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Abstract

By means of using an operator A to denote non-linear differential equations in general, we first give a systematic
description of a new kind of analytic technique for non-linear problems, namely the homotopy analysis method (HAM).
Secondly, we generally discuss the convergence of the related approximate solution sequences and show that, as long as
the approximate solution sequence given by the HAM is convergent, it must converge to one solution of the non-linear
problem under consideration. Besides, we illustrate that even though a non-linear problem has one and only one
solution, the sole solution might have an infinite number of expressions. Finally, to show the validity of the HAM, we
apply it to give an explicit, purely analytic solution of the 2D laminar viscous flow over a semi-infinite flat plate. This
explicit analytic solution is valid in the whole region g"[0,#R) and can give, the first time in history (to our
knowledge), an analytic value f @@ (0)"0.33206, which agrees very well with Howarth’s numerical result. This verifies the
validity and great potential of the proposed homotopy analysis method as a new kind of powerful analytic tool. ( 1999
Elsevier Science Ltd. All rights reserved.

Keywords: 2D Blasius’ viscous flow; Explicit analytic solution; Non-linear differential equation; The homotopy analysis
method; Independent upon small parameters

1. Introduction

The two-dimensional (2D) laminar viscous flow
over a semi-infinite flat plate is governed by a non-
linear differential equation (see Refs. 1—4)

f @@@(g)#1
2

f (g) f @@ (g)"0, g3[0,#R), (1.1)

with boundary conditions

f (0)"f @ (0)"0, f @ (#R)"1, (1.2)

where the prime denotes derivative w. r. t. g.
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The non-linear differential Eq (1.1) appears to be
simple. However, it is difficult to solve it analyti-
cally. In 1908, Blasius [5] gave a solution in power
series

f (g)"
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k/0
A!
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(3k#2) !
g3k`2, (1.3)

where

A
0
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+
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3r BA
r
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k~r~1
(k*2). (1.4)
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Here p"f @@(0) must be numerically given.
Howarth [6, 7] obtained a numerical result
f @@ (0)"0.33206. So, rigorously speaking, Blasius’
solution (1.3) is a semi-analytic and semi-numerical
one. As pointed out by Liao [8], the power series
(1.3) can be given by perturbation techniques (see
Ref. [9]), too. However, Blasius’ power solution
(1.3) converges in a rather restricted region
DgD)o

0
, where o

0
+5.690.

In tradition, perturbation techniques are widely
applied to give analytic approximations of non-
linear problems. In essence, perturbation tech-
niques use one or more ‘‘small parameters’’ to
convert a non-linear problem into an infinite se-
quence of auxiliary linear sub-problems. However,
it is just the so-called small parameter which greatly
restricts application areas of perturbation tech-
niques. First, a lot of non-linear problems do not
contain such a kind of ‘‘small parameters’’. Second-
ly, the validity of perturbation approximations is in
general strongly dependent upon the value of the
so-called ‘‘small parameters’’. Finally, we have
nearly no freedom to select the related initial ap-
proximations and governing equations of the re-
lated auxiliary sub-problems. Therefore, it is
worthwhile developing a kind of new analytic tech-
nique which can provide us with greater freedom
and larger flexibility to apply it and besides has
nothing to do with whether considered non-linear
problems contain small parameters or not.

The author has made some attempts in this
direction. Based on the homotopy method in
topology (see Ref. [10]), Liao [8, 11, 12] proposed
such a kind of analytic technique, namely the
homotopy analysis method (HAM). The HAM
has such an advantage that its validity is in general
independent of whether non-linear problems
under consideration contain ‘‘small parameters’’ or
not. Thus, the HAM is valid for most of the
non-linear problems, especially those with strong
non-linearity. Furthermore, the HAM provides us
with great freedom and large flexibility to select
related initial approximations, governing equations
of auxiliary linear sub-problems. It is this kind
of freedom and flexibility which provide us with
a larger possibility to ensure that the corre-
sponding approximation sequences of the HAM is
convergent.

In many cases, the HAM can give better analytic
approximations than perturbation ones. For
example, Liao [8] applied the HAM to solve the
foregoing Blasius’ flow and obtained such a family
of power series

f (g)" lim
m?`=

m
+
k/0
CA!

1

2B
k A

k
pk`1

(3k#2)!
g3k`2D'

m,k
(+),

g3[0,#R), !2(+(0, (1.5)

where p"f @@ (0), A
k
(k*0) is defined by Eq. (1.4),

and the real function '
m,n

(+), called the approach-
ing function, is defined by

'
m,n

(+)"0, (n'm),

'
m,n

(+)"(!+)n
m~n
+
k/0
A

m

m!n!kB A
n#k!1

k B+k,

(1)n)m),

'
m,n

(+)"1, (n)0). (1.6)

As pointed out by Liao [12], the power series (1.5)
is convergent in the region

!o
0
(g(o

0 C
2

D+ D
!1D

1@3
, (!2(+(0), (1.7)

which becomes larger and larger as D+ D
(!2(+(0) gets smaller and smaller, where
o
0
+5.690 is the convergence radius of the Blasius’

power series (1.3). Therefore, the series (1.5) may be
valid in the whole domain g"[0,#R) as D+ D
(!2(+(0) tends to zero! Moreover, as pointed
out by Liao [8], the Blasius’ power series (1.3) is
only a special case of Eq. (1.5) when +"!1, be-
cause the real function '

m,n
(+) has such an interest-

ing property that '
m,n

(!1)"1 for 0)n)m.
Thus, the power series (1.5) is more general than
Eq. (1.3).

However, rigorously speaking, even the power
series (1.5) is still not a purely analytic but a semi-
analytic and semi-numerical solution, because the
value of p"f @@(0) had to be given by numerical
techniques. To our knowledge, up to now, no one
has given, in rigorous meaning, a purely analytic
solution of Blasius’ viscous flow and an analytic
value of f @@(0). Of course, we might neglect this kind
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of imperfection. However, it still remains a chal-
lenge for us to give a purely, or totally, analytic
solution of Eqs. (1.1) and (1.2).

In this paper, by using an operator A to denote
a non-linear differential equation in general, we
first give a systematic description of the HAM.
Secondly, we generally discuss the convergence of
the related infinite sequences of approximations
given by the HAM. Finally, to show the validity of
the HAM, we apply a new auxiliary linear operator,
which is better and more general than that used by
Liao [8], to give an explicit, purely analytic solu-
tion of the foregoing Blasius’ flow. This explicit ana-
lytic solution is valid in the whole region
g"[0,#R) and can give an analytic value
f @@ (0)"0.33206, which agrees very well with
Howarth’s numerical result.

2. The systematic description of the homotopy
analysis method

Let +O0, p be complex numbers, and A(p), B(p)
be complex functions analytic in the region Dp D)1,
which satisfy

A(0)"B (0)"0, A(1)"B (1)"1, (2.1)

respectively. Besides, let

A(p)"
`=
+
k/1

a
1,k

pk, B(p)"
`=
+
k/1

b
1,k

pk (2.2)

denote the Maclaurin series of A(p) and B (p), re-
spectively. Because A(p) and B (p) are analytic in
the region Dp D)1, therefore we have

`=
+
k/1

a
1,k

"A(1)"1,
`=
+
k/1

b
1,k

"B (1)"1. (2.3)

For simplicity, the above-defined complex func-
tions A(p) and B (p) are called the embedding func-
tions, and p is called the embedding parameter.

Consider a non-linear equation in a general form

A[u (r)]"0, r3), (2.4)

where A is a differential operator, u (r) is a solution
defined in the region r3). Applying the homotopy

analysis method to solve it, we first of all need to
construct such a family of equations

[1!B (p)] ML[h(r, p)]!L[u
0
(r)]N

"+A (p)A[h (r, p)], (2.5)

where L is a properly selected auxiliary linear
operator satisfying

L(0)"0, (2.6)

+O0 is an auxiliary parameter, u
0
(r) is an initial

approximation, A(p) and B (p) are the above-de-
fined embedding functions, p is the embedding
parameter. According to the definition of the em-
bedding functions A(p) and B (p), Eq. (2.5) gives
when p"0 that

h(r, 0)"u
0
(r). (2.7)

Similarly, when p"1, Eq. (2.5) is the same as Eq.
(2.4) so that we have

h(r, 1)"u(r). (2.8)

Assume that +, A (p), B (p) are properly selected
so that Eq. (2.5) has solution h (r, p) for any
p3[0, 1], and besides, at p"0 the solution h (r, p)
has derivatives of the order of up-to infinity, say,

h*k+
0

(r)"
Lkh(r, p)

Lpk K
p/0

, k"1, 2, 3, . . . , (2.9)

Thus, as p increases from 0 to 1, the solution h (r, p)
of Eq. (2.5) varies continuously from the initial
approximation u

0
(r) to the solution u(r) of the orig-

inal Eq. (2.4). In topology, this kind of continuous
variation is called deformation. So, we call Eq. (2.5)
the zeroth-order deformation equations, and h*k+

0
(r)

the kth-order deformation derivatives.
Clearly, Eqs. (2.7) and (2.8) give an indirect rela-

tionship between the initial approximation u
0
(r
0
)

and the solution u (r) of the original equation
(2.4)—the numerical technique, namely the con-
tinuous method, is just based on this kind of rela-
tionship. Here, we deduce a direct relationship
between them, which is the cornerstone of our
analytic technique. Note that the Maclaurin series
of h (r, p) about p is

h(r, 0)#
`=
+
k/1
C
h*k+
0

(r)

k! D pk. (2.10)
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Assuming that +, A(p), B(p), the initial approxima-
tion u

0
(r) and the auxiliary linear operator L are

properly selected so that the above Maclaurin
series converges at p"1, we have by Eqs. (2.7) and
(2.8) the relationship

u(r)"u
0
(r)#

`=
+

m/1

u
m
(r), (2.11)

where

u
m
(r)"

h*m+
0

(r)

m!
, m*1. (2.12)

Obviously, it is necessary to give the governing
equations determining u

m
(r). Differentiating the

zeroth-order deformation equation (2.5) m times
with respect to p, we get

m
+
k/0
A
m

kB
dk[1!B(p)]

dpk

dm~k

dpm~k
ML[h (r, p)]

!L[u
0
(r)]N

"+
m
+
k/0
A
m

kB
dkA(p)

dpk

dm~kA[h (r, p)]

dpm~k
. (2.13)

Further dividing it by m! and then setting p"0, we
have the so-called mth-order deformation equations

LCum
(r)!

m~1
+
k/1

b
1,k

u
m~k

(r)D"R
m
(r), (2.14)

where

R
m
(r)"+

m
+
k/1

a
1,k

d
m~k

(r) (2.15)

and

d
k
(r)"

1

k!

dkA[h (r, p)]

dpk K
p/0

. (2.16)

We emphasize that the mth-order (m*1) defor-
mation equation (2.14) is linear. Moreover, its
right-hand side R

m
(r) (m"1, 2, 3, . . . ) is known

when the first (m!1)th-order approximations
have been obtained. So, using the selected initial
approximation u

0
(r), we can obtain u

1
(r),u

2
(r),

u
3
(r), . . . , one after the other in order. Therefore,

according to Eq. (2.11), we in fact convert the
original non-linear problem (2.4) into an infinite

sequence of linear sub-problems governed by Eq.
(2.14). We emphasize that unlike perturbation tech-
niques, this kind of transformation has nothing to
do with whether Eq. (2.4) contains the so-called
‘‘small parameters’’ or not. This is the essential
difference between the HAM and perturbation
techniques. Besides, we emphasize that the HAM
provides us with great freedom and large flexibility
to select the non-zero auxiliary parameter +, the
embedding functions A(p) and B (p), the initial ap-
proximation u

0
(r) and the auxiliary linear oper-

ators L. This kind of freedom and flexibility may
greatly increase the possibility for us to ensure that
the approximation solution series (2.11) is conver-
gent. We will show this point in Section 4 by means
of a simple example.

Note that most of the non-linear problems can
be expressed by some governing equations (either
ODEs or PDEs) and related boundary conditions.
However, for the sake of simplicity, we consider
here only one non-linear equation (2.4) which may
be either a governing equation or a boundary con-
dition. Clearly, all governing equations and bound-
ary conditions of a non-linear problem can be
treated similarly. Moreover, for different governing
equations or boundary conditions, we might select
different auxiliary linear operators L, different
values of non-zero parameter +, and different types
of embedding functions A(p) and B (p). All of these
provide us with great freedom and large flexibility
to apply the HAM to get satisfactory analytic ap-
proximations of strongly non-linear problems. Fi-
nally, we point out that the operator A is rather
general so that Eq. (2.4) may express either an
ordinary differential equation (ODE) or a partial
differential equation (PDE) or the related bound-
ary conditions. Therefore, the HAM is valid for
both ODEs and PDEs.

3. The convergence of the approximate solution
sequence

In this section, we prove that, as long as the
sequence of approximations given by the above-
mentioned approach (HAM) is convergent, it must
be a solution of the non-linear problem under con-
siderations.
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Theorem 1. If the series

u
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`=
+

m/1

u
m
(r)

is convergent, it must be a solution of Eq. (2.4).

Proof. By Eq. (2.14), we have
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b
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u
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(r)D, (3.1)

which gives by Eqs. (2.3) and (2.6) that

`=
+

m/1

R
m
(r)"0. (3.2)

On the other hand, we have by Eqs. (2.15) and
(2.16) that

`=
+

m/1

R
m
(r)"

`=
+

m/1

+
m
+
k/1

a
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d
m~k

(r)

"+
`=
+
k/1

a
1,k

`=
+

m/k

d
m~k

(r)

"+
`=
+
k/1

a
1,k

`=
+

m/0

d
m
(r)

"+
`=
+
k/1

a
1,k

`=
+

m/0

1

m!

dmA[h(r, p)]

dpm K
1/0

.

(3.3)

According to Eq. (2.3), we have +`=
k/1

a
1,k

"1. Thus,
the above expression becomes

`=
+

m/1

R
m
(r)"+

`=
+

m/0

d
m
(r)"+

`=
+

m/0

1

m!

dmA[h(r, p)]

dpm K
p/0

.

(3.4)

Note that +O0. Therefore, by Eqs. (3.2) and (3.4),
we have

`=
+

m/0

1

m!

dmA[h (r, p)]

dpm K
p/0

"0. (3.5)

Noting that, in general, h (r, p) is not the solution of
Eq. (2.4) when pO1. Write * (r, p)"A[h(r, p)].
Clearly, * (r, p) denotes the residual error of
Eq. (2.4). The Maclaurin series of this residual error
about p is

`=
+

m/0

1

m!

dm*[h (r, p)]

dpm K
p/0

pm

"

`=
+

m/0

1

m!

dmA[h(r, p)]

dpm K
p/0

pm. (3.6)

According to Eq. (3.5), the above Maclaurin series
is convergent at p"1, say

* (r, 1)"A[h(r, 1)]"
`=
+

m/0

1

m!

dmA[h(r, p)]

dpm K
p/0

"0. (3.7)

It means that

h(r, 1)"u
0
(r)#

`=
+

m/1

u
m
(r)

must be a solution of Eq. (2.4). This completes the
proof. K

Theorem 2. ¼rite

i
m
"

m
+
k/1

R
k
(r) and t

m
"

m
+
k/1

d
k
(r),

where R
k
(r), d

k
(r) are defined by Eqs. (2.15) and

(2.16), respectively. If the series u
0
(r)#+`=

m/1
u

m
(r)

converges, both of the sequences i
0
, i

1
, i

2
, . . . and

t
0
, t

1
, t

2
, . . . converge to zero.

Proof. According to Eqs. (3.4) and (3.5), this the-
orem is obviously true. This completes the proof.

K

Due to Theorem 1, we just need to focus on
selecting proper initial approximations u

0
(r), non-

zero auxiliary parameter +, the embedding func-
tions A(p), B(p), and auxiliary linear operators
L to ensure that the related approximation
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sequences is convergent. Theorem 2 provides us
with a simple way to estimate whether the related
approximation solution sequence is divergent:
when the sequences i

0
, i

1
, i

2
, . . . and/or t

0
, t

1
,

t
2
, . . . are divergent, the related series (3.1) must be

divergent, too. Theorem 2 is especially useful for
some numerical techniques based on the HAM,
such as the general boundary element method
([13, 14]) and so on [15].

4. The explicit analytic solution of Blasius’ viscous
flow

4.1. The explicit expression of the solution

For 2D Blasius’ viscous flow problem, Liao [8]
used an auxiliary linear operator

L
0
"

L3
Lg3

and an initial approximation fI
0
(g)"pg2/2 to

construct the corresponding zeroth-order defor-
mation equation. Note that the above auxiliary
linear operator directly comes from the linear
term of Eq. (1.1). However, by means of the
HAM, this is not necessary because the HAM pro-
vides us with large freedom and flexibility to select
other auxiliary linear operators and initial approxi-
mations in different forms. In this paper, we illus-
trate that, using a more general auxiliary linear
operator

L"A
L
Lg

#bB
L2
Lg2

"

L3
Lg3

#b
L2
Lg2

, b'0, (4.1)

we can obtain a new family of explicit, totally
analytic solutions better than Eq. (1.5). This explicit
analytic solution can converge to the solution
of Eqs. (1.1) and (1.2) in the whole region
g"[0,#R), and moreover, it can indepen-
dently give such an analytic value f @@ (0)"0.32206
that agrees very well with Howarth’s numerical
one.

First of all, using L defined by Eq. (4.1) as an
auxiliary linear operator and A(p)"p and
B (p)"p as the embedding functions, we construct

the following zeroth-order deformation equation:

(1!p)L[F(g, +, b, p)!f
0
(g)]

"p+C
L3F(g, +, b, p)

Lg3
#

1

2
F (g, +,b, p)

L2F (g, +, b, p)

Lg2 D
g3[0,#R), +O0, b'0, p3[0, 1], (4.2)

with boundary conditions

F (0, +, b, p)"F@ (0, +, b, p)"0, F@(#R, +, b, p)"1,

p3[0, 1], +O0, b'0. (4.3)

Note that we have at p"0 the result

F (g, +, b, 0)"f
0
(g), g3[0,#R), +O0, b'0

(4.4)

and at p"1 the relationship

F (g, +, b, 1)"f (g), g3[0,#R), +O0, b'0,

(4.5)

respectively, where the prime denotes the partial
derivative w. r. t. g, and we select

f
0
(g)"g!

1!exp(!bg)

b
, b'0 (4.6)

as the initial approximation which satisfies the
boundary conditions (1.2). Therefore, the process of
p varying from 0 to 1 is just the continuous
variation (or deformation) of the function
F (g, +, b, p) from the known initial approximation
f
0
(g) to the unknown solution f (g) of Eqs. (1.1) and

(1.2).
Assume that the deformation F(g, +, b, p), govern-

ed by Eqs. (4.2) and (4.3), is smooth enough about
p, so that the kth-order deformation derivative

f *k+
0

(g, +, b)"
LkF(g, +, b, p)

Lpk K
p/0

(k*1) (4.7)

exists. Then, according to Eq. (4.4) and the Taylor
formula, we have

F (g, +, b, p)"f
0
(g)#

`=
+
k/1
C

f *k+
0

(g, +, b)

k! D pk. (4.8)
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Clearly, the convergence region of above infinite
series is dependent upon + (+O0) and b (b'0).
Assume that both + and b are so properly selected
that the series (4.8) is convergent at p"1. Then,
due to Eqs. (4.5) and (4.8), we get at p"1 the
relationship

f (g)"f
0
(g)#

`=
+
k/1

f *k+
0

(g, +, b)

k!
"

`=
+
k/0

u
k
(g, +, b) (4.9)

between the initial approximation f
0
(g) and the

unknown solution f (g), where we define

u
0
(g,+,b)"f

0
(g),u

k
(g, +,b)"

f *k+
0

(g, +,b)

k!
, (k*1).

(4.10)

The governing equations of the unknown func-
tion u

m
(g, +,b) (m*1) are obtained by first differ-

entiating Eqs. (4.2) and (4.3) m times w. r. t. p and
then setting p "0 and finally dividing it by m!, i.e.

(u
m
)@@@#b (u

m
)@@"G

m
(g, +, b),

g3[0,#R), b'0, +O0, m*1 (4.11)

with the related boundary conditions

u
m
(0, +, b)"u@

m
(0, +,b)"u@

m
(#R, +, b)"0,

b'0, +O0, m*1, (4.12)

where the prime denotes the partial derivative w.r.t.
g and

G
1
(g, +, b)"+C

L3u
0
(g, +,b)

Lg3

#

1

2
u
0
(g, +, b)

L2u
0
(g, +, b)

Lg2 D, (4.13)

G
m
(g, +, b)"

L3u
m~1

(g, +,b)

Lg3
#b

L2u
m~1

(g, +, b)

Lg2

#+C
L3u

m~1
(g, +,b)

Lg3

#

1

2

m~1
+
k/0

u
k
(g, +,b)

L2u
m~1~k

(g, +, b)

Lg2 D (m*2).

(4.14)

Note that by Eqs. (4.6) and (4.13) we can first
calculate the term G

1
(g, +, b) and then obtain

u
1
(g, +, b) by solving the linear differential equation

(4.11) with linear boundary conditions (4.12). Sim-
ilarly, we can further calculate the term G

2
(g, +, b)

by Eq. (4.14) and then get u
2
(g, +, b), and so on. In

this way, the linear mth-order (m*1) deformation
equation (4.11) and (4.12) can be solved one after
the other in order. We use the widely applied sym-
bolic computation software MA¹HEMA¹ICA
(see Ref. [16]) to solve the first several equations
(4.11) and (4.12) and find, as a little surprise, that
u
m
(g, +, b) has the following structure:

u
m
(g, +, b)"

m`1
+
k/0

(
m,k

(g, +,b) exp(!kbg), m*0,

(4.15)

where the function (
m,k

(g, +, b) is defined by

(
0,0

(g, +,b)"b0
0,0

#b1
0,0

g, (4.16)

(
0,1

(g, +,b)"b0
0,1

, (4.17)

(
m,0

(g, +, b)"b0
m,0

, m*1, (4.18)

(
m,k

(g, +,b)"
2(m`1~k)

+
i/0

bi
m,k

gi, m*1, 1)k)m#1.

(4.19)

and the related coefficients are

b0
0,0

"!

1

b
, b1

0,0
"1, b0

0,1
"

1

b
, (4.20)

b0
1,0

"+C
1

b
!

5

8

1

b3D, (4.21)

b0
1,1

"!+A
1

b
!

3

4

1

b3B,

b1
1,1

"!+A1!
1

2b2B, b2
1,1

"

+
4b

(4.22)

b0
1,2

"!

+
8b3

, (4.23)

b0
2,0

"

+
b
#

5

4

+2

b3
!

5

8

+
b3

!

359

288

+2

b5
, (4.24)
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b0
2,1

"

3

4

+
b3

!

+
b
#

157

96

+2

b5
!

3

2

+2
b3

,

b1
2,1

"!+#
1

2

+
b2

#

17

16

+2
b4

!

5

4

+2
b2

, (4.25)

b2
2,1

"

1

4

+
b
#

9

16

+2

b3
!

1

2

+2
b
#

1

2
b+2,

b3
2,1

"

1

8

+2
b2

!

1

4
+2, b4

2,1
"

1

32

+2
b

, (4.26)

b0
2,2

"!

1

8

+
b3

!

13

32

+2
b5

#

1

4

+2
b3

,

b1
2,2

"!

3

16

+2
b4

#

1

4

+2
b2

, b2
2,2

"!

1

16

+2
b3

, (4.27)

b0
2,3

"

5

288

+2

b5
, . . . (4.28)

and so on. Knowing the structure (4.15) of u
m
(g,+,b),

we can rigorously deduce a recurrence formula
about the coefficients bk

m,n
of u

m
(g, +, b), where

m*1, 0)n)m#1 and 0)k)2(m!n#1),
as follows:

b0
m,0

"s
m
b0
m~1,0

!b~1
2m~1
+
q/0

!q
m,1

kq
1,1

!

.`1
+

//2
C(n!1)!0

m,n
k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!kq
n,0

!b~1kq
n,1

)D,
(4.29)

b1
m,0

"0, (4.30)

b0
m,1

"s
m
b0
m~1,1

#b~1
2m~1
+
q/0

!q
m,1

kq
1,1

#

m`1
+
n/2
Cn!0

m,n
k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!b~1kq
n,1

)D,
(4.31)

bk
m,1

"s
m
bk
m~1,1

#

2m~1
+

q/k~1

!q
m,1

kq
1,k

, 1)k)2m!2,

(4.32)

bk
m,1

"

2m~1
+

q/k~1

!q
m,1

kq
1,k

, 2m!1)k)2m, (4.33)

bk
m,n

"s
m
bk
m~1,n

!

2(m~n`1)
+
q/k

!q
m,n

kq
n,k

,

0)k)2(m!n), 2)n)m, (4.34)

bk
m,n

"!

2(m~n`1)
+
q/k

!q
m,n

kq
n,k

,

2(m!n)#1)k)2(m!n)#2, 2)n)m, (4.35)

b0
m,m`1

"!!0
m,m`1

k0
m`1,0

, (4.36)

where

s
m
"G

0, when m"1,

1, otherwise.
(4.37)

kq
1,k

"

q!

k!

(q!k#2)

bq~k`3
, 0)k)q#1, q*0, (4.38)

kq
n,k
"

q!

k!

1

(n!1)q~k`1bq~k`3G1!A1!
1

nB
q~k`1

]C(q!k#2)!(q!k#1)A1!
1

nBDH,
0)k)q, n*2, q*0 (4.39)

and

!q
m,1

"+(dq
m~1,1

#dq
m,1

), 0)q)2m!2, (4.40)

!2m~1
m,1

"+d2m~1
m,1

, (4.41)

!0
m,m`1

"+d0
m,m`1

(4.42)

!q
m,n

"+(dq
m~1,n

#dq
m,n

), 0)q)2(m!n), 2)n)m,

!q
m,n

"+dq
m,n

, 2(m!n)#1)q)2(m!n)#2,

2)n)m,

!q
m,n

"0 otherwise. (4.43)

The related coefficient dq
m,n

(m*1, 0)n)m#1,
0)q)2(m!n#1)) is defined as follows:

dq
m,n

"

1

2

m~1
+
k/0

J1

+
j/J0

I1
+

*/I0

ci
k,j

bq~i
m~1~k,n~j

jq~i
m~1~k,n~j

,

J
0
"max M1, n#k!mN, J

1
"minMn, k#1N,

I
0
"maxM0, q!2(m!k!n#j )N,

I
1
"minMq, 2(k!j#1)N,, (4.44)
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where

jk
i,j
"0, i"j"0, k*2,

jk
i,j
"0, i'0, j"0, k*1,

jk
i,j
"0, j'i#1,

jk
i,j
"0, k'2 (i#1!j ),

jk
i,j
"1, otherwise, (4.45)

c0
m,m`1

"(m#1)2b2b0
m,m`1

, (4.46)

d0
m,m`1

"!(m#1)3b3b0
m,m`1

(4.47)

and for 1)k)m,

ci
m,k

"(i#1)(i#2)bi`2
m,k

!2(kb)(i#1)bi`1
m,k

#(kb)2bi
m,k

,

0)i)2(m!k), (4.48)

ci
m,k

"!2(kb)(i#1)bi`1
m,k

#(kb)2bi
m,k

,

i"2(m!k)#1, (4.49)

ci
m,k

"(kb)2bi
m,k

, i"2(m!k)#2, (4.50)

di
m,k

"(i#1)ci`1
m,k

!(kb)ci
m,k

,

0)i)2(m!k)#1, (4.51)

d2(m~k`1)
m,k

"!(kb)c2(m~k`1)
m,k

. (4.52)

For details, please refer to Appendix A. Using the
above recurrence formulas, we can calculate all
coefficients bk

m,n
by using only the first three coeffi-

cients b0
0,0

"!b~1, b1
0,0

"1, b0
0,1

"b~1. Clearly,
owing to Eqs. (4.9) and (4.15), the Mth-order ap-
proximation is

f
0
(g)#

M
+
k/1

u
k
(g, +,b)

"

M
+

m/0

m`1
+
k/0

(
m,k

(g, +,b) exp(!kbg)

"

M
+

m/0

(
m,0

(g, +,b)

#

M`1
+
k/1

exp(!kbg)A
M
+

m/k~1

(
m,k

(g, +, b)B
"t#A

M
+

m/0

b0
m.0B

#

M`1
+
n/1

exp(!nbg)A
M
+

m/n~1

2(m~n`1)
+
k/0

b,
m,n

gkB.

Therefore, we obtain in fact an explicit, totally
analytic solution of the 2D Blasius’ viscous flow
problems

f (g)" lim
M?`=

M
+
k/0

u
k
(g, +, b)

"t# lim
M?`= CA

M
+

m/0

b0
m,0B#

M`1
+
n/1

exp(!nbg)

]A
M
+

m/n~1

2(m~n`1)
+
k/0

bk
m,n

gkBD. (4.53)

4.2. The convergence of the explicit analytic solution
(4.53)

In Section 3, we point out in general terms that, if
the sequence of the approximation solutions given
by the HAM is convergent, it must converge to one
of the solutions of the non-linear problem under
consideration. Here, using the 2D Blasius’ flow
problems as an example, we can show this point
more clearly.

Assume that + and b are properly selected so that
the related series (4.9)

`=
+
k/0

u
k
(g, +, b) (4.54)

converges. Then,

lim
k?`=

u
k
(g, +, b)"0 (4.55)

must hold. Thus, we further have by Eq. (4.11)
that

lim
k?`=

G
k
(g, +, b)

" lim
k?`=C

L3u
k
(g, +, b)

Lg3
#b

L2u
k
(g, +, b)

Lg2 D"0,

g3[0,#R), (4.56)

say, the infinite sequence

G
1
(g, +, b), G

2
(g, +, b), G

3
(g, +,b), . . . ,

converges to zero. On the other hand, owing to
Eq. (3.12), or Eqs. (4.13) and (4.14), we have by
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straightforward calculations that

G
m
(g, +, b)

"G
m~1

(g, +, b)#+C
L3u

m~1
(g, +,b)

Lg3

#

1

2

m~1
+
k/0

u
k
(g, +,b)

L2u
m~1~k

(g, +, b)

Lg2 D
"+

m
+
i/1
C
L3u

i~1
(g, +, b)

Lg3

#

1

2

i~1
+
k/0

u
k
(g, +, b)

L2u
i~1~k

(g, +, b)

Lg2 D. (4.57)

Therefore, owing to Eqs. (4.56) and (4.57), one may
deduce

lim
m?`=

G
m
(g, +, b)

"+
`=
+
i/1
C
L3u

i~1
(g, +, b)

Lg3

#

1

2

i~1
+
k/0

u
k
(g, +, b)

L2u
i~1~k

(g, +,b)

Lg2 D
"+

`=
+
s/0

L3u
s
(g, +, b)

Lg3

#

+
2

`=
+
s/0

s
+
k/0

u
k
(g, +, b)

L2u
s~k

(g, +,b)

Lg2

"+
`=
+
s/0

L3u
s
(g, +, b)

Lg3

#

+
2

`=
+
k/0

`=
+
s/k

u
k
(g, +, b)

L2u
s~k

(g, +,b)

Lg2

"+
`=
+
s/0

L3u
s
(g, +, b)

Lg3

#

+
2

`=
+
k/0

u
k
(g, +, b)

`=
+
s/k

L2u
s~k

(g, +, b)

Lg2

"+
`=
+
s/0

L3u
s
(g, +, b)

Lg3

#

+
2

`=
+
k/0

u
k
(g, +, b)

`=
+
s/0

L2u
s
(g, +,b)

Lg2

"+G
L3

Lg3 C
`=
+
k/0

u
k
(g, +,b)D

#

1

2C
`=
+
k/0

u
k
(g, +, b)D

L2
Lg2C

`=
+
k/0

u
k
(g, +, b)DH

"0, (4.58)

which gives, due to +O0,

L3
Lg3C

`=
+
k/0

u
k
(g, +,b)D

#

1

2C
`=
+
k/0

u
k
(g, +, b)D

L2
Lg2C

`=
+
k/0

u
k
(g, +, b)D"0.

(4.59)

Furthermore, by Eqs. (4.6) and (4.12), we have

`=
+
k/0

u
k
(0, +, b)"0,

`=
+
k/0

u@
k
(0, +, b)"0,

`=
+
k/0

u@
k
(#R, +,b)"1.

Therefore, as long as the infinite series (4.53) con-
verges, it must be the solution of the Blasius’ vis-
cous flow problems governed by Eqs. (1.1) and
(1.2).

Note that the infinite series (4.53) gives a family
of explicit analytic solutions in two parameters
b (b'0) and + (+O0). Some among them con-
verge to f (g) but some do not, dependent upon the
values of + and b. Besides, some of them might be
‘‘better’’ than others. Note that the HAM provides
us with great freedom and large flexibility to select
‘‘better’’ values of b and + so as to ensure that the
related series (4.53) converges to f (g). Certainly, if
Eq. (4.53) converges, its second-order derivative
with respect to g at g"0, say,

`=
+
k/0

u@@
k
(0, +,b) (4.60)

must converge, too. By Eq. (A.11), we have its cor-
responding mth-order approximation

p
m
"

m
+
k/0

u@@
k
(0, +, b)"

m
+
k/0

k`1
+
n/1

c0
k,n

. (4.61)

By the foregoing recurrence formulas, we have

p
1
"b(1#+)!

+
4b

, (4.62)

p
2
"b(1#+)2!

1

2

+
b
!

5

24

+2

b3
, (4.63)
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p
3
"b(1#+)3!

3

4

+
b
!

5

8

+2

b3
!

275

576

+3

b5
#

5

24

+3
b3

,

(4.64)

p
4
"b(1#+)4!

+
b
!

5

4

+2
b3

!

275

144

+3
b5

#

5

6

+3

b3

#

275

288

+4
b5

!

4879

2880

+4
b7

, (4.65)

p
5
"b(1#+)5!

5

4

+
b
!

25

12

+2

b3
!

1375

288

+3

b5
#

25

12

+3

b3

#

1375

288

+4
b5

!

4879

576

+4
b7

!

275

576

+5

b5
#

4879

960

+5

b7

!

2740789

345600

+5

b9
, . . . (4.66)

Note that p
m

contains the term b(1#+)m. Thus,
+ must belong to a subset of the region D1#+D)1, i.e.

!2)+)0. (4.67)

In other words, we are ascertained that the infinite
series (4.60) and (4.53) diverge when +'0 or
+(!2. Note that in Eqs. (4.2) and (4.3) we have
defined +O0. Our calculations indicate that the
series (4.60) converges if

!2(+(0, b'b
#
, (4.68)

where b
#
+2.5. However, the convergence rate is

dependent upon the values of + and b. Our calcu-
lations indicate that the series (4.60) converges
rather slowly when + is in the neighborhoods of
!2 or zero. In the region!1.25)+)!0.75, the
series (4.60) converges sufficiently fast. Further-
more, for each given value of +3(!2, 0), there exists
a best value of b (b'b

#
) which corresponds to the

smallest convergence rate, say, the corresponding
series (4.60) converges fastest. For example, when
+"!9/10, b"3, the series (4.60) converges fast
enough to the value 0.33206, as shown in Table 1,
which agrees well with Howarth’s numerical one.
We emphasize that such a totally analytic result is
given the first time in history (to our knowledge).
This verifies the validity of the HAM.

Furthermore, we examine the convergence
of the series (4.53). Our calculations indicate that,
Eq. (4.53) is convergent in the whole region
g3[0,#R) to the solution f (g) of Eqs. (1.1) and

Table 1
Analytic approximations f @@

m
(0,b, +) when b"3 and +"!0.90

Order of Approx. f @@(0)

5th order 0.28098
10th order 0.32992
15th order 0.33164
20th order 0.33198
25th order 0.33204
30th order 0.33205
35th order 0.33206

Table 2
Residual errors D f @@@

35
(g)#f @@

35
(g) f

35
(g)/2 D of the 35th-order ana-

lytic approximation when b"3 and +"!9/10

g
i

10th 20th 30th 35th
approx. approx. approx. approx.

0.4 2.4]10~2 1.9]10~4 8.3]10~6 7.2]10~6

0.8 7.2]10~3 4.2]10~4 1.4]10~5 3.7]10~6

1.2 8.0]10~2 2.0]10~3 2.3]10~5 4.6]10~6

1.6 0.102 2.1]10~3 1.4]10~4 1.4]10~5

2.0 2.9]10~2 5.3]10~3 3.9]10~4 9.5]10~5

2.4 4.8]10~2 1.2]10~2 4.2]10~5 1.4]10~4

2.8 7.6]10~2 8.3]10~3 1.2]10~3 1.7]10~4

3.2 6.5]10~2 6.7]10~4 1.6]10~3 5.5]10~4

3.6 4.2]10~2 7.2]10~3 7.3]10~4 5.1]10~4

4.0 2.3]10~2 8.7]10~3 4.2]10~4 1.2]10~4

4.4 1.1]10~2 1.9]10~3 1.1]10~3 2.6]10~4

5 2.7]10~3 3.2]10~3 9.6]10~4 4.1]10~4

6 1.8]10~4 4.3]10~4 2.4]10~4 1.4]10~4

7 7.3]10~6 2.8]10~5 2.4]10~5 1.7]10~5

8 1.7]10~7 1.0]10~6 1.2]10~6 9.5]10~7

Averaged 3.4]10~2 3.5]10~3 4.6]10~4 1.6]10~4

(1.2), as long as the series (4.60) converges, say, the
series (4.53) converges when

!2(+(0, b'b
#

where b
#
+2.5. Moreover, when the series (4.60)

converges fast enough, the corresponding series
(4.53) also converges sufficiently fast. For example,
when +"!9/10, b"3, the series (4.53) converges
to the solution of Eqs. (1.1) and (1.2) with a satisfac-
tory convergence rate, so that the corresponding
35th-order analytic approximation agrees very well
with Howarth’s numerical results, as shown in
Tables 2—4. Clearly, the higher the order of approx-
imation, the better the approximation is. Note that
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Table 3
Comparison of the analytic approximations f

m
(g,b, +) in case of b"3 and +"!9/10 with Howarth’s (Refs. [6, 7]) numerical result

g 5th 10th 15th 20th 25th 30th 35th Numerical
order order order order order order order results

0.4 0.0218 0.0263 0.0266 0.0266 0.0266 0.0266 0.0266 0.0266
0.8 0.0920 0.1042 0.1059 0.1061 0.1061 0.1061 0.1061 0.1061
1.2 0.2319 0.2321 0.2373 0.2379 0.2379 0.2379 0.2380 0.2380
1.6 0.4544 0.4105 0.4185 0.4200 0.4203 0.4203 0.4203 0.4203
2.0 0.7489 0.6421 0.6467 0.6493 0.6499 0.6500 0.6500 0.6500
2.4 1.0932 0.9254 0.9188 0.9211 0.9220 0.9222 0.9223 0.9223
2.8 1.4665 1.2524 1.2300 1.2297 1.2305 1.2309 1.2310 1.2310
3.2 1.8547 1.6110 1.5733 1.5686 1.5686 1.5689 1.5690 1.5690
3.6 2.2498 1.9897 1.9402 1.9307 1.9294 1.9294 1.9295 1.9295
4.0 2.6479 2.3795 2.3224 2.3091 2.3063 2.3058 2.3058 2.3058
4.4 3.0472 2.7751 2.7137 2.6977 2.6936 2.6926 2.6924 2.6924
5.0 3.6468 3.3728 3.3088 3.2907 3.2854 3.2839 3.2835 3.2833
6.0 4.6468 4.3722 4.3072 4.2883 4.2825 4.2806 4.2800 4.2797
7.0 5.6468 5.3722 5.3071 5.2881 5.2822 5.2803 5.2796 5.2793
8.0 6.6468 6.3722 6.3071 6.2881 6.2822 6.2802 6.2796 6.2793

10 8.6468 8.3722 8.3071 8.2881 8.2822 8.2802 8.2796 8.2793
15 13.6468 13.3722 13.3071 13.2881 13.2822 13.2902 13.2796 13.2793
20 18.6468 18.3722 18.3071 18.2881 18.2822 18.2802 18.2796 18.2793
50 48.6468 48.3722 48.3071 48.2881 48.2822 48.2802 48.2796 48.2793

100 98.6468 98.3722 98.3071 98.2881 98.2822 98.2802 98.2796 98.2793

Table 4
Comparison of the analytic approximations f @

m
(g,b, +) in case of b"3 and +"!9/10 with Howarth’s (Refs. [6, 7]) numerical result

g
i

5th 10th 15th 20th 25th 30th 35th Numerical
order order order order order order order results

0.4 0.1090 0.13099 0.1326 0.1327 0.1328 0.1328 0.1328 0.1328
0.8 0.2529 0.2578 0.2640 0.2646 0.2647 0.2647 0.2647 0.2647
1.2 0.4527 0.3819 0.3918 0.3935 0.3937 0.3938 0.3938 0.3938
1.6 0.6544 0.5118 0.5130 0.5160 0.5166 0.5167 0.5168 0.5168
2.0 0.8083 0.6456 0.6269 0.6284 0.6295 0.6297 0.6298 0.6298
2.4 0.9044 0.7675 0.7316 0.7279 0.7285 0.7289 0.7290 0.7290
2.8 0.9563 0.8622 0.8216 0.8123 0.8112 0.8113 0.8115 0.8115
3.2 0.9814 0.9259 0.8914 0.8794 0.8765 0.8760 0.8760 0.8761
3.6 0.9926 0.9636 0.9395 0.9284 0.9246 0.9236 0.9234 0.9233
4.0 0.9972 0.9835 0.9692 0.9609 0.9573 0.9560 0.9557 0.9555
4.4 0.9990 0.9931 0.9855 0.9804 0.9777 0.9765 0.9761 0.9759
5.0 0.9998 0.9983 0.9960 0.9940 0.9927 0.9921 0.9918 0.9916
6.0 1.0000 1.0000 0.9997 0.9994 0.9993 0.9991 0.9991 0.9990
7.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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the first-order derivative of the series (4.53) also
converges to the corresponding Howarth’s numer-
ical solution, as shown in Table 4. In fact by Eq.
(4.53), we can easily get the high-order derivatives
of f (g). This is one of the advantages of analytic
solutions over numerical ones.

5. Conclusions and discussions

In this paper, we first of all use a non-linear
differential operator A to systematically describe
the basic ideas of a new kind of analytic technique
for non-linear problems, namely the homotopy
analysis method (HAM). Then, we prove that, as
long as the related approximation sequence is con-
vergent, it must converge to one of the solutions of
the non-linear problem under consideration. Be-
sides, we provide a simple way to judge if the
related approximation sequence is divergent. What
we would especially emphasize is that the HAM
can provide us with great freedom and large flexib-
ility to select better initial approximations and aux-
iliary linear operators and nonzero auxiliary
parameter + and embedding functions A(p), B (p) so
as to ensure the HAM valid and to get better
approximations. To illustrate this point, we apply
the HAM to solve the 2D Blasius’ viscous flow
problems and give an explicit, purely analytic solu-
tion which is valid in the whole region
0)g(#R. This solution gives us an analytic
value f @@(0)"0.33206, which agrees very well with
Howarth’s numerical one. We emphasize that it is
the first time in history (to our knowledge) that
such an explicit, totally analytic solution of Blasius’
flow problems and such an analytic value of f @@(0)
are given. This well verify the validity and the great
potential of the HAM as a new kind of analytic
tool.

Note that the explicit analytic solution (4.53)
contains two parameters b and +. It is very interest-
ing that this analytic solution converges to the sole
solution of Blasius’ flow problems when

!2(+(0, b'b
#
,

where b
#
+2.5. Note that different values of b cor-

respond to different initial approximations f
0
(g)

and different ‘‘auxiliary’’ linear operators L, and

moreover, different values of + give different ‘‘defor-
mations’’ governed by the zeroth-order deforma-
tion equations (4.2) and (4.3). Thus, an infinite
number of pairs of b and +, or in other words, an
infinite number of initial approximations and aux-
iliary linear operators and also many kinds of de-
formations, can make the series (4.53) convergent
to the sole solution of the Blasius’ flow problems. It
means that, although the solution of Blasius flow
problems is sole, it has however an infinite number
of different expressions. How should we understand
this fact ? We emphasize that the solution (4.53) is
a kind of limit and the values of b and + determine
the way and speed of approach to the sole solution
of Blasius’ flow problems. In essence, this is similar
to such a limit of a real function having two vari-
ables

%" lim
(x,y)? (0,0)

Jx2#y2

Dx D
. (5.1)

It is well known that the result % of the above limit
is strongly dependent upon the way or the approach
how the point (x, y) tends to (0, 0). Assume that the
point (x, y) tends to (0, 0) along the path defined by

y"axc, c'0, (5.2)

then we have

%" lim
(x,y)? (0,0)

Jx2#y2

Dx D
"1, c'1,

%" lim
(x,y)? (0,0)

Jx2#y2

Dx D
"J1#a2, c"1,

%" lim
(x,y)? (0,0)

Jx2#y2

Dx D
"#R, 0(c(1. (5.3)

Here, we emphasize two points. First, the result
% of the limit (5.1) is strongly dependent upon the
path tending to the sole point (0, 0). Secondly, there
exists an infinite number of paths corresponding to
c'1, which give the same result %"1. In other
words, there exists an infinite number of paths
along which we get the sole result %"1. Now, let
us come back to the explicit analytic solution (4.53)
of the Blasius’ flow problems. Note that solution
(4.53) is defined by a kind of limit. Similarly, al-
though Eqs. (1.1) and (1.2) have one and only one
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solution, there exist however an infinite number of
different approaches to tend to this sole solution.
Some among these approaches are better than
others, but some of them (for example, those when
D1#+ D'1, b(b

#
) are so bad that the correspond-

ing series is divergent. And certainly, there
should exist some better values of b and +. In other
words, there should exist some better auxiliary
linear operators, better initial approximations
and better zeroth-order deformation equations
which make the related approximation series to
converge sufficiently fast. Note that it is the
homotopy analysis method (HAM) which provides
us with the possibility, flexibility and freedom to
select operator (4.1), which is more general than
that used in Ref. [8], as our auxiliary linear oper-
ator, so that, we can get such an explicit, totally
analytic solution (4.53) of the 2D Blasius’ flow
problems.

Note that we get solution (4.53) by using the
simplest embedding functions A(p)"p and B(p)"
p. Obviously, if we use other types of embedding
functions such as

tanA
n
4

pB, sinA
n
2

pB,
exp(p)!1

(e!1)

and so on, we can get some new types of analytic
approximations of Blasius’ flow problems. Thus, it
might be interesting to study whether or not there
exist the best embedding functions and furthermore
how to find them when the answer is positive.

Although the example, i.e. the 2D Blasius’ vis-
cous flow, is simple and the related governing
Eq. (1.1) is an ordinary differential equation, the
basic ideas of the HAM can be applied to solve
complicated non-linear problems governed by or-
dinary differential equations or partial differential
equations, as mention in Section 2.

Using an auxiliary linear operator different from
Eq. (4.1), Liao [12] gave the power series (1.5) of
Blasius’ flow problems which contains the Blasius’
power solution (1.3). However, compared with per-
turbation techniques, the HAM has the following
advantages. First, it is based on homotopy and
does not depend on small parameters. Therefore,
the HAM can be applied to approximately solve
a large class of strongly non-linear problems than

with the straightforward perturbation method,
even including those whose governing equations
and boundary conditions do not contain any small
parameters. Secondly, the HAM provides us with
great freedom and large flexibility to properly select
initial approximations, auxiliary linear operators,
non-zero auxiliary parameter + and embedding
functions A(p), B(p). This kind of freedom and
flexibility not only implies great potential for us to
further improve the HAM itself, but also provides
us with a larger possibility to ensure that the re-
lated infinite series of approximations are conver-
gent and, besides, to select ‘‘better’’ ones from
the family of approximations in more general
forms. In fact, based on the HAM, we have also
developed some new numerical techniques such as
the general boundary element method [13, 14] and
so on (see Ref. [15]). Therefore, irrespective of
whether small parameters or not, the HAM might
become a new powerful analytic tool for non-linear
problems in science and engineering, although
it certainly needs further improvement and more
applications.

Finally, we especially point out that we get the
mathematical structure (4.15) of u

m
(g, +,b) by firstly

applying the symbolic computation software
MA¹HEMA¹ICA to solve the first several (suffi-
ciently many) deformation equations (4.11) and
(4.12) and then rigorously proving (by logic) that
this structure is indeed right (for details, please refer
to Appendix A). Without a computer, it seems
difficult for us to guess at first such a structure
of u

m
(g, +,b). Thus, we agree with the view point of

Dadfar et al. [17] that the importance of the role
of symbolic computation should not be under-
estimated. Combined with high performance com-
puters and symbolic computation software such as
MATHEMATICA and so on, the Homotopy Anal-
ysis Method (HAM) might become a new, more
powerful analytic tool to get satisfactory approxi-
mations of complicated non-linear problems in
science and engineering.
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Appendix A

(I) First of all, we point out that the initial ap-
proximation (4.6) has the same structure as
Eq. (4.15), where the real function (

m,k
(g, +,b) is

defined by Eqs. (4.16)—(4.19).
(II) Secondly, if we assume that the first (m!1)

solutions u
k
(g, +,b) (k"0, 1, 2, 3, . . . , m!1) have

the same structure as Eq. (4.15), then, we can prove
that u

m
(g,b, +) has the same structure as Eq. (4.15),

too.
To prove this, we define for the sake of simplicity

that

jk
i,j
"0, i"j"0, k*2,

jk
i,j
"0, i'0, j"0, k*1,

jk
i,j
"0, j'i#1,

jk
i,j
"0, k'2(i#1!j),

jk
i,j
"1, otherwise. (A.1)

Then, (
m,k

(g, b, +) can be simply rewritten as

(
m,k

(g, b, +)"
2(m`1~k)

+
i/0

ji
m,k

bi
m,k

gi, 0)k)m#1

(A.2)

for both k"0 and kO0. Thus, we have for
0)k)m#1 that

(@
m,k

(g, b, +)"
2(m`1~k)

+
i/0

iji
m,k

bi
m,k

gi~1

"

2(m~k)`1
+
i/0

(i#1)ji`1
m,k

bi`1
m,k

gi

"

2(m~k`1)
+
i/0

(i#1)ji`1
m,k

bi`1
m,k

gi, (A.3)

(@@
m,k

(g, b, +)"
2(m`1~k)

+
i/2

i (i!1)ji`1
m,k

bi
m,k

gi~2

"

2(m~k)
+
i/0

(i#2) (i#1)ji`2
m,k

bi`2
m,k

gi

"

2(m~k`1)
+
i/0

(i#2) (i#1)ji`2
m,k

bi`2
m,k

gi,

(A.4)

where the prime denotes the derivative with respect
to g. Differentiating Eq. (4.15) twice with respect to
g, we have

u@@
m
(g,b, +)"

m`1
+
k/1

[(@@
m,k

!2kb(@
m,k

#(kb)2(
m,k

]

]exp(!kbg), (A.5)

Owing to Eqs. (A.3) and (A.4), we have when
1)k)m#1 that

(@@
m,k

!2kb(@
m,k

#(kb)2(
m,k

"

2(m~k`1)
+
i/0

ci
m,k

gi, (A.6)

where

c0
m,m`1

"(m#1)2b2b0
m,m`1

, (A.7)

and when 1)k)m,

ci
m,k

"(i#1) (i#2)bi`2
m,k

!2(kb)(i#1)bi`1
m,k

#(kb)2bi
m,k

, 0)i)2(m!k), (A.8)

ci
m,k

"!2(kb)(i#1)bi`1
m,k

#(kb)2bi
m,k

,

i"2(m!k)#1, (A.9)

ci
m,k

"(kb)2bi
m,k

, i"2(m!k)#2, (A.10)

Thus, by Eqs. (A.5)—(A.6), we have

u@@
m
(g,b, +)"

m`1
+
k/1

exp(!kbg)A
2(m~k`1)

+
i/0

ci
m,k

giB,
m*1. (A.11)

Differentiating the above equation with respect
to g, we have

u@@@
m

(g,b, +)"
m`1
+
k/1

exp(!kbg)A
2(m~k`1)

+
i/0

di
m,k

giB,
m*1, (A.12)

where

d0
m,m`1

"!(m#1)3b3b0
m,m`1

, (A.13)

and when 1)k)m,

di
m,k

"(i#1)ci`1
m,k

!(kb)ci
m,k

, 0)i)2(m!k)#1,

(A.14)

d2(m~k`1)
m,k

"!(kb)c2(m~k`1)
m,k

. (A.15)
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Owing to Eqs. (4.13)— (4.14), we have by straightfor-
ward calculations that

G
m
(g,b, +)

"G
m~1

(g,b, +)#+C
L3u

m~1
(g, +, b)

Lg3

#

1

2

m~1
+
k/0

u
m~1~k

(g, +, b)
L2u

k
(g, +, b)

Lg2 D, (A.16)

where m'1. Note that

u@@@
1
#bu@@

1

"+ [u@@@
0

(g, b, +)#1
2
u
0
(g,b, +)u@@

0
(g,b, +)], (A.17)

and when m'1 we have

u@@@
m~1

#bu@@
m~1

"G
m~1

(g, b, +). (A.18)

Thus, by Eqs. (A.16), (A.17) and (A.18), we obtain
the following equation:

(u
m
!s

m
u

m~1
)@@@#b (u

m
!s

m
u
m~1

)@@

"+C
L3u

m~1
(g, +,b)

Lg3

#

1

2

m~1
+
k/0

u
m~1~k

(g, +,b)
L2u

k
(g, +,b)

Lg2 D (A.19)

with the boundary conditions

u
m
(0,b, +)!s

m
u
m~1

(0,b, +)"0, (A.20)

u@
m
(0,b, +)!s

m
u@
m~1

(0,b, +)"0, (A.21)

u@
m
(#R, b, +)!s

m
u@
m~1

(#R,b, +)"0. (A.22)

where m*1 and

s
m
"G

0, when m"1,

1, otherwise.
(A.23)

When 0)k)m!1, we get by Eqs. (A.2) and
(A.11) that

u
m~1~k

(g,b, +)"
m~k
+
r/0

(
m~1~k,r

(g,b, +) exp(!rbg)

"

m~k
+
r/0

exp(!rbg)A
2(m~k~r)

+
s/0

js
m~1~k,r

bs
m~1~k,r

gsB
(A.24)

and

u@@
k
(g,b, +)"

k`1
+
j/1

exp(!jbg)A
2(k~j`1)

+
i/0

ci
k,j

giB, (A.25)

respectively. Therefore, when 0)k)m!1, we
have by Eqs. (A.24) and (A.25) that

1

2
u
m~1~k

(g, +, b)
L2u

k
(g, +, b)

Lg2

"

1

2

m~k
+
r/0

exp(!r bg)A
2(m~k~r)

+
s/0

js
m~1,k,r

bs
m~1~k,r

gsB
]

k`1
+
j/1

exp(!jbg) A
2(k~j`1)

+
i/0

ci
k,j

giB
"

1

2

k`1
+
j/1

m~k
+
r/0

exp[!( j#r)bg]

]A
2(k~j`1)

+
i/0

2(m~k~r)
+
s/0

ci
k,j

bs
m~1k,r

js
m~1~k,r

gs`iB
"

m`1
+
n/1

exp(!nbg)
.*/Mn,k`1N

+
j/.!9M1,n`k~mN

]A
2(k~j`1)

+
i/0

2(m~k~n`j)
+
s/0

]
1

2
ci
k,j

bs
m~1~k,n~j

js
m~1~k,n~j

gs`iB
"

m`1
+
n/1

exp(!nbg)
.*/Mn,k`1N

+
j/.!9M1,n`k~mN

]A
2(m~n`1)

+
q/0

gq
.*/Mq,2(k~j`1)N

+
i/.!9M0,q~2(m~k~n`j)N

]
1

2
ci
k,j

bq~i
m~1~k,n~j

jq~i
m~1~k,n~jB

"

m`1
+
n/1

exp(!nbg)
2(m~n`1)

+
q/0

gq

]A
.*/Mn,k`1N

+
j/.!9M1,n`k~mN

.*/ Mq,2(k~j`1)N
+

i/.!9M0,q~2(m~k~n`j)N

]
1

2
ci
k,j

bq~i
m~1~k,n~j

jq~i
m~1~k,n~jB. (A.26)
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Therefore, we have

1

2

m~1
+
k/0

u
m~1~k

(g, +,b)
L2u

k
(g, +,b)

Lg2

"exp(!bg)
2m~1
+
q/0

dq
m,1

gq

#

m`1
+
n/2

exp(!nbg)A
2(m~n`1)

+
q/0

dq
m,n

gqB, (A.27)

where for 1)n)m#1, 0)q)2(m!n#1),

dq
m,n

"

1

2

m~1
+
k/0

J1

+
j/J0

I1
+
i/I0

ci
k,j

bq~i
m~1~k,n~j

jq~i
m~1~k,n~j

,

J
0
"maxM1, n#k!mN, J

1
"minMn,k#1N,

I
0
"maxM0, q!2(m!k!n#j )N,

I
1
"minMq, 2(k!j#1)N. (A.28)

Here, we especially point out that d2m
m,1

"0 for
m*1.

Thus, by Eqs. (A.12) and (A.28), when m*1,

+Cu@@@
m~1

(g, +,b)#
1

2

m~1
+
k/0

u
m~1~k

(g,+,b)
L2u

k
(g,+,b)

Lg2 D
"

m
+
n/1

exp(!n bg)A
2(m~n)

+
q/0

+dq
m~1,n

gqB
#exp(!bg)

2m~1
+
q/0

+dq
m,1

gq

#

m`1
+
n/2

exp(!nbg)A
2(m~n`1)

+
q/0

+dq
m,n

gqB
"exp(!bg)

2m~1
+
q/0

!q
m,1

gq

#

m`1
+
n/2

exp(!nbg)A
2(m~n`1)

+
q/0

!q
m,n

gqB (A.29)

holds, where

!q
m,1

"+ (dq
m~1,1

#dq
m,1

), 0)q)2m!2, (A.30)

!2m~1
m,1

"+d2m~1
m,1

, (A.31)

!0
m,m`1

"+d0
m,m`1

(A.32)

and for 2)n)m,

!q
m,n

"+ (dq
m~1,n

#dq
m,n

), 0)q)2(m!n),

!q
m,n

"+dq
m,n

, 2(m!n)#1)q)2(m!n)#2,

!q
m,n

"0, otherwise. (A.33)

Thus, Eq. (A.19) can be rewritten in the following
form:

(u
m
!s

m
u
m~1

)@@@#b (u
m
!s

m
u

m~1
)@@

"exp(!bg)
2m~1
+
q/0

!q
m,1

gq

#

m`1
+
n/2

exp(!nbg) A
2(m~n`1)

+
q/0

!q
m,n

gqB. (A.34)

In order to solve the above equation, we should at
first give solutions of the equation

½@@@(g)#b½@@ (g)"gq exp(!nbg), (A.35)

where n*1 and q*0 are integers. Here, we men-
tion such a formula, say, for integers q*0 and
n*1, the following holds

Pxq e~nbxdx"!e~nbx
q
+
j/0
A

q!

j !B
xj

(nb)q~j`1
, (A.36)

i.e.

PA
xq

q!B e~nbxdx"!e~nbx
q
+
j/0
A

xj

j !B
1

(nb)q~j`1
.

We solve Eq. (A.35) in two different cases of
n"1 and n*2, respectively.

(1) When n"1, Eq. (A.35) becomes

½@@(g)"exp(!bg) P exp(bg)gq exp(!bg) dg

"

1

q#1
gq`1exp(!bg), (A.37)
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which further by Eq. (A.36) gives that

½@(g)"P
1

q#1
gq`1 exp(!bg) dg

"!

1

q#1
exp(!bg)

q`1
+
j/0

(q#1)!

j !

gj

bq~j`2

"!exp(!bg)
q`1
+
j/0

q !

j !

gj

bq~j`2
. (A.38)

Integrating the above equation, we get

½(g)"!P exp(!bg)
q`1
+
j/0

q !

j !

gj

bq~j`2
dg

"!

q`1
+
j/0

q !

j !

1

bq~j`2 P gj exp(!bg) dg

"

q`1
+
j/0

q !

j !

1

bq~j`2
exp(!bg)

j
+
i/0

j !

i !

gj

bj~i`1

"exp(!bg)
q`1
+
j/0

j
+
i/0

q !

i !

gi

bq~i`3

"exp (!bg)
q`1
+
i/0

q`1
+
j/i

q !

i !

gi

bq~i`3

"exp(!bg)
q`1
+
i/0

q !

i !

(q!i#2)

bq~i`3
gi

"exp(!bg)
q`1
+
k/0

kq
1,k

gk, (A.39)

where

kq
1,k

"

q!

k!

(q!k#2)

bq~k`3
, 0)k)q#1, q*0.

(A.40)

(2) When n*2 by Eq. (A.36), (A.35) becomes

½@@(g)"exp(!bg) P exp(bg)gq exp(!nbg) dg

"exp(!bg) P gq exp[!(n!1)bg] dg

"!exp(!nbg)
q
+
j/0

q !

j !

gj
[(n!1)b]q~j`1

,

(A.41)

which further gives

½@(g)"!

q
+
j/0

q !

j !

1

[(n!1)b]q~j`1

]P gj exp(!nbg) dg

"

q
+
j/0

q!

j !

1

[(n!1)b]q~j`1
exp(!nbg)

]
j
+
i/0

j !

i !

gi

(nb)j~i`1

"exp(!nbg)

]
q
+
j/0

j
+
i/0

q !

i !

1

[(n!1)b]q~j`1

gi

(nb)j~i`1
.

(A.42)

Integrating the above equation, we get

½(g)"
q
+
j/0

J
+
i/0

q !

i !

1

[(n!1)b]q~j`1

1

(nb)j~i`1

]P gi exp(!nbg) dg

"!exp(!n bg)
q
+
j/0

j
+
i/0

q !

i !

1

[(n!1)b]q~j`1

]
1

(nb)j~i`1

i
+
k/0

i!

k !

gk

(nb)i~k`1

"!exp(!nbg)
q
+
j/0

j
+
i/0

i
+
k/0

q !

k !

1

[(n!1)b]q~j`1

]
gk

(nb)j~k`2

"!exp(!nbg)
q
+
j/0

j
+
k/0

j
+
i/k

q !

k !

1

[(n!1)b]q~j`1

]
gk

(nb)j~k`2

"!exp(!n bg)
q
+
j/0

j
+
k/0

q !

k !

( j!k#1)

[(n!1)b]q~j`1

]
gk

(nb)j~k`2
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"!exp(!n bg)
q
+
k/0

j
+
j/k

q !

k !

( j!k#1)

[(n!1)b]q~j`1

]
gk

(nb)j~k`2

"!exp(!n bg)
q
+
k/0

kq
n,k

gk, (A.43)

where

kq
n,k

"

q !

k !

q
+
j/k

( j!k#1)

[(n!1)b]q~j`1

1

(nb)j~k`2

"

q !

k !

1

(n!1)q~k`1bq~k`3G1!A1!
1

nB
q~k`1

]C(q!k#2)!(q!k#1)A1!
1

nBDH.
(A.44)

for 0)k)q, n*2, q*0.
Note that the solution of Eq. (A.34) is equal to

the superposition of solutions of Eq. (A.35). Thus,
by Eqs. (A.39) and (A.43), we obtain a special solu-
tion of Eq. (A.34) such that

(u
m
!s

m
u
m~1

)

"exp(!bg)
2m~1
+
q/0

!q
m,1

q`1
+
k/0

kq
1,k

gk

!

m`1
+
n/2

exp(!nbg)A
2(m~n`1)

+
q/0

!q
m,n

q
+
k/0

kq
n,k

gkB
"exp(!bg)C

2m~1
+
q/0

!q
m,1

kq
1,0

#

2m
+
k/1

gk A
2m~1
+

q/k~1

!q
m,1

kq
1,kBD

!

m`1
+
n/2

exp(!nbg)

]C
2(m~n`1)

+
k/0

gkA
2(m~n`1)

+
q/k

!q
m,n

kq
n,kBD (A.45)

Therefore, the general solution of Eq. (A.19) is

(u
m
!s

m
u
m~1

)

"exp(!bg)C
2m~1
+
q/0

!q
m,1

kq
1,0

#

2m
+
k/1

gk A
2m~1
+

q/k~1

!q
m,1

kq
1,kBD!

m`1
+
n/2

exp(!nbg)

]C
2(m~n`1)

+
k/0

gkA
2(m~n`1)

+
q/k

!q
m,n

kq
n,kBD

#Cm
1
exp(!bg)

#Cm
2
g#Cm

3
. (A.46)

Using the boundary conditions (A.20), (A.21) and
(A.22), we have

Cm
1
"

2m~1
+
q/0

!q
m,1

(b~1kq
1,1

!kq
1,0

)

#

m`1
+
n/2

Cn!0
m,n

k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!b~1kq
n,1

)D, (A.47)

Cm
2
"0, (A.48)

Cm
3
"!Cm

1
!

2m~1
+
q/0

!q
m,1

kq
1,0

#

m`1
+
n/2

2(m~n`1)
+
q/0

!q
m,n

kq
n,0

"!

2m~1
+
q/0

b~1!q
m,1

kq
1,1

!

m`1
+
n/2
C(n!1)!0

m,n
k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!kq
n,0

!b~1kq
n,1

)D.
(A.49)

Therefore, u
m
(g, b, +) has the same structure as

Eq. (4.15), and the related coefficients bk
m,n

are as
follows:

b0
m,0

"s
m
b0
m~1,0

!b~1
2m~1
+
q/0

!q
m,1

kq
1,1

!

m`1
+
n/2
C(n!1)!0

m,n
k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!kq
n,0

!b~1kq
n,1

)D,
(A.50)
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b1
m,0

"0, (A.51)

b0
m,1

"s
m
b0
m~1,1

#b~1
2m~1
+
q/0

!q
m,1

kq
1,1

#

m`1
+
n/2

Cn!0
m,n

k0
n,0

#

2(m~n`1)
+
q/1

!q
m,n

(nkq
n,0

!b~1kq
n,1

)D, (A.52)

bk
m,1

"s
m
bk
m~1,1

#

2m~1
+

q/k~1

!q
m,1

kq
1,k

, 1)k)2m!2,

(A.53)

bk
m,1

"

2m~1
+

q/k~1

!q
m,1

kq
1,k

, 2m!1)k)2m, (A.54)

bk
m,n

"s
m
bk
m~1,n

!

2(m~n`1)
+
q/k

!q
m,n

kq
n,k

,

0)k)2(m!n), 2)n)m, (A.55)

bk
m,n

"!

2(m~n`1)
+
q/k

!q
m,n

kq
n,k

,

2(m!n)#1)k)2(m!n)#2, 2)n)m,

(A.56)

b0
m,m`1

"!!0
m,m`1

k0
m`1,0

, (A.57)

where m*1, 0)n)m#1 and 0)k )2(m!

n#1).
(III) In (I), we point out that the initial approxi-

mation (4.6) has the same structure as Eq. (4.15). In
(II), we not only deduce the recurrence formulas
(A.50)— (A.57) but also rigorously prove that, if
the first (m!1) solutions u

k
(g, +, b) (k"

0, 1, 2, 3, . . . , m!1) have the structure (4.15), then
the following mth solutions u

m
(g, +,b) (m*1) must

have the same structure as Eq. (4.15), too. There-
fore, owing to (I) and (II), all u

k
(g, +, b) (k*0) have

the same structure as Eq. (4.15). Besides, using the
foregoing recurrence formulas and only the known
first three coefficients b0

0,0
"!b~1, b1

0,0
"1,

b0
0,1

"b~1, we can calculate all coefficients bk
m,n

one
after the other.
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