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1Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal, 2 Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal, 3 Faculty of

Sciences, University of Coimbra, Coimbra, Portugal, 4CEA, Institute of Molecular Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Orsay, France, 5CNRS

URA 2210, Orsay, France

Abstract

Recent studies have demonstrated that RNAi is a promising approach for treating autosomal dominant disorders. However,
discrimination between wild-type and mutant transcripts is essential, to preserve wild-type expression and function. A
single nucleotide polymorphism (SNP) is present in more than 70% of patients with Machado-Joseph disease (MJD). We
investigated whether this SNP could be used to inactivate mutant ataxin-3 selectively. Lentiviral-mediated silencing of
mutant human ataxin-3 was demonstrated in vitro and in a rat model of MJD in vivo. The allele-specific silencing of ataxin-3
significantly decreased the severity of the neuropathological abnormalities associated with MJD. These data demonstrate
that RNAi has potential for use in MJD treatment and constitute the first proof-of-principle for allele-specific silencing in the
central nervous system.
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Funding: This work was supported by the Commissariat à L’Energie Atomique (CEA), the National Ataxia Foundation (NAF) and the Portuguese Foundation for
Science and Technology (POCI/SAU-MMO/56055/2004 and PTDC/SAU-FCF/70384/2006). Sandro Alves and Isabel Nascimento-Ferreira were supported by the
Portuguese Foundation for Science and Technology (Fellowships SFRH/BD/12675/2003 and SFRH/BD/29479/2006, respectively). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: luispa@cnc.uc.pt

. These authors contributed equally to this work.

Introduction

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3

(SCA3) is a dominantly inherited disorder of the central nervous

system (CNS) characterized by a wide range of clinical symptoms,

including gait and limb ataxia, peripheral neuropathy, bulging eyes,

ophthalmoplegia, postural instability, dystonia, amyotrophy, dysar-

thria, nystagmus, lingual fasciculations, facial myokymia [1] and, in

some cases, parkinsonism [2]. The neuropathological features of the

disease involve the afferent and efferent cerebellar systems, substantia

nigra, and cranial nerve motor nuclei [1] but recent evidence suggests

that the striatum is also affected [3,4]. Although initially identified in

subjects of Portuguese Azorean descent [1], MJD is now the most

common ataxia worldwide [5]. It is caused by an unstable CAG

expansion in the coding region of the MJD1 gene encoding the

ataxin-3 (ATX3) protein [6]. The expansion in the mutant allele

ranges from 55 to 86 CAG repeats and the length of the

polyglutamine tract is inversely correlated with age at onset of the

disease [7,8]. The CAG expansion confers a toxic gain-of-function on

the mutant protein, leading to the formation of neuronal intranuclear

inclusions (NIIs) [9]. There is currently no available treatment.

Gene silencing by RNA interference (RNAi) has been

successfully used to downregulate the expression of mutant genes

and rescue phenotypes in various autosomal dominant neurode-

generative diseases, including Huntington’s disease (HD) [10–12],

familial forms of amyotrophic lateral sclerosis (ALS) [13,14] and

spinocerebellar ataxia type 1 (SCA1) [15]. However, in vivo studies

to date have been performed with siRNAs that do not discriminate

between the wild-type and mutant alleles. The loss of function of

wild-type ataxin-3, which has been shown to play a role in

ubiquitin-mediated proteolysis [16], might be deleterious. Strate-

gies based on the presence of a single nucleotide polymorphism

(SNP) have been proposed to ensure discrimination between wild-

type and mutant transcripts [17]. An SNP has been identified at

the 39 end of the CAG tract of the ataxin-3 gene. This SNP is in

linkage disequilibrium with the disease-causing expansion [18,19].

In most MJD patients, the mutant allele carries the C variant [20].

This feature provided us with an opportunity to develop and

validate an allele-specific siRNA silencing strategy for the

treatment of 70% of MJD patients. Similar approaches could

potentially be applied to other neurodegenerative diseases.

In the present study, we used lentiviral vectors (LV) encoding

short-hairpin RNAs (shRNAs) targeting this SNP, to downregulate

mutant human ATX3 (MUT-ATX3) in vivo in a selective manner.

We demonstrate the therapeutic efficacy and selectivity of this

approach in a rat model of MJD [4].
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Results

We developed two lentiviral vectors encoding siRNAs targeting

an SNP (G987GGRC987GG) located at the 39 end of the CAG

expansion of the ataxin-3 gene for the specific silencing of mutant

human ataxin-3 mRNA but not of the wild-type ataxin-3 mRNA.

The wild-type ataxin-3 gene has a G at position 987, whereas the

mutant ataxin-3 has a C at this position. We therefore designed

two siRNAs corresponding to this SNP. The sequences are

identical with the exception of a single nucleotide (G/C

polymorphism) at the center of the shRNA molecule: shAtax-

MUT(C) and shAtaxWT(G) (Fig. 1A). These shRNAs were

inserted in the 3’LTR of a lentiviral vector containing the H1

promoter. The lacZ reporter gene was inserted into these

constructs downstream from the internal mouse phosphoglycerate

kinase 1 (PGK) promoter, to facilitate the identification of

transduced cells (Fig. 1B).

Selectivity and efficacy of mutant and wild-type ataxin-3
silencing in vitro

Quantitative RT-PCR analysis of 293T cells co-transfected with

the shAtaxMUT(C) vector and a vector expressing the human

mutant ataxin-3(C) gene (Fig. 1B) demonstrated robust mRNA

degradation (Fig 2A). By contrast, ataxin-3 mRNA levels were

slightly decreased by co-transfection with shAtaxMUT(C) and the

wild-type ataxin-3(G) gene or with shAtaxWT(G) and the mutant

ataxin-3(C) (Fig. 2A–B), demonstrating the selectivity of the

silencing. As a control, we included an siRNA (shGFP) targeting

the green fluorescent protein (Fig. 2A). RT-PCR with oligomers

targeting lacZ confirmed that the decrease in ataxin-3 mRNA

levels reflected siRNA efficiency rather than variations in

transfection efficiency (data not shown).

We then investigated whether this silencing was associated with

a decrease in wild-type and mutant ataxin-3 protein levels. Co-

transfection with the mutant ataxin-3 plasmid and the specific

shAtaxMUT led to significant (,70%) downregulation, as

observed on western blots, whereas co-transfection with the non

specific shAtaxWT had limited effect on mutant ataxin-3 protein

levels (Fig. 2C and E). Conversely, as expected, strong down-

regulation of wild-type ataxin-3(G) expression was observed in the

presence of shAtaxWT(G), whereas shAtaxMUT(C) had a limited

effect on wild-type ataxin-3(G) expression (Fig. 2D and F).

We further assessed the functionality and efficacy of our siRNA

in a more physiological situation, by analyzing the silencing of

endogenous ataxin-3 in human embryonic kidney 293T cells. We

transfected human 293T cells with the shAtaxWT(G), shAtax-

MUT(C) or shGFP plasmid. The level of endogenous wild-type

ataxin-3 was determined by western blotting and found to be

lowered by transfection with shAtaxWT(G), but not with

shAtaxMUT(C) or shGFP (Fig. 3). These data demonstrate the

efficacy and selectivity of allele-specific ataxin-3 silencing.

Selectivity and efficacy of mutant ataxin-3 silencing in rat
brain
No data are available concerning the allele-specific silencing of

polyglutamine disorders in vivo. We assessed the efficacy and

selectivity of this approach in the recently developed rat model of

MJD [4]. The injection of lentiviral vectors encoding mutant

ataxin-3 into the brain of adult rats leads to the appearance of

disease reproducing the key characteristics of MJD. No such

disease was induced by the injection of wild-type full-length ataxin-

3. Misfolded mutant ataxin-3 proteins are detected within one

week of infection and these ubiquitin-positive inclusions progres-

sively accumulate in the nucleus of infected cells. Neuronal

dysfunction, with the presence of pycnotic nuclei and a loss of

expression of neuronal markers, is observed in the substantia nigra

(TH, VMAT2) and striatum (DARPP-32, NeuN, TH) two months

after injection, in this model.

We assessed the efficacy and selectivity of allele-specific

silencing, by injecting lentiviral vectors encoding human mutant

ataxin-3(C), together with the corresponding shRNA (shAtax-

MUT(C)), into rat striatum. We recently demonstrated that the

striatum is affected in MJD, whether in our rat model, transgenic

mice or patients [4]. As a control, animals were injected with

human mutant ataxin-3 and shAtaxWT(G) or shGFP. Three

weeks after injection, two animals per group were killed to evaluate

expression of the mutant ataxin-3 gene and of the lacZ reporter

gene present in the vector encoding the small hairpin RNA.

In animals infected with lentiviral vectors encoding mutant

ataxin-3(C) and the non specific shAtaxWT(G) or the shGFP

control, immunohistochemical analysis of coronal rat brain

sections with anti-ataxin-3 (1H9) and b-galactosidase antibodies

showed that many neurons expressed both transgenes (Fig. 4A–C,

Fig 5A–L). In animals expressing mutant ataxin-3 and shAtax-

MUT(C), far fewer neurons produced the pathogenic protein

(Fig. 4E, Fig. 5M). The merged images (Fig. 4F, Fig. 5O) indicate

that only a few mutant ataxin-3-positive-cells did not express the

lacZ reporter gene present in the shAtaxMUT(C) vector (high

magnification Fig. 5R). These cells corresponded to neurons not

co-infected with both vectors, which were therefore not treated

with the siRNA.

We assessed the efficacy of this approach further, by carrying

out a, histological evaluation at two months, at which time MJD

pathology was severe [4]. b-galactosidase staining indicated a

similar transduction efficiency for all groups eight weeks post-

injection (Fig. 6A–C). In animals injected with mutant ataxin-3, we

Figure 1. The single nucleotide polymorphism strategy used
for the specific elimination of mutant or wild-type human
ataxin-3 (ATX3) by RNA interference. A) Schematic representation
of the lentiviral constructs encoding wild-type human ataxin-3 (27 CAG
repeats) or mutant human ataxin-3 (72 CAG repeats) under control of
the phosphoglycerate kinase-1 (PGK-1) promoter. Immediately after the
last CAG repeat in the 39 end, there is a linked single nucleotide
polymorphism (SNP) (G987GGRC987GG) between wild-type and mutant
human ataxin-3. B) Diagram of the shAtax vectors used to downreg-
ulate human ataxin-3: shRNA cassette under control of the H1 promoter
(pol III) and a separate cassette containing the lacZ reporter gene under
control of the PGK-1 promoter, making it possible to follow the
expression of infected neurons. These shRNAs were designed to silence
wild-type (shAtaxWT) or mutant human ataxin-3 (shAtaxMUT) selec-
tively, making use of the (G987GGRC987GG) SNP.
doi:10.1371/journal.pone.0003341.g001
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Figure 2. shRNAs mediate the in vitro allele-specific suppression of mutant or wild-type human ataxin-3 by RNAi. A–F) shAtaxMUT- or
shAtaxWT-encoding plasmids selectively targeting mutant ataxin-3 and wild-type ataxin-3, respectively, resulted in much lower levels of these
proteins than the mistargeted control (shGFP) or the non allele-specific shRNA. Quantitative real-time PCR analysis showing the silencing of human
ATX3 mRNA in 293T cells co-expressing mutant human ataxin-3 (MUT ATX3) (A, top left) or wild-type human ataxin-3 (WT ATX3) (B, top right) and
shAtaxWT, shAtaxMUT, or shGFP. Endogenous ß-actin mRNA was used as an internal control for the normalization and quantitative analysis of the
ataxin-3 mRNA levels. Results are expressed as the mean elative mRNA level6SEM. C and D) Western-blot analysis of lysates of 293T cells co-
transfected with the plasmid constructs encoding MUT ATX3 (C, middle left) or WT ATX3 (D, middle right) and the shAtax vectors (48 hours after
calcium phosphate-mediated transfection; ratio ATX3/shRNA 1:5). Tubulin staining is shown as a loading control. E and F) Optical densitometry was
normalized according to the amount of tubulin loaded in the corresponding lane. A partition ratio was calculated and expressed as a percentage
(bottom). All western blots and RT-PCRs shown are representative of three or four independent experiments. Statistical significance was evaluated
using Fisher’s test (*p,0.05).
doi:10.1371/journal.pone.0003341.g002
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observed a typical accumulation of inclusions (Fig. 6D, G, P), with

a mean size of 34.361.4 mm2 (Fig. 6Q) and a loss of DARPP-32

production (Fig. 6R). Comparison between this group and that

including animals treated with the non selective siRNA (shA-

taxWT(G); Fig. 6C, F, I, L, O) revealed no statistically significant

differences in terms of the formation of inclusions (Fig. 6P, Q) and

the DARPP-32-depleted area (Fig. 6R). Co-transduction with

mutant ataxin-3(C) and shAtaxMUT(C) significantly decreased

the number of inclusions (48.2610.8 % considering shGFP as the

control; 55.5%69.3% considering shAtaxWT as the control) and

the apparent size of the remaining inclusions (by 12.764.3% if

compared with shGFP and 9.9264.4 % if compared with

shAtaxWT(G); Fig. 6P–R). Similar results were obtained with

ubiquitin staining, which also showed important reduction in the

number of inclusions upon mutant ataxin-3 silencing with

shAtaxMUT (Fig. 7). Double staining for DARPP-32 and

ataxin-3 showed co-localization between ataxin-3 inclusions and

DARPP-32 loss of immunoreactivity in control animals (Fig. 8A–

F), and rescue of DARPP-32 immunoreactivity co-localizing with

reduction of inclusion number upon shAtaxMUT expression

(Fig. 8G–I).

Finally, the staining of degenerating neurons with fluorojade B

(Figure 9B, E, H) and cresyl violet (Figure 9C, F, I) further

demonstrated that the selective silencing of mutant ataxin-3

markedly decreased the number of degenerating neurons and

atrophic nuclei, leading to typical striatum shrinkage (Fig. 9A, D, G).

Thus, allele-specific silencing efficiently and selectively inhibits

human mutant ataxin-3 production, greatly decreasing the

formation of disease-associated inclusions and neuronal dysfunc-

tion in vivo.

Discussion

We show here that allele-specific silencing of human mutant

ataxin-3 is effective and selective in vivo. Autosomal dominant CNS

diseases are good candidates for RNAi therapy, and Machado-

Joseph disease is of particular interest because the presence of an

SNP is linked to the disease. Other potential disorders suitable for

allele-specific treatment include dystonia, in which a three-base

pair deletion has been identified in the mutant torsinA gene

product [21] and point mutations in the superoxide dismutase

gene have been implicated in familial forms of amyotrophic lateral

sclerosis (ALS) [22]. These diseases provide unique opportunities

to silence the mutant gene product while preserving the wild-type

protein.

It has been shown in vitro that targeting the CAG tract of ataxin-

3 abolishes the expression not only of the mutant allele, but also of

the wild-type allele [17]. Alternatively, the mutant MJD allele

could be specifically targeted by making use of three single

nucleotide polymorphisms present in the human population:

C987GG/G987GG (Arg to Gly), A669TG/G669TG (Met to Val) and

TAA1118/TAC1118 (Stop to Tyr). Analysis of these polymorphic

alleles showed there to be eight different haplotypes. However, the

A669-C987-A1118 haplotype was found in 72% of MJD patients from

249 families from different countries, but in only 2% of the normal

population [20]. This allele is present in about half of all

Portuguese patients [20] and is associated exclusively (100%) with

mutant polyQ expansions in Japanese MJD patients [23]. It may

therefore be possible to treat a large proportion of MJD patients

with a single shRNA specific for the mutant allele.

We developed two lentiviral vectors encoding previously

described shRNA sequences [17] specific for the C987GG

(MUT) or G987GG (WT) alleles. These shRNAs were not

produced according to available rules for the design of optimal

siRNAs [24]. Instead, their design was based on the presence of

the polymorphism, this polymorphic sequence being placed at the

center of the shRNA. These shRNAs had been shown to function

correctly in vitro, but not within the context of lentiviral vectors

(24). It was therefore difficult to predict the results, particularly in

vivo. Our data clearly demonstrate that shAtaxMUT selectively

and efficiently silences the human mutant ataxin-3 gene. In vivo, we

observed a significant decrease in the formation and accumulation

of ataxin-3-positive aggregates (,50%) and preservation of

DARPP-32 neuronal marker expression (,70%).

The selectivity of the approach was demonstrated in vitro, by the

preservation of wild-type ataxin-3 expression upon shAtaxMUT

co-expression, and in vivo, by the limited effect of shAtaxWT on

mutant ataxin-3 gene expression. It should be noted that

shAtaxMUT and shAtaxWT recognize only human ataxin-3

mRNAs, as the targeted region displays limited similarity of

sequence to the endogenous rat ataxin-3 messenger RNA. These

experiments therefore replicate allele-specific silencing as it would

occur in human patients, with the preservation of wild-type ataxin-

3 gene expression, an important safety measure given the role of

ataxin-3 in proteolysis.

ATAX3 has been shown to act as a polyubiquitin-binding

protein, linking its normal function to protein surveillance

pathways [25]. Ataxin-3 may recruit polyubiquitinated substrates

through its UIM domains, promoting cleavage via its Josephin

domain, leading to proteasomal degradation [26–28] The

potential role of ATAX3 in proteolysis might, upon silencing,

impair neuronal functions and viability. No particular phenotype

of neuronal degeneration was observed in MJD knockout (KO)

animals, but an increase in protein ubiquitination was reported

[29]. Significant dysregulation of genes involved in the ubiquitin-

proteasome pathway, structure/motility, and signal transduction

have been reported in KO C. elegans [30]. Furthermore, ataxin-3

silencing may be well tolerated in wild-type animals, whereas

similar silencing in the context of MJD may have unfavorable

effects on disease progression. Studies in Drosophila have shown

that wild-type ataxin-3 decreases the neurotoxicity of mutant

ataxin-3 via a mechanism involving ubiquitin and the proteasome

[31]. This protective role of wild-type ataxin-3 in MJD would not

be perceptible in a non pathological context. Consistent with these

findings, homozygous SCA3 patients with two mutant alleles

present a more severe disease phenotype than patients with a

single mutant allele [32,33]. It remains unclear whether adult

Figure 3. shRNA-expressing plasmids mediate the allele-
specific silencing of endogenous wild-type ataxin-3 in tran-
siently transfected human 293T cells. A) Western blot of human
293T cells transfected with different shRNA (shAtaxWT, shAtaxMUT and
shGFP)-expressing plasmids (5 mg; 48 h post-transfection). The blot
clearly indicates that shAtaxWT downregulates endogenous/wild-type
human ATX3, whereas shAtaxMUT has no silencing effect. shGFP was
used as a control vector and the protein tubulin was used as a loading
control. This western blot is representative of three independent
experiments.
doi:10.1371/journal.pone.0003341.g003
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Figure 4. Efficient allele-specific suppression of mutant human ataxin-3 in the rat brain at an early time point (3 weeks) mediates
striatal neuroprotection. A–L) Laser confocal microscopy showing the effects of recombinant lentiviral vectors encoding shAtaxMUT or shAtaxWT
and MUT ATX3 in the rat brain striatum at an early time point (3 weeks). b-galactosidase, expressed from a separate PGK-lacZ cassette in the vectors,
allows identification of infected neurons (A and D). shAtaxMUT specifically silences MUT ATX3, promoting the clearance of MUT ATX3-positive
aggregates (E and J), whereas shAtaxWT has almost no effect on MUT ATX3 expression (B and G). A considerable loss of DARPP-32-immunoreactivity
is observed in rat striatum co-infected with MUT ATX3 and shAtaxWT (H and the merged image I), whereas no DARPP-32 downregulation is observed
in rat striatum co-infected with MUT ATX3 and shAtaxMUT (K and the merged image L), suggesting neuroprotection. The adult rats were co-injected
bilaterally in the striatum with MUT ATX3 and the shAtaxWT or shAtaxMUT vectors (n = 2) and were killed three weeks later. All the pictures were
taken around the injection site.
doi:10.1371/journal.pone.0003341.g004
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neurons can tolerate partial non selective endogenous ataxin-3

downregulation. As a precautionary measure, it is therefore

advisable to try to preserve wild-type ataxin-3 expression in gene

silencing approaches.

Our data suggest that the use of an allele-specific shRNA

efficiently decreases both mutant ataxin-3 production and MJD-

associated neuropathological symptoms. A recent report implicat-

ed RNA toxicity in MJD pathology, providing further support for

treatment at RNA level [34]. However, the clinical development of

siRNA-based treatments for MJD still faces several hurdles.

Studies are currently underway to demonstrate the safety and

long-term efficacy of the approach, to determine which brain areas

should be targeted for therapeutic benefit, and to validate a

delivery system for administration to large areas of the brain. The

recent incorporation of lentiviral vectors into clinical practice for

the treatment of Parkinson’s disease has, however, opened up new

opportunities for the potential treatment of fatal and incurable

diseases such as MJD.

In conclusion, we have generated lentiviral vectors markedly

improving MJD-associated neuropathological signs in vivo. These

data suggest that it is feasible to treat MJD patients by the selective

knockdown of mutant ataxin-3.

Materials And Methods

Engineering of shRNAs plasmids
We used two shRNAs discriminating between wild-type and

mutant human ataxin-3 mRNA molecules. We engineered a small

hairpin RNA specifically targeting the single nucleotide polymor-

phism (G987GGRC987GG). A shRNA targeting the Green

Figure 5. Allele-specific silencing of mutant human ataxin-3 in rat brain. A) Laser confocal microscopy, showing neuronal transduction
2 months after injection in the rat striatum with recombinant lentiviral vectors encoding shAtaxMUT (n = 7), shAtaxWT (n = 8) or shGFP (n = 4) and
mutant human ataxin-3 (MUT ATX3). The viral vectors also contained a separate PGK-LacZ cassette encoding b-galactosidase, to facilitate the
detection of infected neurons (B, H, N and E, K, Q, high magnification). In adult rats expressing MUT ATX3 and shAtaxMUT (n = 7), the number of
neurons containing MUT ATX3-positive aggregates was much smaller (M) and the high magnification merged image (R) indicates that the few cells
positive for MUT ATX3 did not express the lacZ reporter gene present in the shAtaxMUT vector. These cells were therefore not transduced with the
vectors encoding the silencing sequences. By contrast, in animals expressing MUT ATX3 and shGFP (n = 4) or the control shAtaxWT (n = 8) (A and G,
respectively) high magnification merged images show many MUT ATX3-positive cells simultaneously expressing the lacZ reporter gene present in
both shAtaxWT or shGFP (F and L, respectively). The figure shows representative images of immunohistochemical stainings that were reproducible
among the different groups.
doi:10.1371/journal.pone.0003341.g005

MJD Allele-Specific Silencing
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Figure 6. Allele-specific silencing of mutant human ataxin-3 mediates robust reduction of the number of ataxin-3 inclusions and
preservation of DARPP-32 immunoreactivity in the rat striatum. A–R) Co-overexpression of MUT ATX3 and various shRNAs (shAtaxWT, n= 8;
shAtaxMUT, n = 7 and shGFP, n = 4) in the striatum of adult rats, 2 months post-injection. The vectors encoding the shRNA cassette and the lacZ

reporter gene infect an extensive region of the rat striatum, as shown by b-galactosidase immunoreactivity (A, B and C). shAtaxMUT specifically
downregulates MUT ATX3, promoting a significant decrease in the number of MUT ATX3-positive aggregates (E and H ), whereas shAtaxWT has
almost no effect on MUT ATX3 expression (F and I), as shown by comparison with the results obtained with the mistargeted shGFP (D and G). A major

MJD Allele-Specific Silencing
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Fluorescent Protein (shGFP) was used as a control. The sequences

of the oligomers used were as follows: shAtaxMUT(C-

TAGTTTCCAAAAAAGCAGCAGC987GGGACCTATCTCTC-

TTGAAGATAGGTCCCGCTGCTGCTGGGGATCTGTGGT-

CTCATACAGAAC); shAtaxWT(CTAGTTTCCAAAAAAG-

CAGCAGG987GGGACCTATCTCTCTTGAAGATAGGTC-

CCCCTGCTGCTGGGGATCTGTGGTCTCATACAGAAC);

shGFP(CTAGTTTCCAAAAAAAGCTGACCCTGAAGTTCA-

TCTCTTGAATGAACTTCAGGGTCAGCTTGGGGATCTG-

TGGTCTCATACAGAAC). Each of these oligomers and the

primer H1-3F (CACCGAACGCTGACGTCATCAACCCG)

were used for PCR with the pBC-H1 plasmid (pBC plasmid;

Stratagene, Amsterdam, The Netherlands) containing the H1

promoter (Genbank: X16612, nucleotides 146–366) as a template.

The PCR product was inserted into the pENTR/D-TOPO vector

(Invitrogen, Cergy Pontoise, France). The H1-shRNA cassette was

then transferred, with the LR clonase recombination system, into

the SIN-cPPT-PGK-nls-LacZ-LTR-TRE gateway vector (SIN-

CWP-nlsLacZ-TRE-Gateway), which contains a tetracycline-

regulated operator upstream from the H1 promoter in the

39LTR. A LacZ reporter gene was also inserted downstream

from the PGK promoter, facilitating the identification of infected

neurons.

Lentiviral vector production
Lentiviral vectors encoding the various shRNAs and human

full-length wild-type(G) (27Q) or mutant ataxin-3(C) (72Q) [4]

were produced in 293T cells, with a four-plasmid system, as

previously described [35]. The lentiviral particles were resus-

pended in 1% bovine serum albumin (BSA) in phosphate-buffered

saline (PBS). The viral particle content of batches was determined

by assessing HIV-1 p24 antigen levels (RETROtek, Gentaur,

Paris, France). Viral stocks were stored at 280uC until use.

Cell culture and transfection. HEK 293T cells were

cultured in DMEM (Gibco, Paisley, Scotland, UK)

supplemented with 10% fetal bovine serum (FBS, Gibco, Paisley,

Scotland, UK), 2 mM L-glutamine, 4500 mg/l glucose, 25 mM

HEPES, 100 U/ml penicillin, and 100 U/ml streptomycin

(Gibco, Paisley, Scotland, UK) at 37uC in a 5% CO2/95% air

atmosphere. On the day before transfection, 293T cells were

plated in six-well tissue culture dishes (Costar, NY, USA) at a

density of 700,000 cells per well. The cells were co-transfected by

the calcium phosphate method, with SIN-W-PGK-ATX3 72Q

(mutant human ataxin-3, 1 mg) or SIN-PGK-W-ATX3 27Q (wild-

type ataxin-3, 1 mg) and shATX3 or shGFP (5 mg). Six hours later,

the medium was removed and replaced with fresh medium. Forty-

eight hours after transfection, the cell cultures were washed with

cold PBS, treated with trypsin and the cells were collected by

centrifugation.

Western blotting. Cells were collected by centrifugation

(10006g, 10 min). The pellets were incubated on ice in lysis buffer

(150 mM NaCl, 50 mM Tris-base, pH 7.4, 5 mM EDTA, 1%

Triton and 0.5% protease inhibitor cocktail; Sigma) for

30 minutes, with vortexing every 10 minutes. Homogenates

were centrifuged at 13,0006g for 30 minutes at 4uC and

supernatants were stored at 280uC. Protein concentration was

determined with the Bradford protein assay (BioRad, Munich,

Germany). Protein extract (20 mg) was resolved by electrophoresis

in a 7.5 % or 12% SDS-polyacrylamide gels. The proteins were

transferred onto nitrocellulose membranes (Schleicher & Schuell

Bioscience, Germany) in TG 106liquid concentrate buffer

(Amresco, Ohio, USA) containing 192 mM glycine, 25 mM

Tris-HCl, and 20% methanol. The membranes were blocked by

incubation in 5% nonfat milk powder in 0.1% Tween 20 in Tris-

buffered saline (T-tris-buffered saline) for 1 h at room

temperature, and were then incubated overnight with the

following primary antibodies diluted in blocking buffer: anti-Myc

tag antibody clone 4A6 (1:1000, Upstate, Cell Signaling Solutions,

NY, USA), anti-b-galactosidase antibody (1:4000; Chemicon,

Temecula, CA,USA) and anti-tubulin antibody (1:4000, Sigma,

Figure 7. Reduction of ubiquitin-positive inclusions in the striatum of adult rats as result of mutant human ataxin-3 knock-down.
Animals infected with MUT ATX3 and the control shGFP (left; n = 4) or shAtaxWT (right, n = 8) show the accumulation of ubiquitin-positive inclusions,
typical biomarkers of neuropathology, whereas no such accumulation is observed in animals co-infected with MUT ATX3 and the selective
shAtaxMUT (middle, n = 7). The figure shows representative images of ubiquitin immunohistochemical stainings that were reproducible among the
different groups.
doi:10.1371/journal.pone.0003341.g007

loss of DARPP-32 immunoreactivity is observed in the striatum infected with MUT ATX3 and shAtaxWT (L and O) or shGFP (J and M), whereas minor
DARPP-32 is observed in the striatum infected with shAtaxMUT (K and N), this downregulation being limited to the needle track area. P–R)
Quantification of the effect of the different shRNAs on the absolute number (P) and mean size/surface* (Q) of MUT ATX3-positive cells (*p,0,05). R)
Quantitative analysis of the DARPP-32-depleted region in the brains of rats in which the striatum was injected with MUT ATX3 and various shRNAs.
The lesion volume in brains infected with shAtaxMUT and MUT ATX3 is much smaller than that in brains infected with shAtaxWT or shGFP, indicative
of a neuroprotective effect conferred by the selective shAtaxMUT. Statistical significance was evaluated with Fisher’s test. (* the mean size of the
objects was estimated taking into account the pixels with a gray-scale level for intensity below the mean value, used as a threshold).
doi:10.1371/journal.pone.0003341.g006
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Saint Louis, MO, USA). Blots were washed three times in Tris-

buffered saline containing 0.1% Tween 20 (TBS-T), for 20 min

each, and incubated with a horseradish peroxidase (HRP)-coupled

secondary biotinylated goat anti-mouse or anti-rabbit IgG

antibody (1:5000; Vector Laboratories, Burlingame, CA) for 1 h

at room temperature. Blots were washed three times in TBS-T, for

20 minutes each, and binding to antigens was detected by

enhanced chemiluminescence (ECL+, Amersham Pharmacia

Biotech, Les Ulis, France). Semi-quantitative analysis was carried

out based on the optical density (OD) of scanned films (Quantity

One 1-D image analysis software version 4.4; Biorad, Hercules,

CA, USA). Specific ODs were normalized with respect to those for

tubulin for experiments on total homogenates. The specific OD

was then normalized with respect to the amount of tubulin loaded

in the corresponding lane of the same gel. A partition ratio was

calculated and expressed as a percentage.

RT-PCR analysis. Total RNA was extracted, 48 hours after

transfection, with Trizol reagent (Invitrogen, Cergy Pontoise,

France). Real-time quantitative RT-PCR was performed in

triplicate, with 0.4% random-primed cDNAs generated from

400 ng total RNA. PCR was carried out in a 20 ml reaction

volume containing Platinium SYBR Green pPCR super Mix-UDG

(Invitrogen, Cergy Pontoise, France), and 10 mM of both forward

(HATAX-1F: GGCTCACTTTGTGCTCAACATTG) and

reverse (HATAX-2R: TCTCATCCTCTCCTCCTCATCCAG)

primers. An ABI PRISM 7000 thermal cycler was programmed for

an initial denaturation step (95uC, 2 min) followed by 40

amplification cycles (95uC, 15 s; 60uC, 1 min). The amplification

rate for each target was evaluated from the cycle threshold (Ct)

numbers obtained with cDNA dilutions, with correction for human

b-actin levels (B-ACTIN-1F: TGAAGGTGACAGCAG-

TCGGTTG; B-ACTIN-2R:GGCTTTTAGGATGGCAAGGG-

AC), which were assumed to be constant. Differences between

control and experimental samples were calculated using the 22DDCt

method [41]. LacZ oligos were used as an internal standard for

evaluating transfection efficiency (LacZ-1F: CCTTA-

CTGCCGCCTGTTTTGAC; LacZ-2R: TGATGTTGAAC-

TGGAAGTCGCC). RT-PCR analysis was performed on 3 to 5

Figure 8. Rescue of DARPP-32 immunoreactivity and reduced accumulation of ataxin-3 inclusions upon shAtaxMUT expression. A–I)
Laser confocal microscopy showing the expression of recombinant lentiviral vectors expressing MUT ATX3 and shGFP (n = 4), shAtaxWT (n = 8) or
shMUT (n = 7) and its effects on DARPP-32 expression in the rat striatum 2 months post-injection. Slight DARPP-32 downregulation is observed in
striatum infected with MUT ATX3 and the selective shAtaxMUT (H and the merged image I), whereas a significant loss of DARPP-32-immunoreactive
neurons is observed in rat striatum co-infected with MUT ATX3 and shAtaxWT (E and the merged image F) or MUT ATX3 and the control shGFP (B and
the merged image C). The figure shows representative images of immunohistochemical stainings that were reproducible among the different groups.
doi:10.1371/journal.pone.0003341.g008
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samples from 3 independent transfections. Data are expressed as the

mean of normalized values, as relative ATX3 mRNA level6SEM.

Statistical analysis was performed by one-way analysis of variance

(ANOVA) followed by Fisher’s PLSD post-hoc test (StatView 4.0,

version 3.2.6; Aladdin Systems). Values of p,0.05 were considered

significant.

In vivo experiments
Animals. Adult male Wistar rats (Iffa Credo/Charles River,

Les Oncins, France), each weighing ,200 g were used. The

animals were housed in a temperature-controlled room

maintained on a 12 h light/12 h dark cycle. Food and water

were provided ad libitum. The experiments were carried out in

accordance with the European Community Council directive (86/

609/EEC) for the care and use of laboratory animals.

In vivo injection of lentiviral vectors
Concentrated viral stocks were thawed on ice and resuspended

by repeated pipetting. The rats were anesthetized as previously

described [36]. Lentiviral vectors encoding human mutant ataxin-

3(C) and shRNA (shAtaxMUT(C), shAtaxWT(G), or shGFP) were

co-injected into the rat striatum. Viral particle content was

adjusted to 200,000 ng of p24/ml. The animals received a single

5 ml injection containing both lentiviruses into each side, at the

following coordinates: 0.5 mm rostral to bregma, 63 mm lateral

to midline, and 5 mm ventral to the skull surface, with the mouth

bar set at 0. The viral suspensions were injected at a rate of

0.2 ml/min through an automatic injector (Stoelting Co., Wood

Dale, USA), the needle being left in place for an additional

5 minutes. The skin was closed using wound clips (Phymep, Paris,

France).

Figure 9. Allele-specific silencing of mutant human ataxin-3 prevents neurodegeneration in the adult rat striatum. Coalescence of the
internal capsule of the striatum is observed after co-infection with MUT ATX3 and shGFP (A, n = 4) or shAtaxWT (D, n = 8), at 2 months, on a bright-
field photomicrograph, whereas no signs of striatal shrinkage are observed following co-infection with MUT ATX3 and the specific shAtaxMUT (G,
n = 7) (left column). Neurodegeneration in rats co-infected with MUT ATX3 and shGFP (B) or shAtaxWT (E) is observed two months after injection on
Fluorojade B-stained sections, but not in rats co-infected with MUT ATX3 and the selective shAtaxMUT (H) (middle column). Pycnotic nuclei are visible
on cresyl violet-stained sections, suggesting cell injury and striatal degeneration after brain co-infection with MUT ATX3 and the control shGFP (C) or
the non specific shAtaxWT (F), in adult rats at 2 months after injection. No such nuclei are observed on sections from rats co-infected with MUT ATX3
and the specific shAtaxMUT (I) (right column). All the pictures were taken around the injection site area and show representative
immunohistochemical stainings that were reproducible among the different groups.
doi:10.1371/journal.pone.0003341.g009
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Histological processing
Tissue preparation. Three (n = 2 for shAtaxMUT and

shAtaxWT) or 8 weeks (n = 7 for shAtaxMUT, n= 8 for

shAtaxWT and n= 4 for shGFP) after lentivirus injection, the

animals were perfused with a phosphate solution followed by

fixation with 4% paraphormaldehide (PAF, Fluka, Sigma, Buchs,

Switzerland) and 10% picric acid, their brains removed and the

entire striatum was sliced, the sections then being stored in 48-well

trays (Corning Inc., NY, USA), as previously described [37].

Immunohistochemical procedure
The immunohistochemical procedure was initiated by endog-

enous peroxidase quenching by incubation for 1 h at 37uC in

0.1% diphenylhydrazine in PBS. Free-floating sections were

incubated for 1 h at room temperature in 0.1% Triton X-100 in

PBS (or 0.02% Triton X-100 in PBS for the anti-ubiquitin

antibody) supplemented with 10% NGS (normal goat serum,

Gibco), and then with the appropriate antibodies—the mouse

monoclonal anti-ataxin-3 antibody 1H9 (1:5000; overnight, 4uC),

a rabbit polyclonal anti-ataxin-3 antibody (1:2000, overnight,

4uC), kindly provided by Dr. Henry L. Paulson (University of

Iowa, USA), a rabbit polyclonal anti-ubiquitin antibody (Dakocy-

tomation, Zug, Switzerland; 1:1000; O/N 4uC), a rabbit

polyclonal dopamine- and cAMP-regulated phosphoprotein with

a molecular mass of 32 kDa (DARPP-32; Chemicon,Temecula,

CA, USA; 1:5000, overnight, 4uC) and an anti-b-galactosidase

antibody (1:4000; Chemicon, Temecula, CA,USA) diluted in

0.1% Triton X-100 in PBS supplemented with 10% NGS.

Sections were washed three times and incubated with the

corresponding biotinylated secondary antibody (1:200; Vector

Laboratories Inc, CA, USA) diluted in 0.1% Triton X-100 in PBS

supplemented with 10% NGS for 2 h at room temperature.

Sections were washed three times and bound antibodies were

visualized with the ABC amplification system (Vectastain ABC kit,

Vector Laboratories, West Grove, USA) and 3,39-diaminobenzi-

dine tetrahydrochloride (peroxidase substrate kit DAB; Vector

Laboratories, CA, USA) as the substrate. The sections were

mounted, dehydrated by two passages through ethanol and toluol

solutions, and coverslipped with EukittH (O. Kindler GmbH &

CO. Freiburg, Germany).

Double-staining for ataxin-3/DARPP-32 and ataxin-3/b-galac-

tosidase - Free-floating sections were incubated at room temper-

ature for 1 h in 0.1% Triton X-100 in PBS supplemented with

10% NGS (normal goat serum, Gibco), followed by blocking

solution containing the corresponding antibodies: 1H9 Ab (1:5000)

and anti-DARPP-32 (1:2000) overnight, 4uC; 1H9 (1:5000) and

anti-b-galactosidase (rabbit polyclonal antibody; Chemicon, Te-

mecula, CA, USA, 1:4000, overnight, 4uC). Sections were washed

three times and incubated with the corresponding secondary

antibodies coupled to fluorophores (1:200; Molecular Probes,

Oregon, USA) diluted in 0.1% Triton X-100 in PBS supplement-

ed with 10% NGS for 2 h at room temperature. The sections were

washed three times in PBS and mounted in Fluorsave Reagent

(Calbiochem, Germany) on microscope slides.

Evaluation of the volume of the DARPP-32-depleted
region
The extent of ataxin-3 lesions in the striatum was analyzed by

digitizing 10 DARPP-32-stained sections per animal (25 mm

sections at 200 mm intervals), selected so as to obtain complete

rostrocaudal sampling of the striatum with a slide scanner and by

quantifying the area of the lesion with a semiautomated image-

analysis program (Image J, USA). Sections from throughout the

entire striatum were analyzed. The area of the striatum showing a

loss of DARPP-32 staining was measured for each animal, with an

operator-independent macro. The volume was then estimated

with the following formula: volume = d(a1+a2+a3 …), where d is

distance between serial sections (200 mm or 300 mm), and a1, a2, a3
.are DARPP-32-depleted areas for individual serial sections. The

depleted area corresponds to area with a gray-scale value lower

than the mean gray-scale value of all pixels measured in the

lesioned area. Data are expressed as the area of the evaluated

DARPP-32-depleted region.

Cell counts and morphometric analysis of ataxin-3
inclusions
Cell counts and morphometric analysis of ataxin-3 inclusions

were performed as previously described, but with minor

modifications [38,39]. Coronal sections showing complete rostro-

caudal sampling (1 of 12 sections or 1 of 8 sections) of the striatum

were scanned with a 610 objective, using a Zeiss (Oberkochen,

Germany) Axioplan 2 imaging microscope motorized for X, Y,

and Z displacements and an image acquisition and analysis system

(Morphostar V 6.0; IMSTAR, Paris, France). The analyzed areas

of the striatum encompassed the entire region containing mutant

ATX3 aggregates, as revealed by staining with the anti-ataxin-3

antibody. This area corresponded, on average, to 100 contiguous

digitized images per section. Image pixels were 0.8 mm60.8 mm in

size. Section lighting was similar for all acquisitions and was

automatically corrected using blank images. Images were auto-

matically segmented for the quantification of dark objects

(aggregates/inclusions), using the same parameters defining light

intensity threshold, size and shape object filters. With this

procedure, all inclusions with an apparent cross-sectional area

greater than 3 mm2 were reliably detected. None of the objects

touching one of the X or Y borders of the fields of view were

counted, in any of the images. For each animal, the estimated total

number of inclusions (Ne) was calculated as Ne= (Ns)/Sf, where

Ns is the number of inclusions detected in all sections and Sf is the

rostrocaudal sampling fraction (1/8). Inclusions in striatal neurons

tended to be round (mean rotundity index.0.90), with an

isotropic orientation in the striatum. We therefore corrected the

number of raw cell counts using the Abercrombie factor [40]. This

factor was calculated using the formula, A=N/N+h where N is

section thickness and h is mean object height, estimated for each

experimental group based on morphometric analysis of segmented

objects (shGFP, 6.61 mm; shAtaxWT(G), 6.51 mm; shAtax-

MUT(C), 6.18 mm). The corrected total number of inclusions

(Nc) was calculated as Nc=A6Ne.

Cresyl violet staining. Premounted sections were stained

with cresyl violet for 2 minutes, differentiated in acetate buffer

pH 3.8 to 4 (2.72% sodium acetate and 1.2% acetic acid; 1:4 v/v),

dehydrated by passing twice through ethanol and toluol solutions,

and mounted on microscope slides with EukittH (O. Kindler

GmbH & CO. Freiburg, Germany).

Flurojade B staining. We stained striatal sections with

FluoroJade-B (Chemicon, Temecula, CA), an anionic fluorescein

derivative that stains neurons undergoing degeneration. The

sections were first washed in water and then mounted on silane-

coated glass slides, dehydrated, and stained according to the

supplier’s manual.. Bright-field and fluorescent images were

acquired digitally on an Axioskop 2 Plus microscope (Zeiss) with

Axiovision software version 4.2. All photographs for comparison

were taken under identical image acquisition conditions and

uniform adjustments of brightness and contrast were made to all

images.
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Data analysis
The intensity of immunostaining is expressed as mean6SEM.

Statistical analysis was performed by one-way analysis of variance

(ANOVA) followed by Fisher’s PLSD post hoc test (StatView 4.0,

version 3.2.6; Aladdin Systems). Values of p,0.05 were considered

statistically significant.
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