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Abstract—Elasticity is a key characteristic of cloud computing that increases the flexibility for cloud consumers, allowing them to

adapt the amount of physical resources associated to their services over time in an on-demand basis. However, elasticity creates

problems for cloud providers as it may lead to poor resource utilization, specially in combination with other factors, such as user

overestimations and pre-defined VM sizes. Admission control mechanisms are thus needed to increase the number of services

accepted, raising the utilization without affecting services performance. This work focuses on implementing an autonomic risk-aware

overbooking architecture capable of increasing the resource utilization of cloud data centers by accepting more virtual machines than

physical available resources. Fuzzy logic functions are used to estimate the associated risk to each overbooking decision. By using a

distributed PID controller approach, the system is capable of self-adapting over time – changing the acceptable level of risk – depending

on the current status of the cloud data center. The suggested approach is extensively evaluated using a combination of simulations and

experiments executing real cloud applications with real-life available workloads. Our results show a 50% increment at both resource

utilization and capacity allocated with acceptable performance degradation and more stable resource utilization over time.

Index Terms—Admission Control, Overbooking, Resource Utilization, Scheduling, Control Theory, Fuzzy Logic Programming

✦

1 INTRODUCTION

One of the main features provided by clouds is elastic-
ity, which allows users to dynamically adjust resource
allocations depending on their current needs. Thus, cus-
tomers only have to pay for what they use. Although
this characteristic is one of the main advantage from
the client viewpoint, it may have an impact on the
cloud infrastructure providers side: capacity planning
becomes challenging when the exact number of Virtual
Machines (VMs) that each running service is going to
need in the future is unknown [1]. Consequently, if
the objective is to make an efficient use of available
resources, overestimating the required capacity results
in poor resource utilization and lower income from
consumers. On the contrary, underestimating may lead
to performance degradation and/or crashes.

Additionally to elasticity issues, there are other factors
contributing to lower the cloud data center utilization:
(1) cloud providers commonly only offer predefined
VM sizes, which have fixed amount of CPU, memory,
disk, etc.; (2) cloud applications do not use the same
amount of hardware resources all the time; and (3)
users are usually bad at estimating the requirements of
their applications. This low resource utilization is a big
concern for cloud data center providers as data centers
consume lot of energy and are being used in a rather
inefficient way – energy consumption does not decrease
linearly with resource usage. One way cloud providers
can mitigate these resource utilization problems is by
overbooking. However, overbooking techniques always
expose the infrastructure to a risk of resource congestion
upon unexpected situations and consequently to SLA

violations. The main challenge is how to decide the ap-
propriate level of overbooking that can be achieved without
impacting the performance of the cloud services [2]. Admis-
sion control techniques are thus needed to handle this
trade-off between increase of resources utilization and
risk of performance degradation, determining whether
a new service should be admitted into the data center
by evaluating the associated long term risk.

Our initial work on this problem include scheduling
for better server utilization [3] and admission control for
capacity planning [4], getting an initial understanding
of the overbooking problem and the risk evaluation,
respectively.

Based on that acquired knowledge we present here
a risk-aware autonomic framework for resource over-
booking within cloud data centers to increase resource
utilization in a safe and balanced way. In a nutshell,
the system autonomously (re)adjusts depending on how
stable and predictable the system and current workload
are, facilitating a quicker reaction to unpredicted situ-
ations and a faster response to possible performance
degradations. The system automatically adapts to dif-
ferent data center sizes, type and knowledge of the
new incoming workload, etc., and achieves a more bal-
ance utilization among the different capacity dimensions
(CPU, memory, I/O) thanks to the use of proportional-
integral-derivative (PID) controllers [5] that adjust the
suitable level of risk to safely achieve the desired level
of resources utilization. A PID controller is a generic
control loop feedback mechanism that calculates the
difference between a measured variable (in our case re-
source utilization) and the desired set point and attempts
to minimize it by readjusting the control inputs (the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TCC.2014.2326166

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF IEEE TRANSACTIONS ON CLOUD COMPUTING. 2

risk thresholds). It involves three separate parameters
corresponding to the present error (P), the accumulated
error (I), and the prediction of future errors (D).

The main contributions of this paper are:

• design and tuning of a PID Controller for controlling
the servers behavior,

• use of a distributed PID controller that changes the
level of risk that the data center is able to face
depending on how the system is behaving,

• a method to select the most representative server in
to the data center to accordingly establish the risk
thresholds accepted by the admission control,

• and evaluation of our proposal using real workloads
(web servers).

2 DATA CENTER UTILIZATION PROBLEMS

Achieving efficient utilization of hardware resources has
been a research goal since long in data centers, and
involves techniques at different scales: single processors
(such as prefetching techniques [6]), networks on chip
(NoCs) (such as virtualization for NoCs [7]), routing
algorithms [8], network multiplexing [9], or time sharing
systems [10]. These efforts are not only centered on in-
creasing the utilization but also to keep a more balanced
usage among nodes [11], and/or delivering fairness
among users, projects or virtual organizations [12].

For data centers, the efficient use of resources is mainly
motivated by hardware and operational costs [13], and
lately also by power consumption and environmental
concerns [14], becoming a critical issue for large scale
data centers. The very large scale and multi-tenant na-
ture of cloud infrastructures offers great potential for
efficient multiplexing of different services and applica-
tions, allowing a much higher resource utilization [15].
The cloud paradigm also introduces new obstacles for
efficient resource management. There are several recent
studies that highlight the overall low utilization in those
cloud data centers. One major example is the analysis
of Google traces [16], which concludes that only 53% of
the available memory is used whereas CPU utilization
is as low as 40% on average. Similarly, Barroso et al. [17]
report 10-50% as common levels for CPU utilization in
a study of 5000 servers observed along 6 months.

Elasticity of applications is one of the most notably
characteristics of cloud infrastructures but at the same
time one of the more challenging regarding resource
management. VMs belonging to a cloud service can
dynamically be (de)allocated based on changes in service
workload [1]. This horizontal elasticity or scale up/down
is a common pattern in interactive multi-tier services,
where the amount of resources needed by the service
strongly depends on the number of users currently
served. However, from a cloud provider perspective,
deciding how much resources to dedicate to an elastic
service constitutes a challenging problem, since not even
the service owner knows what amount of resources may
need at certain time into the future. If the cloud provider

accepts a new service by estimating that is going to need
a certain capacity (variable over time) and finally the
service is using less than expected, the infrastructure is
underutilized as some resources were reserved for that
service but never used. On the other hand, if the service
needs more capacity than estimated, the service or data
center can get too congested and start to behave poorly.
This has also a significant impact on resource utilization
on one hand, and potential Service Level Agreements
(SLAs) violations on the other.

Another aspect that significantly affects cloud data
centers utilization is vertical elasticity. This utilization
problem stems from the fact that cloud applications are
encapsulated into VMs with a fixed amount of hardware
resources (CPU, memory, I/O, etc.), whilst applications
do not use the same amount of them all the time.
This can either be related to different behavior due to
internal phases of application operation, or be caused by
variations in incoming workload. Therefore, users need
to provision the worst-case capacity as the upper bound,
even though that amount of CPU, memory, or I/O is
only used for a short period of time.

In addition to elasticity, there are other issues that
reduce resource utilization. Cloud providers usually of-
fer a bunch of pre-defined VMs sizes with a specific
(fixed) amount of resources, such as CPU, disk, memory,
etc., that the customer is not allowed to customize. This
T-shirt problem [18] forces users to choose a VM with
enough of the most critical resource (CPU, memory, etc.)
while over-provisioning other resources. Additionally,
users tend to over-provision their needs for the sake
of safest executions, aggravating the waste of resources
problem. A related study of parallel computing work-
loads evidence this fact by showing that more than
half of all jobs use less than 20% of users requested
capacity [19]. These utilization problems also lead to
an imbalance usage of the different capacity dimensions
even if nominal usage is totally balanced.

3 OVERBOOKING

The above listed cloud infrastructure characteristics, in
combination with users’ tendency to over-provision re-
sources, significantly impact the overall resource utiliza-
tion, as reviewed in [16]. However, data centers can also
take advantage of those characteristics to accept more
VMs than the number of physical resources the data
center allows. This is known as resource overbooking or
resource overcommitment. More formally, overbooking
describes resource management in any manner where
the total available capacity is less than the theoretical maximal
requested capacity. This is a well-known technique to
manage scarce and valuable resources that has been
applied in various fields since long ago. Well known
examples include network bandwidth allocation [20] and
batch scheduling for parallel computers [21]. As cloud
environments regards, overbooking of resources appears
as a suitable solution to increase utilization as machines

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TCC.2014.2326166

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF IEEE TRANSACTIONS ON CLOUD COMPUTING. 3

Server	
  1	
  

 
 

Requested 
capacity 

Used 
capacity 

Server	
  2	
   Server	
  3	
  

No	
  	
  

Overbooking	
  
Overbooking	
  

VM	
  

Fig. 1: Conceptual illustration of overbooking show-
ing how two small enough applications (encapsulated
within their respective VMs) can be collocated without
disturbing each other.

may not be fully utilized even when the total capacity
requested (not the real used) exceeds the total capacity.

Figure 1 shows a conceptual overview of cloud over-
booking, depicting how two virtual machines (gray
boxes) running one application each (red boxes) can be
collocated together inside the same physical resource
(Server 1) without (noticeable) performance degradation.
This is possible as long as the total real capacity being
used by both applications is less than the real capacity
available taking into account all capacity dimensions:
CPU, memory, I/O, etc.

In order to address the three main issues affecting
utilization, a two-pronged overbooking strategy is ap-
plied. At a higher level, we propose admission control
strategies that allow the acceptance of more VMs than
the actual data center capacity. This mainly addresses the
horizontal elasticity issues but also helps other issues –
T-shirt problem, vertical elasticity and users overestima-
tions. At lower level, we propose scheduling techniques
to decide which VMs are better to collocate. These
techniques mostly focus on T-shirt and vertical elasticity
problems. Therefore, admission control techniques are
used for long-term capacity planning, whilst scheduling
techniques are focused on avoiding performance degra-
dation due to short-term workload fluctuations.

3.1 Challenges

However, increasing resource utilization in cloud data
centers by including overbooking entails a list of chal-
lenges that must be addressed: dealing with many dif-
ferent sources of information, inaccurate or missing in-
formation, uncertainty in predictions, trade-offs between
resource utilization and risks being taken, application-
specific impact of overload situations, etc.

There is a vast amount of critical information to be
considered when performing overbooking actions, such
as hardware available in the data center, the set of cur-
rently admitted services and their variation in resource
usage over time, available information about new service
requests, etc. Taking all that information into account in
resource management is a challenging problem even in
absence of overbooking.

In such overbooking scenarios, admission control pre-
cision greatly impacts scheduling decisions and per-
formance: accepting too few or too many VMs in the

data center makes either makes scheduling trivial or
it becomes too hard (if not impossible) to find a good
allocation, respectively.

The impact of potential overload situations is rather
hard to assess and application-specific. For instance,
high throughput applications and real time applications
behave very differently and should be treated in differ-
ent ways. To exemplify, for MapReduce services, high
bandwidth and throughput may be preferred (reducing
the shuffling and execution phase, respectively), whereas
for interactive services, low latency and response times
are the key performance indicators. Moreover, most ap-
plications run, albeit slower, if allocated too little CPU,
whereas provisioning too little memory is prone to make
applications crash.

Furthermore, some applications are more suitable of
being collocated with other VMs. For instance, work-
loads presenting bursty (peaky) behavior are more suit-
able to be overbooked as highlighted in [22]. They only
occasionally use all the resources that they are entitle
to. However, the involved risks are also bigger as the
system has to avoid that peaks of one workload coincide
with those of other workloads. As VMs are multidi-
mensional (CPU, memory, I/O), while one application
is using (more intensively) one resource type (such as
CPU), other may be using another, e.g., memory. They
can thus be collocated without disturbing each other.
As an example, collocating CPU-bound and network-
bound or memory-bound applications [23], [24] is of
great advantage.

All in all, the main challenge for overbooking is to de-
cide how much excess capacity is appropriate to allocate
to minimize the risk of performance degradation [2].

4 RELATED WORK

This work primarily focuses on how to increase resource
utilization at cloud data centers by a combination of
admission control, scheduling and prediction techniques.
A brief overview of the related work in these fields is
given next.

4.1 Overbooking

We propose overbooking techniques as a solution to
poor resource utilization in cloud data centers. The over-
booking concept is not new and has been studied and
applied in various fields since long ago [25]. Examples
of this diversity are bandwidth allocation [20], airline
yield management [26] and parallel computer schedul-
ing [21]. Within data center management, Urgaonkar et
al. [23] try to safety overbook cluster resources. This
is performed by guaranteeing applications performance
using feedback control. Their work however assume that
users are capable of providing information regarding
the degree of overbooking that their applications may
tolerate. This information is strongly coupled to the
underlying physical infrastructure, as well as the other
applications that are to be collocated. Our experiments
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with RUBiS and RUBBoS described in Section 7 illustrate
this difficulty.

Additionally, the utilization problem caused by cloud
infrastructure vendors only offering fixed size VMs (the
t-shirt problem) also increases the needs for overbook-
ing. This problem is illustrated by Gmach et al. [18].
They demonstrate that for a given set of workloads, if
vendors use the t-shirt model almost twice the number of
physical servers is required compared to the time share
model – without using resource overbooking.

4.2 Admission control

In order to solve these utilization problems, admission
control techniques that increase resource utilization are
needed. However, admission control within cloud envi-
ronments is not trivial due to different reasons, specially
the elastic nature of services and uncertainty about fu-
ture needs/behaviors. Among recent approaches to this
multi-faceted problem, Konstanteli et al. [27] present a
probabilistic method for a combined scheduling and ad-
mission control problem formulated using mixed-integer
non-linear programming. They model the elastic service
demand by using cumulative distribution functions.

There are also various approaches for admission con-
trol at application level. For instance, Leontiou et al. [28]
propose an adaptive feedback scheme with an appli-
cation queue model to prevent overload of cloud ser-
vices. Kjaer et al. [29] use an online feed-forward con-
trol system for web server resource allocation avoiding
performance disturbances rejecting individual requests.
Ashraf et al. [30] propose a combination of noise-filtering
and load predictions for session-based admission control
in multi-tier servers. Nevertheless, unlike our work,
these efforts are not focused on increasing data center
utilization but at preserving applications performance.

4.3 Scheduling with collocation

Once the services are accepted in a data center, a sched-
uler is in charge of finding a suitable physical resource
to allocate them. In that process, it is decided which VMs
are suitable to be collocated for improved utilization and
stable performance. On this topic, He et al. [31] present
a multivariate probabilistic model where physical hosts
for VMs are selected based on three capacity dimensions
(CPU, memory, and I/O). However this approach is
centered on replaning the scheduling decisions rather
than overbooking the resource usage. A similar approach
is presented by Meng et al. [15], who propose a joint
VM provisioning approach that allocates and consoli-
dates VMs based on estimates of the aggregated VM
capacity requirements. However, their work only takes
into account CPU usage and assumes perfect predictions
about future workload behavior. Another more recent
example of consolidation at cloud data centers is pre-
sented by Mastroianni et al. [32]. Unlike the previous
work, it does not only consider CPU resources but also
RAM usage. Similarly to our proposal, they try to keep

a balanced and efficient usage of CPU and memory
resources. Nevertheless, we also consider the network
capacity dimension and focus on the admission control
problems. Therefore, both approaches could complement
each other.

There are other overbooking approaches that consider
traffic localization in order to reduce the network band-
width consumption when collocating VMs, such as the
one proposed by Wo et al. in [33]. They present a greedy
approach that perform traffic-aware VM placement to
increase the rate of accepted requests. However they
focus on a revenue optimization model that assumes
linear performance degradation in overloaded situations.
On this topic it is useful to use (anti)affinity rules as pro-
posed by Larsson et al. in [34] or Broeckhove et al. [24].
The main aim of these works is to avoid repeating
poor performance and to increase the chances of good
collocations when there is some meta-knowledge about
the VMs to collocate – whether due to previous colloca-
tion or known issues about their performance. A recent
example of an over-commit scheduler is PULSAR [35]
that extends OpenStack Nova filter scheduler to allow
overcommitment actions. It varies the overcommitment
ratio over time in an adaptive way depending on the
workloads behavior, but only considering CPU.

4.4 Prediction methods

Every overbooking system (as well as admission control
techniques when dealing with elastic services) need in-
sight in future resource usage and service requirements
to avoid performance degradation due to overloaded
physical resources. The literature on resource behavior
modeling and predictions within highly distributed sys-
tems, such as grids and clouds, is very rich. A survey of
several prediction techniques is presented in [36]. Exam-
ples of these techniques include adaptive methods [37],
state-space models [38], exponential smoothing [39], and
use of control schemes for self-tuning for improved
forecasts [40].

4.5 Risk assessment and SLA management

In addition to resource usage predictions, admission
control techniques need risk assessment methods to
take their decisions, regardless of the overbooking. Just
like overbooking techniques, risk evaluation has been
studied since long. There are examples of risk evaluation
and SLA management applied to grids, such as work
by Djemame et al. in [41], where the probability of SLA
failure is evaluated and used in the negotiation process.

Risk assessment has also been used within consolida-
tion environments, such as the work presented by Verma
et al. [42]. They presented two consolidation methods to
achieve power savings, which try to reduce the risk of
performance degradation by considering the correlation
between collocated applications.

There are also more recent studies centered on eval-
uating the risk of resource overbooking in cloud envi-
ronments. Ghosh et al. analyze these risks and based on
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these a threshold-based overbooking schema is proposed
to estimate the level of overbooking achievable, but only
CPU is taken into account [22].

Others study the trade-off between overbooking and
risk of performance degradation by closely relating these
to SLA management. Breitgand et al. [43] present an ex-
tension to standard available SLAs that also includes the
probability of successfully deploying additional VMs.
Their framework uses cloud effective demand as a
metric to estimate the total physical capacity required
for performing the overbooking, but unlike our work,
this framework is only based on CPU usage. Another
example of admission control techniques based on SLAs
is presented by Wu et al. [44], who propose admission
control and scheduling algorithms for Software as a
Service (SaaS) providers to efficiently use Infrastructure
as a Service (IaaS) providers to maximize the profit
whilst at the same time improving customer satisfaction.
Their work does not focus on improving the resource
utilization (IaaS level) but to use the cloud provider that
best suits the current needs of the service provider (SaaS
level), minimizing the needed budget and maintaining
the performance. Their work complements ours as the
two approaches operate at different levels.

4.6 Recovery methods

Neither predictions nor risk assessment can be exactly
accurate in all scenarios in cloud environments. For
this reason, recovery and autonomic readjusting mecha-
nisms are needed when problematic overload situations
occur (reactive) or to avoid them before they happen
(proactive). On this topic, Beloglazov et al. [45] propose
a Markov chain model and a control algorithm for
detecting overloading problems in physical servers as
a part of a dynamic VM consolidation. In case of a
problematic situation arises, the system migrates some
VMs to less loaded resources. Recovery methods are also
used to avoid SLA violations, as presented by Bobroff et
al. [46]. They proposed a pro-actively virtual machine
migration algorithm based on time series forecasting
and bin packing heuristics. However, unlike us, they
do not focus on the admission control problems and
only consider CPU utilization. Another example is the
Sandpiper engine [47] which detects overloaded nodes
and performs the needed migration actions in order to
reduce the performance degradation. There are other re-
covery methods based on control theory, such as service
level awareness suggested by Klein et al. in [48]. In their
work the application behavior is adjusted along time
depending on the status of the system. Notably, such
migration and service level changing approaches are not
only an alternative to overbooking techniques but also a
complement that may help avoiding performance degra-
dation upon unexpected situations or mispredictions.

5 OVERBOOKING FRAMEWORK

To handle the data center resource utilization problems
and overbooking challenges discussed, we have imple-

Fig. 2: Overbooking framework architecture highlighting
overall operation.

mented an autonomic overbooking framework. Figure 2
shows a system overview of the framework. A pre-
liminary version focusing on scheduling was presented
in [3] where the basic scheduling and collocation capabil-
ities were implemented but just with simple admission
control methods. This work was later extended with a
risk-aware admission control module [4], gaining some
insight about parameters affecting overbooking, most
prominently, target utilization.

In this work we focus on building an autonomic
framework that provides better application performance,
avoiding overpassing total capacity at any of the dimen-
sions, and not only at the whole data center level but
also in every single node into the system. In order to
achieve that, besides using the risk assessment detailed
in Section 6, a distributed PID controller approach (one
controller at each server) is implemented to make the
system fully autonomic. The system is now capable of
keeping the utilization stable at each server in the data
center, regardless of changing conditions (size of the data
center, type and amount of cloud applications, VM sizes,
etc.).

5.1 Admission Control

The Admission Control (AC) module is the cornerstone
in the overbooking framework. It decides whether a new
cloud application should be accepted or not, by taking
into account the current and predicted status of the
system and by assessing the long term impact, weighting
improved utilization against the risk of performance
degradation. To make this assessment, the AC needs the
information provided by the Knowledge DB, regarding
predicted data center status and, if available, predicted
application behavior. This information is then injected
into the Risk Assessment module, which by means of
fuzzy logic programming [49], provides the information
needed about the associated risk that would be taken in
case of accepting the new service [50]. More information
about the admission control algorithms is presented in
next section (Section 6). Once the risk assessment returns
the associated risk value of accepting the new service,
the AC decides whether it is an acceptable risk or not.

5.2 Knowledge DB: Monitoring and Profiling Tools

The Knowledge DB (KOB) module measures and pro-
files the different applications’ behavior, as well as the
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Algorithm 1 Worst-Fit Overbooking Scheduling

1: Let TNC denote the Total Node Capacity and OBF the overbooking
capacity

2: Let Rni
Cused = Real node ni capacity in use

3: Let margin = allowed overpassed capacity

4: OBF =
(UsageRequested−RealUsage)

min(UsageRequested,RealCapacity)

5: Allocated = false
6: NS = Sort Nodes N by OBF
7: for each ni ∈ NS do
8: if Prediction(Rni

Cused)+AppProfile < TNC+margin then
9: Allocated = True

10: AllocateVM at Node ni

11: end if
12: end for
13: if Allocated == false then
14: AllocateVM at Node with highest OBF
15: end if

resources’ status over time. This module gathers in-
formation regarding CPU, memory, and I/O utiliza-
tion of both virtual and physical resources. The KOB
module has a plug-in architectural model that can use
existing infrastructure monitoring tools, e.g., the Libvirt
library [51] or Nagios [52], as well as shell scripts. These
are interfaced with a wrapper that stores information in
the KOB. The same tools can be used for application per-
formance profiling, but more appropriately, more fine-
grained monitoring should be used, such as LTTng2 [53].

In addition to interface with existing monitoring tools,
a simulation and emulation module has been imple-
mented in the KOB. Workload profiling has been made
offline and based on this, resource executions are em-
ulated in simulated servers. This enables reproducible
experiments according to the workload profiles and
allows experiments in larger environments. Moreover,
the simulation and emulation model can be mixed with
the real one, specifying which servers are to be simulated
and which ones are real.

5.3 Smart Overbooking Scheduler

The Smart Overbooking Scheduler (SOS) allocates both
the new services accepted by the AC and the extra VMs
added to deployed services by scale-up, also deallocating
the ones that are not needed [1]. As elasticity algorithms
are outside the scope of this paper, the used autoscaling
algorithms are just simple threshold-based methods that
increase the number of VMs if the utilization of the
running ones is over a certain threshold and vice versa
for scaling down.

Basically, the SOS module selects the best node and
core(s) to allocate the new VMs – based on the es-
tablished policies. These decisions have to be carefully
planned, specially when performing resource overbook-
ing, as physical servers have limited CPU, memory, and
I/O capabilities. Thus, some scheduling decisions may
result in performance degradation.

Node selection is the first step to be performed by
the scheduler. We presented in [3] a worst-fit algorithm
that schedules a VM to the least overbooked server with
the aim to improve overall utilization and reduce the
overbooking impact. Algorithm 1 summarizes the steps
to find a suitable server.

Algorithm 2 Admission Control

1: Let req be the incoming service request
2: Let getFuzzyRiskAssessment the function that obtains the associated

risk of accepting an app (see Section 6.1)
3: Let Threshold[CPU,mem, IO] the current risk thresholds of the data

center (see Section 6.2)
4: App Risk[CPU,mem, IO] = getFuzzyRiskAssessment(req)
5: if App Risk[CPU,mem, IO] <= Threshold[CPU,mem, IO] then
6: Accept req
7: else
8: Reject req
9: end if

Once the server where the service is to be deployed
is selected, the next step is to find the best core for
it. Without server overbooking this process is simply
to find the idle resources. However, in the presence
of overbooking, there are no, or too few, idle cores.
Under such circumstances deciding what VMs to col-
locate in the same core(s) is of great important as some
applications are more suitable for being collocated than
others. The core selection is now managed by the KVM
scheduler [54] but is to be improved in the near future
with knowledge about VM affinity and interference.

6 RISK-AWARE ADMISSION CONTROL

Admission control decisions must be carefully consid-
ered in order to achieve a high utilization without ex-
posing the system to potential SLA violations. However,
achieving this trade-off is far from being trivial. As
highlighted in [23], taking overbooking actions by only
considering average resource requirements or only one
capacity dimension, e.g., CPU, can result in significantly
reduced performance. Therefore, a long term evaluation
is needed to better assess the future impact that the
overbooking actions may entail.

How to estimate the risk for a given service request
is unclear, specially under the uncertainty of future be-
havior of both currently deployed services and the new
ones to be deployed. Based on this, we argue that fuzzy
logic is a good method to evaluate the risk associated
with a new incoming request. We hence implemented a
risk assessment module based on fuzzy logic program-
ming [49].

The basic functionality of the admission control is
detailed in Algorithm 2. It first evaluates the risk asso-
ciated to the new incoming request by calling the fuzzy
risk assessment module. Once the associated risk is
known, the admission control obtains the current (new)
risk thresholds for the whole data center. Finally, it is
checked, for each capacity dimension, if the risk of ac-
cepting the new incoming request is below the currently
acceptable level and if so, the request is accepted. The
process to calculate the service acceptance risk and the
data center risk thresholds is explained next.

6.1 Fuzzy Risk Assessment

The risk assessment module provides the Admission
Control with the information needed to take the final
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Fig. 3: Illustration of risk
over time.

Fig. 4: Area calculation for
peak risk assessment.

decision of accepting or rejecting the service request, as
a new request is only admitted if the final risk is bellow
a pre-defined level (risk threshold).

A generic metric for the risk of accepting a new
service has been previously presented in [4], [50]. This
metric forms the basis for a set of different admission
controls algorithms, enabling the long term evaluation
of overbooking actions under uncertain conditions. The
inputs for this risk assessment module are:

• Req - CPU, memory, and I/O capacity required by
the new incoming service.

• UnReq - the difference between total data center
capacity and the capacity requested by all running
services.

• Free - the difference between total data center ca-
pacity and the capacity used by all running services.

The values for Free and UnReq are predicted
from previous monitored utilization using exponential
smoothing [55]. For the Req, the values are obtained
from previous knowledge of the service (if possible)
or by taking into account the information specified by
the cloud customer. Consequently, if there is available
information about the incoming workload, this is used
for resource usage predictions in the admission control.

Figure 3 illustrates risk calculation based on these
parameters. The red line is the expected available CPU,
memory, or I/O (Free), the blue line shows UnReq, and
the green line is Req. For the sake of more intuitive rep-
resentation, we suppose that the system has information
about the incoming service (green line). The risk at each
point in time is then estimated as follows:

riski =







0 if Reqi < Unreqi
Reqi−Unreqi
Freei−Unreqi

if Unreqi < Reqi < Freei

1 if Reqi > Freei.

(1)

Once risk is assessed for each point in time, we
calculate an aggregate risk of accepting the service over
time. The average of all risk points in time are used as
an indicator of the likelihood of having problems, and
the risk associated with the peaks are used to estimate
the impact of the possible problems. A peak is defined
as the area of the green line over the red line (Figure 4).
The risk value for the peaks is estimated in two steps:

1) Estimate the risk for each peak as the fraction of
the area over the Free line (the top gray zone in

Figure 4) over the total area over the UnReq line
(the gray area and the striped gray area).

2) Aggregate the risk of all peaks using the product
fuzzy logic disjunction operator (see [50]):

p(x, y) = x+ y − x ∗ y, (2)

where p(x, y) is the aggregated risk for the peaks x

and y, where x and y are obtained in step 1. This
represents a realistic aggregation, but in [50] we
also presented optimistic and pessimistic aggrega-
tors that follows the Gödel and Łukasiewicz fuzzy
logic operators, respectively:

opt(x, y) = max{x, y} (3)

pess(x, y) = min{x+ y, 1}. (4)

Finally these values are mixed to obtain the final
risk value containing information about both likelihood
and impact of degradation problems. More information
about this risk calculation process including fuzzy func-
tions can be found in [50], [4], where an evaluation of
the risk assessment module behavior is presented.

6.2 Risk Threshold Controller

Calculating the risk of admitting a new service in-
cludes many uncertainties. Furthermore, choosing an
acceptable risk threshold has an impact on data center
utilization and performance. High thresholds result in
higher utilization but the expense of exposing the system
to performance degradation, whilst using lower values
leads to lower but safer resource utilization. In [4] we
demonstrated the advantages of using a more optimistic
approach (taking more risks) when overbooking CPU
and I/O capacity, and a more realistic approach for
the memory. The rationale for this is that problems
resulting from CPU or I/O congestion are less critical
than the ones coming from running out of memory.
Therefore, the different risk degrees presented can be
combined according to the situation, considered capacity
dimensions, knowledge about the incoming service, etc.

With the solution presented at [4], the risk assessment
module gets no feedback about the current status and
behavior of the system, the current workload mixture,
the data center size, etc. Our previous work [4] shows
that theses factors significantly affect AC performance.
The AC therefore needs a mechanism to autonomously
readjust its behavior to the current needs, being aware of
the system misbehaving, and therefore reacting quicker
to performance degradation, and at the same time fa-
voring a more balance resource utilization among the
capacity dimensions.

In order to address this issue, we propose here a
control theory approach that dynamically (re)adjusts risk
thresholds depending on the system behavior and the
desired utilization levels, allowing the admission control
to learn over time depending on current system behav-
ior. We evaluate a proportional-integral-derivative (PID)
controller [5] that readjusts risk thresholds, i.e., change
the level of risk that the system is willing to face, to
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Fig. 6: PID Controller with filters.

achieve a desired level of resource utilization for each
dimension (CPU, memory, and I/O) in a safer way. The
weighted sum of those values is used to adjust the risk
thresholds.

A conceptual view of the PID controller is depicted in
Figure 5. In this figure, r denotes the desired utilization
level, y the measured level, e the difference between the
current utilization level and the target one, and finally u

is the increment or decrement in the actual risk threshold
needed to achieve the target utilization. The u value at
time t can be obtained from Equation 5:

u(t) = KP e(t) +KI

∫ t

0

e(s)ds+KD
de(t)

dt
. (5)

In this equation, increasing the P component (KP )
leads to faster response but also to overshooting and os-
cillation problems. Increasing I component (KI ) reduces
stationary errors but at the expense of larger oscillations.
Finally, the D (KD) component reduces the oscillations
but may lead to slower response. Only setting these
values turned out to be insufficient to achieve a good
performance (stable and fast response). We hence in-
cluded some filters to make the overall behavior more
stable. To this end, the output of the I component and the
final value (P + I + D) have been filtered (see Figure 6).

The I filter aims to reduce the impact of I when
the desired utilization level has not been achieved, for
instance, during system initialization or when there are
too few service requests to saturate the system. This
filter mainly avoids overshooting caused by long periods
of low utilization that are not the result of admission
control decisions. As this was not enough to keep the
level of resource utilization stable enough, the filter for
the final output of the controller was included (PID
filter). This filter keeps threshold levels between certain
values, i.e., between 0.2 and 0.8 instead of the [0,1] range.
Limiting the spectrum of feasible values for the risk
threshold reduces fluctuations caused by fast switching
between accepting too many and too few services.

6.2.1 Distributed PID Controller

The above discussed PID Controller works properly if
the performance is measured at the data center level,
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Fig. 7: Admission control risk thresholds selection.

obtaining a smooth utilization fluctuations (close enough
to the target one) for each congested capacity dimen-
sion. However, the utilization of each server may vary
from the accumulated utilization – even after applying
load balancing techniques. This effect cannot be totally
avoided as load imbalance is also caused by the current
workload characteristics. To reduce load imbalance we
propose a distributed controller approach where each
physical server has its own PID controllers, one for each
capacity dimension.

Based on theses insights, we modify our design of
the AC to have global threshold values for the whole
data center based on the distributed PID controllers
values. Different approaches may be used to obtain the
global thresholds, such as: minimum, maximum, average
or median value of all servers thresholds, but none of
them correlate the different dimensions. We follow a
similar approach to the one presented in the ExPERT
framework [56] to select a representative threshold that
correlates the three dimensions. ExPERT calculates a
Pareto-frontier of scheduling strategies and selects the
one that best fulfills a user-provided utility function.
We apply the same concept to select the most reliable
thresholds – in our case the ones closest to the median
values. A conceptual view is presented in Figure 7.

The idea is to find the values closest to the median
thresholds but correlating the three dimensions, taking
all of them into account at once. More formally, we select
as global thresholds the ones belonging to the server
whose accumulated distance to the median value for
each capacity dimension is minimal:

i ∈ N/∀i
′
∈ N,

∑

X={CPU,mem,IO}

| ˜thresholdX − thresholdXi
|

<
∑

X={CPU,mem,IO}

| ˜thresholdX − thresholdX
i′
|

(6)

In the simplified 2-dimension case plotted in Figure 7,
each point represents the CPU and memory thresholds
for a server. The selected point would be the one with
approximated value (0.5, 0.5) (the one inside the gray
circle) since is the one closest to both median values
(where red lines meet). If that point did not exist, then
the gray circle is enlarged until one point is inside and
thus selected. In fact, one of the main differences with
ExPERT [56] is that we take into account a 3-dimensional
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model, whereas ExPERT uses only two for cost-time
optimization, besides the fact that we are aiming for
the median value instead of the minimum or maximum
one. This method of choosing the representative risk
thresholds for the data center balances utilization in all
capacity dimensions. If capacity is imbalanced, e.g., CPU
utilization is greater than memory, the admission control
can act on this fact and admit applications that request
more capacity of the type that is further from the target
utilization level (memory in the previous example).

7 EXPERIMENTS

We have previously evaluated the impact of various
aspects of overbooking [4] by means of a simulated
infrastructure. The conclusion was that differences in
data center sizes, workload mixes (ratio of bursty and
steady applications), risk thresholds, etc., all have an
impact on the achieved utilization and on the number of
problematic situations, also leading to imbalanced server
utilization. Therefore, unless these aspects are properly
considered, resource utilization could be lower and less
stable than desired and the performance degradation
may increase. Here, we significantly extend our evalua-
tion as follows:

• The new distributed PID controller approach is eval-
uated (both by simulation and in the real system).

• The performance of a the real system in evaluated
in-depth, where application performance degrada-
tion due to the overbooking actions is quantified.

7.1 Testbed

The performance provided by our overbooking frame-
work is firstly evaluated by simulating the physical
resources belonging to a data center and emulating
the execution of several applications and services. We
generate a mix of services and applications that to the
best of our knowledge are representative within cloud
environments and consequently relevant for real cloud
providers (see Section 7.2) and then emulate their be-
havior by carrying out discrete event simulations of the
resources that execute them. The basic simulated cloud
infrastructure used in our experiments consists of 16
nodes where each one of them has 32 cores. These cores
simulate the execution of the workloads presented in
Section 7.2 by following their usage profile.

Regarding the experiments using a real environment,
we perform these on a 32 AMD Opteron(TM) Cores
(2.1 GHz), with 56 GB of memory, where we deploy
and monitor the VMs running the requested services.
Following the Amazon model, we use 4 different types
of VMs, whose characteristics are detailed on Table 1.

7.2 Workload

We have used and modeled different types of appli-
cations and services to try to recreate a realistic cloud
workload. The modeling process is based on running

TABLE 1: Virtual Machines sizes.

# CPUs Memory Bandwidth
(GB) (Mbit/s)

S 1 1.7 1000
M 2 3.4 2000
L 4 6.8 4000

XL 8 13.6 8000

the real application, monitoring its behavior and finally
generation a load profile based on the monitored in-
formation. In order to generate a representative cloud
workload we mix different types of applications. These
are grouped in the following two classes:

• Interactive workload: commonly web server applica-
tions that are provisioned for a very long time and
with no deadline specified. The number of user
requests varies over time, which basically defines
the utilization patterns (how bursty or steady the
application is). The pattern of this kind of workload
can be extracted from real available traces, such as
the Wikipedia ones [57].

• Batch workload: incoming applications with different
behavior and needs, with durations ranging from
minutes to months. These applications may present
bursty or steady performance, also in each capacity
dimension (CPU, memory, or I/O). They can be
generated by scripts or by using existing bench-
marks. These applications are mixed and submitted
by following a Poisson distribution.

This mixture of different workload groups has been
chosen to have different kind of applications, with steady
and bursty behaviors and/or unknown performance, etc.
This way we can study horizontal and vertical elasticity
problems regarding resources utilization.

For the interactive workload we have installed and
used two different types of web services. The first one
is RUBiS [58], an auction site prototype modeled after
eBay.com whilst the second one is RUBBoS [59], a bul-
leting board benchmark modeled after an online news
forum like Slashdot. For the workload, we generate the
number of requests that they need to serve along time,
by using information extracted from publicly available
web traces from the Wikipedia [57] and FIFA [60] web
sites. Figure 8 shows the selected one day pattern for
RUBiS and RUBBoS with the workload time-shifted 12
hours, thus each experiment runs for 24 hours.

For the dynamic workloads, we have modeled two
kind of behaviors applicable to each VM dimension –
bursty and steady. An example of the bursty behavior
may be an interactive service whereas an example of
a stable one could be a CPU-bound map-reduce job.
To this end, we have made use of the 3node test from
GRASP benchmarks [61] (for the steady CPU behavior)
and several shell scripts to generate burstiness in the
different capacity dimensions. It must be noted that
some applications may present both behaviors at the
same time, e.g., steady CPU behavior whilst being bursty
regarding memory and/or I/O.
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Fig. 8: Interactive workload: Web servers showing re-
source requirements (requests along time), as well as the
accumulated load.
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Fig. 9: Suitable risk threshold for PID output filter.

7.3 Distributed PID Controller Evaluation

Previous experiments presented in [4] showed that the
relationship between risk values and probability of over-
load situations is affected by external factors such as
data center size or workload burstiness. This highlights
the need for an autonomic system that readjusts itself
depending on the current system behavior – influenced
by external factors, such as the amount of users that the
different services has to serve, commonly not known
in advance. This fact motivates the use of feedback to
adjust the level of risk that the overbooking system is
willing to face over time. Once we decided to use the PID
controller presented in Section 6.2, we firstly configured
its parameters (Kp, Ki, Kd, and I filter) by running some
tuning experiments. Then, we configured the PID output
filter, since it has a great impact into the system stability,
as presented in Figure 9. As depicted in Figure 9 (a) and
Figure 9 (b), the larger the amplitude for the risk thresh-
olds is, the larger the resource utilization oscillations are.
Moreover, allowing bigger risk thresholds (e.g., 0.8 or
0.9) more frequently leads to resource congestion. This
is illustrated in Figure 9 (c), that shows the percentage
of time when one of the servers did not have enough
capacity to properly process its allocated load.

Once the PID controller tunning is done, we pro-
ceed to compare the performance of the distributed
PID controller approach with the method presented
in [4] where the risk thresholds were statically defined
and fixed over time. These comparisons are presented
in Figures 10 and 11. Figures 10 (a) and (b) show
that resource utilization is more stable and balanced
among the capacity dimensions when risk thresholds
are dynamically adjusted depending on the current load.
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Fig. 10: Static vs. dynamic risk thresholds.
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Fig. 11: Data center size: Static vs. dynamic risk thresh-
olds.

Furthermore, the number of problematic situations is
remarkable decreased (almost avoided, see Figure 10 (c))
thanks to reconfiguration of the acceptable risk level. As
Figure 10 (d) depicts, only small modifications of the risk
threshold are needed to achieve this performance. Fig-
ure 10 (c) also shows a non-linear increment of overload
situations when risk thresholds increase and illustrates
that how no problematic situations occur at all when risk
is less than 0.4.

We also evaluate the distributed controller approach
when the data center size is reduced to 128 cores. This
experiment previously showed bad performance (im-
balance utilization among different dimensions) when
having static thresholds [4]. In Figure 11 it can be seen
that utilization is increased and more balanced over the
different dimensions thanks to risk threshold adaptation.
At the same time the number of problematic situations
is significantly reduced, from more than 15% of the time
to less that 0.05%.

Finally, we also study the differences between the
distributed PID controller approach and using a central-
ized (single) PID controller for the whole data center.
The results for that comparison are presented in Fig-
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Fig. 12: Centralized vs. distributed PID controller.
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Fig. 13: RUBiS and RUBBoS performance along time
following Wikipedia workload without overbooking.

ure 12. There, it can be seen that utilization is more
stable and converges quicker when using distributed
PID controllers (Figure 12 (a)). Moreover, the amount
of problems is largely reduced (Figure 12 (b)). Thus, the
distributed PID controller achieves better utilization and
also reduces the risk of impacting the performance.

7.4 Overbooking impact on applications

After we have studied by means of simulations the
advantages of our distributed PID controller approach,
we evaluate the impact of overbooking on applications
performance, as although the total capacity is not used,
some side effects may appear due to uncertainty and
overbooking actions. Figure 13 presents the response
time (average and 95 percentile) for the RUBiS and
RUBBoS services running in the real server. This figure
also presents the server utilization over time and the
total capacity allocated (the one requested by the users).
These two interactive services are selected as represen-
tative since they are more prone to be disturbed by
the overbooking actions. A set of deadline-constrained
applications are used to create the batch workload. These
applications can tolerate performance fluctuations dur-
ing their executions as long as they finish on time.

Figure 13 shows the performance of the RUBiS and
RUBBoS services when no overbooking actions are
taken, whilst Figures 14 and 15 respectively shows the
same information with different levels of overbooking.
As it can be seen in these figures, for RUBiS the response
time (average and 95 percentile) increases with the num-
ber of user requests served. The peak occurs around
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Fig. 14: RUBiS performance with different target utiliza-
tion following Wikipedia workload.

minute 400 and the high load lasts roughly to minute
800 (see Figure 8). The same trend can be seen in all the
plots, but due to the overbooking impact, the response
time is noticeable bigger for the plots in Figure 14.

However, as overbooking impact is related to the level
of utilization that we want to achieve (overbooking pres-
sure), unless the target utilization is high, a noticeable
increment in the resource utilization is obtained without
any important impact on the performance provided by
those two services (blue lines in Figures 14 (a), (b)
and (c)). If higher utilization is pursued, it is achieved
but at the expense of high performance degradation
(slower response time). This effect is most prominent
when the load inside the servers is close to their satura-
tion point, which for both RUBiS and RUBBoS is around
500 clients when using an XL VM without overbooking.

From these figures we can estimate that 75% is a
suitable utilization target for RUBiS, with an acceptable
impact on performance (Figure 14 (c)), increasing the
utilization by a factor of 1.5 (blue line, raising from
around 50% to roughly 75%). However, if the target
utilization is increased a bit more (80% utilization target,
Figure 14 (d)), the response time is noticeable increased
even during the non overloaded periods (see period
from 0-200 minutes or 800-1200). Although these re-
sponse times are still acceptable, they may lead to SLA
violations in case of unexpected increases in load.

Similar conclusions can be made for RUBBoS (Fig-
ure 13 (b) and Figure 15). However, this service is even
more prone to suffer from overbooking as the correlation
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Fig. 15: RUBBoS performance with different target uti-
lization following Wikipedia workload.

between number of clients and response time is not
linear. As the figures depict, the average response time is
not affected at all, but the 95 percentile fluctuates much
more than for the RUBiS. This trend in also depicted in
the non overbooking plot, although at a smaller scale.

The RUBBoS performance is still acceptable if target
utilization level is below 75%, as response times remain
below a second, mostly staying below half a second.
However, we also note that whilst RUBiS is still work-
ing with 80% utilization level (response time remains
below 1 second), the RUBBoS service stops providing
acceptable response times from minute 1000 onwards
(Figure 15 (d)). For this service, 75% overbooking level
may result in some SLA violations (delayed/dropped re-
quests) and thus it is safer to only pursue 70% utilization.
From these observations we conclude that overbooking
can highly increase the whole data center utilization but
need to be kept at a certain level in order not to impact
service performance. Notably, the suitable overbooking
level is application-specific, specially when pursuing
utilization ratios over 70%.

Finally, Figure 16 presents a more extreme scenario,
where the number of users requests per second for
RUBiS and RUBBoS follows the FIFA traces (note that
there is a 12 hours time shift between the RUBiS and
RUBBoS peaks, depicted in Figure 8 (b)). Figure 16 shows
that, although the number of users increases faster,
the requests are still processed within an acceptable
response time by RUBiS (Figure 16 (a) and (c)). RUBBos
response times are more affected than RUBiS ones but
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Fig. 16: RUBiS and RUBBoS performance along time
following FIFA workload.

this behavior is also represented in the non-overbooking
scenario (Figure 16 (b)). In this figure, the average and
95 percentile response times are significantly increased
coinciding with the peak in user requests (around min-
utes 650 to 700). This also highlights the fact that both
services have different reactions to congestion: whilst
RUBiS response time proportionally increases with the
load, RUBBoS response time is kept low up to a certain
point (level of congestion) where the response time is
remarkable increased. A comparison summary of the
overbooking impact on the RUBiS and RUBBoS services
is presented at Table 2.

8 CONCLUSIONS AND FUTURE WORK

This work proposes overbooking to address the utiliza-
tion problems that cloud data centers face due to the
elastic nature of cloud services. Overbooking has to be
carefully planned in order not to impact application
performance. We present an overbooking framework
that performs admission control decisions based on
fuzzy logic risk assessments of each incoming service
deployment request. A set of distributed PID controllers
are implemented to avoid performance degradation and
to increase and keep the utilization evenly distributed
among the servers. Feedback control is used to adapt
the level of overbooking (risk threshold) that the cloud
data center is able to tolerate at any time.

Our experiments show that data center utilization is
not only increased in overall but also harmonized across
hardware capacity dimensions and servers. From our
extensive evaluation using web server benchmarks and
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TABLE 2: Summary of the tests.

Workload Service Overbooking level Avg. response time (ms.) 95th% response time (ms.) Utilization (%) Capacity Allocated (%)

WIKIPEDIA

RUBiS

No Overbooking 30.99 64.11 50.69 95.92
60 42.51 86.18 59.66 118.24
70 71.00 136.91 68.11 137.72
75 79.12 151.89 72.56 147.36
80 112.98 215.91 77.30 158.30

RUBBoS

No Overbooking 21.90 37.61 50.69 95.92
60 29.27 58.88 59.66 118.24
70 27.14 53.42 68.11 137.72
75 46.70 115.28 72.56 147.36
80 692.36 1192.00 77.30 158.30

FIFA
RUBiS

No Overbooking 11.61 22.01 34.80 95.98
75 15.81 31.83 70.79 167.24

RUBBoS
No Overbooking 47.98 80.22 34.80 95.98

75 37.42 96.19 70.79 167.24

real-life workloads, we conclude that on average, re-
source utilization and allocated capacity can be increased
by 50% with acceptable performance degradation.

For future work we plan to compare and combine
mitigation methods for unexpected misbehaviors, such
as reducing the service level of some services to avoid
performance degradation. We also plan to further ad-
vance into the autonomic behavior of the overbooking
system by enabling the possibility of self-adapting the
target utilization level depending on the applications
behavior and how sensitive they are to overbooking
pressure. Another future research direction is to study
affinity functions that aid the scheduling system in
deciding which applications to collocate, reducing the
performance degradation when overbooking.
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