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Monte Carlo simulation is a useful but underutilized method of constructing confidence intervals for
indirect effects in mediation analysis. The Monte Carlo confidence interval method has several dis-
tinct advantages over rival methods. Its performance is comparable to other widely accepted methods
of interval construction, it can be used when only summary data are available, it can be used in situa-
tions where rival methods (e.g., bootstrapping and distribution of the product methods) are difficult or
impossible, and it is not as computer-intensive as some other methods. In this study we discuss Monte
Carlo confidence intervals for indirect effects, report the results of a simulation study comparing their
performance to that of competing methods, demonstrate the method in applied examples, and discuss
several software options for implementation in applied settings.

In its simplest form, mediation occurs when the effect of an independent variable (X) on a depen-
dent variable (Y) is transmitted via a mediator variable (M) (see Figure 1).1 This mediation effect
is also commonly referred to as the indirect effect of X on Y through M. Mediation models permit
researchers to test simple hypotheses about how causal processes may occur and form the build-
ing blocks of more complicated structural models. Mediation models often involve parsing the
total effect (c) of X on Y into a direct effect (c′) and an indirect effect (a × b, or simply ab). These
coefficients can be derived from fitting the following simultaneous equations to sample data using
linear regression or path analysis, with straightforward extensions to latent variable models:

M = a0 + aX + eM (1)

Y = b0 + bM + c′X + eY (2)

Figure 1 depicts these effects using simple path diagrams of the effect of X on Y both without
and with M included in the model. In mediation analysis, attention focuses mostly on the indirect

1In order for the results of a mediation analysis to have a causal interpretation, several additional assumptions must
be met. For overviews see Imai, Keele, and Tingley (2010), Muthén (2011), and Pearl (2010).
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FIGURE 1 A simple mediation model. X is the predictor, M the hypoth-
esized mediator, and Y the outcome. Regression residuals are excluded
from the diagram for simplicity.

effect ab, although many methodologists emphasize the need to also consider the coefficients
c and c′ in making this determination. In more complicated mediation models, such as models
with multiple mediators, hierarchically clustered data, or longitudinal data, the indirect effect
expression will be correspondingly more complex.

In this article we discuss Monte Carlo (MC) confidence intervals for indirect effects. MC
intervals capitalize on the fact that most statistics software packages provide the asymptotic
covariance matrix of the parameter estimates involved in indirect effects. A sampling distribution
of the indirect effect can be simulated from this matrix, and percentiles of this distribution can be
used to construct a confidence interval. We provide a small simulation study comparing the per-
formance of MC confidence intervals to parametric, nonparametric, and residual-based bootstrap
intervals, as well as intervals based on the delta method and distribution of products, demonstrate
the method in two examples, and discuss several software options for implementation in applied
settings.

METHODS FOR CONSTRUCTING CONFIDENCE INTERVALS
FOR INDIRECT EFFECTS

Let θ be a generic population parameter whose value we wish to estimate. Chernick (2008)
defines a 100(1 − α)% confidence interval (CI) for the value of θ in the following way:

“. . . if we construct a 95% confidence interval, we would expect that our procedure would produce
intervals that contain the true parameter in 95% of the cases. Such is the definition of a confidence
interval.” (p. 53)

Thus, a CI for θ may be defined in terms of the true (unknown) parameter value without reference
to any particular null hypothesis. A simple example of a confidence interval is a 95% CI for the
population mean of a normally distributed variable, expressed as CI.95 : {θ̂ ± tcSEθ̂ }, where tc is
the two-tailed critical value of the corresponding Student’s t distribution and SEθ̂ is the standard
error of the estimate. With reference to the model in Figure 1, the indirect effect is most often
quantified as the sample estimate âb̂. Various methods for constructing CIs for the parameter ab
differ only in how the sampling distribution of âb̂ is obtained and used to gauge significance. We
next describe the major methods of CI construction for indirect effects.

Delta Method

The delta method (DM) is a popular method for deriving the sampling variance of compound
statistics like âb̂. This sampling variance, in turn, can be used in the construction of symmetric
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MONTE CARLO CONFIDENCE INTERVALS 79

confidence intervals. The method proceeds by first obtaining the asymptotic covariance matrix of
parameter estimates â and b̂, then pre- and post-multiplying by the vector-valued derivative (D)
of the Taylor series expansion of âb̂ with respect to each of these parameters evaluated at their
means. The result is a scalar approximation to the sampling variance of âb̂ where s2

b̂
and s2

â are

the estimated sampling variances of â and b̂, respectively:

var[âb̂] ≈ â2s2
b̂
+ b̂2s2

â (3)

The square root of this sampling variance is often used as a standard error in significance tests for
the indirect effect (Sobel, 1982) or to construct a symmetric confidence interval for ab:

CI1−α = âb̂ ± zα/2

√
var[âb̂] (4)

Unfortunately, âb̂ is not normally distributed, although it may approach normality in large sam-
ples (Aroian, 1947; Craig, 1936). In most cases, the distribution of âb̂ is skewed and leptokurtic
(Bollen & Stine, 1990; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; MacKinnon,
Lockwood, & Williams, 2004). When the assumption of normality is not tenable, intervals based
on the delta method are not appropriate in the majority of cases. Nevertheless, the delta method
is the default method most commonly included in structural equation modeling (SEM) software
for obtaining tests and CIs for indirect effects.

Distribution of the Product Method

The distribution of the product (DP) strategy considers the correct distribution of âb̂ rather than
assuming that it is normal or approximating it in some way. To use the DP method, researchers
are obliged to convert â and b̂ to z-scores, form the product zâzb̂, and compare the result to
a table of critical values (MacKinnon et al., 2004; Meeker, Cornwell, & Aroian, 1981). This
method performs well in simulation studies, but until recently required recourse to tables with
limited availability and knowledge of the population value of either a or b. The first of these
limitations has been overcome with the availability of PRODCLIN (available in Fortran, SAS,
SPSS, and R formats; MacKinnon, Fritz, Williams, & Lockwood, 2007), a program that can be
used to construct asymmetric confidence limits using the distribution of the product approach.
The second limitation cannot be circumvented but becomes less relevant as N increases.

Nonparametric Percentile Bootstrap and Corrections

Bootstrapping (Efron, 1982; Efron & Tibshirani, 1993) is a nonparametric resampling method
that involves generating an empirical sampling distribution of ab and using it as a basis for statis-
tical estimation and inference. An arbitrarily large number (B) of resamples of size N are sampled
independently with replacement from the original sample. The product ab∗ is estimated for each
of these B resamples, resulting in an empirical sampling distribution of ab∗. Percentile-based
(PC) confidence intervals (Efron, 1981) may be constructed for any degree of precision by iden-
tifying the values of ab∗ corresponding to the lower and upper 50α% of the distribution. These
values define the limits of a 100(1 − α)% asymmetric CI about the sample âb̂.
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80 K. J. PREACHER AND J. P. SELIG

Efron (1981, 1982, 1987) and Efron and Tibshirani (1986, 1993) suggest adjustments that
reduce bias in percentile bootstrap interval bounds. Whereas percentile bounds are taken directly
from the desired percentiles of the empirical sampling distribution of ab∗, bias-corrected (BC)
bounds incorporate an adjustment. Letting z0 be the z-score corresponding to the proportion of
the B bootstrap resamples with ab∗ less than the estimated sample âb̂, two z-scores are defined
as:

z′
lower = 2z0 + zα/2 (5)

z′
upper = 2z0 + z1−α/2 (6)

The proportions under the standard normal distribution that correspond to z′
lower and z′

upper are mul-
tiplied by 100 to serve as the adjusted percentiles for selecting interval limits from the bootstrap
distribution of ab∗. The BC bootstrap has been found to perform well in terms of Type I error
rates and statistical power when testing indirect effects (MacKinnon et al., 2004). However, it has
been observed that BC limits do not always have good coverage (Schenker, 1985); that is, across
repeated sampling, BC intervals do not necessarily include the population parameter the desired
percentage of times. This in part motivated the creation of bias-corrected and accelerated (BCa)
confidence limits (Efron, 1987). BCa percentiles include further adjustment by an acceleration
constant ȧ:

z′
lower = z0 + z0 + zα/2

1 − ȧ
(
z0 + zα/2

) (7)

z′
upper = z0 + z0 + z1−α/2

1 − ȧ
(
z0 + z1−α/2

) (8)

where ȧ is approximately 1/6 of the skewness of the bootstrap distribution of ab∗. Thus, 2z0

is a correction for median bias and ȧ is a correction for skewness (DiCiccio & Efron, 1996;
Efron & Tibshirani, 1986, 1993). BCa confidence limits are second-order accurate in many cases
where estimators can be expressed as functions of multivariate vector means (e.g., indirect effects)
(DiCiccio & Romano, 1988; Efron, 1987, p. 176; Efron & Tibshirani, 1993; Hall, 1989), mean-
ing that coverage rates approach the nominal value very quickly as N increases. In theory, BCa
intervals offer an improvement over BC intervals, but in practice the superiority of one type of
interval over the other can depend on the context.

The primary benefits of bootstrapping are that it involves no distributional assumptions and
can be used in small samples. Unlike DM intervals, bootstrap intervals for ab are asymmet-
ric, resembling more closely the true distribution of products, which tends to be somewhat
skewed away from zero (Bollen & Stine, 1990). The only apparent drawbacks to the boot-
strap include slight inconsistency among replications of the same experiment with the same
data due to random resampling variability and the time commitment due to computer-intensive
resampling.

Bootstrapping has been found to perform well relative to other methods of CI construction for
indirect effects (Bollen & Stine, 1990; Efron & Tibshirani, 1993; Lockwood & MacKinnon, 1998;
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MONTE CARLO CONFIDENCE INTERVALS 81

MacKinnon et al., 2004; Preacher & Hayes, 2004; Shrout & Bolger, 2002). Hypothesis tests based
on BC and BCa intervals have fairly accurate Type I error rates and higher power when compared
to competing methods used to test null hypotheses about indirect effects. Fritz and MacKinnon
(2007) demonstrated that, of several competing methods, BC required the smallest N to achieve
comparable levels of power. On the other hand, Fritz and MacKinnon (2007), Fritz, Taylor, and
MacKinnon (2012), and MacKinnon et al. (2004) report that BC and BCa bootstrap CIs yield
too-high Type I error rates in some conditions when N is small, and Polansky (1999) reports poor
CI coverage in very small samples. Biesanz, Falk, and Savalei (2010) found that BCa intervals did
not perform as well as PC intervals. Bootstrap methods are available for estimating indirect effects
in some SEM software applications and in macros for use in SPSS and SAS (Cheung, 2007;
Lockwood & MacKinnon, 1998; Preacher & Hayes, 2004, 2008; Preacher, Rucker, & Hayes,
2007; Shrout & Bolger, 2002).

Residual-Based Bootstrap

Residual-based bootstrapping (RB) is often used with regression models in which the design
matrix is considered fixed, which includes most applications of regression (Efron, 1979; Efron
& Tibshirani, 1993; Freedman, 1981; Stine, 1989). It has been adapted for use in multilevel
modeling where there is no clearly superior way to employ more traditional bootstrap methods
(van der Leeden, Meijer, & Busing, 2008; Wang, Carpenter, & Kepler, 2006). In the regression or
SEM context, the first step in residual-based bootstrapping is to estimate the regression weights
or path coefficients and compute observed residuals (êM) according to, for example, Equation 1.
The second step is to bootstrap the residuals. The resampled residuals are then added to the fitted
equation â0 + âX to generate bootstrap values of the mediator M∗. These, in turn, are regressed
onto the fixed X to produce a bootstrapped value of a∗. This process is repeated B times to
generate a bootstrapped distribution of a∗, where B is large (several thousand). In adapting the
method to the simple mediation context, there are two residuals to resample: those for the M
equation and those for the Y equation (Zhang & Wang, 2008). For simple mediation models, pairs
of residuals (êM,êY) are obtained from Equations 1 and 2 fit to the observed data. Residual pairs
are then bootstrapped from this joint distribution and added (respectively) to the fitted equations
â0 + âX and b̂0 + b̂M + ĉ′X to yield bootstrapped values of both M∗ and Y∗. M∗ is regressed
on the fixed X to yield a∗, whereas Y∗ is regressed on the fixed X and the random M∗ to yield
b∗. This process is repeated B times to generate a bootstrap distribution of ab∗. The empirical
sampling distribution of ab∗ can be used in the usual way to form PC, BC, or BCa CIs. Zhang and
Wang (2008) note that RB bootstrap requires errors to be independent and identically distributed
(iid), an assumption not required for other bootstrapping methods. They found that RB bootstrap
CIs have good coverage and power for medium to large effects when residuals are iid. When
residuals are heterogeneous, the RB bootstrap performed better with small effect size whereas
the PC bootstrap performed better with large effect sizes.

The RB bootstrap has been used to assess mediation in multilevel models (Pituch, Stapleton,
& Kang, 2006) but has only recently been suggested for use in the more common single-level
mediation models (Zhang & Wang, 2008). The version of the RB bootstrap used in our simulation
is identical to that of Zhang and Wang and similar to that of Pituch et al., except that residuals
were obtained via bootstrapping rather than through Monte Carlo simulation. Zhang and Wang
provide software (MedCI) for computing confidence limits using the RB bootstrap.
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82 K. J. PREACHER AND J. P. SELIG

Parametric Bootstrap

The parametric bootstrap (PB) method can be traced to Efron (1980, 1982; Efron & Tibshirani,
1986, 1993), and is sometimes called parametric simulation (Davison & Hinkley, 1997). The
PB method relies on the assumption that the parameters a and b have a known joint sampling
distribution, not necessarily normal, with parameters supplied by (often, but not necessarily)
maximum likelihood estimates from the fitted parametric model. The model, with parame-
ter estimates treated as parameters, is used to repeatedly generate bootstrap resamples. For
example, the model-implied covariance matrix in a linear path model might be used as a pop-
ulation matrix, from which sample data matrices could be generated (e.g., using the method
of Kaiser and Dickman [1962]). The statistic of interest (θ̂ ), which may be a simple or com-
plex function of other model statistics, is computed in each resample. Thus, in contrast to the
nonparametric bootstrap, in which bootstrap data consist of resampled cases from the original
sample, in the parametric bootstrap the bootstrap data are generated parametrically from a fit-
ted model. Percentiles of the sampling distribution of θ̂ are identified to serve as limits for a
100(1 − α)% asymmetric confidence interval about the sample θ̂ , where θ̂ = âb̂ in mediation
analysis. Bias correction, with or without acceleration, may be used just as with the nonparametric
bootstrap.

Generation of the parametrically simulated data can proceed in a number of ways, typically by
employing software-based pseudorandom number generation. Even though parametric assump-
tions are invoked for â and b̂, no parametric assumptions are made about the distribution of âb̂.
The advantages of the PB method include most of those associated with nonparametric bootstrap
CIs—the intervals are properly asymmetric, and are useful in situations where obtaining CIs by
analytic means is difficult or impossible. An advantage over the nonparametric bootstrap is that
the PB method is not limited to using case data that were actually observed in one’s empirically
obtained sample; data are generated parametrically, which implies that the sampling distribu-
tion of âb̂ will be smoother. This becomes important especially when high confidence levels are
desired (e.g., 99%), the sample is small (Davison & Hinkley, 1997), and/or the sampling distri-
bution is heavily skewed. Furthermore, the PB method can be used when only summary data are
available, facilitating re-analysis or meta-analysis. A disadvantage is that it is necessary to make
some possibly unwarranted parametric distributional assumptions at the data simulation stage.
The procedure will yield biased results to the extent that the original point estimates and their
asymptotic (co)variances are affected by model misspecification.

Accessible discussions of the PB method can be found in Chernick (2008, pp. 124–125),
Davison and Hinkley (1997, pp. 15–21), Efron (1980, pp. 40–41; 1982, pp. 29–30; 1986,
pp. 56–57), and Efron and Tibshirani (1993, pp. 53–56). The PB method is implemented in the R
command “boot” using sim=“parametric” (Davison & Hinkley, pp. 528–529).

The Monte Carlo Method

The Monte Carlo (MC) method involves generating a sampling distribution of a compound statis-
tic by using point estimates of its component statistics, along with the asymptotic covariance
matrix of these estimates and assumptions about how the component statistics are distributed.
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MONTE CARLO CONFIDENCE INTERVALS 83

For example, a sampling distribution for the ratio of two independent means could be gen-
erated by first fitting a model to empirical data and obtaining point estimates and asymptotic
variances for the means. Because means are asymptotically normal according to the Central
Limit Theorem, a large number of random draws could be taken from a bivariate normal dis-
tribution of the means, each time creating the ratio θ∗ = x̄∗

1/x̄∗
2, yielding a sampling distribution

of the ratio. A CI can then be formed on the basis of this sampling distribution in the same
way as bootstrap intervals. However, in contrast to bootstrap methods, the MC method involves
directly generating sample statistics from their joint asymptotic distribution, not resampling or
generating data.

The MC method was first applied to the mediation context by MacKinnon et al. (2004) and is
closely related to the empirical-M method (MacKinnon et al., 2002, 2004; Pituch & Stapleton,
2008; Pituch et al., 2006; Pituch, Whittaker, & Stapleton, 2005), especially as generalized by
Williams and MacKinnon (2008) to cases beyond single-mediator models. The MC method relies
on the assumption that the parameters a and b have a joint normal sampling distribution, with
parameters supplied by (often, but not necessarily) maximum likelihood estimates from the fitted
parametric model:

[
a∗
b∗

]
∼ MVN

([
â
b̂

]
,

[
σ̂ 2

â σ̂âb̂
σ̂âb̂ σ̂ 2

b̂

])
(9)

In the traditional three-variable mediation model of Figure 1, σ̂âb̂ is often replaced with 0 for
simplicity. Using the parametric assumption in (9), a sampling distribution of âb̂ is formed by
repeatedly generating a∗ and b∗ and computing their product. Values for â and b̂ can be gener-
ated in a number of ways, most often using software-based pseudorandom number generation.
Parametric assumptions are invoked for â and b̂, but no parametric assumptions are made about
the distribution of âb̂. Even though parametric assumptions are invoked for â and b̂, no paramet-
ric assumptions are made about the distribution of âb̂. Percentiles of this sampling distribution
are identified to serve as limits for a 100(1 − α)% asymmetric confidence interval about the
sample âb̂.

Advantages of the MC method include most of those associated with nonparametric bootstrap
CIs (e.g., asymmetry, usefulness in otherwise intractable situations). It also shares the advan-
tage of the PB method in that the sampling distribution of âb̂ can be made arbitrarily smooth
as B increases, and it can be used when only summary data are available. The MC method has
a unique advantage over bootstrap methods in that it is very fast; the model is fit to data only
once. This can be a huge advantage when using models that take a long time to converge. The
MC method can be used in situations where bootstrapping is not feasible, such as multilevel
modeling, when samples are so small that bootstrapping may randomly generate a constant vari-
able and stop, or when distinct values of a variable are limited and highly unbalanced (as in
research on rare disorders). MacKinnon et al. (2004) found MC CIs to show performance sim-
ilar to the PC bootstrap and inferior to BC bootstrap CIs. Thus, if the MC method is found to
perform similarly to (or not significantly worse than) bootstrap methods and the DP method,
we argue that researchers should give it serious consideration as a viable alternative to these
methods.
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84 K. J. PREACHER AND J. P. SELIG

SIMULATION STUDY

To investigate the performance of Monte Carlo CIs relative to bootstrap-based CIs, delta method
CIs, and CIs based on the distribution of products, we conducted a simulation study. A CI con-
struction method is deemed successful to the extent that it demonstrates (a) nominal coverage, (b)
smaller width, and (c) roughly equal numbers of “misses” to the left and to the right. That is, a
good CI should capture the parameter 100(1 − α)% of the time, should be narrower than CIs con-
structed using competing methods (holding coverage constant), and ideally should yield intervals
that exclude the population parameter 50α% to the left and 50α% to the right (MacKinnon et al.,
2004).

With these goals in mind, we chose a simple two-path mediation model (like the model
depicted in Figure 1) for the simulation, with the expectation that results for this model will
also apply to more complex models. We manipulated sample size (N = 20, 40, 70, 100, 150,
200), effect sizes of the path coefficients in a simple three-variable mediation model (a = .00,
.14, .39, .59; b = .00, .14, .39, .59; c = .35, .70), and CI construction method (DM, DP, PC, BCa,
BC, RB, PB, MC). Population variances of X, M, and Y were chosen as 1.0, and the values of
a and b were selected to conform to values used in prior simulation studies (e.g., Biesanz et al.,
2010; MacKinnon et al., 2004). Two thousand samples were generated for each crossing of N, a,
b, and c, yielding a total of 192,000 data sets. Nonparametric bootstrap methods used B = 1,000
bootstrap resamples for each sample, the parametric bootstrap used 1,000 simulated data sets,
and the Monte Carlo method used 1,000 simulated parameter sets.

Hypotheses

Coverage

Given the known inability of the delta method to accommodate asymmetry in the sampling
distribution of an indirect effect, it was hypothesized that the delta method would perform poorly
with respect to coverage. We expected all other methods to perform generally better than the delta
method and acceptably overall, especially as sample size increased. We expected the Monte Carlo
method to perform about as well as the nonparametric bootstrap methods and the distribution of
the product method.

CI width

Assuming that a CI method yields CIs with acceptable coverage, narrow confidence inter-
vals are generally preferred to wider ones. The delta method is expected to yield relatively
narrow intervals because it involves assuming normality for a sampling distribution that is actu-
ally skewed and leptokurtic (Bollen & Stine, 1990; MacKinnon et al., 2002; MacKinnon et al.,
2004). The expected narrowness of CIs based on the delta method is not a sign of superiority, but
rather a sign of a parametrically misspecified sampling distribution. CIs based on bootstrap meth-
ods, Monte Carlo, and the distribution of the product are expected to yield CIs with comparable
width.
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MONTE CARLO CONFIDENCE INTERVALS 85

Misses

Ideally, a CI should exclude the parameter to an equal degree to the left and right; that is,
it should be symmetric with respect to misses. To operationalize this symmetry, we computed
the ratio of right-side misses to left-side misses. A value of 1 indicates perfect symmetry with
respect to missing the population indirect effect, whereas departures from 1 indicate imbalance.
We expected the delta method to yield unbalanced misses due to its artificially symmetric CIs. We
expected Monte Carlo methods to perform on par with bootstrap and distribution of the product
methods.

Overall, it was our expectation that the Monte Carlo method would perform acceptably on all
counts when compared to bootstrap methods and the distribution of the product method. If the
Monte Carlo method is comparable to (or not much worse than) existing methods for constructing
asymmetric CIs, we argue that this method presents a useful alternative to these other methods
when raw data are unavailable.

Results

Coverage

Coverage is reported for all cells of the design in Figure 2 (for c = .35) and Figure 3 (for
c = .70). Overall, results were comparable for c = .35 and c = .70, and results for the BC and
BCa bootstrap methods were virtually indistinguishable. As predicted, the delta method tended
to have coverage that was too high in some conditions, mainly when either a or b was small.
As a and b increased, and as sample size increased, most methods converged on .95. The Monte
Carlo method appeared to perform comparably to the parametric, percentile, and residual-based
bootstrap methods. To better quantify coverage, we computed the average root mean squared
error (RMSE) of observed CI coverage (with respect to the nominal .95 level) across all a, b, and
N conditions (but separately for c = .35 and c = .70). Results, reported in Table 1, demonstrate
that the Monte Carlo method was among the best methods in terms of coverage—as good as,
or slightly better than—the parametric, percentile, and residual-based bootstrap methods and the
distribution of the product method.

CI width

Summary results for interval width are reported in Table 1. Averaging across all conditions,
the delta method showed the narrowest intervals (average width = .233), although this narrow-
ness is of questionable worth given its relatively poor coverage. Among the remaining methods
with acceptable coverage, the distribution of the product method had the narrowest CIs (.236),
followed by the Monte Carlo method (.249).

Misses

The ratio of average right-side misses to average left-side misses is reported for all methods in
Table 1. All methods demonstrated more average misses to the right than to the left (keeping in
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90 K. J. PREACHER AND J. P. SELIG

TABLE 1
Abbreviated Simulation Results

RMSE for RMSE for Overall Proportion Proportion Right-
Coverage Coverage Width of Misses of Misses to-Left
(c = .35) (c = .70) for CIs to Left to Right Miss Ratio

Delta Method .028 .025 .233 .011 .030 2.743
Parametric Bootstrap .023 .021 .259 .015 .022 1.449
Percentile Bootstrap .021 .021 .252 .019 .027 1.467
BCa Bootstrap .023 .023 .257 .025 .032 1.271
BC Bootstrap .023 .023 .257 .025 .032 1.272
Residual Bootstrap .022 .020 .252 .017 .025 1.450
Monte Carlo .022 .020 .249 .017 .025 1.447
Distribution of Product .023 .021 .236 .019 .031 1.670

mind that the population indirect effect was positive when present). The delta method was by far
the most unbalanced in terms of misses, with a right-to-left ratio of 2.743; that is, the population
ab was nearly three times more likely to be excluded to the right of the interval than to the left.
The Monte Carlo method performed comparably to the bootstrap methods and better than the
distribution of the product method.

Overall, the Monte Carlo method received much support. Its performance in terms of
coverage, CI width, and misses was comparable to other top-performing methods of CI
construction.

EMPIRICAL EXAMPLES

Next we provide two examples based on the results from an experiment conducted by Tal-Or,
Cohen, Tsfati, and Gunther (2010). We will illustrate the utility of the MC approach by estimating
CIs for both a simple indirect effect and a more complex total indirect effect using only the
information available in the published report. Tal-Or and colleagues allowed us to use the original
data from their experiment so it will be possible to make comparisons between MC CIs based only
on summary statistics and delta method and bootstrap CIs based on the analysis of the original
data.

We will focus on results from Study 2 in Tal-Or et al. (2010). In this study, the authors
examined the relationship between an experimental manipulation of the perceived impact of a
simulated newspaper story (X) on the participants’ potential reactions to the story (Y). Two vari-
ables, the presumed influence of the story on the public (M1), and the perceived importance of the
story (M2), were examined as mediators. The perceived impact of the story was operationalized
by placing the story on the front page or on an internal page of a supplement to the newspa-
per. The other variables were measured with questionnaires. Figure 4 shows a diagram of the
four variables in the study. We added subscripts to the respective a and b paths to better distin-
guish the two sets of coefficients. Tal-Or et al. assessed mediation using a combination of Baron
and Kenny’s (1986) causal steps approach and bootstrap confidence intervals. The CIs were not
reported, but the authors used the CIs to determine that both indirect effects depicted in Figure 4
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MONTE CARLO CONFIDENCE INTERVALS 91

(i.e., perceived impact→media influence→potential reactions and perceived impact→perceived
importance→potential reactions) were statistically significant (p < .05).

For the example of simple mediation, we will examine the effect of perceived impact on poten-
tial reactions as mediated by presumed media influence. Tal-Or and colleagues report both the
coefficients and standard errors for this indirect effect (â1 = 0.48, SEa1 = 0.24; b̂1 = 0.40,
SEb1 = 0.09). We entered these summary statistics into a web-based Monte Carlo calculator
(Selig & Preacher, 2008) available at the website of the first author to compute a 95% CI based
on 20,000 simulated draws from the distributions for the a1 and b1 parameters. Figure 5 shows a
simulated sampling distribution for the indirect effect (a1b1). This histogram is automatically gen-
erated when computing MC CIs using the web-based calculator. The histogram shows a degree of
positive skew consistent with the aforementioned nonnormal shape of distributions of products.

Potential
Reactions

Perceived
Impact

Media
Influence

Perceived
Importance

a2a2

a1 b1

b2

FIGURE 4 Diagram of the model from Tal-Or et al. (2010).

Distribution of Indirect Effect

95 % Confidence Interval  LL 0.003838   UL 0.4225

F
re

qu
en

cy

–0.2 0.0 0.2 0.4 0.6 0.8

0
20

0
40

0
60

0
80

0

FIGURE 5 Simulated sampling distribution for the indirect effect (a1b1).
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92 K. J. PREACHER AND J. P. SELIG

TABLE 2
95% Confidence Intervals for the Indirect Effect
of the Manipulation on Reactions as Mediated

by Media Influence

95% CIs for Indirect Effect
(a1b1 = 0.189)

Method LL UL

Monte Carlo 0.004 0.423
Delta Method −0.015 0.393
Percentile Bootstrap 0.006 0.415
Bias-Corrected Bootstrap 0.016 0.436

Next we used Mplus (Muthén & Muthén, 1998–2010) to conduct a path analysis of the vari-
ables in Figure 4. For the path analysis we requested three different kinds of 95% CIs that Mplus
can produce. These three are based on: the delta method, the percentile bootstrap, and the bias
corrected bootstrap. For this analysis we used 20,000 bootstrap resamples to compute the CIs.
Table 2 shows the 95% CIs from all analyses. As can be seen from the 95% CIs in Table 2, all
intervals except for the symmetric CI based on the delta method exclude zero. Therefore, the
authors’ conclusion regarding the evidence for mediation would be similar when using the MC
approach or either bootstrapping approach. The lower limit for the MC interval is lower than that
for the two bootstrap CIs.

Next we used the same data to examine an indirect effect not considered by Tal-Or et al.
(2010). This is the total indirect effect of perceived impact (X) on potential reactions (Y). The
total indirect effect describes all of the influence perceived impact had on potential reactions as
mediated by both perceived media influence (M1) and perceived importance (M2). The estimate of
the total indirect effect can be calculated as follows: (a1b1) + (a2b2). MacKinnon (2008) provides
the following delta method formula for the standard error for such a total indirect effect:

sâ1b̂1+â2b̂2
=

√
s2

â1
b̂2

1 + s2
b̂1

â2
1 + s2

â2
b̂2

2 + s2
b̂2

â2
2 + 2â1â2sb̂1b̂2

+ 2b̂1b̂2sâ1â2 (10)

Here sâ1â2 and sb̂1b̂2
describe the sample covariances between the two a parameter estimates and

the two b parameter estimates, respectively.
Some SEM software packages such as Mplus allow the user to define new parameters that are

functions of other model parameters. The software can then provide both estimates and standard
errors for the new parameters. In this way, one could define the total indirect effect above as a new
parameter and calculate a standard error and/or CI for the total indirect effect. In many situations
it is also possible to use the MC approach to estimate CIs for the total indirect effect. This is done
by simulating random draws from the distributions for the four parameters involved in the total
indirect effect (i.e., a1, b1, a2, b2).

When using path analysis, there is no assumption that the parameter covariances are equal to
zero, so it is possible that the four parameters that constitute the total indirect effect may have
nonzero covariances. As can be seen in Equation 10, these covariances are needed to compute the
standard error and are also important for the MC approach. In other words, it may be necessary
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MONTE CARLO CONFIDENCE INTERVALS 93

to sample values of the coefficients from a multivariate normal distribution using the covariance
matrix of the parameters as a population covariance matrix.

When it is necessary to know about the covariances of the parameter estimates constituting an
indirect effect, there are two options available in addition to access to raw data. The first option
requires the authors to report the asymptotic covariance matrix (ACM) of the parameter estimates,
which can be obtained in most regression and SEM packages. Given current reporting norms, we
believe this will be a rare occurrence. The second option requires the authors to report the covari-
ance matrix for the variables used in the analysis. It is then possible to use the covariance matrix
in an SEM software package to replicate the analyses in the report. Many software packages will
then give the user the option of outputting the ACM. This covariance matrix can then be used to
simulate random values from a multivariate normal distribution of the parameters.

To demonstrate the use of MC CIs for the total indirect effect, we started with the corre-
lations and standard deviations for the variables used in the model. The correlations were not
reported in the Tal-Or et al. (2010) article, but many times this information is made available
in a published report. We then used only these summary descriptive statistics to conduct a path
analysis and output the parameter covariance matrix. The largest covariance was that between
parameters b1 and b2. However, this covariance was exceptionally small (0.39E-17). Given the
negligible covariances among the parameter estimates, we chose to compute the MC CI as if the
four parameters were orthogonal. This both simplified the simulation and made the estimation of
the MC CI more closely resemble the scenario in which authors report only parameter estimates
and standard errors. We constructed the MC CI for the total indirect effect by simulating random
draws from the four normal distributions for each of the constituent parameters of the total indi-
rect effect (i.e., a1, b1, a2, b2). These parameters and the associated standard errors are as follows:
a1 = 0.48, SEa1 = 0.24, b1 = 0.40, SEb1 = 0.09, a2 = 0.62, SEa2 = 0.31, b2 = 0.32, SEb2 = 0.07.
We used R to simulate the random draws, compute the total indirect effect for each repetition,
and compute the 95% CI based on the distribution of 20,000 simulated total indirect effects. The
R code for this analysis is included in the Appendix. As before, we used the results from a path
analysis of the original data to compute the other CIs. The four 95% CIs for the total indirect
effect are shown in Table 3. These four CIs all support the indirect effect of the manipulation on
reactions.

TABLE 3
95% Confidence Intervals for the Total Indirect Effect

of the Manipulation on Reactions as Mediated by Both
Media Influence and Perceived Importance

95% CIs for Total Indirect Effect
(a1b1+ a2b2 = 0.392)

Method LL UL

Monte Carlo 0.109 0.716
Delta Method 0.067 0.718
Percentile Bootstrap 0.086 0.741
Bias-Corrected

Bootstrap
0.087 0.743
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94 K. J. PREACHER AND J. P. SELIG

DISCUSSION

In this article we focused on CI construction, with an emphasis on evaluating the utility of the
Monte Carlo method. The relative success of different CI construction methods can be assessed
in terms of coverage with respect to the nominal confidence level, symmetry (i.e., the population
parameter should be excluded equally on either side), and width (shorter intervals are preferred).
The MC method performed on par with bootstrap and distribution of the product methods that
have been found to perform well in simulation studies. We applied the MC method of constructing
CIs in two examples drawn from a study by Tal-Or et al. (2010)—one involving a one-mediator
indirect effect and a second involving a total indirect effect from a model with two mediators—
along with delta method and bootstrap CIs for comparison. The MC CIs were comparable to
bootstrap CIs and led to the same conclusions.

The advantages associated with the MC approach over other asymmetric CI methods include
enhanced precision due to smoothness of the sampling distribution and its usefulness when only
summary data are available. Relative to other methods that require repeated model-fitting, the
MC method is very fast. But when should the MC method be preferred to well-performing com-
peting methods such as bootstrap and DP methods? We believe that if nonparametric bootstrap
or DP methods are feasible options, then researchers should use them. However, there are many
situations in which these methods will not be feasible, in which case the MC method should be
considered a viable and competitive method for constructing CIs for simple and complex indirect
effects. For example, there is no agreed-upon best way to employ bootstrapping in multilevel
modeling, although RB bootstrap seems to be a good option (van der Leeden et al., 2008; Wang
et al., 2006). Even so, multilevel modeling software currently does not make it easy to estimate
even simple indirect effects. Until one bootstrap method emerges as best in the multilevel context,
MC may be the only viable method (see Bauer, Preacher, & Gil, 2006, and Preacher, Zyphur, &
Zhang, 2010 for uses of this method in the multilevel context). Models that involve large sam-
ples and/or intensive numerical integration to obtain parameter estimates (e.g., mixture models
with multiple binary outcomes) often make nonparametric and parametric bootstrapping—both
of which involve fitting the model B times—too time-consuming to be feasible in practice. In
these situations, MC is a practical alternative because no further model-fitting is required. The
DP method currently has been implemented only for simple indirect effects consisting of prod-
ucts of two coefficients, which may or may not covary. However, in many modeling contexts
more complex indirect effects are of interest. Examples include total indirect effects in multiple
mediator models (MacKinnon, 2000; Preacher & Hayes, 2008) and virtually any indirect effect
in panel mediation models (Cole & Maxwell, 2003). In these situations the DP method cannot
currently be used, but the MC method can.

Several software options are available to researchers who wish to use the MC method of
constructing CIs for simple and complex indirect effects. The MC method was used by Bauer
et al. (2006) when assessing mediation in multilevel modeling using SAS, and by Preacher et
al. (2010) in the context of assessing mediation with multilevel SEM in Mplus. The authors
have made syntax for both applications available online.2 It is implemented in online R cal-
culators for single-level and (some) multilevel models for mediation (Preacher & Selig, 2010;
Selig & Preacher, 2008), and in the MEDIATE macro for SPSS and (soon) SAS by Hayes and

2See http://quantpsy.org/
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Preacher (under review) for use in mediation models with continuous, binary, or multicategori-
cal predictors.3 The MC method is employed in the context of causal mediation analysis using
the R package mediation (Imai, Keele, Tingley, & Yamamoto, 2010; see also Imai, Keele, &
Tingley, 2010, pp. 316–317) and in a similar package for Stata (Hicks & Tingley, 2011). The
method is easy to implement in Microsoft Excel for simple mediation models, and use of Excel
is feasible in larger models.

One limitation of the present study is that we considered only one confidence level (95%).
Future studies should consider the performance of various CI construction methods with differ-
ent confidence levels, especially in light of Efron’s (1988) warning that bootstrap CIs may not
perform so well at more extreme coverage probabilities. Future studies also should use more
than 1,000 bootstrap resamples to determine empirical Type I error rates and power with greater
precision, particularly for the bias-corrected bootstrap methods (Williams, 2004). Our findings
are also circumscribed by our particular choices of population parameters a, b, and c and sam-
ple sizes N. Future research should consider other values. We also considered only the simple
mediation model because of its simplicity. Future research should examine the performance of
the various CI construction methods in more complex modeling contexts, where differences in
performance across CI methods may be even more pronounced. Finally, in this article we did not
consider Bayesian credible intervals for indirect effects, another promising method for obtaining
asymmetric intervals for indirect effects (Biesanz et al., 2010; Yuan & MacKinnon, 2009).

We did not address significance testing in this article. CIs often are used to test null hypothe-
ses in mediation analysis and other settings, but it is worth noting that the most widely accepted
methods of constructing CIs for indirect effects are not necessarily the best methods for testing
null hypotheses. In fact, there are logical problems with using CIs based on sampling distribu-
tions for testing null hypotheses, which are more properly tested using null distributions rather
than sampling distributions (Biesanz et al., 2010). Tests based on null distributions and CIs from
sampling distributions will not always agree on what conclusion should be drawn about the null
hypothesis, so caution is warranted in using CIs for this purpose. Future research may address
the use of MC methods to create null distributions, which are more suitable for testing point null
hypotheses in mediation analysis.
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APPENDIX A: R CODE FOR TOTAL INDIRECT EFFECT EXAMPLE

a1=0.48 #estimated coefficient a1
a2=0.62 #estimated coefficient a2
b1=0.40 #estimated coefficient b1
b2=0.32 #estimated coefficient b2
a1std=0.24 #SE of coefficient a1
a2std=0.31 #SE of coefficient a2
b1std=0.09 #SE of coefficient b1
b2std=0.07 #SE of coefficient b2
rep=20000 #number of simulated values
conf=95 #confidence level
a1vec=rnorm(rep)∗a1std+a1 #create vector of simulated a1 coefficients
a2vec=rnorm(rep)∗a2std+a2 #create vector of simulated a2 coefficients
b1vec=rnorm(rep)∗b1std+b1 #create vector of simulated b1 coefficients
b2vec=rnorm(rep)∗b2std+b2 #create vector of simulated b2 coefficients
total=(a1vec∗b1vec)+(a2vec∗b2vec)# simulated total indirect effects

low=(1-conf/100)/2
upp=((1-conf/100)/2)+(conf/100)
LL=quantile(total,low) #lower limit of confidence interval
UL=quantile(total,upp) #upper quantile for confidence interval
LL4=format(LL,digits=4)
UL4=format(UL,digits=4)
hist(total,breaks = 'FD',col ='skyblue',
xlab=paste(conf,'% Confidence Interval ',' LL',LL4,' UL',UL4),
main ='Distribution of Total Indirect Effect')
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