and rests

on the assumption that the sensory mapping g : X → S is

diffeomorphic. This assumption could be considered as a pre-

diction that sensory mappings must be diffeomorphic (i.e.,

bijective and smooth). A diffeomorphism requires the dimen-

sionality of the hidden and sensory state–spaces to be equal.

This is assured by the fact we are dealing with generalized

states that can be truncated at any arbitrarily high order. For

example, if we had n hidden states in m generalized coor-

dinates motion, then we would consider m sensory states in

n generalized coordinates, such that dim(x̃) = dim(s̃) =

n × m. Finally, rearranging (A1.3) gives Eq. 1 in the main

text.

Minimizing sensory entropy

Because entropy is not invariant under a change of variables,

the sensory mapping is a key determinant of sensory entropy.

Note that agents cannot change the mapping per se; they can

only change the hidden states that are mapped to sensory

input. However, the astute reader will note that nonlineari-

ties in the sensory mapping mean that changing some hidden

states will affect the sensory mapping of others (e.g., clos-

ing ones eyes). Does this mean that sensory entropy can be

suppressed by simply avoiding sensory input? No—because

entropy is conditioned on the agent (it is the average sur-

prise given a particular agent). Agents who are not surprised

by the absence of sensations are unlikely to exist because

they are unable to navigate the environment and maintain

an equilibrium density. This argument is at the heart of the

free-energy formulation and appeals to the same tautology

as adaptive fitness in natural selection. In the present con-

text, it suggests that sensory channels that are critical for

survival should be privileged and cannot be occluded (e.g.,

nociceptive pain signals and interoception signaling hunger,

thirst etc.). Second, it suggests that agents should find the

absence of sensory information surprising. We develop this

theme in more detail in the context of value-learning (Friston

et al., in preparation). In brief, prior expectations (cf. optimal

policies) about the trajectories of hidden states induce explo-

ration and sampling of the environment. These priors are part

of the model on which entropy is conditioned, which reduce

the entropy of hidden states. This reduces sensory entropy,

which is a lower bound on free-energy. Put simply, the free-

energy formulation assumes that agents have the right priors.

This assumption cannot be violated, because agents who do

not have the right priors cannot exist.

Appendix 2

Here, we derive the various formations of free-energy and

show how they relate to each other. We start with the quantity

we want to bound: namely, surprise or log-evidence associ-

ated with some sensory states s̃ that have been caused by some

unknown quantities � (dropping conditional dependency on

model m for clarity)

− ln p(s̃) = − ln

∫

p(s̃, �)d� (A2.1)

We now simply add a non-negative cross-entropy or diver-

gence between some arbitrary (recognition) density q(�) :=

q(�|µ) and the posterior density p(�|s̃) to create a free-

energy bound on surprise

F = − ln p(s̃) +

∫

q(�) ln
q(�)

p(�|s̃)
d�

= − ln p(s̃) + D(q(�)||p(�|s̃)) (A2.2)
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Fig. 17 Schematic summary of

the relationships among the

various energies that participate

in the free-energy formulation.

The right hand panel shows that

free-energy upper bounds

sensory surprise, which in turn

bounds implicit surprise about

hidden states of the world (under

some simplifying assumptions).

These bounding relationships

are assured by the divergences

that separate them, which are

(by construction) non-negative.

The associated time or

path-integrals of the energies are

shown on the left. These are

called ‘actions’ and are formally

equivalent to entropy (i.e.,

average surprise). See Appendix

2 for a more detailed discussion

The cross entropy term is non-negative by Gibb’s inequal-

ity. Because surprise depends only on sensory states, we can

bring it inside the integral and use p(�, s̃) = p(�|s̃)p(s̃) to

show free-energy is the Gibb’s energy − ln p(�, s̃) expected

under q(�), minus its entropy

F =

∫

q(�) ln
q(�)

p(�|s̃)p(s̃)
d�

=

∫

q(�) ln
q(�)

p(�, s̃)
d�

= −

∫

q(�) ln p(�, s̃)d� +

∫

q(�) ln q(�)d�

= −〈ln p(�, s̃)〉q + 〈ln q(�)〉q (A2.3)

A final rearrangement, using p(�, s̃) = p(s̃|�)p(�), shows

that free-energy is also complexity minus accuracy, where

complexity is the divergence between the recognition den-

sity q(�) and the prior density p(�)

F =

∫

q(�) ln
q(�)

p(s̃|�)p(�)
d�

= −

∫

q(�) ln p(s̃|�)d� +

∫

q(�) ln
q(�)

p(�)
d�

= −〈ln p(s̃|�)〉q + D(q(�)||p(�)) (A2.4)

Equations (A2.2), (A2.3) and (A2.4) are the three formula-

tions used in the main text. Figure 17 provides a graphical

summary of these relationships.

Appendix 3

The simulations in this article involve integrating time-vary-

ing states in both the environment and the agent as a single

system, which can be modeled with the following ordinary

differential equation

u̇ =

⎡
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⎢

⎢
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⎢

⎢
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˙̃s
˙̃x
˙̃v
˙̃z
˙̃w
˙̃µx

˙̃µv

˙̃η

ȧ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Dg + Dz̃

f + w̃

Dṽ
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(A3.1)

In order to update these states, we use a local linearization:

�u = (exp(�tℑ)− I )ℑ(t)−1u̇ over time steps of �t , where

ℑ =
∂ u̇

∂u
=

⎡

⎢

⎢

⎢

⎢
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⎢

⎢
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⎢

⎢
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fx̃ fṽ I fa
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(A3.2)
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The conditional expectations of the parameters and preci-

sions are updated after every simulated trail as described

in Friston (2008). Equation A3.2 may look complicated but

can be evaluated automatically using numerical derivatives.

All the simulations in this article used just one routine—

spm_ADEM.m. Demonstrations of this scheme are available

as part of the SPM software (http://www.fil.ion.ion.ucl.ac.

uk/spm; DEM_demo.m), and reproduce the examples in the

main text.

In order to include action in the free-energy scheme, we

simply add action to the states of the generative process pro-

ducing sensory data and specify its dynamics as a gradi-

ent descent on free-energy. Because action can only affect

the free-energy through the sensory data that are sampled,

it can only affect sensory prediction error. Therefore, action

dynamics are prescribed by

ȧ = −Fa = −ε̃T
a ξ

ε̃a = gx̃

∑

i

D−i f i−1
x̃

fa
(A3.3)

The partial derivative of the error with respect to action

is the partial derivative of the sensory data with respect to

action and is specified by the generative process. In biolog-

ically plausible instances of this scheme, this partial deriva-

tive would have to be computed on the basis of a mapping

from action to sensory consequences (see Sect. 7). One might

assume that this mapping was sufficiently simple to be hard-

wired or, when dependent upon sensory states, was based on

some interpolation or Gaussian process model. This will be

demonstrated in future simulations.

Note that (A3.1) is formulated in generalized coordinates

of motion. Although there is no need to express action in

generalized coordinates (because it is real-world state), it can

change the high-order motion of other environmental states.

For example, in the mountain-car system, action changes the

second-order motion of position (i.e., acceleration) and plays

the role of a Newtonian force.
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