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ABSTRACT

Recent developments have shown the existence of quantum low-

density parity check (qLDPC) codes with constant rate and linear

distance. A natural question concerns the e�cient decodability of

these codes. In this paper, we present a linear time decoder for the

recent quantum Tanner codes construction of asymptotically good

qLDPC codes, which can correct all errors of weight up to a constant

fraction of the blocklength. Our decoder is an iterative algorithm

which searches for corrections within constant-sized regions. At

each step, the corrections are found by reducing a locally de�ned

and e�ciently computable cost function which serves as a proxy

for the weight of the remaining error.
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1 INTRODUCTION

Quantum error correcting codes with constant-sized check opera-

tors, known as quantum low-density parity check (qLDPC) codes,

have myriad applications in computer science and quantum infor-

mation. Indeed, almost all leading contenders [3, 6] for experimen-

tally realizable fault-tolerant quantum memories are qLDPC codes.

With more stringent requirements on their parameters, qLDPC

codes can be used to achieve constant overhead fault-tolerant quan-

tum computation as shown by Gottesman [12]. On the more theo-

retical side, qLDPC codes are believed to have connections to the

quantum probabilistically checkable proofs (qPCP) conjecture [9].
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AqLDPC code of blocklength= is said to be goodwhen it encodes

Θ(=) logical qubits and detects all errors up to weight Θ(=). For
many years such codes have proven elusive, with an apparent

distance “barrier” of around
√
=. It is natural to wonder if there

is some fundamental limitation that prevents us from achieving

the a priori best possible distance of Θ(=). However, a sequence
of recent constructions of qLDPC codes with steadily improving

code parameters [4, 14, 21] have culminated in the construction of

asymptotically good qLDPC codes by Panteleev and Kalachev [20].

Alternative constructions of good qLDPC codes have since been

given by Leverrier and Zémor [17] and conjectured by Lin and

Hsieh [19].

An e�cient decoder correcting all errors of weight up to Θ(=)
is a useful primitive for both fault-tolerance purposes and complex-

ity theory applications. To date, the best known e�cient decoder

corrects against all errors of weight up to Θ(
√
= log=) [10]. In this

paper, we demonstrate the �rst e�cient decoder for a quantum

error-correcting code that corrects all errors up to linear weight.

For our decoder, we focus on the quantum Tanner codes con-

struction of Leverrier and Zémor [17]. Quantum Tanner codes

were inspired by the original construction of good qLDPC codes

of Panteleev and Kalachev [20], as well as by the classical locally

testable codes of [7], serving as a intermediary between the two

constructions. They can also be seen as a natural quantum gener-

alization of classical Tanner codes [22]. A classical Tanner code is

de�ned by placing bits on the edges of an expanding graph, with

non-trivial checks de�ning local codes placed at the vertices. The

codewords are the strings whose local views at each vertex belong

to the codespace of the local code. A quantum Tanner code is a

Calderbank-Shor-Steane (CSS) [5, 23] code de�ned by two classical

Tanner codes stitched together using a two-dimensional expanding

complex. For particular choices of the local checks and expanding

complex, this construction has been shown to yield an asymptoti-

cally good family of qLDPC codes. We show that this construction

can also yield an asymptotically good family of qLDPC codes which

are e�ciently decodable for errors of weight up to a constant frac-

tion of the distance.

Our decoder is inspired by the small-set-�ip [16] decoding algo-

rithm for hypergraph product codes based on expanding graphs.

Small-set-�ip is an iterative algorithm, where at every step, small

sets of qubits are �ipped to decrease the syndrome weight. The

candidate sets to �ip are contained within the supports of indi-

vidual stabilizer generators. A critical ingredient in the success

of the small-set-�ip decoder is the presence of expansion in the

underlying geometric complex. Since the geometric complex de�n-

ing quantum Tanner codes has a similar notion of expansion, one

might expect that analogous ideas may work for decoding quantum

Tanner codes.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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In our decoder, we de�ne a “local potential function” on each

local view which measures the distance of the error from the local

codespace. The decoder reduces the sum of these potential functions

by applying a constant-sized correction within some local view at

each step. In the proof of correctness, we proceed by tracking the

minimum weight correction according to each local view, and then

use this data to show that a �ip-set with the required properties

must exist when the error is not too large. As a required step in the

proof, we also strengthen the robustness parameters of the random

classical codes used in the quantum Tanner code construction.

Our main result is stated below:

Theorem (Informal version of Theorems 12 and 13). There

exists a family of asymptotically good quantum Tanner codes such

that our decoder successfully corrects all errors of weight up to Θ(=)
and runs in time $ (=).

We note that after the completion of this work, several other

results on decoding good LDPC codes have since been shown [8,

18]. As a part of these developments, the existence of local codes

with optimal robust parameter F = Θ(Δ2) have been shown to

exist [8, 15]. The use of these codes will improve the parameters

stated in Theorem 12.

The remainder of the paper is organized as follows. In Section 2

we provide a brief technical introduction to the quantum Tanner

codes construction of asymptotically good qLDPC codes. There

we present a terse, but self-contained, description of all the ingre-

dients necessary to follow the rest of the paper. In Section 3 we

formally de�ne the decoding problem and present the overview

of our decoder for the quantum Tanner codes. We also work out

basic properties and consequences of our decoder in this section.

In Section 4 we provide a summary of our results and present some

relevant open problems. Finally, we defer the technical bulk of the

paper to Section 5, which presents the main proof of the correctness

of the decoder.

2 QUANTUM TANNER CODES

In this section, we review some coding theory background and

summarize the construction of quantum Tanner codes by Leverrier

and Zémor [17].

2.1 Classical Linear Codes

In this subsection we quickly review the necessary classical coding

background. A classical linear code is a :-dimensional subspace

� ⊆ F=2 , which is often speci�ed by a parity check matrix � ∈
F
(=−: )×=
2 such that � = ker� . Equivalently, the code can also be

speci�ed as the column space of a generator matrix� ∈ F=×:2 , such

that � = col� . The parameter = is called the blocklength of the

code. The number of encoded bits is : and d = :/= is the rate of the

code. The number of errors that the code can correct is determined

by the distance of � , which is given by the minimum Hamming

weight of a nonzero codeword: 3 = minG∈�\{0} |G |. Sometimes, we

consider the relative distance X = 3/=. We say that such a code has

parameters [=, :, 3].
Given a �-regular (multi)graph G = (+ , �) and a code �0 of

blocklength� , we can de�ne the classical Tanner code� = ) (G,�0)
as follows. The bits of� are placed on the edges of G, so it is a code

of length = = |� |. For G ∈ F�2 , de�ne the local view of G at a vertex

E ∈ + to be G |� (E) , which is the restriction of G to � (E), the set of
edges incident to E . Then the codewords of� are those G ∈ F�2 such

that G |� (E) ∈ �0 for every E ∈ + , where we choose some way of

identifying every edge-neighborhood of a vertex with the bits of

the local code �0. If �0 is the parity check matrix of �0, then the

parity check matrix of � will have rows which are equal to a row

of �0 on an edge-neighborhood of a vertex and extended to be zero

everywhere else. In the Tanner code construction, the code �0 is

often called the local, or base, code.

The dual of a classical linear code� , denoted�⊥, is the subspace
of all vectors orthogonal to the codewords of �; that is,

�⊥ = {~ ∈ F=2 : ∀G ∈ �, ⟨G,~⟩ = 0} , (1)

where the inner product is taken modulo 2. If we have two classical

codes �� = ker�� ⊆ F=2 and �� = ker�� ⊆ F=2 , we can consider

their tensor code and dual tensor code.

Definition 1 (Tensor and Dual Tensor Codes). The tensor

code of �� and �� is the usual tensor product �� ⊗ �� ⊆ F=2 ⊗ F
=
2 .

We can naturally interpret F=2 ⊗ F
=
2 as the set of binary =×= matrices,

and in this view,�� ⊗�� is identi�ed with the set of matrices - such

that every column of - is a codeword of �� and every row of - is a

codeword of �� .

The dual tensor code of�� and�� is (�⊥
�
⊗�⊥

�
)⊥ ⊆ F=2 ⊗F

=
2 , which

can equivalently be expressed as (�⊥
�
⊗�⊥

�
)⊥ = �� ⊗ F=2 + F

=
2 ⊗�� .

Codewords of the dual tensor code are precisely the set of matrices -

such that ��-�
T
�
= 0.

Note that if �� is a [=�, :�, 3�] code and �� is a [=�, :�, 3�]
code, then their tensor code is a [=�=�, :�:�, 3�3�] code. Their
dual tensor code is a [=�=�, =�:� + =�:� − :�:�,min(3�, 3�)]
code. Moreover, we have �� ⊗ �� ⊆ (�⊥� ⊗ �

⊥
�
)⊥.

2.2 Quantum CSS Codes

A quantum stabilizer code is a subspace C ⊆
(

C
2
)⊗=

that is the

+1-eigenspace of an abelian subgroup ( of the =-qubit Pauli group.

If ( can be generated by stabilizers that are products of - operators

and stabilizers that are products of / operators, we say that C is

a CSS code. In this case, we can associate with C two classical

codes C- = ker�- and C/ = ker�/ ⊆ F=2 , where the rows of

�- (resp. �/ ) specify the - (resp. / ) type stabilizer generators.

The property that - and / generators commute translates to the

condition �-�
T
/
= 0, or equivalently C

⊥
/
⊆ C- .

We can state the code parameters of a CSS code in terms of

its underlying classical codes: if C- (resp. C/ ) has :- (resp. :/ )

encoded bits, then the number of encoded qubits is : = :- +:/ −=.
The distance of the CSS code is given by 3 = min{3- , 3/ }, where

3- = min
G∈C/ \C⊥-

|G | , 3/ = min
G∈C- \C⊥/

|G | . (2)

We say that such a quantum code has parameters [[=, :, 3]]. A
family of quantum codes is called asymptotically good (or simply

good) if the rate d = :/= and the relative distance X = 3/= are

bounded below by a non-zero constant. The code family is said to be

low-density parity check (LDPC) if it can be de�ned with stabilizer

generators that have at most constant weight, with each qubit being

in the support of at most a constant number of generators. This
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is the case if each row and column of �- and �/ have at most

constant weight.

2.3 Left-Right Cayley Complexes

Let � be a �nite group with a symmetric generating set �, i.e.

� = �−1. The left Cayley graph Cay(�,�) is the graph with vertex

set � and edge set {(6, 06) : 6 ∈ �, 0 ∈ �}. There is also the notion

of a right Cayley graph Cay(�, �) where the generator set acts on
the right, with edges {(6,61) : 6 ∈ �,1 ∈ �}. Let � and � be two

symmetric generating for � of size |�| = |� | = Δ. The generating

sets � and � are said to satisfy the Total No-Conjugacy condition

(TNC) [7] if we have 06 ≠ 61 for all 0 ∈ �, 1 ∈ �, and 6 ∈ � .
Given a group � and two symmetric generating sets � and �

satisfying TNC, we de�ne their double-covered left-right Cayley

complex Cay2 (�,�, �) as the 2-dimensional complex consisting of:

(1) Vertices + = +0 ⊔+1 = � × {0} ⊔� × {1}. There are a total
of |+ | = 2|� | vertices, with |+0 | = |+1 | = |� |.

(2) Edges � = �� ⊔ �� , where

�� = {((6, 0), (06, 1)) : 6 ∈ �, 0 ∈ �} , and

�� = {((6, 0), (61, 1)) : 6 ∈ �,1 ∈ �} . (3)

Note that �-type edges are de�ned by a left-action of the

generators, while that �-type edges are de�ned by a right-

action of the generators. There are a total of 2Δ|� | edges,
with |�� | = |�� | = Δ|� |.

(3) Squares & de�ned by quadruplets of vertices:

& = {{(6, 0), (06, 1), (61, 1), (061, 0)} : 0 ∈ �,1 ∈ �,6 ∈ �} . (4)

There are a total of |& | = Δ
2 |� |/2 squares.

Note that the graph de�ned by (+ , ��) is precisely the double

cover of the left Cayley graph Cay(�,�), and the graph de�ned by

(+ , ��) is the double cover the right Cayley graph Cay(�, �). The
full 1-skeleton of Cay2 (�,�, �) is a bipartite graph G∪ = (+ , �).

By TNC, each square is guaranteed to have 4 distinct vertices, so

the graph G∪ is a simple 2Δ-regular graph. There are Δ2 squares

incident to a given vertex, and the set of faces incident to a given

vertex can be naturally identi�ed with the set � × �. Figure 1 illus-
trates the faces incident to a given vertex in the left-right Cayley

complex.

Based on the structure of the graph G∪, each face @ ∈ & can be

naturally identi�ed with its diagonal connecting its corners in +0.

Through this identi�cation, we can de�ne a graph G□0 capturing

the incidence structure of faces in the complex. The graph G□0 =

(+0, &) is de�ned with vertex set +0 = � × {0}, where @ ∈ & is

present as an edge (E, E ′) in G□0 if and only if E and E ′ appear as
opposite +0-corners of the square @. Likewise, each face @ ∈ & can

be identi�ed with its diagonal connecting its corners in +1. This

similarly de�nes a graph G□1 = (+1, &). Note that G□0 and G□1 are

Δ
2-regular multigraphs.

2.4 Quantum Tanner Codes Construction

We now describe the construction of quantum Tanner codes [17].

The construction is dependent on the choice of a double-covered

left-right Cayley complex Cay2 (�,�, �) with generating sets of

size |�| = |� | = Δ satisfying TNC. It is also dependent on �xed

classical codes ��,�� of blocklength Δ, which de�ne local codes

�0 = �� ⊗ �� and �1 = �⊥
�
⊗ �⊥

�
.

Given the data above, a quantum Tanner code C is then de�ned

as the CSS code speci�ed by the two classical Tanner codes C/ =

) (G□0 ,�
⊥
0 ) and C- = ) (G□1 ,�

⊥
1 ). More explicitly, qubits are placed

on the squares of the left-right Cayley complex, and the / (resp. - )

type stabilizer generators are codewords of the local code �� ⊗ ��

(resp. �⊥
�
⊗ �⊥

�
) on the Δ2 squares incident to each vertex E ∈ +0

(resp. E ∈ +1). The incidence structure of the left-right Cayley

complex ensures that the - and / stabilizers commute.

Note that C is a qLDPC code: each stabilizer generator acts on a

subset of the local view & (E) of Δ2 qubits, and each qubit is acted

on only by the stabilizers in the local views of its four corners. It

is proven in [17] that for certain choices of the left-right Cayley

complex and local codes, this construction yields a good family of

quantum codes:

Theorem 2 (Theorem 16 of [17]). Fix Y ∈ (0, 1/2), d ∈ (0, 1/2),
and X ∈ (0, 1/2) with X < ℎ−1 (d), where ℎ(G) = −G log2 G − (1 −
G) log2 (1 − G) is the binary entropy function. For some Δ su�ciently

large, there exist classical codes ��,�� of blocklength Δ, rates d and

1 − d respectively, and relative distances at least X , as well as an

in�nite family of left-right Cayley complexes Cay2 (�,�, �) with
|� | → ∞ and symmetric generating sets �, � of size |�| = |� | = Δ

satisfying TNC, such that the quantum Tanner code de�ned above

has parameters

[[= = |& |, : ≥ (1 − 2d)2=,3 ≥ X

4Δ3/2+Y =]] .

2.5 Expanding Cayley Complex and Robust
Local Codes

In this subsection, we specify the technical properties of the Cayley

complex and local codes that are used in the construction of good

quantum Tanner codes described previously.

For a �-regular graph G = (+ , �), the largest eigenvalue of its
adjacency matrix is _1 = � , and we let _(G) = _2 denote its second

largest eigenvalue. The value of _(G) is related to the expansion

properties of the graph, as seen in the expander mixing lemma

below. For subsets (,) ⊆ + , let � ((,) ) be the multiset of edges

between ( and) , where edges in ( ∩) are counted twice. We have

the following:

Theorem 3 (Expander mixing lemma). For a �-regular graph

G = (+ , �) and subsets (,) ⊆ + ,

|� ((,) ) | ≤ �

|+ | |( | |) | + _(G)
√

|( | |) | . (5)

The groups � and generating sets �, � in Theorem 2 are chosen

so that the resulting left-right Cayley complex has good expansion.

Lemma 4 (Claim 6.7 of [7]). Let @ be an odd prime power and

� = PSL2 (@8 ). There exist two symmetric generating sets �, � of size

|�| = |� | = Δ = @ + 1 and satisfying TNC such that the resulting

Cayley graphs Cay(�,�),Cay(�, �) are Ramanujan, i.e. have second

largest eigenvalue _2 ≤ 2
√
Δ.

For�,�, � as above, it can be shown [17] that the relevant graphs

in the quantum Tanner codes construction have the parameters

speci�ed in Table 1.
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Figure 1: The local view of a vertex E and its identi�cation with the set � × �. Considering the “book” de�ned by the edge 11
picks out a column, � ×11 (dashed). Specifying entries of � × � picks out speci�c faces (red, blue) of the local view, which can be

regarded as entries of the corresponding matrix.

Table 1: Graph parameters

Graph Degree Number of vertices Second eigenvalue

G∪ 2Δ 2|� | = |+0 | + |+1 | ≤ 4
√
Δ

G□0 Δ
2 |� | = |+0 | ≤ 4Δ

G□1 Δ
2 |� | = |+1 | ≤ 4Δ

The classical codes used in the construction of quantum Tanner

codes are required to satisfy a robustness property of their dual

tensor code, introduced in [17].

Definition 5 (F-Robustness). Let ��,�� ⊆ F=2 be classical

codes with distances 3� and 3� respectively. We say that the dual

tensor code��� = �� ⊗ F=2 + F
=
2 ⊗�� is F-robust if every codeword

- ∈ ��� with |- | ≤ F is supported on the union of at most |- |/3�
non-zero columns and |- |/3� non-zero rows. That is, there exist rows

�′ with |�′ | ≥ = − |- |/3� and columns �′ with |�′ | ≥ = − |- |/3�
such that - |�′×�′ = 0.

When a codeword of a dual tensor code is supported on few

columns and rows, it has a decomposition into column and row

codewords respecting this support. The following lemma is proven

in the full paper [13].

Lemma 45. Let �� and �� be classical codes of distance at least 3

and � = �� ⊗ F�2 + F
�
2 ⊗ �� be the dual tensor code. Suppose - ∈ �

is supported on the union of U non-zero rows and V non-zero columns,

with U, V < 3 . Then - can be written as - = r+ c where r ∈ F�2 ⊗��

is supported on at most U non-zero rows and c ∈ �� ⊗F�2 is supported

on at most V non-zero columns.

If the dual tensor code of �� and �� is F-robust, then their

tensor code satis�es a property similar to robust testability de�ned

in [2].

Proposition 6 (Proposition 6 of [17]). Let ��,�� ⊆ F=2 be

classical codes with distances 3� and 3� respectively such that their

dual tensor code isF-robust forF ≤ 3�3�/2. Then

3 (G,�� ⊗ ��) ≤
3

2

(

3 (G,�� ⊗ F=2 ) + 3 (G, F
=
2 ⊗ ��)

)

(6)

whenever 3 (G,�� ⊗ F=2 ) + 3 (G, F
=
2 ⊗ ��) ≤ F .

In the full paper [13], we prove Theorem 7 below, which shows

that for su�ciently large blocklengths, there exist dual tensor codes

of su�ciently large robustness.

Theorem 7. Fix constants Y ∈ (0, 1/28), d ∈ (0, 1/2), and X ∈
(0, 1/2) such that X < ℎ−1 (d), where ℎ(G) is the binary entropy

function. For all su�ciently large Δ, there exist classical codes��,��

of length Δ and rates d� = d and d� = 1 − d such that such that

both the dual tensor code of �� and �� and the dual tensor code of

�⊥
�
and �⊥

�
are Δ3/2+Y -robust and have distances at least XΔ.

With these ingredients, we can describe the construction in

Theorem 2 in more detail. We �rst choose a prime power @ =

Δ − 1 su�ciently large such that we can use Theorem 7 to �nd

��,�� with robustness parameter Δ3/2−Y . Then the in�nite family

of left-right Cayley complexes is de�ned using � = PSL2 (@8 ) for
increasing values of 8 and �, � as in Lemma 4. Note that the sizes

of the groups satisfy |� | = 1
2@

8 (@28 − 1) → ∞.
We remark that in [17], a version of Theorem 7 was shown for

robustness parameter Δ3/2−Y , but in the proof of correctness of our

decoder, a larger parameter Δ3/2+Y is needed. Because the proof
of Theorem 2 given in [17] is valid even for negative values of Y,

the existence of dual tensor codes with higher robustness implies a

larger distance of the code itself,3 ≥ X
4Δ3/2−Y =. At the same time, the

larger robustness parameter eliminates the need for resistance to

puncturing required in [17], thus simplifying the overall description

of the quantum Tanner code.

3 DECODING ALGORITHM

In this section, we give a description of our decoder for quantum

Tanner codes. The quantum Tanner codes we consider are those

described in the previous section with distance 3 ≥ X
4Δ3/2−Y =, con-

structed using classical dual tensor codes of robustness Δ3/2+Y as
the local codes. In the decoding problem, an unknown (Pauli) error

is applied to the code. We may only extract the syndrome of the

error by measuring stabilizers, and based on the syndrome, apply

corrections. We succeed in decoding if the correction we applied

922
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is equal to the error, up to a stabilizer (which has no e�ect on the

codespace). Because quantum Tanner codes are CSS codes, it suf-

�ces to consider - and / errors separately. If we have an algorithm

to correct for errors that are purely a product of - operators and

another one for a product of / operators, a general error will be

corrected after running both algorithms. Furthermore, since the

code is symmetric between - and / , we just consider the problem

of correcting / errors.

Definition 8 (Decoding Problem). Let 4 ∈ F&2 be a / error.

Given the syndrome f = �- 4 as input, the task of the decoding

problem is to output a correction 5 ∈ F&2 such that 4 − 5 ∈ C⊥
/
.

Our decoder is similar in �avor to the small-set-�ip decoder

used on certain hypergraph product codes [16]. Small-set-�ip is an

iterative decoder, where in each step the decoder tries to decrease

the syndrome weight by looking for corrections within the support

of a / generator. If the initial error weight is less than the code

distance, then such a correction can always be found, and this

implies that the decoder can successfully errors of weight less than

a constant fraction of the code distance [16].

In our case, the syndrome weight is not a very well-de�ned con-

cept due to the presence of the local codes. Because the- stabilizers

are generated by local tensor codes �1 = �⊥
�
⊗ �⊥

�
, de�ning the

Hamming weight of the syndrome involves choosing a basis for�1.

Unfortunately, there is no canonical choice of basis, and di�erent

choices will give di�erent Hamming weights of a given error. We

address this issue by introducing the concept of a potential function.

Recall that an element G ∈ F&2 is a codeword of C- = ) (G□1 ,�
⊥
1 )

if and only if every local view G |& (E) , E ∈ +1 is a codeword of

�⊥1 . We de�ne the potential by the distance of the local view to

the codespace, which can be inferred from the syndrome. More

formally, we have the following de�nition:

Definition 9 (Local and Global Potential Functions). Let

4 ∈ F&2 be an error. De�ne the local potential at a vertex E ∈ +1 by
the Hamming distance

*E (4) = 3
(

4 |& (E) ,�⊥1
)

. (7)

The global potential is de�ned as

* (4) =
∑

E∈+1

*E (4) . (8)

The local potential is the minimum weight of a correction that is

needed to take the local view of the error (or corrupted codeword)

back into the local codespace �⊥1 . Thus, it is a quantity that can

be computed just from the syndrome. We will abuse notation and

also write *E (f) = *E (4) and * (f) = * (4). Note that in absence

of a local code, in other words a local code where the codewords

are the vectors of even Hamming weight, the local potential is

simply either 0 or 1 depending on if the constraint is satis�ed, so it

coincides with the Hamming weight of the syndrome.

Our decoding algorithm (Algorithm 1) runs by looking for bits

to �ip in local views that will decrease the global potential.

We will show that Algorithm 1 succeeds in the decoding problem

if the initial error has weight at most a constant fraction of code

distance; that is, it can correct all errors up to some linear weight.

The main di�culty of the proof is in showing that there always

Algorithm 1 Decoder for quantum Tanner codes

Input: A syndrome f = �- 4 ∈ F |+1 | dim�1

2 of an error 4 ∈ F&2 .
Output: A correction 5 ∈ F&2 for 4 .

5 ← 0

* ← * (f)
while* > 0 do

Look for a vector I ∈ F&2 supported on a local view & (E),
E ∈ +0 ∪+1 such that* (f + �-I) < *

5 ← 5 + I
f ← f + �-I

* ← * (f)
end while

return 5

exists a vector I that decreases the global potential when �ipped.

This is captured in the following theorem, which we prove in the

next section.

Theorem 10. Let 4 ∈ F&2 be an error of weight |4 | ≤ X=/6Δ3/2−Y

with syndrome f = �- 4 . Then there exists E ∈ +0 ∪+1 and some I ∈
F
&
2 supported on the local view& (E), such that* (f +�-I) < * (f).

From this property, we can show that the algorithm will output

a valid correction. We do this by proving a statement that applies

to a more general class of small-set-�ip type decoders based on

a potential function. The proof follows the same idea as that of

Lemma 10 in [16].

Lemma 11. Let U < 1, B, 2 be constants. Let C be an [[=, :, 3]]
quantum CSS code de�ned by the classical codes C- ,C/ ⊆ F=2 . Let
* : F=2 → Z≥0 be a (global) potential function that is constant on

cosets of C- , satis�es* (4) = 0 if and only if 4 ∈ C- , and* (4) ≤ B |4 |
for all 4 ∈ F=2 . Suppose we have an iterative decoder that, given the

syndrome of a non-zero / error of weight less than U3 , can decrease

the potential by applying an - operator of weight at most 2 . Then the

decoder can successfully correct errors of weight less than U3/(1+ B2).

Proof. Let G ′ = G+4 ∈ F=2 be a corrupted codeword with G ∈ C-
and error 4 of weight |4 | < U3

1+B2 . The decoder outputs a sequence of
corrections 0 = 50, 51, 52, . . . such that the resulting errors 48 = 4 + 58
satisfy |48+1 − 48 | ≤ 2 and* (48 ) −* (48+1) ≥ 1 for all 8 . Suppose we

have decoded up to step 9 . Then

|4 9 | ≤ |40 | + |41 − 40 | + · · · + |4 9 − 4 9−1 | (9)

≤ |4 | + 2 + · · · + 2 (10)

≤ |4 | + 2 (* (40) −* (41)) + · · · + 2 (* (4 9−1) −* (4 9 )) (11)

= |4 | + 2 (* (40) −* (4 9 )) (12)

≤ (1 + B2) |4 | (13)

< U3 . (14)

So either * (4 9 ) = 0, or the decoder can �nd the next correction

59+1 to produce 4 9+1. Eventually, the decoder will output 4 � such
that* (4 � ) = 0. In other words, 4 � ∈ C- . But since |4 � | < U3 < 3 , it

must be in C
⊥
/
, and we have decoded to the correct codeword. □

We can now state our main theorems.
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Theorem 12. Fix Y ∈ (0, 1/28), d ∈ (0, 1/2), and X ∈ (0, 1/2)
with X < ℎ−1 (d), where ℎ(G) is the binary entropy function. For some

Δ su�ciently large, there is an in�nite family of quantum Tanner

codes with parameters

[[=, : ≥ (1 − 2d)2=,3 ≥ X

4Δ3/2−Y =]]

with = →∞, such that for each =, Algorithm 1 can correct all errors

of weight

|4 | ≤ X=

6Δ3/2−Y (1 + 2Δ2)
. (15)

Proof. The in�nite family of quantum Tanner codes is as de-

scribed in Section 2 (with distance parameter from the improved

robustness of the classical local codes). To prove the decodable dis-

tance, consider the parameters in Lemma 11. Every bit in an error

can at most increase the local potentials of the two incident +1
vertices by one each. This implies the bound* (4) ≤ 2|4 |, so we can
take B = 2. Since at each step, the algorithm �ips sets within a local

view, we set 2 = Δ
2. From Theorem 10, the decoder can reduce the

global potential when the error has weight up to U3 = X=/6Δ3/2−Y .
The theorem then follows from Lemma 11. □

Theorem 13. Algorithm 1 runs in time $ (=).

Proof. To compute the global potential * , we must compute

$ (=) local potentials. Each local potential is a function of the

constant-sized local view and can be computed in $ (1) time by

enumerating vectors supported in the local view. At the same time,

we can store the best candidate correction for the local view. Thus,

the initialization runs in time $ (=).
In each iteration, we apply corrections in a constant-sized region,

so only a constant number of local views and candidate corrections

need to be updated for the syndrome and local potentials by the

LDPC property. Each iteration of the algorithm runs in a constant

amount of time, and there can be at most $ (=) iterations. Hence,
the total runtime of Algorithm 1 is $ (=). □

The correctness of the decoding algorithm implies a form of

soundness for the quantum code. This notion is a related to local

testability but weaker because it only applies to errors of su�ciently

small weight.

Corollary 14 (Soundness). If 4 is an error that is correctable

using Algorithm 1, then* (4) ≥ Δ
−23 (4,C⊥

/
).

Proof. Using Algorithm 1, 4 can be corrected to a codeword of

C
⊥
/
in at most * (4) steps. In each step, at most Δ2 bits are �ipped.

Therefore, we have 3 (4,C⊥
/
) ≤ Δ

2* (4). □

This soundness results yields an interesting consequence related

to the No Low-Energy Trivial States (NLTS) conjecture [11]. After

the completion of this work, a proof of the NLTS conjecture was

established by Anshu et al. [1]. The main result of [1] showed

that good quantum LDPC codes with soundness (called clustering

of approximate codewords in [1]) satisfy the NLTS property. We

note that Corollary 14 provides an independent proof of the main

clustering property used in [1] and provides a close connection

between e�ciently decodable quantum LDPC codes and NLTS.

Corollary 15 (Threshold). Let 4 ∈ F=2 be a random error with

each entry independently and identically distributed such that 48 = 1

with probability ? and 48 = 0 with probability 1−? . Under this model,

the probability that Algorithm 1 fails to return a correction 5 such

that 4 + 5 ∈ C⊥
/
is $ (4−0=), with 0 > 0, so long as ? < ?∗, where

?∗ ≡ X

6Δ3/2−Y (1 + 2Δ2)
(16)

is a lower bound for the accuracy threshold under independent bit

and phase �ip noise.

Proof. By Theorem 12, the decoder is guaranteed to succeed

as long as |4 | ≤ =?∗. The Hamming weight of 4 is distributed as

a Binomial random variable which concentrates around the mean

=? . For ?∗ > ? , we can use Hoe�ding’s inequality to bound the

probability that |4 | > =?∗ as

Pr
(

|4 | > =?∗
)

< 4−2= (?
∗−? )2 , (17)

which completes the proof. □

4 DISCUSSION AND OPEN PROBLEMS

In this paper, we show the existence of a provably correct decoder

for the recent quantum Tanner codes construction of asymptoti-

cally good qLDPC codes. Our decoder has runtime linear in the

code blocklength, and provably corrects all errors with weight up

to a constant fraction of the distance (and hence the blocklength).

A key idea behind the decoder is the introduction of a global po-

tential function which measures the stability of the error against

locally de�ned corrections. Our decoder proceeds operationally

in a manner similar to the small-set-�ip decoder for quantum ex-

pander codes [16], checking candidate subsets de�ned within the

local views of the code to see if the global potential function can be

reduced at each step.We prove that such a reduction is always possi-

ble for su�ciently low weight errors, which we use to show that the

decoder successfully corrects all errors of weight |4 | ≲ X=/Δ7/2−Y .
The existence of our decoder implies a notion of soundness for

the quantum Tanner codes construction (see Corollary 14). It also

implies an accuracy threshold against stochastic noise (see Corol-

lary 15).

An important part of our proof for the correctness of the de-

coder involves showing the existence of dual tensor codes of larger

robustness (Δ3/2+Y ) than was established in [17]. This result also

gives a constant factor improvement in the distance of the code. In

addition, it leads to a simpli�cation in the construction of quantum

Tanner codes in that the dual tensor codes are no longer required

to be resistant to puncturing.

A number of open problems remain at this point. One major

problem is the time complexity of the decoder. While the runtime

of the decoder is linear in the blocklength, there are constant pref-

actors on the order of 2Δ
2
arising from the need to check all subsets

of the Δ2-sized local views. This renders the decoder impractical in

reality. Part of the problem stems from the inherently large check

weights (Δ2) of the quantum Tanner codes construction. A natural

follow-up problem therefore is to look for ways to reduce the ab-

solute runtime of the decoder, for example by reducing the check

weights of the underlying code construction.
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Another problem is related to the decoding of the asymptotically

good qLDPC codes by Panteleev and Kalachev [20]. This question

has been resolved in [18] by reducing the decoding problem of

the Panteleev-Kalachev code to that of decoding quantum Tanner

codes. A related – and more generic – problem is the existence

of e�cient decoders for good qLDPC codes constructed by the

balanced product construction [4] in general, especially with the

presence of non-trivial local codes.

Our current decoder requires the checking of local views be-

longing to vertices of both +0 and +1. This is in contrast to the

small-set-�ip decoder, which only requires checking the supports

of generators of a single type. It may be possible that a tighter

analysis (for example, using a stronger version of the low-overlap

property, or more robust local codes) may allow us to eliminate

the need to check both vertex types. A better understanding of the

candidate �ip-sets in general may be useful, especially towards the

problem of lowering the runtime mentioned earlier.

5 PROOF OF THEOREM 10

Before beginning the proof of Theorem 10, we �rst elaborate on

some conventions and notation. In the remainder of the paper we

will adopt the convention that a vector G ∈ F&2 is treated equiva-

lently as the subset of & indicated by the vector. This allows us to

write expressions such as G ∪ ~ ∈ F&2 to denote the vector de�ned

by the union of G,~ ⊆ & .

We will often need to consider the restriction of a vector G ∈ F&2
to the set of faces & (E) incident to some vertex E ∈ + . This is

called the local view of G at E . In a convenient abuse of notation, we

will equivalently consider local views as elements of F
& (E)
2 , or as

elements of F
&
2 with support on & (E). For simplicity of notation,

we write local views at E ∈ + with a subscript E , for example

GE = G |& (E) .
By the TNC condition, & (E) is in bijection with � × � so that

each local view naturally de�nes a Δ × Δ matrix, i.e., GE ∈ FΔ×Δ2 .

We will label the faces of & (E) by pairs of vertices E1, E2, where E1
is connected to E by an edge in �, and E2 to E by an edge in �. In

this case, we denote the unique face de�ned by these vertices by

[E1, E2] ∈ & (E) and we say that E1 is a row vertex for E , and that E2
is a column vertex. We will use the notation GE [E1, E2] to denote the
entry of GE speci�ed by the face [E1, E2]. Likewise, we will adopt
the notation GE [E1, ·] to denote the row of GE indexed by the row

vertex E1, and similarly GE [·, E2] to denote the column of GE indexed

by E2. Given neighboring vertices E ∈ +0 and E ′ ∈ +1, the shared
row (resp. column) of the local views GE and GE′ can be equivalently

denoted by either GE [E ′, ·] or GE′ [E, ·] (resp. GE [·, E ′] or GE′ [·, E]).
Let us now de�ne the notion of a local minimum weight correc-

tion and other associated objects.

Definition 16. Let 4 ∈ F&2 be a / error. For each vertex E ∈ +1,
we de�ne 2E (4) as a closest codeword in �⊥1 to the local view 4E . If

there are multiple closest codewords, then we may �x an arbitrary

one.

For each vertex E ∈ +1, let '+E (4) = 4E − 2E (4) ⊆ & (E). Then we

call '+E (4) the local minimum weight correction at the vertex E . We

will denote the collection of all local minimum weight corrections by

R(4) = {'+E (4)}E∈+1
. We will also de�ne the total correction

'(4) =
⋃

R(4) =
⋃

E∈+1

'+E (4) . (18)

Note that the local potential at E is given by

*E (4) = 3
(

4E,�
⊥
1

)

= |4E − 2E (4) | = |'+E (4) | , (19)

and our goal is to reduce the global potential* (4) = ∑

E∈+1
*E (4)

at every step of the decoding. When the error 4 is understood, we

will often simply write 2E , '
+
E , and ' for short.

We can now proceed with the proof of Theorem 10, which we

split into three cases:

(1) In the �rst case, we consider whether �ipping single qubits

can decrease the total potential. If this is not the case, it will

introduce extra structure in the set '.

(2) In the second case, we ask if ' has high overlap with a

codeword of �⊥1 in a +1 local view. If so, it will allow us

to �ip a set of qubits that together can decrease the total

potential.

(3) The third and most complicated case is the one complemen-

tary to the �rst two, where no single qubit �ip can decrease

the total potential, and where ' has low overlap with all

local codewords. The intuition here is that ' cannot be a

very large set, so every +1 local view of the error is close to

the local code. Because the error “looks like” a codeword, we

are able to apply reasoning similar to the local minimality

argument in the proof of the distance of the code. In essence,

the expansion of the graph allows us to �nd a special +0
vertex whose local view contains a �ip-set to decrease the

total potential.

5.1 Proof of Cases 1 and 2

In this subsection, we prove Theorem 10 for the �rst two cases

listed above. The terminology and de�nitions established in this

subsection will also be crucial to the proof of case 3. To consider

the �rst case, we de�ne the concept of a metastable con�guration.

Definition 17. Let 4 ∈ F&2 be an error.We say that 4 ismetastable

if �ipping any one qubit @ ∈ & does not decrease the global potential.

We also say that R(4) and '(4) are metastable if they are obtained

from a metastable error 4 . Note that while we only de�ne and use

metastability for an error 4 and its con�guration of local minimum

weight corrections, the property of metastability is really a property

intrinsic to the underlying syndrome f .

Note that case 1 pertains precisely to the case when the error

4 is not metastable. If 4 is not metastable then there exists some

@ ∈ & which decreases the global potential and Theorem 10 follows.

Therefore, in the remainder of this section we consider the case

that 4 (and hence ') is metastable.

Definition 18. Let 4 ∈ F&2 be an error, and let R = {'+E (4)}E∈+1

be a set of local minimum weight corrections for 4 . We say that R is

disjoint if '+E (4) ∩ '+E′ (4) = ∅ for all E ≠ E ′.

When R is a disjoint set of corrections we can think of it as a

directed subgraph of G□1 by viewing each '+E as the set of outgoing

edges from E (see Figure 2). The local view 'E is then the set of all

edges, incoming or outgoing, incident to E in this directed graph.
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'
4

.

Figure 2: Subsets of G□1 indicating 4, ', and elements of . . In

the diagram �⊥1 is the repetition code (codewords 00000 and

11111). Note that the red edges without an arrow are in ~, the

red edges with an arrow are in ' ∩ 4, and the undecorated

black edges are just the remaining edges in G□1 .

Note that in this case, the set R completely de�nes the underlying

directed graph. Conversely, given the directed subgraph, we may

uniquely recover R by taking '+E (4) as the set of outgoing edges at

each vertex. Therefore wewill identify a disjointR with the directed

subgraph it de�nes in the following. We can likewise identify the

set of total corrections ' with the undirected graph underlying R.
Note that R will always be disjoint when 4 is a metastable error

(otherwise �ipping a shared qubit will lower the global potential by

2). For a metastable error, �ipping a qubit @ = (E, E ′) ∈ '+E , which
is a directed edge from E to E ′, decreases *E by one and increases

*E′ by one. We �rst prove a lemma which shows that metastable

errors are somewhat rigid under additional bit-�ips.

Lemma 19 ('-flipping). Let R(4) be a directed subgraph of G□1
corresponding to a set of local minimum weight corrections for a

metastable error 4 . Suppose furthermore that for some subset '̂ ⊆ '(4),
�ipping all qubits of '̂ does not decrease the global potential. Consider

the error 4+'̂. Then a valid con�gurationR(4+'̂) of locally minimum

weight corrections for 4 + '̂ is obtained from R(4) by reversing the

directions of all edges in '̂. Moreover, the nearest codewords 2E at each

vertex remains unchanged, i.e.,

2E (4) = 4E + '+E (4) = (4 + '̂)E + '+E (4 + '̂) = 2E (4 + '̂) . (20)

Proof. Consider any E ∈ +1. By de�nition, each '+E (4) is a mini-

mum weight correction to the local code at E , so 2E (4) = 4E + '+E (4)
and *E (4) = |'+E (4) |. Now suppose we �ip all qubits in '̂. In the

local view of E , we have

2E (4) = 4E + '̂ ∩& (E) + '+E (4) + '̂ ∩& (E) (21)

= (4 + '̂)E + '+E (4) + '̂ ∩ '+E (4) + '̂ ∩ '−E (4) , (22)

where we de�ne '−E (4) = 'E (4)\'+E (4). Note that '−E (4) can be

thought of as the set of incoming edges at E in the directed graph

de�ned by R(4). Therefore, we can bound the weight of the new

minimal weight correction for vertex E by

*E (4 + '̂) ≤ |'+E (4) + '̂ ∩ '+E (4) + '̂ ∩ '−E (4) | (23)

= |'+E (4) + '̂ ∩ '+E (4) | + |'̂ ∩ '−E (4) | (24)

= *E (4) − |'̂ ∩ '+E (4) | + |'̂ ∩ '−E (4) | , (25)

where the �rst line follows from equation (22) and the second from

the disjointness of the sets '+E (4) and '−E (4). Note that if equality
holds in equation (23), then a valid minimum weight correction for

(4 + '̂)E is given by

'+E (4 + '̂) = '+E (4) + '̂ ∩ '+E (4) + '̂ ∩ '−E (4) . (26)

The set '+E (4 + '̂) above is obtained from '+E (4) by removing all

outgoing edges in '̂ and changing all incoming edges in '̂ to outgo-

ing edges. Also note that in this case the nearest codeword remains

2E (4).
Summing inequality (23) for all E ∈ +1 gives a bound on the

global potential as

* (4 + '̂) ≤
∑

E∈+1

*E (4) −
∑

E∈+1

|'̂ ∩ '+E (4) | +
∑

E∈+1

|'̂ ∩ '−E (4) | (27)

= * (4) − |'̂ ∩ '(4) | + |'̂ ∩ '(4) | (28)

= * (4) , (29)

where in the second line we’ve used the fact that '(4) =
⊔

E∈+1
'+E (4) =

⊔

E∈+1
'−E (4) by metastability. By the assumption

of the lemma, * (4 + '̂) ≥ * (4). This means inequality (23) must

hold with equality for all E ∈ +1. Hence, we have proven that

R(4 + '̂) can be taken as R(4), but with the directions of edges in

'̂ reversed. □

Remark 20. In the scenario of the '-�ipping lemma, while the

error 4 + '̂ may not be metastable itself, the set R(4 + '̂) as de�ned as
in the lemma is still disjoint. This new set is a valid correction in the

sense that each '+E (4 + '̂) gives a minimum weight correction to the

local code — correcting the error (4 + '̂)E to 2E (4 + '̂) = 2E (4) — at

every E ∈ +1. Note that the set of total corrections remains invariant

in this case, i.e., '(4) = '(4 + '̂).
In the second case, we assume that ' has high overlap with a

codeword of �⊥1 . We formalize this property below.

Definition 21 (Low Overlap). The set ' is said to have the

low-overlap property at E ∈ +1 if for all codewords 2 ∈ �⊥1 , we
have |'E ∩ 2 | ≤ |2 |/2. We will say that the set ' has the low-overlap

property if it has the low-overlap property at every E ∈ +1.
Before formally proving case 2, let us �rst provide some rough

intuition. When the low-overlap property is not satis�ed, there

exists some codeword 2 ∈ �⊥1 at some vertex E ∈ +1 which has

large agreement with 'E . Using the '-�ipping Lemma 19, we may

assumewithout loss of generality that'+E = 0. Now imagine �ipping

the set 'E ∩ 2 . Since '+E = 0, every edge in 'E belongs to a local

correction neighboring E . Flipping 'E ∩ 2 will therefore lower the
local potential at each of these neighbors by 1. It will also raise

the local potential at E , which was zero before. However, since 'E
has large overlap with 2 it is actually more e�cient to apply the

correction 2\'E instead of 'E ∩ 2 . In this case, the local error is

pushed out of the neighborhood of its original nearest codeword

2E (4) and into the neighborhood of 2E (4) + 2 instead. The local

potential at E is therefore raised by an amount less than 'E ∩ 2 ,

which results in an overall lowering of the global potential.

Lemma 22. Let ' be metastable. If ' does not have the low-overlap

property, then there exists E ∈ +1 and a subset 5 ⊆ & (E) such that

�ipping the qubits of 5 decreases the total potential.
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Proof. Suppose that ' is metastable and does not have the low-

overlap property. Then there exists some E ∈ +1 and some 2 ∈ �⊥1 \
{0} such that |'E (4) ∩2 | > |2 |/2. Let 4′ = 4 +'+E (4). If* (4′) < * (4)
then we are done. Otherwise* (4′) = * (4), and by the '-�ipping

Lemma 19, we may take '(4′) = '(4) with '+E (4′) = 0.

Consider now �ipping the additional set of qubits 5 ′ = 'E (4′) ∩2
to obtain the error 4′′ = 4′ + 5 ′. For each @ = (E ′, E) ∈ 5 ′, we have
@ ∈ '+E′ (4

′), so that |'+E′ (4
′′) | = |'+E′ (4

′) | − 1. This is the new value

of the local potential at E ′. Since we had *E (4′) ≡ |'+E (4′) | = 0,

the change in the global potential is given by * (4′′) − * (4′) =
*E (4′′) − |5 ′ |.

Since 4′E ∈ �⊥1 , a valid correction for 4′′E is given by 5 ′ + 2 , where
2 is the high-overlap codeword from earlier. This correction has

weight |5 ′ + 2 | = |'E (4) ∩ 2 + 2 | < |2 |/2 < |'E (4) ∩ 2 | = |5 ′ |.
Therefore*E (4′′) − |5 ′ | < 0, and we have* (4′′) < * (4′) = * (4).
Our desired �ip-set is therefore 5 = '+E (4) + 'E (4) ∩ 2 . □

5.2 Proof of Case 3

The preceding subsection proves Theorem 10 in the cases when '

is not metastable, or when ' is metastable but does not have the

low-overlap property. In what follows, we consider the remaining

case where ' is both metastable and has the low-overlap property.

We summarize our key list of assumptions for this case below for

convenience.

Assumption 23. Let 4 ∈ F&2 be a/ error of weight |4 | ≤ X=/6Δ3/2−Y .
We assume that 4 is a reduced error, i.e., it is the minimum weight

element of the coset 4 + C⊥
/
. We assume that 4 is a metastable error,

and that its set of local minimum weight corrections '(4) satis�es
the low-overlap property 21. Finally, we also require that the under-

lying quantum Tanner code be de�ned using dual tensor codes of

su�ciently large robustness, i.e., with robustness parameter Δ3/2+Y′

for some Y′ > 0. Throughout the rest of the proof, we �x any Y < Y′.

The proof of case 3 proceeds in two general steps. In the �rst step,

we show using the expansion of the underlying graphs that, given

an error 4 of su�ciently low weight, there always exists a special

vertex E0 ∈ +0 with the property that E0 “sees” many non-trivial

codewords of �� and �� amongst its shared local views with the

minimum weight corrections on neighboring vertices.

The second step of the proof proceeds to analyze the local view

at the vertex E0 described above. We show that due to the pattern

of its many shared codewords, it is either the case that 'E0 ⊂ & (E0)
is su�ciently large to contain a �ip-set which reduces the potential,

or else it is small enough that 4E0 has many columns and rows

which are close to non-trivial codewords of�� and�� . In the latter

case, the robustness of the underlying dual tensor code then implies

that 4E0 must have su�cient overlap with a / -stabilizer that the

addition of this stabilizer will reduce the weight of 4 . Since we

began without loss of generality with a reduced error 4 , this leads

to a contradiction.

5.2.1 Existence of E0 ∈ +0. In the �rst part of the analysis of the

third case, we proceed in a manner parallel to the proof of Theorem

1 in [17]. The goal is to show that for an error 4 with weight |4 | ≤
X=/6Δ3/2−Y , there always exists a vertex E0 ∈ +0 whose local view
contains many columns and rows which are close to non-trivial

codewords of�� and�� . Aside from some di�erences in de�nitions,

the proofs and results of this subsection are equivalent to their

counterparts in [17]. Please see the full paper [13] for the omitted

proofs.

Since our goal is to �nd a vertex E0 ∈ +0 whose local view

has many rows and columns close non-trivial codewords, we �rst

parametrize the vertices of +1 with non-trivial nearest codewords.

This is captured by the set . below.

Definition 24. Let 4 ∈ F&2 be an error and let R = {'+E (4)}E∈+1

be a set of local minimum weight corrections. We de�ne the set of

non-trivially corrected vertices . ⊆ +1 as
. = {E ∈ +1 | '+E ≠ 4E} . (30)

That is, a vertex E is in. if and only if the result of applying the locally

minimum weight correction at E results in a non-trivial codeword i.e.

2E = 4E + '+E ≠ 0.

To work with the vertex set . , it will also be convenient to

de�ne an edgewise version of the condition '+E ≠ 4E . To that end,

we introduce the set ~ of “residual errors”. Given an error 4 ∈ F&2 ,
the elements of ~ are all of the elements of 4 which have no overlap

with the set of minimum weight corrections '(4) (see Figure 2).

Definition 25. Let 4 ∈ F&2 be an error and let R = {'+E (4)}E∈+1

be a set of local minimum weight corrections. The set of “residual”

errors is de�ned by ~ = 4\' ∈ F&2 , i.e., ~ labels the set of errors which

are not in any of the local minimum weight corrections.

The edges of G□1 indexed by ~ de�ne a subgraph of G□1 which

we will call �□1,~ . This subgraph is closely related to the set . . It

is straightforward to see that every vertex of G□1,~ must belong to

. . Conversely, the low-overlap property implies that each vertex

of . must be incident to many edges in G□1,~ . This means that .

is precisely the vertex set of G□1,~ and moreover G□1,~ must have

large minimum degree. This discussion is formalized below by

Lemmas 26 and 27.

Lemma 26. Let (E, E ′) ∈ ~ be an edge in G□1,~ . Then both E and E ′

are elements of . .

Proof. By de�nition, the edge (E, E ′) ∈ ~ is an element of 4 but

not of '. Therefore (E, E ′) is an element of 4E (and likewise, of 4E′ )

but not an element of '+E (and likewise, '+E′ ). It follows that 4E ≠ '+E
and 4E′ ≠ '+E′ . □

Lemma 27. Every vertex E ∈ . is incident to at least XΔ/2 edges
in ~. In particular, the subgraph G□1,~ has vertex set equal to . and

minimum degree at least XΔ/2.

Each vertex E of G□1,~ has a non-trivial nearest codeword 2E ∈ �⊥1 .
To ensure that the individual columns and rows of 2E are themselves

close to non-trivial codewords of �� and �� , we appeal to the

robustness of the dual tensor code�⊥1 . Since robustness only applies
to codewords of weight at most Δ3/2+Y , we �rst de�ne the concept
of a normal vertex. Roughly speaking, a vertex is considered normal

precisely when robustness can be applied to its nearest codeword.

Definition 28. Let us de�ne a normal vertex of. as a vertex with

degree at most 1
2Δ

3/2+Y in G□1,~ . A vertex of . which is not normal is

927



STOC ’23, June 20–23, 2023, Orlando, FL, USA Shouzhen Gu, Christopher A. Pa�ison, and Eugene Tang

called exceptional. We denote the subsets of normal and exceptional

vertices as .= and .4 , respectively.

Since G□1,~ has large minimum degree, the expansion of G□1 now

ensures that as long as G□1,~ has su�ciently few edges, it must

contain many normal vertices. Note that Lemma 29 is the only

place where the assumption on the weight of |4 | (and hence |~ |) is
explicitly used.

Lemma 29. Suppose that |~ | ≤ X=/6Δ3/2−Y
= XΔ1/2+Y |+1 |/12.

Then the fraction of exceptional vertices in .4 ⊆ . is bounded above

as

|.4 |
|. | ≤

576

Δ1+2Y . (31)

Using the robustness of �⊥1 and the low-overlap property, we

can now show that each column and row of 2E for E ∈ .= is indeed

close to a codeword of �� and �� .

Lemma 30. Let E ∈ .= be a normal vertex. Then every column

(resp. row) of 2E is distance at most Δ1/2+Y/X from a codeword in ��
(resp. �� ). Moreover, 2E contains at least one row or column which is

close to a non-zero codeword of �� or �� .

Proof. By assumption of E being a normal vertex, we know that

|~E | = |4E\'E | ≤ 1
2Δ

3/2+Y . From the low-overlap property, we see

that
1

2
|2E | ≤ |(4E\'E) ∩ 2E | ≤ |4E\'E | ≤

1

2
Δ
3/2+Y . (32)

By the robustness of the dual tensor code �⊥1 , it follows that the
support of 2E is concentrated on the union of at most |2E |/XΔ ≤
Δ
1/2+Y/X non-zero columns and rows. Using Lemma 45, we con-

clude that there exists a decomposition 2E = c+r, where c ∈ ��⊗F�2
is supported on at most Δ1/2+Y/X non-zero columns, and where

r ∈ F�2 ⊗ �� is supported on at most Δ1/2+Y/X non-zero rows. In

particular, this implies that each column (resp. row) of 2E is dis-

tance at most Δ1/2+Y/X from a codeword of �� (resp. �� ). Since 2E
is non-zero by de�nition of . , it follows at least one of c or r is

non-zero, so that at least one column or row is close to a non-zero

codeword. □

Nowwe are in a position to start the search for our special vertex

E0 ∈ +0. To that end, we de�ne our analog of “heavy” edges in [17],

which we call “dense” edges.

Definition 31 (Dense Edges). Let �~ ⊆ � (G∪) be the edges
in G∪ which are incident to some square in ~. We say that an edge

(E, E ′) ∈ �~ , where E ∈ +1 and E ′ ∈ +0, is dense if it is incident to at
least XΔ − Δ1/2+Y/X squares of 2E .

We then de�ne the vertex set, ⊆ +0 to be the set of all vertices

incident to a normal vertex E ∈ .= through a dense edge.

From the perspective of a vertex E ′ ∈ +0, only individual columns

and rows of its neighboring nearest codewords 2E are visible. Dense

edges are precisely the edges through which E ′ expects to see non-

trivial codewords of �� or �� . The set , ⊆ +1 de�ned above

can therefore be thought of as the set of “candidate” E0’s. We will

identify a vertex of, with a linear number of dense edges but a

sublinear number of exceptional neighbors in .4 . Such a vertex will

allows us to utilize the robustness properties of the local codes.

We �rst show that each E ′ ∈, must have many neighbors in . .

Lemma 32. The degree in �~ of any E ′ ∈ , is at least 1
2XΔ −

Δ
1/2+Y/X . In particular, every E ′ ∈, is adjacent to at least 1

2XΔ −
Δ
1/2+Y/X vertices in . .

Proof. Let E ′ ∈ , . By assumption, there exists a dense edge

(E, E ′) connecting E ′ to a normal vertex E ∈ .= . Let us assume

without loss of generality that (E, E ′) is a �-edge so that 2E [·, E ′]
de�nes a column of 2E .

Note that the degree of E ′ in �~ is lower bounded by the weight

of the corresponding column in ~E , i.e., deg�~
(E ′) ≥ |~E [·, E ′] |.

Let 2� ∈ �� denote the codeword closest to 2E [·, E ′]. Since (E, E ′)
is dense, it follows from Lemma 30 that 2� is non-zero. We can

form the matrix which is zero everywhere except on the E ′-column,

where it is equal to 2� . Note that this matrix will be a codeword

of �⊥1 , and that the low-overlap property applied to this codeword

implies that |'E [·, E ′] ∩ 2� | ≤ |2� |/2.
Then we have

|2� | = |2E [·, E ′] ∩ 2� | + |2�\2E [·, E ′] | (33)

≤ |2E [·, E ′] ∩ 2� | + Δ1/2+Y/X (34)

≤ |~E [·, E ′] ∩ 2� | + |'E [·, E ′] ∩ 2� | + Δ1/2+Y/X (35)

≤ |~E [·, E ′] | + |2� |/2 + Δ1/2+Y/X , (36)

where the second line follows from Lemma 30, the third line from

the fact that 2E ⊆ ~E ∪ 'E , and the last line from the low-overlap

property. This gives us

XΔ/2 ≤ |2� |/2 ≤ |~E [·, E ′] | + Δ1/2+Y/X . (37)

Therefore we have

deg�~
(E ′) ≥ |~E [·, E ′] | ≥

1

2
XΔ − Δ1/2+Y/X . (38)

Lemma 26 now ensures that each E ′ ∈ , is adjacent to at least
1
2XΔ − Δ1/2+Y/X elements of . . □

Knowing that each E ′ ∈, has many neighbors in . , the expan-

sion of G∪ implies that the number of vertices in, must be small

compared to . .

Lemma 33. For Δ large enough, the set, satis�es the bound

|, | ≤ 81

X2Δ
|. | . (39)

We expect each E ∈ .= to be incident to at least one dense edge

by virtue of having a column or row close to a non-trivial codeword.

This means that the total number of dense edges is at least on the

order of |.= |. Lemma 33 in turn suggests that the number of dense

edges is large relative to |, |. This implies that the average vertex

in, should be incident to a large number of dense edges. This is

formalized by Lemma 34 and Corollary 35 below.

Lemma 34. LetD denote the set of dense edges incident to, . Then

the average degree of, in D is bounded by

|D|
|, | ≥ 2UΔ (40)

for some constant U > 0 (which we may choose to be anything smaller

than X2/192 by taking Δ su�ciently large).
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Corollary 35. At least an U/2 fraction of the vertices in, are

incident to at least UΔ dense edges.

Proof. Let [ be the fraction of vertices in, with dense degree

greater than UΔ. The maximum degree of any vertex in G∪ is 2Δ,
so it follows that

2UΔ ≤ |D||, | ≤ 2Δ[ + (1 − [)UΔ . (41)

Therefore we have [ ≥ U/(2 − U) ≥ U/2. □

We have now shown that there exists a subset of vertices in

, incident to many dense edges. We must now show that within

this subset, there exists vertices which are not adjacent to many

exceptional vertices in .4 . We expect this to be the case since the

number of exceptional vertices is small relative to the number of

normal vertices. To proceed, we bound the number of edges shared

between, and .4 in Lemma 36 below.

Lemma 36. The total number of edges in G∪ between, and .4 is

bounded above by

|�G∪ (,,.4 ) | ≤ 193Δ1/2−Y |, | . (42)

Putting everything together, we can �nally show the existence

of the special vertex E0, as formalized by Corollary 37.

Corollary 37. At least an U/4 fraction of the vertices of, :

(1) are incident to at least UΔ dense edges, and

(2) are adjacent to at most (772/U)Δ1/2−Y ≡ VΔ1/2−Y vertices of
.4 .

In particular, at least one such vertex exists since U > 0.

Proof. Let,1 be the subset of vertices in, satisfying condition

1, and let,2 be the subset of vertices in, not satisfying condition

2. Since each vertex of,2 is adjacent to more than (772/U)Δ1/2−Y

vertices of .4 , we get

|,2 | · (772/U)Δ1/2−Y ≤ |�G∪ (,,.4 ) | ≤ 193Δ1/2−Y |, | , (43)

which implies that |,2 | ≤ (U/4) |, |. Therefore the set of vertices
satisfying both condition 1 and 2 is bounded below by

|,1\,2 | ≥ |,1 | − |,2 | ≥ U |, |/2 − U |, |/4 = U |, |/4 . (44)

□

5.2.2 The Local View at E0. Let E0 ∈ , be a vertex satisfying

the conditions of Corollary 37. In this subsection, we analyze the

structure of ~ and ' from the perspective of E0 ∈ +0. Let ~0, 40, and
'0 denote the local views of ~, 4 , and ' at the vertex E0.

We will write [E, E ′] ∈ & (E0) to denote the face anchored at E0
with neighboring +1 vertices E and E

′, with the implicit convention

that unprimed vertices E denote row vertices, and primed vertices

E ′ denote column vertices. We will also write # (E0) ⊆ +1 to denote
the set of all neighbors of E0 inG∪, and#A (E0) and#2 (E0) to denote
the set of row and column vertex neighbors, respectively.

We �rst show a key result regarding the structure of ~0 and '0.

As a consequence of metastability, the edges of'0 must complement

the edges of ~0 to complete codewords on either columns or rows

shared with neighboring local views (see equation 45). This allows

us to split '0 into disjoint parts depending on whether columns or

rows are corrected.

Lemma 38. We can write '0 = 'col ⊔ 'row, where we have

~0 [E, ·] ⊔ 'row [E, ·] = 2E [E0, ·] , and

~0 [·, E ′] ⊔ 'col [·, E ′] = 2E′ [·, E0] , (45)

for all E ∈ #A (E0) and E ′ ∈ #2 (E0).

Proof. Let @ = [E, E ′] ∈ '0. Since ' is metastable, it follows

that @ belongs to exactly one of '+E or '+E′ . Suppose without loss of
generality that @ ∈ '+E . Since 4E + '+E = 2E , it follows that @ ∈ 2E if
and only if @ ∉ 4 . Likewise, since @ ∉ '+E′ , it follows that @ ∈ 2E′ if
and only if @ ∈ 4 . It follows that @ must be an element of exactly

one of 2E or 2E′ .

Let 'row ⊆ '0 denote the collection of all @ ∈ '0 which belong

to 2E for some row vertex E . Likewise, let 'col ⊆ '0 denote the

collection of all @ ∈ '0 which belong to 2E′ for some column vertex

E ′. Then by the preceding discussion we have

'0 = 'row ⊔ 'col . (46)

Next, we show equation (45). We focus on the row case, with the

column case being analogous. Note that we have

~0 [E, ·] = 4E [E0, ·]\'E [E0, ·] ⊆ 4E [E0, ·]\'+E [E0, ·]
⊆ 4E [E0, ·] + '+E [E0, ·] = 2E [E0, ·] . (47)

Also, we have 'row [E, ·] ⊆ 2E [E0, ·] by de�nition. This implies that

~0 [E, ·] ⊔ 'row [E, ·] ⊆ 2E [E0, ·] . (48)

Conversely, we have

2E [E0, ·] = 4E [E0, ·] + '+E [E0, ·] ⊆ 4E [E0, ·] ∪ 'E [E0, ·]
= ~E [E0, ·] ⊔ 'E [E0, ·] = ~0 [E, ·] ⊔ '0 [E, ·] . (49)

Since all elements of '0 belonging to 2E are by de�nition in 'row, it

follows that we have

2E [E0, ·] ⊆ ~0 [E, ·] ⊔ 'row [E, ·] . (50)

It therefore follows that

~0 [E, ·] ⊔ 'row [E, ·] = 2E [E0, ·] , and

~0 [·, E ′] ⊔ 'col [·, E ′] = 2E′ [·, E0] , (51)

which hold for all E ∈ #A (E0) and E ′ ∈ #2 (E0). □

Corollary 39. Let [E, E ′] ∈ & (E0). If E ∉ . then 'row [E, ·] = 0.

Likewise, if E ′ ∉ . then 'col [·, E ′] = 0.

Proof. We work with the row vertex E , with the column case

being identical. Suppose that E ∉ . . Then by de�nition, the closest

codeword to 4E at E is the trivial codeword 2E = 0. Evaluating

equation (45) at the row de�ned by edge (E0, E), we have

~0 [E, ·] ⊔ 'row [E, ·] = 2E [E0, ·] = 0 , (52)

which implies that 'row [E, ·] = 0. □

Let us now provide some intuition for the remainder of the proof.

The decomposition shown in Lemma 38 allows us to consider two

separate scenarios:
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.4 .= .2

.4

.=

.2

4̃0 = ~̃0 = ~0 'row

'col

Figure 3: The E0 local view after �ipping '0 ∩ 4. The various
regions indicate the possible supports of the labeled quanti-

ties.

(1) First, imagine that '0 has high weight relative to ~0. Then

Lemma 38 suggests that the columns and rows of '0 are

close to codewords of �� and �� . An argument similar to

the one used in the proof of case 2 would seem to suggest

that there exists some subset of '0 which would decrease

the global potential when �ipped.

(2) Alternatively, consider the scenario where '0 has low weight

relative to ~0. In this case, ~0 is close to 40, and Lemma 38

now implies that the columns and rows of 40 are close to

codewords of �� and �� . The robustness of the dual tensor

code�⊥1 suggests that we can �nd a codeword 20 ∈ �� ⊗�� ,

i.e., a / -stabilizer, which has high overlap with 40. But this

is in contradiction with the fact that 4 was assumed to be a

reduced error.

Given the discussion above, we will �nish the proof as follows:

Suppose that no subset of & (E0) decreases the global potential

when �ipped. We will show that this necessarily implies that '0
has su�ciently low weight (as formalized by Lemma 41) that the

argument outlined in scenario 2 can be carried out. Speci�cally, we

will show that there exists some 20 ∈ ��⊗�� such that |4+20 | < |4 |,
contradicting the fact that 4 is reduced.

To proceed, we will need to analyze the value of the potential

on a new con�guration of errors, one obtained from 4 by �ipping

all the qubits of 4 ∩'0. The utility of this new error con�guration 4̃

comes from the fact that the rows of 'row and columns of 'col are

exactly equal to the local minimum weight corrections for 4̃ (see

equation 53), giving us better control over the potential.

Let 4̃ = 4 +4 ∩'0 = 4\'0. We �rst show that some key quantities

remain unchanged in this new error con�guration. Since 4̃ is ob-

tained from 4 by �ipping a subset of ' without decreasing the global

potential, the '-�ipping Lemma 19 implies that the new total correc-

tion '̃ ≡ '(4̃) will be equal to the old one, i.e., '̃ = '(4̃) = '(4). This
implies that the vector of residual errors ~ likewise stays invariant,

i.e., ~̃ = ~ (4̃) = 4̃\'̃ = 4\'(4) = ~ (4). The situation after �ipping

'0 ∩ 4 is illustrated in Figure 3 and summarized by Lemma 40.

Lemma 40. Suppose that no subset of & (E0) decreases the global
potential when �ipped. Let 4̃ = 4\'0 denote the con�guration of errors
obtained after �ipping all the elements of '0 ∩ 4 . In this new error

con�guration, we may take the local minimum weight corrections to

be as given by the '-�ipping Lemma 19. Speci�cally, we have '̃ = '

and ~̃ ≡ 4̃\'̃ = 4\' = ~. Moreover, we have 4̃0 = ~0, and

'row [E, ·] = '̃+E [E0, ·] , and 'col [·, E ′] = '̃+E′ [·, E0] , (53)

for all [E, E ′] ∈ & (E0).

Proof. The fact that wemay take '̃ = ' follows directly from the

'-�ipping Lemma 19, which ensures that the original and updated

local minimumweight correction sets di�er only by the orientations

of edges. It follows that we also have

~ = 4\' = (4\'0)\' = 4̃\'̃ = ~̃ . (54)

Note that since 4̃ ∩ '0 = ∅, it also follows that ~̃0 = 4̃0.

Now, let E be a neighbor of E0, and suppose without loss of

generality that it is a row vertex. By the '-�ipping Lemma 19, the

nearest codeword 2E remains unchanged after �ipping '0 ∩ 4 . In
particular, we must have

~0 [E, ·] ⊔ 'row [E, ·] = 2E [E0, ·] = 4̃0 [E, ·] + '̃+E [E0, ·]
= ~0 [E, ·] ⊔ '̃+E [E0, ·] , (55)

where the �rst equality follows from Lemma 38, the second from

the invariance of the codeword 2E , and the last from the facts that

4̃0 = ~̃0 = ~0 and 4̃0 [E, ·] ∩ '̃+E [E0, ·] ⊆ 4̃0 [E, ·] ∩ '̃0 [E, ·] = ∅. It
follows that we must have 'row [E,·] = '̃+E [E0, ·]. □

Since the rows (resp. columns) of 'row (resp. 'col) are equal to

the local minimum weight corrections (for 4̃) on neighboring ver-

tices, we expect that '0 cannot be too large. Otherwise, '0 would

have enough overlap with the neighboring local minimum weight

corrections that subsets of it can start lowering the potential. There-

fore the fact that no subset of '0 can lower the potential implicitly

places a bound on its size. This is formalized by Lemma 41 below.

Lemma 41. Suppose that no subset of & (E0) decreases the global
potential* when �ipped. Then we have

|'0 | ≤
3Δ3/2+Y

X
(56)

for su�ciently large Δ.

Proof. Consider the error con�guration 4̃ = 4\'0. By assump-

tion we have* (4̃) = * (4). Using Lemma 40, we have 4̃0 = ~̃0 = ~0
and '̃0 = '0.

Let E be, without loss of generality, a row vertex. Since we have

'row [E, ·] = '̃+E [E0, ·], it follows that �ipping 'row [E, ·] decreases
the local potential*E (4̃) by |'row [E, ·] |, i.e.,

*E (4̃ + 'row [E, ·]) = *E (4̃) − |'row [E, ·] | . (57)
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Now, suppose that E ∈ .= . Let 2� be the closest codeword of �� to

2E [E0, ·]. Then
*E (4̃ + ~0 [E, ·]) = *E (4̃ + 'row [E, ·] + 2E [E0, ·]) (58)

≤ *E (4̃ + 'row [E, ·] + 2�) +
Δ
1/2+Y

X
(59)

= *E (4̃ + 'row [E, ·]) +
Δ
1/2+Y

X
(60)

= *E (4̃) − |'row [E, ·] | +
Δ
1/2+Y

X
, (61)

where the �rst equality follows from the fact that

~0 [E, ·] ⊔ 'row [E, ·] = ~0 [E, ·] + 'row [E, ·] = 2E [E0, ·] . (62)

The second line follows from Lemma 30, and the third line follows

from the fact that*E (4 + 2) = *E (4) for any 2 ∈ �⊥1 . The last line is
just equation (57). Note that an analogous version of inequality (61)

also holds for column vertices.

Consider now the global potential* (4̃ +~0). Note that it follows
from Lemma 26 that ~0 will have empty intersection with the local

view of any E not in . , so that only the local potentials associated

with vertices of . can be a�ected by �ipping ~0. We will bound

the potential by explicitly separating out the contributions of the

exceptional vertices in .4 over which we have little control. Let us

write V ≡ 772/U for the constant appearing in Corollary 37. Then

we can bound the change in the potential by

0 ≤ * (4̃ + ~0) −* (4̃) (63)

=

∑

E∈# (E0 )∩.
(*E (4̃ + ~0) −*E (4̃)) (64)

≤
∑

E∈# (E0 )∩.=
(*E (4̃ + ~0) −*E (4̃)) + VΔ3/2−Y , (65)

where the �rst inequality follows from the assumption that no

subset of & (E0) decreases the global potential when �ipped, the

second line from the fact that only the local views associated with

vertices of # (E0) ∩ . are a�ected by �ipping ~0, and the last line

removes the contributions resulting from the vertices in .4 . The

VΔ3/2−Y term in the last line comes from the fact that there are

at most VΔ1/2−Y vertices of # (E0) ∩ .4 as a result of Corollary 37,

each of which can increase the weight of the potential by at most

Δ.

Splitting the sum above into row and column parts and applying

inequality (61), we get

∑

E∈# (E0 )∩.=
(*E (4̃ + ~0) −*E (4̃)) (66)

≤
∑

E∈#A (E0 )∩.=

(

−|'row [E, ·] | +
Δ
1/2+Y

X

)

+
∑

E′∈#2 (E0 )∩.=

(

−|'col [·, E ′] | +
Δ
1/2+Y

X

)

(67)

≤ −
∑

E∈#A (E0 )∩.=
|'row [E, ·] | −

∑

E′∈#2 (E0 )∩.=
|'col [·, E ′] | +

2Δ3/2+Y

X
.

(68)

By Corollary 39, it follows that the rows of 'row (and columns

of 'col, respectively) are zero if the indexing vertex is not in . . It

follows that we have
∑

E∈#A (E0 )∩.=
|'row [E, ·] | =

∑

E∈#A (E0 )
E∉.4

|'row [E, ·] | ≥ |'row | − VΔ3/2−Y ,

(69)

and likewise
∑

E′∈#2 (E0 )∩.=
|'col [·, E ′] | =

∑

E′∈#2 (E0 )
E′∉.4

|'col [·, E ′] | ≥ |'col | − VΔ3/2−Y ,

(70)

where the VΔ3/2−Y correction term again comes from the vertices

in .4 over which we have no control. Altogether, we have

0 ≤ −|'row | − |'col | +
2Δ3/2+Y

X
+ 3VΔ3/2−Y . (71)

Taking Δ su�ciently large so that Δ2Y ≥ 3XV , we �nally get

|'0 | ≤
3Δ3/2+Y

X
. (72)

□

Lemma 41 shows that '0 is small. This now allows us to follow

the remaining steps outlined in scenario 2 above to complete the

proof of Theorem 10.

Corollary 42. Suppose that no subset of & (E0) decreases the
global potential* when �ipped. Then we have

3 (~0,�� ⊗ FΔ2 ) + 3 (~0, F
Δ

2 ⊗ ��) ≤
10Δ3/2+Y

X
(73)

for su�ciently large Δ.

Proof. Consider the distance of~0 to the row codespace F�2 ⊗��

(with the column case being identical). From equation (45), we have

~0 [E, ·] + 'row [E, ·] = ~0 [E, ·] ⊔ 'row [E, ·] = 2E [E0, ·] . (74)

If E ∉ . then Corollary 39 implies that each of the terms above is

zero. If E ∈ .= , then Lemma 30 implies that

3 (~0 [E, ·] + 'row [E, ·],��) = 3 (2E [E0, ·],��) ≤
Δ
1/2+Y

X
. (75)

Summing over all rows, and accounting for the exceptional vertices

E ∈ .4 , we get

3 (~0 + 'row, F�2 ⊗ ��) ≤
Δ
3/2+Y

X
+ VΔ3/2−Y , (76)

where the Δ
3/2+Y term comes from the non-exceptional vertices

and the Δ3/2−Y term from the exceptional vertices. Since

|'row | ≤ |'0 | ≤
3Δ3/2+Y

X
(77)

by Lemma 41, it follows that we have

3 (~0, F�2 ⊗ ��) ≤
4Δ3/2+Y

X
+ VΔ3/2−Y ≤ 5Δ3/2+Y

X
, (78)

where the last inequality follows from the fact that we took Δ large

enough so that Δ2Y ≥ 3VX in Lemma 41. □
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Corollary 43. Suppose no subset of & (E0) decreases the global
potential* when �ipped. Then the local view ~0 has weight

|~0 | ≥
1

4
UXΔ2 (79)

for su�ciently large Δ.

Proof. From Corollary 37 it follows that E0 is adjacent to either

≥ (UΔ − VΔ1/2−Y )/2 normal row vertices E ∈ #A (E0) ∩ .= or ≥
(UΔ−VΔ1/2−Y )/2 normal column vertices E ′ ∈ #2 (E0)∩.= through

dense edges. Suppose without loss of generality that it is the former.

Then by de�nition of dense edges, it follows that |2E [E0, ·] | ≥ XΔ −
Δ
1/2+Y/X for each of these vertices.

Summing the �rst equation in (45) over all row vertices E , we get

|~0 | + |'row | =
∑

E∈#A (E0 )
|~0 [E, ·] ⊔ 'row [E, ·] | (80)

=

∑

E∈#A (E0 )
|2E [E0, ·] | (81)

≥ (UΔ − VΔ1/2−Y ) (XΔ − Δ1/2+Y/X)/2 , (82)

where the last inequality follows from the preceding discussion.

Choosing Δ su�ciently large so that

(UΔ − VΔ1/2−Y ) (XΔ − Δ1/2+YX) ≥ 2

3
UXΔ2 (83)

and applying Lemma 41, we get

|~0 | ≥
1

3
UXΔ2 − 3Δ3/2+Y

X
. (84)

This implies that |~0 | ≥ 1
4UXΔ

2, for su�ciently large Δ. □

Finally, we are now in a position to complete the proof of Theo-

rem 10.

Proof of Theorem 10. Since the code�⊥1 is chosen to beΔ3/2+Y′

robust for Y′ > Y, it follows from Corollary 42 and Proposition 6 that

there exists some 20 ∈ �� ⊗ �� such that |~0 − 20 | ≤ 15Δ3/2+Y/X ,
which holds so long asΔ is chosen large enough so thatXΔY

′ ≥ 10ΔY .

Applying Lemma 41, this implies that

|40 + 20 | = |~0 + 40 ∩ '0 + 20 | ≤ |~0 + 20 | + |'0 ∩ 40 | ≤
18Δ3/2+Y

X
.

(85)

Since we have |40 | ≥ |~0 | ≥ (UX/4)Δ2, it follows that we have

|40 + 20 | < |40 | whenever
72

UX2
< Δ

1/2−Y . (86)

This contradicts the fact that 4 was chosen to be a reduced error. □
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