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Abstract

This paper shows how scale vectors (which can represent either pitch or rhyth-
mic patterns) can be written as a linear combination of columns of scale matrices,
thus decomposing the scale into musically relevant intervals. When the scales or
rhythms have different cardinality, they can be compared using a canonical form
closely related to Lyndon words. The eigenvalues of the scale matrix are equal to
the Fourier coefficients, which leads to a number of relationships between the scale
vectors and the decompositions. Overcomplete dictionaries of frame elements can
be used for more convincing representations by finding sparse decompositions, a
technique that can also be applied to tiling problems. Scale matrices are related to
familiar theoretical properties such as the interval function, Z-relation or homom-
etry, all of which can be efficiently studied within this framework. In many cases,
the determinant of the scale matrix is key: singular scale matrices correspond to
Lewin’s special cases; regular matricesallow a simple method of recovering the ar-
gument of an interval function and elicit unique decompositions; large determinant
values correspond to flat interval distributions.

1 Introduction

A common way to represent musical scales, chords, and tunings that repeat at some
specified interval (such as the octave) is to encode into a characteristic function: a scale
vector of ones (indicating the presence of the note) and zeroes (representing the absence
of a note). For instance, the interval of a minor third in 12-tone equal temperament
corresponds to the scale vector

{1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}′, (1)
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where the prime ′ indicates that we conventionally use column vectors. The familiar
diatonic scale in C is

{1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1}′ (2)

and a whole tone scale is

{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}′. (3)

Similarly, the major scale in 19-tone equal temperament is

{1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0}′. (4)

Musical rhythms are also commonly represented analogously [19], with ‘one’ repre-
senting the time of onset of a sound and ‘zero’ representing times at which no onset
occurs. For example, the classic tango 3-3-2 rhythm is

{1, 0, 0, 1, 0, 0, 1, 0}′, (5)

King’s “standard pattern” in Yoruba music [11] is notated

{1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0}′ (6)

and the son clave rhythm is

{1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0}′. (7)

A fundamental similarity between these two representations (of pitch and rhythm) is
that the vectors are a shorthand representation of a single period of a periodic element.

When two scale vectors have the same dimension, it is natural to wish to combine
them. For instance, adding the whole tone scale to a shifted version of itself yields a
complete 12-TET chromatic scale. Adding a regular pattern of two claps per period
{1, 0, 0, 1, 0, 0}′ to a regular pattern of three claps per period {1, 0, 1, 0, 1, 0}′ yields
the 3-2 polyrhythm {2, 0, 1, 1, 1, 0}′, where the “2” indicates that two notes coincide at
the first timepoint.

This paper addresses several issues that arise with scale vectors. We show three
techniques for decomposing scale vectors, thus expressing one scale (or chord or tuning
or rhythm) as a linear combination of others. In Section 2, the set of all transpositions of
a scale is gathered into a circulant matrix. When this matrix is invertible, it is possible
to express any scale (or chord) as a linear combination of these transpositions in a
unique way. This provides an analog of the Fourier transform, but with basis functions
defined by musical scales rather than by sinusoids. Section 3 explains how vectors of
different lengths can nevertheless be compared.

There is a striking relationship with the Fourier coefficients, which is explored in
Section 4, including discussion of extreme values of the determinant of this matrix
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in connection with Lewin’s ‘special cases’ [13]. This relationship leads to interesting
techniques related to the interval function and the Z-relation that bypass the computa-
tion of Fourier coefficients.

When the matrix is not invertible, an exact decomposition is generically impossible.
The pseudo-inverse gives the best L2 match, while a linear program can be used to find
the best L1 solution. This last is particularly useful in supplying sparse answers, which
tend to give more musically sensible results. Alternatively, a dictionary of scales can
be used to form a frame (an over-complete spanning set) which can also be used to
decompose a given scale; there are many solutions to choose from. Again, the linear
programming L1 solutions tend to be easier to interpret than the solutions given by the
pseudo-inverse. Also, there is some measure of control over the result, as a preference
can be expressed for some pitches by choosing the specific linear form to be minimized
by the algorithm. This opens promising alleys into the computation of rhythmic canons
and several examples are shown in Section 5. A Mathematica notebook is available on
the website [21] which provides function definitions that allow the reader to easily
duplicate and extend the examples given throughout the paper.

2 Scale Transforms

2.1 Definitions and Examples

Consider scales in a n-TET or rhythmic patterns with n timepoints. When not other-
wise specified in the examples, n = 12. Let s = {s0, s1, ...sn−1}′ be a scale vector
of dimension n, and let s(i) be the same vector after a circular rotation of i steps. The
scale matrix

S = [s(0)|s(1)|...|s(n− 1)]

is a circulant matrix formed using the scale vector and all its rotations as columns. To
be specific, the (i, k)th element of S is s(i−k) mod n.

If S is invertible, the columns can be viewed as forming a basis of Rn and any ele-
ment r ∈ Rn can be written uniquely as a linear combination of these basis elements:

r = x0 s(0) + x1 s(1) + . . .+ xn−1 s(n− 1) =
N−1∑
i=0

xis(i) = Sx.

The transformation T = S−1 maps from r to x while S gives the inverse transforma-
tion from x to r. The simplest case is the identity matrix, SI = In formed from the
scale vector

e1 = {1, 0, 0, ..., 0}′. (8)

In this case, any scale vector x is expressed as itself: r = SIx = Inx = x.
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Example 1 (A Basis of Major Thirds) Let s = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}′ be the
dyad of major thirds. The corresponding circulant matrix S is invertible, with determi-
nant |S| = 16. The major seventh chord M7 = {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1}′ can be
expressed in the basis of major thirds by calculating

TM7 = {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}′ = f (9)

where T = S−1, which shows how the major seventh chord is expressible directly as a
sum of two major thirds a fifth apart.

Example 1 shows how one chord (or scale or tuning) can be expressed in terms of
another, in this case, how the major seventh chord can be expressed in terms of major
thirds. The basis can consist of any scale for which the S matrix is invertible. The next
example shows how minor scales can be decomposed in terms of diatonic scales.

Example 2 (A Diatonic Basis) Let s be the diatonic scale (2). The corresponding
circulant matrix

S =


1 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0 1 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1

 (10)

is invertible, with determinant |S| = −7. Let

T = S−1 =
1
7



3 3 3 3 3 3 −4 −4 −4 −4 −4 3
3 3 3 3 3 3 3 −4 −4 −4 −4 −4
−4 3 3 3 3 3 3 3 −4 −4 −4 −4
−4 −4 3 3 3 3 3 3 3 −4 −4 −4
−4 −4 −4 3 3 3 3 3 3 3 −4 −4
−4 −4 −4 −4 3 3 3 3 3 3 3 −4
−4 −4 −4 −4 −4 3 3 3 3 3 3 3
3 −4 −4 −4 −4 −4 3 3 3 3 3 3
3 3 −4 −4 −4 −4 −4 3 3 3 3 3
3 3 3 −4 −4 −4 −4 −4 3 3 3 3
3 3 3 3 −4 −4 −4 −4 −4 3 3 3
3 3 3 3 3 −4 −4 −4 −4 −4 3 3


.

The melodic minor scale m1 = {1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1}′ can be expressed in the
basis of diatonic scales by calculating Tm1 = {1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0}′, show-
ing how this minor scale can be expressed as a (signed) sum of three major scales.
Similarly, the harmonic minor scale m2 = {1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1}′ can be ex-
pressed as Tm2 = {1, 0, 0, 1, 0,−1, 0, 0, 0, 0, 0, 0}′: the scale of C minor is thus the
sum of C major and E[ major, minus F major. Alternatively, this means that the tones
common to C and E[ major, together with the other tones in one of these two scales
that lie outside of C minor, make up F major. This is shown graphically in Fig. 1.

The next two examples show the complementary relationship between the diatonic and
pentatonic scales.
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C maj +
Eb maj

- F maj

= C min

Figure 1: Sum and difference of scales

Example 3 (A Diatonic Basis) Let s, S, and T be defined as in Example 2. The pen-
tatonic scale

p = {1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0}′ (11)

can be expressed in the basis of diatonic scales by calculating

Tp =
1
7
{1, 1, 1, 1, 1, 1,−6, 1, 1, 1, 1, 1}′ .

Thus the pentatonic scale is a collection of 11 diatonic scales minus a weighted diatonic
scale at the tritone. Alternatively, consider the aggregate: it is one seventh of the sum
of all twelve major scales. Subtract F] major to get its complement set. Thus the
pentatonic scale p can be expressed succinctly in the diatonic basis as

Tp =
1
7
112 − {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}′

where
1n = {1, 1, ..., 1}′ (12)

is the chromatic scale vector of size n.

Example 4 (A Pentatonic Basis) Let s be the pentatonic scale (11). The correspond-
ing circulant matrix S is invertible, with determinant |S| = 5. The diatonic scale d in
(2) is expressible in the basis of pentatonic scales as Td = 1

5{1, 1, 1, 1, 1, 1,−4, 1, 1, 1, 1, 1}′.
Thus the diatonic scale is a collection of 11 pentatonic scales minus a weighted penta-
tonic at the tritone. Or, using again the aggregate as 1/5 of the sum of all pentatonic
scales:

Td =
1
5
1n − {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}′.

When using the familiar (discrete) Fourier Transform, a vector x is decomposed
into a weighted set of sinusoidal basis elements. It is not clear, however, that a sinu-
soidal basis is necessarily the most instructive way to represent scale vectors. Viewing
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the T matrix as a transform (with inverse transform S) suggests the interpretation that
the scale vector x is decomposed into a weighted set of basis elements consisting of
musically sensible terms: the set of all rotations (transpositions) of the scale s that
define S. This is especially meaningful when the answer consists of a small number
of simple coefficients, like 0, 1 or -1, where the minus sign implies a complementary
relationship.

Another interesting use of these decompositions starts from the multiset m of the
number of occurences of all pitches in a musical piece. Then Tm (with T defined as
above) provides a picture of the distribution of all diatonic scales used in the piece.

2.2 Some General Features

2.2.1 Singular Scale Matrices

So far the construction of a scale matrix yields a square n × n matrix. Of course,
this matrix S need not always be invertible. In some cases, the columns of S repeat
themselves (consider the scale matrix of the tritone, or of the whole-tone scale for
instance) which means that the model of a square matrix is inappropriate.

Straightforward calculation shows that any dyad in 12-TET (other than the major
third from Example 1), has |S| = 0. The whole tone scale (3) has |S| = 0. In these
cases, it is not possible to represent an arbitrary scale vector in the basis defined by the
columns of S.1 A simple characterization of these singular cases is

Proposition 1 A scale yields a singular scale matrix iff the scale is a linear combina-
tion of its translates.

For instance, the whole-tone scale is equal to every translate by an even number of
semitones. Less trivially, a minor third is a combination of other minor thirds, as for
instance

(C,E[)− (E[, F ]) + (F],A) = (A,C)

This might appear to be a consequence of the minor third dividing the octave equally,
but this is wrong, since the scale matrix of the major third is invertible, and the scale
matrix of the fifth is singular.2 Letting (0, d) represent the dyadic scale vector with a
one in the first and dth entries, the general result is:

Theorem 1 The scale matrix of (0, d) in n-TET is always invertible if n is odd. If
n = 2vq with q odd, the scale matrix is invertible iff 2v divides d, the span of the dyad.

1In special cases, such a decomposition exists, but will not be unique: for instance the guidonian hexa-
chord {1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0}′ is a sum of three fifths, though the scale matrix of the fifth is singular.

2The sum of all fifths beginning on one whole-tone scale is equal to the whole, as is the similar sum
starting on the other whole-tone scale. So one perfect fifth is a linear combination of all the others.
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Otherwise, the rank of the scale matrix (0, d) is equal to n − gcd(d, n); it is minimal
for d = n/2, the equal division of the octave (the generalized tritone). In that case it
is equal to n/2.

[All proofs may be found in the appendices.] For instance, the only dyads that
allow expression of any scale in quarter-tone TET (i.e. n = 24) are for d = 8, i.e. the
usual major third (and its inversion). It is only for n = 2v that all dyad matrices are
singular.

2.2.2 Scale Matrix and Complementation

There are some close relationships between the representation of a scale vector x with
respect to a scale matrix S and the representation of the complementary scale vector
1n − x with respect to S.

Theorem 2 Let s be a scale vector with corresponding scale matrix S and let z be the
representation of the n-dimensional scale vector x in the basis defined by the columns
of S. Then the complementary scale 1n − x is represented in the basis defined by the
columns of S by 1

m1n − z, where m is the number of nonzero elements of x.

It is also possible to characterize the representation of a scale vector directly in
terms of the basis defined by its complement.

Theorem 3 Let the n-dimensional scale vector x define the scale matrix Sx and let
1n − x define the scale matrix S1n−x. Assuming that Sx is invertible, x can be repre-
sented in the basis of the columns of S1n−x by z = 1

m1n − e1 where m is the number
of nonzero elements in x and e1 is given by (8).

Theorem 3 explains Examples 3 and 4, since the diatonic scale (2) is complemen-
tary to (a shifted version of) the pentatonic scale (11). Any pair of complementary
scales can be decomposed similarly, without carrying out the calculations.

3 Canonical Forms

Each scale vector represents a single cycle of a periodic structure. When the vector
refers to pitch, the period is (typically) the octave. When the vector refers to rhythm,
the period refers to one temporal cycle. In either case, representations are not unique,
and this section explores a canonical form that can represent any scale vector and allows
easy comparison between different length vectors. There are two kinds of ambiguities.

Since a periodic sequence can be thought of as starting at any element, one am-
biguity in representation is that two scale vectors of the same length may be related
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by circular rotation. Let q`(x) be the operator that circularly rotates x by ` positions
to the right. For instance, x = {1, 1, 0, 1}′ is equal to y = {1, 1, 1, 0}′ after a single
rotation to the right, that is, y = q1(x). Similarly, the diatonic scale vector d in (2)
is equal to the Yoruba rhythm scale vector y in (6) after seven rotations to the right,
y = q7(d). In general, the scale matrices Sx and Sq`(x) corresponding to x and q`(x)
have the same columns but in a different order. Hence the representations are the same
up to multiplication by some permutation matrix P , that is, Sx = PSq`(x).

The most interesting ambiguity is in length. For example, a short rhythm such
as x1 = {1, 1, 0, 1}′ represents three events that occur at one-quarter, one-half, and
three-quarters of a period. If the time-length of the period is fixed, this is identical
to x2 = {1, 0, 1, 0, 0, 0, 1, 0}′, which also represents three events that occur at one-
quarter, one-half, and three-quarters of the period. Thus the two rhythms x1 and x2 are
related by an upsampling by 2 (insertion of zero between each element). Similarly, the
whole tone scale (3) in 12-TET is the same as an upsampling of the chromatic scale in
6-TET (= 16).

More generally, let ↑ m (upsampling by m) define the operation that inserts m− 1
zeros between each element of a scale vector. Observe that rotation and upsampling
can be applied in either order, specifically,

qm`(x ↑ m) = (q`x) ↑ m. (13)

In words, upsampling by m and then rotating by m` gives the same answer as rotating
by ` and then upsampling by m.

Given two scale vectors x and y, if there are integers ` and m such that either

x = q`(y ↑ m) or y = q`(x ↑ m)

then x ∼ y are said to be in the same equivalence class. In terms of pitch, x ∼ y means
that the two scales contain the same intervals in the same order. In terms of rhythm,
x ∼ y means that the time intervals between successive events in the two rhythms are
identical. A canonical form y is defined to be the smallest (in length) representative
of its equivalence class. Of course, any rotation of y has the same length. A unique
shortest member can be chosen by treating the elements of the binary vector q`(y) as
if they were the digits of a binary number, calculating

c` =
∑
i

2q
`(y(i)) (14)

for each rotation `. The scale vector q`(y) corresponding to the smallest c` is the unique
canonical form of this equivalence class. For example, {1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0}′

is the canonical form of both the diatonic scale vector (2) and the Yoruba rhythm vector
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(6).3

One way to find canonical forms is to downsample: to remove elements from the
vector so as to leave only every mth element remaining.4 Unlike standard downsam-
pling (as in [20]) however, downsampling of scale vectors is only allowed if all ele-
ments removed are zero. For instance, {1, 0, 1, 0, 0, 0, 1, 0}′ can be downsampled by
2 to give {1, 1, 0, 1}′ but {1, 0, 1, 0, 0, 1, 1, 0}′ cannot be downsampled, because doing
so would require removal of nonzero elements, thus changing the essential character of
the scale or rhythm.

Downsampling can be stated formally as follows: let n be the number of elements
in a scale vector x. Since x is binary, |x| = 1′nx. Let m be a divisor of n (i.e.,
d = n

m for some integer d) and let x̂ = {x(0), x(m), x(2m), ..., x((d− 1)m)}′. Then
downsampling by m is allowed if x and x̂ have the same number of nonzero elements,
that is, if 1′nx = 1′dx̂. In this case, we write x̂ = x ↓ m. Up and down sampling are
inverses whenever downsampling is defined. Thus (x ↓ m) ↑ m = x whenever the
downsampling is allowed, while (x ↑ m) ↓ m = x always holds.

A simple algorithm for finding the canonical form of a scale vector x is to attempt
all possible downsamplings by all possible divisors of n. A more algebraic way is the
computation of the gcd of the differences of elements of x, which generates a cyclic
group. Whenever downsampling occurs, the scale vector decreases in length. The
canonical form is found when no more downsamplings are possible and the result is
rotated to smallest (binary) value as in (14).

It is possible to express the decomposition of a scale vector directly in terms of a
decomposition of its canonical form.

Proposition 2 Suppose x is a scale vector of size n with scale matrix Sx, and that y
can be expressed in the basis defined by the columns of Sx as Sxz = y. Let Sx↑m be
the scale matrix corresponding to the upsampled scale vector x ↑ m. Then y ↑ m can
be expressed in a basis defined by the columns of Sx↑m as Sx↑mzm = y ↑ m, where
zm = z ↑ m.

Let ψ1, ψ2, ..., ψn denote the eigenvalues of Sx. Then the upsampled scale matrix
Sx↑m corresponding to x ↑ m has the same n eigenvalues, each with multiplicity m.5

Hence the determinants are related by |Sx|m = |Sx↑m|. For instance, the determinant
of the scale matrix generated by {1, 1, 0}′ in 3-TET is 2. Upsampling by m = 2
gives a scale matrix generated by {1, 0, 1, 0, 0, 0}′ in 6-TET, with determinant 4, while
upsampling by m = 4 gives the major third dyad in 12-TET (which has determinant

3Word theorists call these Lyndon words, computer scientists talk of circlists. Forte’s basic form is almost
identical but its definition is needlessly complicated.

4For theoretical applications of downsampling in rhythmic canons see [2].
5It is the tensorial product of Sx and Im.
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16 as shown in Example 1). In particular, |Sx| = 0 exactly when |Sx↑m| = 0. Thus
upsampling (and downsampling, when possible) of a scale vector cannot change the
invertibility of the corresponding scale matrices.

Since canonical forms preserve the representation and decomposition of scale vec-
tors, they can be used even when two scale vectors have different lengths. Suppose
that the canonical form x is of length n and the canonical form y is of length m. Let
k = lcm(n,m). Then xk = x ↑ k

n is the same length as yk = y ↑ k
m , and any opera-

tions such as creation of scale matrices and the decompositions of scale vectors can be
carried out on xk and yk and the results transfered immediately to all members of their
equivalence classes as in Proposition 2.

Example 5 (Clave in basis of the Tango) Let x be the 8-element tango rhythm (5), y
the 16-element clave rhythm (7), and Sx↑2 be the scale matrix corresponding to the
upsampled tango. Then the clave can be expressed in the basis of the (upsampled)
tango as

z = S−1
x↑2y = {1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0}′ − 1

3
116.

4 Relationship with the Fourier Transform

Because of the circulant structure of the scale matrix S, there is a close relationship
between the representation of a scale vector in a basis of scale elements and its repre-
sentation in the Fourier basis. This section explores this relationship and some of its
consequences.

4.1 DFT of a Chord or Scale

The DFT of a pc-set is identified with a subset of the cyclic group Zn by FA(t) =∑
A∈s e

−2iπkt/n. This is the Discrete Fourier Transform (DFT) of the characteristic
function 1A of the subset A, where A specifies the nonzero indices of a scale vector s
(i.e., FA(t) =

∑n−1
k=0 s(k)e−2iπkt/n) . For instance, A = (0, 2, 4, 5, 7, 9, 11) specifies

the diatonic scale (2) and the associated scale matrix S (10). Detailed discussion of
special values and features of this DFT can be found in [1]. All information about A is
present in its DFT, since by the inverse Fourier transform

s′ = 1A(k) =
1
n

∑
t∈Zn

FA(t)e2iπkt/n.

This can be simplified using the present matrix notation, because, (as shown in [9]),
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the eigenvalues of S (which are the same as the eigenvalues of S′) are

ψm =
n−1∑
k=0

ske
−2iπmk/n (15)

with corresponding normalized eigenvectors

ym =
1√
n
{1, e−2iπm/n, ..., e−2iπ(n−1)m/n}′. (16)

Equation (15) shows that the eigenvalues of S are given by the DFT of the first column
of S. Conversely, the first column of S is the inverse DFT of the eigenvalues.

The unitary matrix Ω whose columns are the eigenvectors ym is called the DFT
matrix. Every scale matrix S (indeed any circulant matrix with first column equal to
s′), has the diagonalization

Ω−1S Ω =

 ψ0 0 ... 0
0 ψ1 ... 0

...
. . .

...
0 ... 0 ψn−1

 .

This a bijective and linear transformation between three algebras:

1. the algebra of columns Cn, identified with the maps from Zn to C,

2. the algebra of circulating matrices, and

3. the algebra of diagonal matrices.

The product in the first algebra is the convolution product. The last isomorphim stems
from the fact that all circulant matrices are polynomials in

J =

 0 0 ... 1
1 0 0... 0
0 1 ... 0
...

. . .
...

0 ... 1 0

 .

As Jn = In (J is a circular permutation of the canonical basis), its eigenvalues
are the nth roots of unity that appear in the DFT formula, and the eigenvectors of
J remain eigenvectors for every polynomial in J , e.g., for every circulating matrix
Sv =

∑n−1
k=0 vkJ

k.

4.2 Singular Scale Matrices and Lewin’s Special Cases

4.2.1 Interval function

Since the determinant of any matrix is the product of its eigenvalues,

|S| =
n−1∏
i=0

ψi.
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in particular, the determinant of S is zero when at least one of its eigenvalues is zero.
In his first paper [13], David Lewin endeavoured to reconstruct a pc-set B from

its intervallic relationship with a given pc-set A. Let a, b denote the scale vectors
(columns) as elements of the first algebra. The intervallic function, counting the num-
ber of occurences of any possible interval between elements of A and B, is a convolu-
tion product:

IFunc (A,B)′ = a ? (−b) (17)

This can be translated into matrix form using the product ST ′ of the scale matri-
ces S and T corresponding to a and b6. Since S and T are circulant, so are T ′

and ST ′; hence ST ′ is completely defined by a single column. For example, in Z8,
IFunc ((0, 1, 3, 7), (0, 1, 4, 6)) can be calculated as the first column of

1 1 0 0 0 1 0 1
1 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 0 0 0 1 0 1 1




1 1 0 0 1 0 1 0
0 1 1 0 0 1 0 1
1 0 1 1 0 0 1 0
0 1 0 1 1 0 0 1
1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 1 1
1 0 0 1 0 1 0 1

 =


2 3 1 2 1 3 2 2
2 2 3 1 2 1 3 2
2 2 2 3 1 2 1 3
3 2 2 2 3 1 2 1
1 3 2 2 2 3 1 2
2 1 3 2 2 2 3 1
1 2 1 3 2 2 2 3
3 1 2 1 3 2 2 2

 .

It is in practice there is a shortcut: the multiplication of T by the vector s′, leaving the
answer in the form of the row s′T :

( 1 1 0 1 0 0 0 1 )


1 0 1 0 1 0 0 1
1 1 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 1
1 0 0 1 1 0 1 0
0 1 0 0 1 1 0 1
1 0 1 0 0 1 1 0
0 1 0 1 0 0 1 1

 = ( 2 2 2 3 1 2 1 3 ).

The Fourier transform of the interval function is F( IFunc (A,B)) = FA × FB ,
meaning that the Fourier coefficients are multiplied one to one. This means that knowl-
edge of IFunc (A,B) and B entails a complete knowledge of A, except when FB van-
ishes. In such cases, the corresponding value of FA cannot be recovered. Lewin called
these the ‘special cases.’

Example 6 Let B be the whole-tone scale with b given by (3). Then any odd dyad A
will have the same intervallic relation with B, that is,

IFunc (A,B) = 112. (18)

Taking the Fourier Transform of both sides of (18) gives

F( IFunc (A,B)) = F(112) = (12, 0, 0, 0, . . . 0).

Since the Fourier transform of a convolution is the product of the transforms, (17)
shows that

F( IFunc (A,B)) = FA ×FB = FA × (6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0).
6The transposition takes into account the minus sign before b. In full generality, it is necessary to use the

transpose conjugate of T , but the conjugacy is irrelevant in the present setting since T is real valued.
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The only way this equality can hold is if both FA(0) = 2 and FA(6) = 0. Thus there
are two constraints on A; the ten remaining coefficients may take on any values. This
allows for instance both the fifth f (9) and the minor third t (1), with respective DFT’s

Ff =

{
2, 0.13 +

i

2
,

3
2
−
√

3
2
i, 1 + i,

1
2
−
√

3
2
i,

2 +
√

3
2

+
i

2
, 0,

2 +
√

3
2

− i

2
,

1
2

+
√

3
2
i, 1− i, 3

2
+
√

3
2
i, 0.13− i

2

}
Ft = {2, 1− i, 0, 1 + i, 2, 1− i, 0, 1 + i, 2, 1− i, 0, 1 + i}

to share the same IFunc with B. In his dissertation [16], Ian Quinn summed up the
different forms of these singular cases as Lewin exposed them, using a characterization
of ‘balances.’ In the example above, t and f share the Fourier Property 6, also known
as the whole-tone-scale property [13], e.g. they both “have the same number of notes
in one whole-tone set, as they have in the other.” This corresponds to the equality of
Fourier coefficients Ff (6) = Ft(6) = 0.

Example 7 A less obvious example is the ascending melodic minor scale (0, 2, 3, 5, 7, 9, 11)
with scale vectorm = {1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1}′. As two of its Fourier coefficients
(Fm(2) = Fm(10) = 0) are zero, the determinant of its scale matrix S is zero, mean-
ing that it is not possible to express all scales as linear combinations of rotations of
m7. The intervallic relation to (0, 1, 6, 7) is the same as to (3, 4, 9, 10), because only
the second and tenth Fourier coefficients differ:

F(0,1,6,7) =
{

4, 0, 3− i
√

3, 0, 1− i
√

3, 0, 0, 0, 1 + i
√

3, 0, 3 + i
√

3, 0
}

F(3,4,9,10) =
{

4, 0,−3 + i
√

3, 0, 1− i
√

3, 0, 0, 0, 1 + i
√

3, 0,−3− i
√

3, 0
}
.

Thus scale matrices provide a simple algebraic characterization of Lewin’s special
cases, namely that the scale matrix S of B be singular, or |S| = 0. This is interest-
ing because, as Quinn points out, the corresponding Fourier Property is fairly obscure8

though the computation of the Fourier coefficient by a geometrical method called the
multiplication principle is more comprehensible. The computation of a determinant,
or rank of circulant matrix, is perhaps a more straightforward alternative.

The matrix scale representation also provides a neat way to recover a pc-setB from
A and the combination IFunc (A,B).

7The sum of those scales beginning on C, F, F], B is equal to the sum of the same scales beginning on D,
D], G], A. Hence by Prop. 1, the scale matrix is singular.

8For instance, the ‘tritone property’ states: “for any (0167)-set K, [it] has the same number of notes in
common with T3(K), as it has in common with K.”
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Theorem 4 Let A, B, and C be the circulating matrices associated with scales a, b
and c = IFunc (A,B). Then AB′ = C, and hence whenever |A| 6= 0, B′ = A−1C,
i.e. the scale vector b is defined by the first row of A−1C, e.g. b′ = c′A−1.

This has the additional advantage thatA−1 need be computed only once if one tries the
exercise for different targets b.

Example 8 We have already computed the inverse of the scale matrix S of the diatonic
scale s (2). Say a scale t has the IFunc (2, 3, 2, 2, 3, 1, 4, 1, 3, 3, 1, 3) with s; then
we compute

(2, 3, 2, 2, 3, 1, 4, 1, 3, 3, 1, 3)S−1 = (0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1)

and recognize Tristan’s chord.

For singular scales (i.e. scales with a singular matrix) it might be interesting to try the
techniques developed infra, by way of L2 or L1 closest solutions.

4.2.2 Homometry

The difficult question of homometry, or Z-relation as it is called traditionally in Amer-
ican musicology,9 is nicely expressed in the matrix framework. The following defini-
tions are equivalent (see for instance [17]):

Definition 1 The scales defined by vectors a, b are homometric if any of the following
(equivalent) conditions are true:

1. IFunc (a, a) = IFunc (b, b) (every interval occurs the same number of times
inside a and b);

2. AA′ = BB′ where A,B are the scale matrices of a, b.

3. |FA| = |FB |, meaning that the elements of the diagonal matrices Ω−1AΩ and
Ω−1BΩ have one to one the same magnitude;

4. There exists a matrix U , which is both a circulating matrix likeA,B, and unitary
like Ω : UU

′
= I , such that B = UA.

These last factors are called spectral units in the crystallography literature. In terms of
vectors, it is equivalent to b = u ? a. In terms of Fourier coefficients, the values of FU
are the quotients of the Fourier coefficients of a and b and thus lie on the unit circle.

9The original definition precludes the easy case, when the scales are identical under action of the T/I
group.
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It is clear that any two isometric scales are homometric, but the reverse is not true
(though counter-examples are uncommon). So far a general formula producing all
possible Z-related pc-sets is unknown. A possible approach would be the computation
of all possible spectral units U (bearing in mind that U multiplied with a scale matrix
does not automatically yield a regular scale matrix, e.g. a matrix with 1’s and 0’s).

From the last relation it is clear that the coefficients of U are rational numbers (the
denominator being the determinant of A), at least when A is invertible from Cramer’s
formulas.10 Hence the following result that gives a (large) upper size for the group of
spectral units:

Theorem 5 The eigenvalues of U are roots of unity, with maximal possible order n if
n is even or 2n if n is odd.

This enables (in theory) a specification of all possible spectral units via the inverse
Fourier transform.11

Example 9 Well-known homometric scales in Z12 are a = (0, 1, 4, 6) and b = (0, 1, 3, 7).

Computation ofU = BA−1 yields the spectral unit u =
1
4

(1, 1, 0, 1,−1,−2, 1, 1, 0, 1,−1, 2).
Its Fourier coefficients are roots of unity of order 2, 3, 4 or 6:

FU =

{
1,− i

2
+
√

3
2
,

1
2

+
i
√

3
2
,−1, i,− i

2
−
√

3
2
,−1,

i

2
−
√

3
2
, 1, i,

1
2
− i
√

3
2
,
i

2
+
√

3
2

}
.

We leave it to the reader to check that the matrix U = 2
n

(
1 ... 1
...

. . .
...

1 ... 1

)
− In is a spectral

unit, and that for any hexachord (= pc-set with n/2 elements, for even cardinalities n)
with scale matrix S, U S is the scale matrix of its complement. This is a rather indirect
proof of Babbit’s hexachord theorem.

4.3 Largest Values of |S|

Parseval’s identity implies that the sum of the squares of the eigenvalues is a constant:∑
|ψm|2 = nd.

10In his seminal paper, Rosenblatt [17] proves that this is true even for singular matrixes, though he
mentions only once circulating matrixes and this in order to clarify the null space in such cases, wherein
several different spectral units can satisfy the equation b = u ? a for a given a, b pair.

11Not all combinations of roots of unity need be considered, as the condition that U is rational-valued
excludes many of the possibilities (for instance, the final terms must be conjugate to the initial terms in
reverse order).
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Hence among d note scales, the largest determinant |S|, e.g. the largest value of∏
|ψm|, occurs when the eigenvalues, i.e., the Fourier coefficients, are most nearly

equal.12

Jon Wild [22] has investigated special scales that provide such distributions of the
Fourier coefficients. The FLID (FLat Interval Distribution) is defined as a pc-set A
with constant interval vector: iv(A) = IFunc (A,A) = (d,m,m,m, . . .m). (The
first value must be the cardinality of the pc-set) For obvious reasons, it is not always
possible to get a FLID – for instance, the total number of intervals must be d2 and
hencem× (n−1) = d2−d, meaning n−1 must divide d(d−1). A simple example is
A = (1, 3, 4, 5, 9) in 11-TET, with iv(A) = (5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2): each interval
(except the unison) appears exactly twice. It is straightforward to check that a FLID
has a Flat Fourier coefficient distribution, as the DFT of iv(A) is precisely |FA|2. The
computation when IFunc (A,A) = (d,m,m,m, . . .m) = (d−m)δ0 +m1n yields

Fiv(A) = |FA|2 = (d+(n−1)m, d−m, d−m, . . . d−m) = (d2, d−m, d−m, . . . d−m)

We have proved that the reverse is also true:

Theorem 6 A is a FLID if and only if the magnitude of all its Fourier coefficients
(except the zeroth) are equal:

iv(A) = IFunc (A,A) = (d,m,m,m, . . .m) ⇐⇒ ∀m = 1 . . . n−1, |ψm|2 = d−m

This case gives the maximum possible value of the determinant of the associated

scale matrix. Since m =
d(d− 1)
n− 1

, d−m = d
n− d
n− 1

and hence:

Proposition 3 For a d-note scale s in a n-TET, the determinant of the associated scale
matrix S is bounded:

|S| ≤ d
(
d
n− d
n− 1

)n−1
2

This bound is reached iff s is a FLID.

The Hadamard inequality, which is true for any matrix, would yield the larger bound
dn/2.

More generally, even when a FLID with d elements does not exist in Zn, the de-
terminant of the scale matrix is maximum (for all d note scales) when the interval
distribution is ‘as flat as possible’: the (absolute) value of the determinant can be
chosen as a measure of the ‘flatness’ of the scale. For instance, for 5-note scales
in 11-TET, the scale {1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0}′ gives the maximum determinant of
1215. For 7-note scales that are subsets of 12-TET, the upper theoretical bound is

12The product of positive real numbers whose sum is fixed is maximal when they are equal.
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about 4072, but the actual maximum determinant is 2240, which occurs for scales
such as {1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0}′, whose Fourier coefficient as close as possible
to uniform13 for binary-valued scale vectors. For 4-scale notes the flatest cases are the
well known pc-sets (0, 1, 4, 6) and (0, 1, 3, 7) (though the tritone is in fact redoubled,
hence these are not real FLIDs), with a determinant of 1024 for a theoretical maximum
around 1421.

5 Non-invertible Representations

When the scale matrix S is singular, it is still possible to find combinations of elements
in the range space of the columns that are close to a specified scale vector.

5.1 Rank Deficient Scale Matrices

One approach is to use the pseudo-inverse, which gives the closest L2 approximation
for underdetermined systems.

Example 10 (Minor Thirds) Let s be the minor third scale vector (1). The corre-
sponding circulant scale matrix S has determinant |S| = 0 and so is not invertible. Ap-
plying the pseudo-inverse T to the diatonic scale d in (2) expresses d as closely as pos-
sible in terms of minor thirds. The result is Td = 1

8{2, 2, 5,−1, 3, 1, 2, 2, 1, 3,−1, 5}.
As a check, one can calculate STd = {1, 0, 5

4 , 0, 1,
3
4 , 0, 1,

1
4 , 1, 0,

3
4}. When rounded

to the nearest integer, this is equal to d.

This pseudo-inverse sometimes provides unsatisfying results – one might prefer
sparser vectors for a more concise representation, as in Section 5.3.

5.2 Compound Spanning Sets

The representation of one scale x in the basis of another scale s can be complicated
when there is no easy way to write x as a weighted sum of the columns of S. Thus
it may be desirable to attempt to decompose x using a dictionary of different scale
vectors. Formally, a frame is a set of dictionary elements that form an over-complete
spanning set [3]. There are several methods for finding the “best” representation in
this set including Huber’s “projection pursuit” [10] and Mallot’s “matching-pursuit”
[14]. Perhaps the most straightforward method is Daubechie’s “method of frames” [8]
which calculates the pseudo-inverse of a (large rectangular) matrix composed of all the
vectors in the dictionary.

13Namely {7,
√

2, 2,
√

5, 2,
√

2, 1,
√

2, 2,
√

5, 2,
√

2}.
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For example, let s1 be two scale vectors of length n with associated circulant scale
matrices S1 and S2. The concatenated matrix S = [S1|S2] ∈ Rn×2n forms a dictionary
of vectors from which the representation draws.

Example 11 (Major and Minor Thirds) Let s1 be the major third scale vector as in
Example 1, s2 the minor third scale vector (1), S ∈ R12×24 the dictionary, T the
pseudo-inverse of the S, and d diatonic scale vector (2). Then Td expresses d as
closely as possible in terms of both minor and major thirds. The result is

1
720
{371, 87, 67,−9,−13, 327,−29, 327,−13,−9, 67, 87, 61, 61, 293,

−139, 301, 13, 101, 101, 13, 301,−139, 293}.

This is not a particularly simple or concise representation.

5.3 Linear programming

The problem with Example 11 is that the answer minimizes an L2 error, distributing
the energy among all the dictionary elements. The intent of a “simple” representation
is better represented by a sparse solution; to achieve a decomposition of x that uses
as few elements in the dictionary as possible. While finding the sparsest solution is
difficult, it has recently been recognized that a linear programming L1 solution can
often give an answer that is close to sparse [5], a result sometimes called compressive
sensing. Accordingly, it is worthwhile revisiting Example 11.

Example 12 (Major and Minor Thirds) With s1, s2, d, and S ∈ R12×24 as in Exam-
ple 11, a linear programming problem can solve for the x that minimizes 1′24x subject
to Sx ≥ d and x ≥ 0. The answer is

x =
1
2
{1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1},

which exactly represents the diatonic scale as the halved sum of three major thirds and
four minor thirds. This is musically sensible, as these two kinds of thirds are precisely
the only ones occuring in the diatonic.

This kind of optimization of a solution is also rewarding when the system is under-
determined. Not only does it yield a solution (albeit an approximate one), but this
solution tends to be sparse and can in some measure be controlled by choice of the
linear form used in the minimization.

Example 13 (Perfect Fifths) Let s be the perfect fifth scale vector, S the correspond-
ing scale matrix, d the diatonic scale vector (2), and let 1n be the n-vector of all ones.
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The linear program seeks to find the x that minimizes 1′nx subject to Sx ≥ d and
x ≥ 0. The answer is x = {1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}′, which approximates the
diatonic scale as a sum of four perfect fifths. To see the quality of the approximation,
calculate Sx = {2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1}′, which is the same as d but for the first
entry, but doubling the root note of the scale. Other choices of the direction of mini-
mization (i.e. vectors other than 1n) will give other solutions, for instance the other
coverings of the diatonic with fifths. It is perhaps amusing that the natural choice of
1n, privileging no particular pitch class, should give particular preeminence to the
tonic of the Ionian mode.

6 Tilings

The special case of a decomposition of the chromatic aggregate 1n yields a tiling or
mosaic when there is a solution with 0 or 1 coefficients. Each note in a tiling is covered
by exactly one translate of the original scale. For instance, diminished seventh chords
tile the aggregate:

(0, 3, 6, 9) ∪ (1, 4, 7, 10) ∪ (2, 5, 8, 11) = Z12. (19)

which can be restated using scale vectors as

(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)′+(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1)′+(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0)′ = 112.

or more traditionally
(0, 3, 6, 9)⊕ (0, 1, 2) = Z12.

Such mosaics have been of particular interest in the domain of rhythm, where rhyth-
mic canons have been thoroughly investigated (see [1, 2]). It is already hard to know
whether a particular ‘tile,’ i.e. subset of Zn, does indeed tile, though some results are
known in that direction; but computationally, when n gets large it is extremely difficult
to find how it tiles, i.e. which translates of the tile must be used in order to realize the
tiling.

In terms of scale matrices, the question is to factor

Sx = 1n (20)

where x is the unknown disposition of the translates of tile s with associated matrix S.
In order to tile, S will never be invertible (indeed it is necessary that all columns of

Ω be either in the null space of S or the nullspace of X , the scale matrix of x), so there
is no unique solution to this problem.
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However, linear programming can often provide a solution, and Mikhalis Kolountza-
kis has conjectured [12] that this method always will.14 For instance with

s = (0, 3, 9, 33, 40, 48, 75, 81, 88, 96, 105, 136)

the linear program provides in a fraction of a second

x = (0, 2, 4, 18, 20, 22, 36, 38, 54, 112, 128, 130)

for a tiling of Z144 = x⊕ s. This type of tiling where neither of the factors exhibit any
periodicity is called a Vuza Canon [2].

7 Discussion and Conclusion

This paper has investigated representations of musical scales and rhythms as binary
vectors corresponding to periodic structures. Scale vectors can be decomposed in bases
that represent musically sensible scales and chords (or simple rhythmic patterns) using
scale matrices, and the resulting decompositions can be musically meaningful, as for
instance the representation of a pentatonic scale in terms of the diatonic or a represen-
tation of the clave rhythm in a basis defined by the tango.

Several properties of scale matrices are studied including the relationship with the
familiar DFT basis and the correspondence between the invertibility of the scale matrix
and Lewin’s special cases. The Z-relation (homometry) can be expressed directly in
terms of scale matrices, and flat interval distributions (FLIDS) can be studied in terms
of the determinant.

When the scale matrices are not invertible, sensible decompositions can be (some-
times) be made using a linear programming technique, which can also be applied when
the matrix is non-square. In this case, the linear program solves an L1 minimization
problem that is often associated with sparse (concise) solutions. This approach may
also be useful in the study of rhythmic canons (tilings).
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8 Proofs

8.1 Proof of Thm. 1

The scale matrix S of the dyad (0, d) is equal to identity + the matrix D of the permu-
tation i 7→ i+ d mod n. Hence the kernel (or nullspace) of S is the eigenspace of D
for eigenvalue -1. Let us reason geometrically, considering the vectors e0 . . . en−1 of
the canonical basis of Rn. A vector x =

∑n−1
i=0 xiei lies in this eigenspace iff

n−1∑
i=0

xiei =
n−1∑
i=0

−xiei+d ⇐⇒ ∀i = 0 . . . n− 1 xi+d = −xi (21)

(all indexes are computed modulo n).
From this we get xi+k d mod n = (−1)kxi. Hence xi+nd mod n = xi = (−1)nxi:

if n is odd then the only solution is x = 0, i.e. S is invertible.
Say now that n is even, n = 2vn′ where n′ is odd. Let k be the smallest integer such

that k d = 0 mod n, e.g. k = n/(d, n).15 If k is odd we have the same impossibility,
and S is invertible. This is the case whenever d harbours the same power of 2 as n (or
a larger one): we have proved that if 2v divides d then S is invertible.

Assume now that 2v does not divide d, i.e. d = 2ud′ with d′ odd and u < v. We
can produce the eigenvectors, i.e. elements of the kernel of S, in the following way:

• Fix one coordinate – say x0 = 1.

• From Equation (21), xd = x0+d = −x0 = −1.

• Iterate until back to x0: x2d = +1, x3d = −1, . . . x0 = xn = xn/(d,n)×d = +1.
The last value is indeed +1 because n/(d, n) is an even number.

So the value of one coordinate determines the value of n/(d, n) coordinates. We have
thus n/

(
n/(d, n)

)
= (d, n) arbitrary coordinates x0, x1 . . . x(d,n)−1, that is to say

(d, n) degrees of freedom, and hence the dimension of the kernel of S is exactly (d, n).
Its largest possible value (apart from d = 0 which is no more a dyad) is for d = n/2.
In general, we get the rank of matrix S by way of the rank-nullity theorem: rank(S) =
n− (d, n), remembering though that rank(S) = n when 2v divides d.

15We denote here the gcd of d, n by (d, n) for concision.
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8.2 Proof of Thm. 2

By assumption, Sz = x, and it is desired to find an expression for z2 where Sz2 =
1n − x. This can be rewritten

1n − x = 1n − Sz

=
1
m
S1n − Sz

= S(
1
m

1n − z)

where m is the number of nonzero coefficients in x. The second line follows because
1n is an eigenvector of S, that is, S1n = m1n.

8.3 Proof of Thm. 3

The scale vector 1n − x can be expressed

1n − x =
1
m
Sx1n − Sxe1

= Sx

(
1
m

1n − e1
)
≡ Sxz

The first equality uses the fact that Sxe1 = x and that 1n is an eigenvector of Sx, that
is, Sx1n = m1n. Similarly, S1n−x( 1

n−m1n − e1) = x.

8.4 Proof of Thm. 4

One way to compute IFunc (A,B) is to calculate AB′ and extract the first column.
Indeed, if A and B are circulating matrices of scales a and b, then so is C = AB′,16

and the kth element of the first (or rather, 0th) column of C is

n−1∑
j=0

A′k,jBj,0 =
n−1∑
j=0

Aj,kBj,0 =
n−1∑
j=0

1 when j − k ∈ a and j − 0 ∈ b
0 else

and the term in the sum in non zero only if k is the distance between some element in a
and another element in b: we recognize IFunc(A,B). Since C is a circulating matrix,
the other columns are defined by this first column.

Another way makes use of special features of the matrices, namely that B =
B,Ω = Ω′ and for any circulating matrix S, the matrix with the Fourier coefficients

16Because the algebra of circulating matrices is stable under × and also under transposition of matrices,
as its generating element J satisifies J ′ = J−1 = Jn−1.
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Ω−1S Ω is diagonal. Hence, if we denote by FA (resp. FB) the diagonal matrix of the
Fourier coefficients of a (resp. b):

AB′ = AB′ = ΩFAΩ−1Ω.FBΩ−1
′

= ΩFAΩ−1Ω−1′F ′BΩ′ = ΩFAFBΩ−1

and we recognize the inverse Fourier Transform of FAFB , i.e. IFunc (A,B).

8.5 Proof of Thm. 5

Matrix U has rational elements and its eigenvalues are of magnitude 1. From a well-
known lemma in linear algebra,17 these eigenvalues are roots of unity. Moreover, as U
is a polynomial U = P (J), P ∈ Q[X] in the matrix J , whose eigenvalues are the nth

roots of unity, the eigenvalues of U are polynomials P (e2ikπ/n) in these roots, hence
lie in the field Q[e2iπ/n] = Qn, often called cyclotomic field.

Let ξ be any eigenvalue of U . We know that ξ ∈ Q[e2iπ/n] and that ξm = 1 for
some integer m (chosen minimal). Hence as ξ generates Qm,Qm ⊂ Qn. The set M
of possible values for m has a maximum element for the order of division, because if
ξ (resp. ξ′) with order m (resp. m′) is in the field, then so is ξpξ′q that can be chosen
with order lcm(m,m′).

As n ∈M , the maximum value form is a multiple of n. Let us callm this maximal
value, any element ξ of Qn lying on the unit circle must satisfy ξm = 1. Because again
n ∈M , m is a multiple of n and Qn ⊂ Qm. Finally Qn = Qm.

Letting Φ(n) = dim[Qn | Q] be Euler’s totient function,

n | m and

Φ(n) = Φ(m)
.

As Φ(n) = n
∏

p|n;p prime

(
1− 1

p

)
, the only possibility is thatm =

n for n even

2n for n odd
.

This proves the theorem: all eigenvalues of U are n or 2nth roots of unity.

Hence, U could be constructed as a polynomial in the elementary circulating matrix
J (as all other circulating matrices) U = P (J) where P is the interpolating polynomial
that sends the Fourier coefficients of J , i.e. the e2ikπ/n, to the Fourier coefficients
chosen for U . Such a construction is easy with the Lagrange polynomials associated
with the e2ikπ/n, as P is a linear combination of these polynomials with coefficients
that are precisely the Fourier coefficients of the desired u.

The possibilities of mapping the nth roots of 1 to mth roots of 1 can be somewhat
reduced by noticing that U is a rational polynomial in J , and such a polynomial is
stable under all field automorphisms of Qn. Perhaps this is a good starting point to try
and answer Rosenblatt’s question [17] as to the structure of the group of spectral units.

17Algebraic numbers who are of magnitude ≤ 1 together with all their conjugates are roots of unity.
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8.6 Proof of Thm. 6

We start from some simple observations, denoting by S the scale matrix of A ⊂ Zn:

• The scale matrix of the inverse (i.e. n − A) is the transpose of the scale matrix
S;

• The scale matrix (i.e., the circulant matrix) IFunc (A,A) is S′S = SS′;

• Recall that for any scale s = 1A,

FA = Ω−1SΩ =


FA(0) 0 ... ... 0

0 FA(1) 0 ... 0

...
. . .

...
...

. . .
...

0 ... 0 FA(n−1)

 ,

where FA(k) are the Fourier coefficients of A.

• The Fourier matrix Ω is unitary: Ω′ = Ω−1.

We prove the equivalence, denoting by FA the diagonal matrix with coefficients the
values of FA above, and 1n1′n the square matrix with all values equal to one. A is a
FLID iff the matrix of its interval content is constant (except the diagonal):

Mat(ICA) =


d m ... m

m d
...

...
. . . . . .

m ... m d

 = (d−m) I +m1n1′n

⇐⇒ S′ × S = (d−m)I +m1n1′n

⇐⇒ S
′ × S = (d−m)I +m1n1′n (because S is real valued)

⇐⇒
(
Ω−1FA Ω

)′
× Ω−1FA Ω = (d−m)I +m1n1′n

⇐⇒ Ω−1FA Ω× Ω−1FA Ω = Ω−1FAFA Ω = (d−m)I +m1n1′n (because Ω is unitary)

⇐⇒ FAFA = Ω
(
(d−m)I +m1n1′n

)
Ω−1

and as

Ω1n1′nΩ−1 = (Ω1n1′nΩ−1)′ =

( n 0 ... 0
0 0 ... 0
...

. . .
...

0 ... 0.

)
= F1n

where nδ0 is the Fourier transform of 1n. We find thus
|FA(0)|2 0 ... 0

0 |FA(1)|2 ... 0

...
. . .

...
0 ... 0 |FA(n−1)|2

 = (d−m)I +mF1n

=

 d+(n−1)m 0 ... 0
0 d−m ... 0

...
. . .

...
0 ... d−m

 ,
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meaning that |FA(k)| is constant for k 6= 0, i.e. that |FA| is flat. Observe that the
modulus of the Fourier coefficients are always square roots of integers.
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