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An Assessment of Stout’s Index of
Essential Unidimensionality
John Hattie, The University of North Carolina at Greensboro

Krzysztof Krakowski, The University of Western Australia

H. Jane Rogers, Teachers College, Columbia University

Hariharan Swaminathan, University of Massachusetts

A simulation study was conducted to evaluate the

dependability of Stout’s T index of unidimensionality as
used in his DIMTEST procedure. DIMTEST was found to

dependably provide indications of unidimensionality, to
be reasonably robust, and to allow for a practical demar-
cation between one and many dimensions. The proce-
dure was not affected by the method used to identify
the initial subset of unidimensional items. It was, how-

ever, found to be sensitive to whether the multidimen-

sional data arose from a compensatory model or a

partially compensatory model. DIMTEST failed when the
matrix of tetrachoric correlations was non-Gramian and

hence is not appropriate in such cases. Index terms:

DIMTEST, essential unidimensionality, factor analysis,
item response models, Stout’s test of unidimensionality,
tetrachoric correlations, unidimensionality.

A fundamental assumption of test theory is that a
score can only have meaning if the set of items mea-
sures only one attribute or dimension. If the measur-

ing instrument is composed of items that measure
different dimensions, then it is difficult to interpret
the total score from a set of items, to make psycho-
logical sense when relating variables, or to interpret
individual differences. Despite the importance of this

assumption to all testing models, there have been few

systematic attempts to investigate this assumption
and, until recently, little success at providing a de-
fensible procedure to assess the claim of unidimen-

sionality. Hattie (1984, 1985) theoretically and
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empirically assessed over 30 indexes of unidimen-

sionality and noted the inadequacies of most of these
indexes. Hattie suggested that procedures be based
on defensible theory and that unidimensionality be
examined in the framework of local independence
(Lord & Novick, 1968; McDonald, 1981).

Local independence requires that for fixed trait
level 8 (i.e., conditional on a vector of traits, 0), the

responses of an individual to different items are sta-

tistically independent. Lord & Novick (1968) gave
the definition of local independence more substan-
tive meaning by writing that:

... an individual’s performance depends on a

single underlying trait if, given his value on
that trait, nothing further can be learned from
him that can contribute to the explanation of
his performance. The proposition is that the
latent trait is the only important factor and,
once a person’s value on the trait is deter-
mined, the behavior is random, in the sense
of statistical independence. (p. 538)

This principle of local independence provides a
mathematical definition of latent traits; 0 can be

interpreted as a set of traits that the items measure
in common. Once these trait values are fixed at a

given value (i.e., conditioned on), the responses to
items become statistically independent. Thus, in
order to determine the dimensionality of a set of
items it is necessary and sufficient to identify the
minimal set of traits such that at all fixed levels of

these traits the item responses are independent. This

principle applies to linear as well as nonlinear re-
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gression functions of observed item responses on
the trait values.

The requirement that item responses be statisti-

cally independent for fixed values of the traits is very
stringent, because it requires that for fixed values of
the traits, not only the covariances be 0, but that all

higher-order moments be products of the univariate
moments. McDonald (1979) has suggested that this

&dquo;strong&dquo; principle of local independence can be re-

placed with a &dquo;weak&dquo; principle of local independence,
by requiring that only the covariances among the
items be 0 for fixed values of the traits. Note that

when the item responses (conditional on the trait

values) have a multivariate normal density, the weak

principle implies the stronger principle; hence, in this
case the two principles are equivalent.

Assessing Essential Unidimensionality
With DIMTEST

Stout (1987, 1990) used this weaker form of lo-
cal independence to develop his arguments for &dquo;es-
sential unidimensionality.&dquo; He devised a statistical
index, embodied in his DIMTEST procedure, based
on the fundamental principle that local indepen-
dence should hold approximately when sampling
from a subpopulation of examinees of approxi-
mately equal 0 level. According to Stout (1987), a
test (Ul, ..., UN) of length N is said to be essentially
unidimensional if there exists a latent variable 0 such

that for all values of 0,

That is, on average, the conditional covariances over

all item pairs must be small in magnitude (for more
details regarding the theoretical developments see
Junker,1990,1991, 1992; Nandakumar,1987,1991;
Nandakumar & Stout, 1993; Stout, 1990). Essen-
tial unidimensionality can therefore be thought of
as an empirical operationalization of the weak prin-
ciple of local independence.

Stout (1990) then developed an empirical no-
tion of unidimensionality to match his definition of
essential unidimensionality. Either a subjective
analysis of item content or an exploratory factor

analysis is used to develop a core set of items, which

is termed the assessment subtest. The remaining set
of items, termed the partitioning subtest, is used to

partition examinees into groups for a stratified

analysis. When the total set of items is unidimen-
sional, then the assessment and partitioning tests
are both unidimensional, but when the dimension-

ality is greater than 1, then &dquo;the partitioning subtest
will contain many items that load heavily on at least
one other dimension not measured by the assess-
ment subtest&dquo; (Stout, 1987, pp. 591-592).

The Four Steps in DIMTEST

Step 1. A core set of M items is selected from the
test so that these items are as unidimensional as pos-
sible. This is called Assessment Subtest 1 (ATI). There
are three suggested procedures for identifying these
M items: (1) an expert or judgmental analysis can be
used to define the unidimensional set, (2) a principal
components solution of the tetrachoric correlation

matrix over all N items can be calculated, or (3) a
cluster analysis (Roussos, Stout, & Marden, 1993)
can be used. The M items loading most highly on the
second unrotated factor are selected.

Step 2. A second set of M items is selected from
the remaining items such that they are similar in

difficulty and dimensionality to the items in ATI.
This is called Assessment Subtest 2 (AT2). AT2 is
later used to correct the T statistic for bias, because

the mean shifts in the positive direction for all short
tests as a consequence of selecting items that are

overly homogeneous with respect to difficulty.
Step 3. The remaining n = N - 2M items com-

prise the set by which the examinees are scored and
then partitioned into subgroups, called the Partition-

ing Subtest (PT). For the strong principle of local

independence, the statistics in Step 4 should be cal-
culated on the basis of the number of examinees

who have the same subtest score; however, because

the number within each subtest-score group typi-
cally is too small, Stout (1987) recommended that

respondents be assigned to groups on the basis of
total score such that a large number (approximately
20) are in each group.

Step 4. For each of these subgroups, the variance
estimates (8f and 6~) and the standard error of es-
timate (Sk) are computed using the ATI items (see
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Nandakumar & Stout, 1993, Equation 3). The usual
variance estimate, &2, is the observed variance of the

ATI subtest and is sensitive to departures of unidi-

mensionality. The &dquo;unidimensional&dquo; variance esti-
mate, &2, is the summed variances across the k

groups and remains the same regardless of the di-

mensionality of the dataset. These estimates are then
summed across K subgroups to obtain

A similar statistic, T,, is calculated from the items
in AT2. 7~ is a measure of the amount of multidi-

mensionality present locally for subgroup k. If uni-

dimensionality holds for the subgroup k examinees,
then 7~ should equal 0 except for statistical error.
This is analogous to subdividing examinees into
their subtest score groups and then asking whether
the principle of local independence holds. 7~ is com-

puted from the M items in A’r1 and is sensitive to

dimensionality and sources of bias; T, is based on
the maximally similar set in AT2 and is sensitive to
sources of bias but not dimensionality. Thus, T, is
used to correct for bias. The final statistic is

The basic principle underlying DIMTEST is that if

unidimensionality holds then the basic item re-

sponse theory (IRT) model assumption of local (con-
ditional) independence holds approximately within
each examinee subgroup; hence, the two within-

subgroup variance estimates should be approxi-
mately equal. Stout (1987) demonstrated that T is

asymptotically normally distributed when unidi-

mensionality holds. Stout’s T can be used to test
the hypothesis Ho: dE = 1 versus the alternative hy-
pothesis H1: dE > 1 where dE is essential dimension-

ality. The null hypothesis is rejected if T is greater
than or equal to z with some specified a level.

Stout recommends modifications to T when the

sample size is moderate (i.e., > 2,000) or large (i.e.,
> 40,000). For moderate samples, for example, ex-
aminees are divided into Q subsets (at least 20) and

the Q value is calculated using the above four steps

separately for each of these subsets. T is then the
sum of these separate Q values divided by the square
of the number of subsets (Stout, 1987, p. 596). In the

present simulation, the formula for small samples was
used because the sample size was 1,000.

Performance of the DIMTEST T Statistic

Stout (1987) conducted a simulation to assess how
well the nominal level of significance is approxi-
mated by the actual level of significance and how
much power the procedure displayed when dE = 1

and dE = 2. He varied four factors: the general form
of the item response functions, examinee population
size (J = 750 or J = 20,000), assessment subtest size,
and the number of dimensions. T was sufficiently
powerful to detect or reject essential unidimension-

ality, although the rejection rates were less desirable
when there was guessing.

Nandakumar (1991) compared the Holland

(1981; Holland & Rosenbaum, 1986) procedure
based on assessing whether the items are condition-

ally positively associated (and noted the close simi-
larities to DIMTEST; see also Stout, 1987), linear
factor analysis, nonlinear factor analysis (NLFA), and
DIMTEST. She reported that NLFA methods (with a
one-factor quadratic) accurately recovered the di-

mensionality when the correlations among the Os
were low (<.5), but both the nonlinear and Holland

and Rosenbaum procedures were not as effective
when the correlation between Os was high (p > .5).
The linear factor methods were not adequate for

assessing dimensionality. DIMTEST always correctly
confirmed the dimensionality of the simulated data-
sets (when dE = 1 or 2).

Nandakumar & Stout (1993) found that T was a

poor indicator for testing H~: dE =1 when there was

high discrimination (a > 1.1) and guessing. They
found that in such situations, the easiest items (in-

cluding those with high guessing parameters and
low discrimination) tended to be selected for ATI

and, because the respondents are grouped on the
basis of the items in the PT, there was much

misclassification of low 9 examinees. After reject-
ing NLFA as a method for diminishing the influence
of difficulty on the second factor loadings (in the
one real dataset they used they still found a &dquo;diffi-
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culty factor&dquo;), they suggested a correction proce-
dure to ensure a greater match of the factor load-

ings (and thus discriminations) across the set of
items chosen in ATI and in PT. Given this new sta-

tistic (T corrected for bias using AT2), their simula-
tions indicated that there was much improvement
in rejection rates when dE = 1 or 2.
A simulation study by de Champlain & Gessaroli

(1991) found that the accuracy of T was affected

by both sample size and test length. T performed
best on tests with more than 25 items (as expected
by Stout) and with sample sizes greater than 500.

They also found, as did Hattie (1984), that the fit
statistics based on the incremental fit of the pro-

portion of the sum of squares of the residuals after

fitting a one-factor quadratic (using NLFA) was also

very effective and less sensitive to the number of

items and sample size.
There are a number of issues that arise with re-

spect to DIMTEST. They include the use of tetrachoric

correlations, the identification of the items to com-

prise ATI, and the methods for constructing multi-
dimensional data.

Calculation of Tetrachoric Correlations

The selection of items for ATI in DIMTEST depends
on the correct calculation of the tetrachoric correla-

tions, and it is well-known that sample-based esti-
mates of the tetrachoric correlation matrix are often

not positive definite (see Lord & Novick, 1968, p.
349). The DIMTEST program (Stout, Nandakumar,
Junker, Chang, & Steidinger, 1991) does not indi-
cate the number of nonpositive definite matrices nor
the effects of these matrices on the subsequent sta-
tistics. The problem of nonpositive definite matrices

typically occurs when one of the correct or incorrect
cells of the two-by-two item response tables contains
a 0 or a value near 0 (see Lord, 1980; Pearson,1901 ).
Many formulas have been suggested for calculating
tetrachorics to overcome this problem, and the ma-

jor issue relates to the number of terms to be used in
the infinite series: McNemar (1955) used the first
four terms, Elderton (1906) the first seven, and
Christoffersson (1975) and Muth6n (1978) the first
ten terms.

A further problem with the use of tetrachorics is

that they are inappropriate when 0 distributions are
not normal (Lord, 1980). This is likely to occur
when there is guessing. Carroll (1945) demonstrated
a procedure for adjusting the proportions to more

correctly estimate the tetrachoric correlations, but
this correction is not used in DIMTEST.

Identification of the Core Set

A second major problem relates to the core set
of items identified for AT1, because it is critical that

it is accurately determined. The identification pro-
cedure suggested by Stout uses the principal com-

ponents method, and the choice of items is based
on second factor loadings because linear factor
models typically lead to the first factor being de-
fined as a &dquo;difficulty factor.&dquo; McDonald & Ahlawat

(1974) convincingly demonstrated that this pattern-
ing of the first factor is an artifact of using the in-
correct linear factor model instead of the more

correct nonlinear model. They demonstrated that
data generated by the normal ogive model should

yield spurious factors due to nonlinearity, but these
will tend to be &dquo;... negligible unless the items vary
widely in difficulty level, and/or we have sharply
discriminating items that approximate a perfect
scale&dquo; (p. 98). In general, they argued that the term
&dquo;factors due to difficulty&dquo; should not be used but
should be replaced by the notion of factors due to

nonlinearity. Stout claims to minimize the effect of
these nonlinearities by using AT2, which selects
items using a somewhat similar difficulty grouping
and using tetrachorics.
A procedure that seems more appropriate in the

context of IRT models would be to use NLFA (Etezadi-
Amoli & McDonald, 1983). Nandakumar & Stout

(1993) used NLFA on a set of real data that, when

using linear factor analysis, led to factors due to

nonlinearity. To their &dquo;... surprise, the difficulty fac-
tor reappeared even with the nonlinear factor analy-
sis&dquo; (Nandakumar & Stout, 1993, p. 50). Therefore,

they did not implement or recommend the use of NLFA
in DIMTEST. However, in their particular dataset there
were many high discriminating items (a > 1.5) and
much guessing (c >. .15), which can lead to the pres-
ence of many nonlinearities (Gourlay, 1951; Hulin,
Drasgow, & Parsons, 1983). NLFA models can re-
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duce or eliminate the effects of &dquo;difficulty&dquo; factors
and have many other advantages (Etezadi-Amoli &

McDonald, 1983; McDonald, 1982).

Constructing Multidimensional Data

In all cases in which DIMTEST has been used, the
data have been simulated by a compensatory model

(CM) (de Champlain & Gessaroli, 1991; Nandakumar,

1991; Nandakumar & Stout, 1993; Roussos et al.,

1993). There are many other constructions of multi-
dimensional data as Coombs (1954), following
Johnson (1935), demonstrated. Coombs defmed three
methods of constructing multidimensional data: the

conjunctive model, in which an excess of one trait,
no matter how large, does not compensate for lower
trait levels in other dimensions; the disjunctive model,
in which an examinee will pass an item if he/she is

dominant over the item in any one dimension and

will fail only if the item dominates him/her in all

dimensions; and the CM, in which an examinee’s re-

sponse to an item is a function of a weighted sum of

underlying abilities. The conjunctive and the disjunc-
tive models are psychologically distinct but are iso-

morphic to each other mathematically. A multidimen-
sional, three-parameter Clvt was outlined in Hattie

(1984) in which the probability of a correct response
is specified by

where

P(x,~) is the probability of a correct response to item
i by person j;

aid is a vector of discrimination parameters for

item i on dimension d;

b,~ is the difficulty parameter for item i on di-

mension d (although strictly there is only one
b parameter, see Reckase, Ackerman, &

Carlson, 1988);

c, is the guessing parameter for item i; and

6L is a vector of trait parameters for person j on
dimension d.

Other researchers (notably Ackerman, 1987,

1992; Ansley & Forsyth, 1985; Reckase et al., 1988;
Wang, 1987, 1988) have demonstrated that with
multidimensional clvts the univariate calibration of

two-dimensional response data can be explained in
terms of the interaction between the multidimen-

sional test information and the distributions of the

two traits. Various interpretations of the multidimen-
sional item difficulty, multidimensional discrimi-
nation, and multidimensional item information have

been suggested.
Sympson (1978) proposed a partially compen-

satory model (PCM) in which a decrease in one trait
could only be offset by a large increase in the other
trait (this model has often been erroneously called
a noncompensatory model). Outside of a relatively
narrow trait range, the probability of correctly an-

swering the item reduces to 0 regardless of the value
of the stronger trait (see Lord, 1984). The multidi-
mensional PCM can be represented as:

The probability of a correct response is simply the

product of probabilities for each dimension (but see

Coughlan, 1974; Jannarone, 1986). It is not known
what effect the choice of underlying multidimen-
sional model has on DIMTEST’S T statistic.

Purpose

This study was concerned with five questions
about DIMTEST:

1. Does DIMTEST satisfactorily identify a unidimen-
sional versus a multidimensional model for vary-

ing values of discrimination, correlation between
dimensions, and guessing or the spread of diffi-

culty ?
2. Can T distinguish between dimensionality when

the dimensions are related using CMS or PCMs?
3. Although not required or argued by Stout, the

third question concerned whether T was mono-

tonically related to the number of dimensions.
4. The study evaluated the effects of a different

method of calculating tetrachoric correlations,
and the effects on T when T is based on non-
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Gramian matrices.

5. The effects of using NLFA to determine ATI and
thus to calculate the T statistic were investigated.

Method

The program by which simulated data were cre-
ated provided control over the choice of model, the
number of dimensions, the number of items, the

difficulty range, the discrimination, the correlation
between dimensions, and the amount of guessing.
The first dataset included 35 items from a unidi-

mensional domain (d = 1), with discriminations (a)
all equal to 1.0, and two levels of guessing (c = 0 or
c =. .15). There were two difficulty (b) ranges-[-2,
-1, 0, 1, 2] and [-1, -.5, 0, .5, 1]. For each of the
four data combinations (2 difficulty x 2 guessing),
15 sets of data were generated each based on 1,000
examinees with 0 normally distributed. A three-

parameter IRT model was used to simulate perform-
ance on these items.

The second dataset, a two-dimensional case (d
= 2), included 18 items from the first dimension
and 17 items from a second dimension. The third

dataset, a three-dimensional case (d = 3), included
12 items from the first dimension, 11 items from a

second dimension, and 11 items from a third di-

mension. For both the d = 2 and d = 3 datasets,
discrimination values of a = 1 were formed into

either a two- or three-factor simple structure pat-
tern and multiplied by a triangular decomposition
matrix based on intercorrelations of .1, .3, or .5 be-

tween the two factors. These values were selected

to reflect cases in which this was an almost orthogo-
nal relationship between the dimensions (p = .1) to
a case in which there was much overlap (p = .5).
This procedure and the relation between discrimi-
nation values and factor loadings are explained in
Hattie (1984).

For both the second and third datasets, two b

ranges were selected [-1, -.5, 0, .5, 1] or [-2, -1,

0, 1, 2] and two levels of c (c = 0 or c = .15). p = .1,
.3, or .5 between the dimensions (which relates to
the discrimination of the items; see Hattie, 1984;
Hattie & Krakowski, 1994) and the type of model

(compensatory using Equation 4 or partially com-

pensatory using Equation 5) were varied. For each

permutation of the two- and three-dimension case,
15 sets of data were generated. Thus, there were 2
dimensions x 2 difficulty ranges x 2 levels of guess-
ing x 3 levels of p x 2 methods of generating data x
15 datasets = 720 datasets. The responses of 1,000
examinees were simulated for each of these 720

combinations.

Data were generated using the DIMENSION pro-
gram (see Hattie & Krakowski, 1994). The method
for calculating tetrachorics outlined by Kirk (1973)
was used, which is based on a Gaussian (8-point)
quadrature supplemented by Newton-Raphson it-
eration. This is a more refined method for estimat-

ing tetrachorics compared to the method used in
the DIMTEST program (Stout et al., 1991).

Three methods-DIMTEST, refined tetrachorics

(RT), and NLFA-were compared to investigate their

accuracy to assess H~: dE = 1. This comparison was
undertaken in five steps. First, the nature of the items

selected by the three methods for ATI was investi-

gated to determine whether there were any patterns
in how the methods selected items. Second, the fre-

quency and the effect of having nonpositive defi-
nite matrices were assessed. Third, the relationships
among the T indexes were examined. Fourth, the

factors affecting Twere investigated using an analy-
sis of variance (ANOVA) design. Fifth, rejection rates
for the various indexes were examined.

Results

Choice of Items

Table 1 presents the number of items selected for
AT1 I when d = 1 and the percentages of these selected

items within the two b ranges [-l,1] or [-2,2] and
for the two levels of c (0, .15) across the three meth-
ods of analysis (DIMTEST, RT, and NLFA). These per-
centages are based on the total number of items

selected for each permutation divided by the total
number of items that the procedure used to classify
the items.

There were 2 (b) x 2 (c) x 15 (replications) x 35

(items) = 2,100 possible items; 611 of these items
were selected in ATI. When, for example, b was the
most negative (either -1 for the datasets with a b

range from -1 to 1, or -2 for the datasets with a b

range from-2 to 2), 205 of these items were selected
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Table 1

Number of Items Selected (No.) by DIMTEST, RT, and NLFA When d = 1
and Percentages for Each Item Type for b = [-1,1] and [-2,2], and c = 0.0 and .15

-------- -- ..- - .

for AT1. Thus, 34% of the 611 items selected for ATI I

had an extremely negative b. When b = [- 1, 1] and c
= 0, 32% of the items were b = -1, 10% were b =

-.5, 16% were b = 0, 19% were b = .5, and 23%

were b = 1. It was expected, when the data were gen-
erated with d = 1, that each item would have an equal
probability of being selected for ATI. This was not
the case, as evidenced in Table 1.

DIMTEST and RT selected items with more ex-

treme bs (e.g., of the 66% for DIMTEST, 34% were
the most negative bs and 32% were the most posi-
tive bs) and tended not to select items from the

middle of the b distribution. By contrast, for NLFA,
56% of the selected items had b = 0.

Thus, DIMTEST, which is based on a principal com-

ponents analysis, tended to select items that led to

maximizing the variance (i.e., the more extreme

items); the NLFA procedure, which is based on maxi-
mum likelihood, tended to select items that provided
best fit. The RT procedure differed little from

DIMTEST, although it was slightly less affected by
extreme items.

When there were two or three underlying dimen-
sions, it was expected that the various procedures
would select the A’r1 items from the 15 items that

defined the dominant dimension. Table 2 presents
the summary statistics for d = 2 and d = 3. For d =

2, DIMTEST (98%) and RT (97%) were more likely
than NLFA (89%) to select items from a single di-
mension. The varying levels of b, c, and model (CM
or PCM) made little difference in the percentage of
occasions that ATI items with a single dimension
were selected across all three procedures.

Similarly, for d = 3, there were few differences
across the methods; however, the percentage of se-

lecting all ATI items from the same dimension de-
creased markedly for d = 3 compared to d = 2. Also,
the effects of the varying levels of b, c, and model
were more apparent than when d = 2. The percent-

age of selecting the correct ATI items diminished with
an increased range of b (e.g., for DIMTEST there was
a decrease from 82% for b in the range [-1, 1] to
73% for b in the range [-2,2]), higher intercorrela-
tions between the dimensions (81% for p = .1, 75%

Table 2

Percentage of Times That ATI Items Were Selected From Within a Single Dimension for DIMTEST,
NLFA, and RT for Levels of p and c, Ranges of b, and Models (PCM or CM) With d = 1 and d = 2
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for p = .3, and 76% for p = .5), and when the CM was
used rather than the PCM (84% compared to 71 %).

Positive Definiteness

Using tetrachoric calculations as computed by
DIMTEST, 13% of all the matrices were not positive
definite. As found in many other studies (Carroll,
1945,1961; Hattie, 1984,1985; Roznowski, Tucker,
& Humphreys, 1991), the majority of these cases
occurred when there was much guessing, with the
PCM, and with b = [-l,1] (see Table 3). In such cases,
it is more likely that an item will occur that is very
easy (i.e., that every examinee will answer correctly),
and this can lead to major difficulties in computing
the tetrachoric correlation. Consequently, the
tetrachorics are poorly estimated. Although not ap-
parent in the present simulation, the opposite case

(i.e., every examinee will answer the item incorrectly)
can also lead to a high incidence of non-Gramian
matrices (see Hattie, 1984).

1’able 3

Percentage of Matrices That
Were Nonpositive Definite

The effect of nonpositive definiteness on T was
dramatic. The average T was .52 when the matrices

were not positive definite, and 2.64 when positive
definite. The breakdown by number of dimensions
is presented in Table 4. Mean Tvalues were less than

2 ford = 2 and d= 3 (across all possible ps) when the
tetrachoric correlation matrix was not positive defi-
nite. These values indicate that the datasets were es-

sentially unidimensional. Mean Ts were always
greater than 2 (indicating more than one dimension)
for d = 2 and d = 3 when the matrix was positive
definite. Thus, when the matrix is not positive defi-
nite, T should not be used. In the DIMTEST program
(Stout et al.,1991), there is a message indicating the

presence of very small frequencies and these values
are replaced with .005. The program then continues

through the subsequent steps (this procedure was
followed here). Clearly, this correction is inadequate.
Thus, in the following analyses only the indexes
based on the positive definite matrices were used for
the tetrachoric methods.

Relationships Among the T Indexes

Across all simulations, the correlation between
Tbased on DIM’rEST’s tetrachorics and the RT method

was .92, DIMTEST Ts and the NLFA Ts r = .62, and
for RT and NLFA r = .67. There was much variabil-

ity, with rs as low as .10, between DIMTEST and RT
and DIMTEST and NLFA. These results suggest that
the three methods produce values of T that might
lead to different conclusions.

Factors Affecting T

Table 5 presents mean Ts for the different meth-
ods for two ranges of b and two levels of c, as well

as levels of d, p, and the PCM and CM. As p increased
from p = .1 to p = .3, T was less able to detect the
correct dimensionality for all methods (e.g., for
DIMTEST mean T was 2.58 for p = .1 and 3.04 for

p = .3). When p = .5, mean T typically decreased.
Mean T for the PCM was considerably smaller than
mean T for the CM for all three methods (e.g., for
DIMTEST, .50 vs. 4.29). For the PCM, mean T always
indicated that the data were unidimensional. The

hypothesis of only one dominant dimension was less

likely to be rejected for DIMTEST when b = [-1, 1] ]
(mean T = 1.97) rather than when b = [-2,2] (mean
T = 3.39) or when c = 0 (mean T = 2.45) versus when
c = .15 (mean T = 2.79). All three estimation proce-
dures were appropriately sensitive to the number of
dimensions (for DIMTEST mean T = -.06, 4.48, and
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Table 4

Mean T and Percentage of Matrices That Were Nonpositive Definite
For Varying Levels of d and p

3.41 for d = 1, 2, and 3, respectively).
An ANOVA was used to assess the relative effects

of the various parameters on T. Because p was nested
within the number of dimensions, these were entered

The ANOVA in Table 6 shows that the pattern of

mean squares was similar for all three procedures.
Most of the variance was accounted for by the data

generation model (cwt or PCM) and by the number
of underlying dimensions. Thus, T was sensitive to
whether the data were compensatory or partially
compensatory and to the number of dimensions, and

Table 5

Mean T for DIMTEST, RT, and NLFA for Levels of p,

c, d, Ranges of b, and Models

much less sensitive to variations in b, correlation
between the dimensions, and c. Unlike many com-

peting indexes of unidimensionality, T was most
sensitive to dimensionality.

Rejection Rates

Table 7 presents the rejection rates for testing the
null hypothesis that there is one underlying dimen-
sion (i.e, that dE = 1). For d = 1, the null case was

likely to be rejected at more than the expected 5%
level. For multiple dimensions (d = 2 or 3), the pro-
cedures were likely to reject the one-dimensional case
between 76% to 89% of the time.

Table 8 presents these rejection rates for the lev-
els of p and c, and for the two ranges of b. For cHt,
the hypothesis thatdE = 1 was appropriately rejected
most of the time. For the PCM, the hypothesis that d
= 1 was rejected far less than expected (a = .05)
under most conditions, especially when d = 3 (be-
tween 0% to 20%). This finding was not surprising
given that the increased number of dimensions in-
creases the chance that a small probability correct
on one of the three dimensions would cause the

multiplying effect to lead to a reduced probability
correct (regardless of the ability on the other di-
mensions).

For the CM, T from DIMTEST was more likely to
reject this hypothesis more frequently than T from
RT or NLFA. For example, when d = 2, P = .1, C = 0,
and b = [-2, 2], DIMTEST rejected 100% of the
datasets, compared with 93% for RT, and 80% for
NLFA. The differences between the three methods

were most marked when there was a high correla-
tion between the dimensions (p = .5). In such cases,
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Table 6

Results of ANOVA on T for DIMTEST, RT, and NLFA

T from DIMTEST more correctly rejected the hypoth-
esis that dE = 1 both when d = 2 and when d = 3. For

example, when d = 2, p = .5, c =. 15, and b = [-2, 2],
DIMTEST rejected 73% of the datasets, compared with
27% for RT, and 47% for NLFA.

Discussion

DIMTEST is based on the weaker principle of local

independence and is designed not to identify whether
a set of items is or is not unidimensional, but whether
there is a sufficiently dominant dimension such that
the test user can proceed to meaningfully interpret a

single total score across the set of items. This study,
however, identified some concerns with DIMTEST.

The most important is the nature of the data; that
is, whether the multidimensional data conform to a

compensatory or partially compensatory model.
DIMTEST is only applicable for identifying compen-

Table 7

Rejection Rates (%) for Testing
H,: dE = 1 for DIMTEST,

RT, and NLFA

satory multidimensional data. T did not discriminate
between the various dimensions in the partially com-

pensatory case, probably because of problems in es-

timating the tetrachorics.
Various methods (e.g., the size of the interaction

factor using NLFA, or the size of the correlations be-
tween dimensions under the different models) were
examined to determine whether a dataset was com-

pensatory or partially compensatory, but little suc-
cess was achieved; thus, a careful judgmental analysis
of the nature of success on the items, a cognitive pro-
cessing analysis of the competencies required to cor-

rectly answer the items, or more attention to partially
compensatory estimation procedures are warranted.
Given that the majority of instances of positive-
definiteness came from partially compensatory data,
DIMTEST should not be used or interpreted for this

type of data.

Furthermore, DIMTEST assesses only essential

unidimensionality and does not claim to identify the
resulting dimension(s). It may be that because of the
choice of the items for A’r1 the method only identi-
fies a &dquo;bloated specific&dquo; [i.e., a factor indexed by a
series of items that are slight variants of each other
(Cattell, 1964, 1978)]. Given Humphreys’ (1986;
Roznowski et al., 1991) admonition that useful tests
are rarely unidimensional at the lower-order factor
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Table 8

Percent Rejection Rates (%) for Testing &dquo;0: dE = 1 Based on DIMTEST, RT, and NLFA

level, it is important that the test user goes beyond
the statistical methods and attempts to clearly iden-

tify and defend the interpretation of the set of items.
Moreover, because many tests claiming to be unidi-
mensional include few items, a major improvement
would be to adapt DIMTEST for shorter tests (< 25

items). At minimum, more simulations of the per-
formance of DIMTEST with shorter tests would be of

much value.

An improvement to DIMTEST would be to improve
the estimation of the tetrachoric correlations. The

problems of accurately estimating the tetrachorics are

primarily a function of the existence of cells with 0
values and the number of terms in the estimation se-

ries. Methods programmed by Christoffersson (1975)
and Muth6n (1978) were most successful in earlier
assessments of indexes of unidimensionality (Hattie,
1984, 1985). Muth6n’s methods are most similar to
those (using a different algorithm and set of prin-
ciples) in NOHARMII (Fraser, 1988); however, in this

study this refined tetrachoric method was not as ef-
fective at detecting essential unidimensionality as
DIMTEST.

A matrix of sample tetrachorics is often non-
Gramian. The RT method used here as an alterna-

tive to DIMTEST did not appreciably improve the

performance of T or reduce the number of nonpos-
itive definite matrices. One possibility is to include
an indicator as to the number of tetrachorics that

approach 0 (e.g., the number of tetrachorics less
than .15), but earlier work using this method was
not encouraging. Hulin et al. (1983) and Carroll

(1945) suggested modifications to address these

problems, and they may be valuable to include in
future simulations. Whatever method is used to es-

timate the tetrachorics, it is critical that programs
to calculate T include a warning if the matrix is not

positive definite and proceed no further.
The incorporation of a nonlinear method in the

first step did not lead to an improvement over
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DIMTEST. The nonlinear methods tended to select a

different subset of items for ATI, compared to the
tetrachoric-based methods. DIMTEST selected more

discriminating items for ATI, and it can be claimed
that such items are more discriminating because of
the possible presence of dimensions other than the
&dquo;essential&dquo; dimension. The nonlinear methods were

not as effective in discriminating between unidi-
mensional and multidimensional datasets, although
the mean levels of T under the different methods

were similar. DIMTEST was less affected by other

parameters than the nonlinear method.

A surprising finding was that, except for the non-
linear method, T was not monotonically related to
the underlying dimensionality. This lack of monoto-

nicity resulted primarily from the effects of the par-
tially compensatory models in which T decreased
most dramatically for three compared to two dimen-
sions (and in most cases the mean was lower than
when there was one dimension). This, again, high-
lights the problems of using T for partially compen-
satory data. The differences between T for two and

three dimensions for the compensatory model were

minimal (4.80 vs. 5.14, respectively) although the
indexes were much greater than in the one-dimen-
sional case. Thus, T can only be used to assess es-
sential unidimensionality and should not be used as
a general index of dimensionality.

It is difficult for any index to detect unidimen-

sionality given the myriad of possibilities for other
deviations to affect an index. For example, many
fit statistics based on the Rasch model attempt to
detect deviations from unidimensionality as well as
the presence of guessing and the deviation from a
common discrimination (Rogers & Hattie, 1987;
Traub & Wolfe, 1981). DIMTEST is robust to devia-
tions from most sources and at the same time de-

tects deviations from unidimensionality.

Future Directions

There are two competing directions in which
research on assessing unidimensionality can pro-
ceed. First, multidimensional IRT models can be

developed to better estimate the parameters of mul-
tidimensional data. It is already known that using
unidimensional IRT models to estimate parameters

when the data are truly multidimensional is prob-
lematic. For example, Ackerman (1987) reported
negative correlations between estimated item diffi-

culty and item discrimination estimates with their
true values when multidimensional data parameters
were estimated using unidimensional models. Oth-
ers have attempted to provide heuristics to inter-

pret multidimensional data using unidimensional
calibration methods (Luecht & Miller, 1991),
whereas others have provided defensible statistics
(Ackerman, 1992; Carlson, 1987; Junker, 1991,
1992; McKinley & Reckase, 1983; Reckase et al.,
1988). If such multidimensional models were to be

developed, it is difficult to imagine how they could
be useful, given the myriad of ways that a person’s
performance on items could be weighted to attain
the item response (but see Tam, 1992).

The second approach is to develop procedures
for detecting unidimensionality so that better es-

sentially unidimensional tests can be developed.
Such procedures could include developing multi-
dimensional estimation programs and using
DIMTEST. By appropriate use of (nonlinear) factor

analysis (to reduce the problem, as much as pos-
sible, to a one- vs. two-dimension problem), and
the use of DIMTEST, more defensible essentially
unidimensional sets can be developed. Methods are

being developed for creating essentially unidimen-
sional tests, by beginning with a core set of items
that can be demonstrated to be essentially unidi-
mensional using expert judgment, NLFA, and other
methods of validity assessment (see Maguire,
Hattie, & Haig, 1993; McDonald & Mulaik, 1979).
Items then are added sequentially such that at each

step the new augmented set is evaluated for essen-
tial unidimensionality using DIMTEST. The result-

ing tests are more likely to be unidimensional and
relate to meaningful and dependable constructs.
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