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Abstract

An hp-adaptive pseudospectral method is presented for numerically solving optimal control

problems. The method presented in this paper iteratively determines both the number of segments,

the width of each segment, and the polynomial degree required in each segment in order to obtain

a solution to a user-specified accuracy. Starting with a global pseudospectral approximation for the

state, on each iteration the method determines locations for the segment breaks and the polynomial

degree in each segment for use on the next iteration. The number of segments and the degree of

the polynomial on each segment continue to be updated until a user-specified tolerance is met.

The terminology “hp” is used because the segment widths (denoted h) and the polynomial degree

(denoted p) in each segment are determined simultaneously. It is found that the method developed

in this paper leads to higher accuracy solutions with less computational effort and memory than

is required in a global pseudospectral method. Consequently, the method makes it possible to

solve complex optimal control problems using pseudospectral methods in cases where a global

pseudospectral method would be computationally intractable. Finally, the utility of the method is

demonstrated on a variety of problems of varying complexity.

1 Introduction

Over the past two decades, direct collocation methods have become popular in the numerical solution

of nonlinear optimal control problems. In a direct collocation method, the state is approximated using

a set of trial (basis) functions and the dynamics are collocated at specified set of points in the time in-

terval. Most commonly, direct collocation methods for optimal control are employed using so called
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h-methods where a fixed low-degree polynomial (e.g., third-degree or fourth-degree) state approxi-

mation is used and the problem is divided into segments. Convergence of the numerical discretization

is then achieved by increasing the number of segments [1, 2, 3]. Grid refinement techniques are used

largely on the goal of obtaining a specified solution accuracy by increasing the number of mesh in-

tervals in regions of the trajectory where the errors are largest. Excellent examples of h-methods for

solving optimal control problems are given in Refs. [4, 2, 3, 5, 6].

In recent years, the class of pseudospectral methods for solving optimal control problems has in-

creased in popularity [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In a pseudospectral method, the collocation

points are chosen based on accurate quadrature rules and the basis functions are typically Chebyshev

or Lagrange polynomials. In contrast to an h method, a pseudospectral method is typically employed

as a p-method where a single segment is used, and convergence is achieved by increasing the de-

gree p of the polynomial. For problems whose solutions are infinitely smooth and well-behaved, a

pseudospectral method has a simple structure and converges spectrally [17, 18, 19] (i.e., at an expo-

nential rate). The most well developed pseudospectral methods are the the Gauss pseudospectral method

(GPM) [9, 10], the Radau pseudospectral method [14, 15, 16] (RPM), and the Lobatto pseudospectral method

[7] (LPM).

While pseudospectral methods have typically been applied as p-methods [7, 8, 9, 10, 15, 16], relying

on convergence using global polynomials has several limitations. For even many smooth problems

an accurate approximation may be obtained only if a very large-degree global polynomial is used.

In addition, many optimal control problems have either nonsmooth solutions or nonsmooth problem

formulations. In these cases, the convergence rate of a p-method may be extremely slow, resulting in a

poor approximation even if a very high degree polynomial is used. A second limitation of a p-method

for solving optimal control problems is that the use of a high degree global polynomial results in a

nonlinear programming problem (NLP) that has a constraint Jacobian and Hessian that grows in den-

sity and size much faster than the number of collocation points. As a result, while it may be possible

to achieve convergence using a p-method, such an approach may be computationally intractable or

inefficient due to the number of nonzero derivatives in the NLP. An alternative to implementing a

pseudospectral method as a p-scheme is to use an h-type pseudospectral method [5, 6, 14]. It is noted,

however, that an h-method may require using a large number of mesh intervals in order to achieve

an acceptable error tolerance. Furthermore, because spectral accuracy is lost when using an h-type

pseudospectral method, achieving a given accuracy may result in an extremely large NLP.

In order to increase the utility of pseudospectral methods while attempting to maintain as close

to spectral accuracy as possible, in this paper we present a new hp-adaptive pseudospectral method that

allows the number of segments, segment widths, and polynomial degrees to vary throughout the time
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interval of interest. The method uses a two-tiered strategy to determine the locations of segments and

the degree of the polynomial within a segment to achieve a specified solution accuracy. If the error

across a particular segment has a uniform-type behavior, then the number of collocation points is in-

creased. If the error at isolated points is significantly larger than errors at other points in a segment,

then a segment is subdivided at these isolated points. The method described in this paper provides

an accurate solution at the collocation points and also computes an accurate solution between the col-

location points. The method is demonstrated on several examples of varying complexity and is found

to be a viable method for efficiently and accurately solving complex optimal control problems using

pseudospectral methods.

We note that hp-methods have been previously developed in the context of finite elements in me-

chanics and spectral methods in fluid dynamics. In particular, Refs. [20, 21, 22, 23, 24] describe the

mathematical properties of h, p, and hp methods for finite elements. Ref. [25] showed the application

of an hp-adaptive least-squares spectral element method (LS-SEM) for solving hyperbolic partial dif-

ferential equations. Ref. [26] developed an adaptive spectral least-squares collocation scheme for the

Burgers equation. Ref. [27] showed the use of an hp-adaptive LS-SEM for solving the population bal-

ance equation while Ref. [28] developed an hp-adaptive spectral element solver for reactor modeling.

Finally, an overview of hp-adaptive spectral element methods for solving problems in computational

fluid dynamics can be found in Ref. [29].

This paper is organized as follows. In Section 2 we provide a motivation for developing an hp-

adaptive pseudospectral method. In Section 3 we present the formulation of a general Bolza optimal

control problem. In Section 4 we describe the formulation of the Gauss pseudospectral method which

is the basis for the implementation of the method presented in this paper. In Section 5 we describe

the structure of the NLP that arises from global and segmented collocation. In Section 6 we present

the hp-adaptive pseudospectral method. In Section 7 we provide several applications of the method

to optimal control problems of varying complexity. In Sections 8 and 9 we provide a discussion of the

results and some limitations of the method. Finally, in Section 10 we provide concluding remarks.
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2 Motivation for an hp-Adaptive Pseudospectral Method

In order to motivate the development an hp-adaptive pseudospectral method, consider the following

two functions:

y = exp(τ), τ ∈ [−1, 1] (1)

y =















−1 , −1 ≤ τ ≤ −1/2

τ , −1/2 ≤ τ ≤ 1/2

1 , 1/2 ≤ τ ≤ 1

(2)

It is seen that Eq. (1) is smooth while Eq. (2) has a discontinuous first derivative at τ = ±1/2.

Suppose that we approximate the function in Eq. (1) using a global approximation and a piece-

wise (segmented) approximation. The global approximation is obtained using a basis of Legendre

polynomials, i.e.,

y(τ) ≈ Y (τ) =
n
∑

i=0

ciφi(τ) (3)

where for any given value of n the coefficients ci, (i = 0, . . . , n) are determined in a least-squares

sense. Fig. 1a shows the maximum error as a function of the polynomial degree, n. It is seen that the

error decreases exponentially as a function n and is O(10−5) for n = 5. The piecewise approximation

is obtained using evenly spaced intervals of constant functions such that each constant is the least-

squares approximation in that interval. Fig. 1b shows the maximum error as a function of the logarithm

of the number of intervals. Unlike the global approximation where the degree of the polynomial is

increased, in this case it is seen that the error decreases extremely slowly as a function of the number

of piecewise constant intervals. Thus, in this example convergence is achieved much more rapidly

by increasing the degree of a global polynomial approximation as compared to using a piecewise

fixed-degree polynomial and varying the number of intervals.

Suppose now that we use the global and piecewise approaches for approximating the function in

Eq. (2) as we did to approximate the function in Eq. (1). Fig. 1c shows the maximum error as a function

of the polynomial degree for the case where a global Legendre polynomial is used. Different from the

results for the approximation of Eq. (1), in this case it is seen that the error decreases much more slowly

as a function of polynomial degree. The slower convergence using a global polynomial is attributed to

the fact that the function in Eq. (2) is not smooth, but is only piecewise smooth. Examining Fig. 1d, it is

seen that, for any polynomial degree, the approximation error on the interior of the interval τ ∈ (−1, 1)

is largest at the points where the derivative of the function is discontinuous (i.e., τ = ±1/2). As

expected, dividing the problem into segments at τ = ±1/2, the function in Eq. (2) can be approximated

exactly using a constant for −1 ≤ τ ≤ 1/2, a straight line for −1/2 ≤ τ ≤ 1/2, and a constant for

1/2 ≤ τ ≤ 1. Thus, it is seen for this second example that much more rapid convergence is achieved

4



by determining an appropriate segment decomposition and the degrees of the polynomials in each

segment as compared with using a global polynomial approximation.

The preceding discussion demonstrates the key point that rapid convergence of an approxima-

tion to the true function depends upon the type of function that is being approximated. In the case

of a smooth function, it is preferable to use a global approximation and determine the appropriate

polynomial degree. In the case of a nonsmooth function it is preferable to divide the domain into

subintervals, determine the locations of the segment breaks, and use a polynomial of “appropriate”

degree in each subinterval. In general, it will be the case that convergence will be achieved most

rapidly (as a function of polynomial degree) by using higher-degree polynomials in some segments

while using lower-degree polynomials in other segments. With the aim of determining the appropri-

ate segment decomposition (i.e., the locations and widths, h, of the segments) and the appropriate

polynomial degree in each segment (i.e., the degree p in each segment), in this paper we develop a

new hp-adaptive pseudospectral method for solving optimal control problems. In the context of opti-

mal control, the break points between segments often correspond to those times where either control

or state constraints change between active and inactive.

3 Optimal Control Problem in Bolza Form

Without loss of generality, consider the following optimal control problem in Bolza form. Minimize

the cost functional

J = Φ(x(−1), t0,x(+1), tf ) +
tf − t0

2

∫ 1

−1
L(x(τ),u(τ), τ) dτ (4)

subject to the dynamic constraints

dx

dτ
=
tf − t0

2
f(x(τ),u(τ), τ), (5)

the boundary conditions (i.e., the event constraints)

φ(x(−1), t0,x(+1), tf ) = 0, (6)

and the inequality path constraints

C(x(τ),u(τ), τ ; t0, tf ) ≤ 0, (7)

where x(τ) is the state, u(τ) is the control and τ is time. The variable τ ∈ [−1, 1] and t ∈ [t0, tf ] are

related as

t =
tf − t0

2
τ +

tf + t0
2

(8)
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4 State Approximation Using Pseudospectral Methods

A pseudospectral method is typically employed as a p-method where the state is approximated us-

ing a basis of global polynomials. In order to remain specific in this discussion, in this paper we

choose the Gauss pseudospectral method [9, 10, 11, 30] as the foundation for developing our hp-adaptive

method. We note, however, that the method developed in this paper can be adapted to other pseu-

dospectral methods with only slight modifications. In the Gauss pseudospectral method, the state of

the continuous Bolza problem is approximated as

x(τ) ≈ X(τ) =
N
∑

i=0

XiLi(τ) (9)

where τ ∈ [−1, 1], Lj(τ), (j = 0, . . . , N) is a basis of Lagrange polynomials,

Li(τ) =
N
∏

j=0

j 6=i

τ − τj
τi − τj

, (i = 0, . . . , N), (10)

and Xi ≡ X(τi), (i = 0, . . . , N) are row vectors corresponding to the approximation of the state at the

interpolation points (τ0, . . . , τN ), i.e.,

Xi =
[

Xi1 · · · Xin

]

, (i = 0, . . . , N),

where we recall that n is the dimension of the state. The interpolation points in the Gauss pseudospec-

tral method are the initial point τ0 = −1 and the N Legendre-Gauss [31] (LG) points (τ1, . . . , τN ),

where the LG points lie strictly on the interior of the interval [−1, 1] and are the roots of theN th-degree

Legendre polynomial [32], PN (τ). It is known that the Lagrange polynomials satisfy the property

Li(τj) = δij , (i = 0, . . . , N), (j = 1, . . . , N) (11)

where δij is the Kronecker Delta function. Differentiating Eq. (9), we obtain

ẋ(τ) ≈ Ẋ(τ) =
N
∑

i=0

X(τi)L̇i(τ). (12)

The derivative of the state approximation given in Eq. (12) is then collocated at theN Legendre-Gauss

points. Treating the m-dimensional control at each LG point as a row vector,

Ui =
[

Ui1 · · · Uim

]

, (i = 1, . . . , N),

the continuous-time dynamics of Eq. (5) lead to the collocation conditions:

DX−
tf − t0

2
F = 0, (13)
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where D ∈ R
N×(N+1) is the Gauss pseudospectral differentiation matrix [9, 10, 11, 12] and

X =











X0

...

XN











, XLG =











X1

...

XN











, ULG =











U1

...

UN











, τ LG =











τ1
...

τN











,

F = F(XLG,ULG, τ LG; t0, tf ) =











f(X1,U1, τ1; t0, tf )
...

f(XN ,UN , τN ; t0, tf )











.

(14)

In addition, an NLP variable corresponding to the state at the terminal point, XN+1 = X(τN+1) =

X(+1), is included by adding the following Legendre-Gauss quadrature approximation to the integral

of the dynamics at τ = +1:

XN+1 = X0 +
tf − t0

2
wTF (15)

where w is a column vector of the Legendre-Gauss weights [31]. Next, the cost functional of Eq. (4) is

approximated using a Legendre-Gauss quadrature as

J ≈ Φ(X0, t0,XN+1, tf ) +
tf − t0

2

N
∑

i=1

wiL[Xi,Ui, τi; t0, tf ] (16)

The system of algebraic equations corresponding to the dynamics resulting from the Gauss pseu-

dospectral discretization are then given as

DX−
tf − t0

2
F = 0 (17)

XN+1 −X0 −
tf − t0

2
wTF = 0 (18)

Finally, the boundary conditions and path constraints of Eqs. (6) and (7) are given, respectively, as

φ(X0, t0,XN+1, tf ) = 0 (19)

C(Xi,Ui, τi; t0, tf ) ≤ 0, (i = 1, . . . , N). (20)

The NLP arising from the GPM is then to minimize the cost function of (16) subject to the algebraic

constraints of Eqs. (17)–(20).

While the aforementioned approach for approximation, differentiation, and collocation is com-

mon to most pseudospectral methods, a key assumption when using a pseudospectral method is that

a solution to the NLP is a good approximation to the solution of the optimal control problem. This

assumption is only valid if the approximating global polynomial is of sufficiently large degree. If,

however, the approximating polynomial is of too small a degree, the left-hand side of Eq. (17), when

X is replaced by the interpolant of the exact solution, may not be very small. In addition, using a
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sufficiently large-degree polynomial approximation will result not only in an accurate solution at the

support points, but it will also result in an accurate solution between the support points (that is, the

Lagrange interpolating polynomial will produce an accurate approximation at an arbitrary point in

the domain). Using a global polynomial, the common practice is to increase the number of support

points until the required accuracy is obtained. Many applications exist, however, where an accurate

solution can only be obtained using a very large-degree global polynomial. If the degree of the poly-

nomial is too large, the resulting NLP from a pseudospectral discretization may be computationally

intractable.

In this paper, an hp-adaptive pseudospectral method is developed. The objective of the method

is to determine the number of spectrally collocated segments and the degree of the polynomial in

each segment that provides an accurate approximation to the solution of the Bolza optimal control

problem defined in Section 3. As we will demonstrate, the approach developed provides an accurate

approximation of the state at the collocation points and between the collocation points [via evaluation

of the Lagrange polynomial approximation of Eq. (9)]. In addition, the method presented in this paper

is more computationally efficient than using purely global collocation. The basis of the method is a

two-tiered strategy that determines the number and locations of the segments and the degree of the

polynomial approximation required in each segment.

5 Multiple-Segment NLP Using a Pseudospectral Method

A detailed description of the NLP resulting from a global pseudospectral discretization has been de-

scribed in Ref. [13]. A brief discussion and the extension of pseudospectral methods to multiple-

segment problems is described in this section. As described in Ref. [13], the NLP decision variables

for a global pseudospectral discretization include those corresponding to the state, control, initial

time, and terminal time. Denoting these partitions of the vector of decision variables by zx, zu, t0, and

tf , respectively, the complete vector of decision variables is given as

z =















zx

zu

t0

tf















. (21)

Collocating the dynamics for each scalar differential equation gives rise to a constraint Jacobian whose

main-diagonal block is a full matrix of size ≈ N × N , where N is the number of global collocation

points. Qualitatively, the sparsity pattern of the constraint Jacobian resulting from global collocation

has the form shown in Fig. 2a, where the ≈ N×N blocks are seen on the main diagonal of the sparsity
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pattern. It is seen that as the majority of nonzero elements in the sparsity pattern are those due to the

≈ N2 elements in the diagonal blocks.

Suppose now that we use N collocation points, but divide the problem into S segments such that

N =
S
∑

s=1

Ns (22)

where Ns is the number of collocation points within each segment and N is an equivalent number

of global collocation points. Eq. 13 and 15 are then applied across each segment. Therefore, the sys-

tem of algebraic equations corresponding to the dynamics from the segmented Gauss pseudospectral

discretization are then given in matrix form as

















D1 0 · · · 0

0 D2 · · · 0

...
. . .

...

0 · · · 0 DS

















X =

















t1−t0
2 I1 0 · · · 0

0 t2−t1
2 I2 · · · 0

...
. . .

...

0 · · · 0
tS−tS−1

2 IS

















F (23)

where ts denotes the end of the sth segment and Is, (s = 1, . . . , S) are identity matrices of appropriate

size. From the Gauss pseudospectral method [9, 10, 11, 30], the state at the terminus of each segment

is approximated using a Legendre-Gauss quadrature,

Xs
Ns+1 = Xs

0 +
ts−ts−1

2

∑Ns

i=1w
s
i f

s
i

, (s = 1, . . . , S) (24)

where ws
i and f is (i = 1, . . . , Ns) are, respectively, the Legendre-Gauss quadrature weights and the

right hand side of the dynamic equations evaluated at each of the Ns collocation points in segment s.

Continuity on the state at a segment interface is maintained by using the same NLP variable for the

value of the state at the end of segment s and the beginning of segment s+ 1.

Qualitatively, the segmented sparsity pattern is shown in Fig. 2b. It is seen that the segmented

sparsity pattern has significantly fewer nonzero elements than an equivalently sized globally collo-

cated problem due to the fact that each diagonal block is much smaller and has many fewer nonzeros

when compared to equivalently sized globally collocated diagonal block. An example of how the

density of the Jacobian decreases is as follows. For a six state, two control, and one path constraint

problem using 30 global collocation points, the NLP has 255 decision variables and is 14 percent dense.

An equivalent NLP that employs three segments with 10 collocation points in each segment has 267

decision variables and is 7 percent dense.

It is seen from the preceding description that dividing a problem into segments results in a much

sparser NLP when compared with global collocation. It is noted, however, that a trade-off exists

between segmented and global collocation. Using low-degree polynomials may require a very large
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number of segments in order to obtain a given accuracy. In addition, spectral accuracy (a key property

of a pseudospectral method) is lost as the degree of the polynomial is decreased within a segment. On

the other hand, using larger-degree polynomials may lead to the same accuracy with many fewer

segments, but may result on a computationally expensive NLP. In order to retain as close to spectral

accuracy as possible without excessive computational burden, the method developed in this paper

utilizes a segmented approach that detects when spectral accuracy may be lost (e.g., detection of non-

smoothness in the solution, stiff problems with large time-scale discrepancies). As a result, the method

of this paper will result in fewer optimization variables as compared with a strictly global method.

In addition, the method provides refinement in regions where it may be necessary. Consequently, the

sparsity of the NLP using the method of this paper is much greater than would be obtained with a

purely global pseudospectral method.

6 hp-Adaptive Pseudospectral Method

Suppose that the trajectory on the time interval t ∈ [t0, tf ] has already been divided into S segments

such that the time span of segment s ∈ [1, . . . , S] is [ts−1, ts] and Ns is the number of collocation

points allocated in each segment. The objective of the hp-adaptive pseudospectral is to determine

if a segment should either be divided into more segments and the locations of the newly created

segments, or if the number of collocation points in a segment should be increased.

6.1 Criteria for Determining if a Segment Should Be Divided

The criteria for segment division or collocation point increase is based on how closely the dynamic

constraints are satisfied at the midpoints of the collocation points, (t̄1, . . . , t̄N ) ∈ [ts−1, ts], i.e.,

t̄i =
ti + ti+1

2
, (i = 1, . . . , Ns − 1) (25)

Correspondingly, let X̄ and Ū be (Ns − 1) × n and (Ns − 1) ×m matrices (where n is the number of

states and m is the number of controls),

X̄ =











X(t̄1)
...

X(t̄Ns−1)











, Ū =











u(t̄1)
...

u(t̄Ns−1)











(26)

where the ith row of X̄ and Ū corresponds to the approximation of the state or control in segment s

at the ith midpoint between two collocation points, t̄i. The midpoint approximations of the state are

obtained using the Lagrange polynomial approximation of Eq. (9) while the midpoint approximations

for the control are obtained using the arbitrary choice of cubic interpolation. Next, let D̄ be a square
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(Ns − 1) × (Ns − 1) differentiation matrix computed using the hp-adaptive pseudospectral method

of Ref. [33] with the values τ = (τ̄1, . . . , τ̄Ns−1) ∈ [−1, 1], where (τ̄1, . . . , τ̄Ns−1) are computed using

Eq. (8). Finally, let R be the (Ns − 1)× n matrix

R =

∣

∣

∣

∣

D̄X̄−
ts − ts−1

2
F(X̄, Ū, τ ;p, ts−1, ts)

∣

∣

∣

∣

∈ R
(Ns−1)×n (27)

where |·| denotes the absolute value of each element of the matrix R. The elements of the matrix

R will be referred to as the midpoint residuals of the dynamics at the midpoints of the collocation

points and the matrix R itself will be referred to as the midpoint residual matrix. Each column of the

matrix R provides a measure of the amount by which the state violates the collocation equations at

the midpoints between two collocation points in segment s.

Suppose we let r be the elements of the column of the midpoint residual matrix R that contains

the largest element of R. Then r can be written in component form as

r =











r(t̄1)
...

r(t̄Ns−1)











(28)

where each component, r(t̄i), (i = 1 . . . , Ns − 1) of r corresponds to the element of r at the midpoint

time t̄i, (i = 1, . . . , Ns−1). Because r contains the maximum element in the matrix R, it is used as the

metric to determine if the segment should be further subdivided and, if so, where the segment breaks

should be placed, or if the number of collocation points in the segment should be increased.

Suppose now that we let r̄ be the arithmetic mean of the components of the vector r, that is

r̄ =

∑Ns−1
i=1 r(t̄i)

Ns − 1
(29)

Next, define

β =











β(t̄1)
...

β(t̄1)











=











r(t̄1)/r̄
...

r(t̄Ns−1)/r̄











(30)

The vector β will be referred to as the scaled midpoint residual vector. Each element of the vector β is

a scaled measure of the amount by which the collocation conditions at a particular midpoint differs

from zero.

6.2 Behavior of Scaled Midpoint Residual Vector

The scaled midpoint residual vector β can have two behaviors that are relevant in the method of

this paper. The first possibility is that all of the components of β are approximately the same size.
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For these “uniform-type” errors in the collocation conditions at (t̄1, . . . , t̄Ns−1) the hp-method is de-

signed to increase the number of collocation points in the segment. The second possibility is that

certain components of β are significantly larger than other components of β in the segment. For this

“non-uniform-type” error, the method is designed to place a segment break at the locations of these

large violations in the collocation equations. The vector β is used to determine the locations of new

segments or if the number of collocation points in a segment are increased.

6.3 Determining Locations of New Segments or Increase in Number of Collocation Points

Let ǫ be a user-defined tolerance and assume that the maximum entry of Eq. (27) is greater than ǫ. In

this case, the segment either needs to be divided into more segments or the degree of the polynomial

approximation needs to be increased in order to reach the tolerance ǫ. In order to improve the accuracy

of Eq. (27), we use the following strategy. Let ρ be a user-specified threshold for the size of the elements

of the vector β. Again assuming that Eq. (27) exceeds the tolerance ǫ, two types of errors are relevant in

the method of this paper: (1) isolated elements of β are greater than ρ, resulting in “non-uniform-type

errors” and (2) no elements of β exceed ρ, resulting in “uniform-type-errors.” For the case of non-

uniform-type errors, the segment is divided while for uniform-type-errors the number of collocation

points in the segment is increased. We now explain how segments are divided and collocation points

are increased.

Segment Division for Non-Uniform-Type Errors: For non-uniform-type errors, the segment is divided

at the time points where the entries of vector β are greater than ρ. Often, Eq. (30) contains adjacent

entries which are greater than ρ. In such cases, the segment is divided at only the locations of the

largest element of β that exceeds ρ. Fig. 3 provides a schematic of how a segment is divided into more

segments for the case where elements of R in Eq. (27) exceed ǫ.

Collocation Point Increase for Uniform-Type Errors: For uniform-type errors, suppose further that

every element of the vector β is less than ρ. In this case the violations in the dynamic collocation

equations at the midpoints of the collocation points are of “uniform-type.” In this case the number of

collocation points in the segment is increased by a user-specified amount L, that is

N (k+1)
s = N (k)

s + L (31)

where N
(k)
s is the number of collocation points in segment s on grid iteration k. Once the maximum

entry of Eq. (27) is less than ǫ, the segment is neither divided further nor is the number of collocation

points increased.
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6.4 Stopping Criteria

The iterative procedure terminates when the dynamic constraints, the path constraints, and the bounds

on the state and control are satisfied to within the specified tolerance ǫ in all segments when evaluated

at the midpoints of the collocation points. For the dynamic constraints, the stopping criteria imposes

that every entry of R in Eq. (27) lie below ǫ. In the case of the path constraints or bounds on the state

and control, the stopping criteria imposes that all violations in constraints or bounds be less than ǫ. In

the case that the dynamic constraints are satisfied but either the path constraints or the bounds on the

state and control are not, then modification of the segments continues as in Section 6.3 until both the

path constraints or the bound constraints are satisfied to the tolerance ǫ.

6.5 Qualitative Notions of User-Defined Parameters ρ and ǫ

User-Defined Parameter ρ: The parameter ρ represents a tuning parameter that weights the method

between a local and global strategy. For large values of ρ, the method employs global collocation

because none of the entries of β will be large enough to require that a segment be divided. As ρ is

decreased, the method becomes a local because a greater number of points in the segment will be

such that the elements in β are greater than ρ (thus resulting in the problem being divided into more

segments). It is noted that ρ should always be greater than one because values of ρ ≤ 1 will always

result in a segment break.

User-Defined Tolerance ǫ: The tolerance ǫ provides a threshold for the accuracy of the dynamic con-

straints and path constraints of the continuous-time optimal control problem. Specifically, the smaller

the value of ǫ, the greater the required accuracy is in the dynamics. In addition, due to the stopping

criteria, the parameter ǫ provides a threshold for the required accuracy of the state approximation. In

this study we assume that ǫ is less than unity where the NLP is itself scaled such that the variables

and constraints are O(1). In the case of a poorly scaled NLP, the pseudospectrally discretized problem

may not be solvable, thus resulting in ǫ being meaningless because the hp-adaptive method cannot be

implemented in this case.

6.6 Iterative Procedure for hp-Adaptive Pseudospectral Method

The following iterative procedure summarizes the aforementioned approach to collocation point in-

crease and segment division:

(i) Initialize the problem choosing M collocation points, where M is chosen by the user.

(ii) Solve the NLP with the prescribed grid distribution.
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(iii) Check for each segment if the dynamic constraints, path constraints, and bounds on the state and control

are satisfied to the tolerance ǫ in each segment at the midpoints between collocation points. For all segments

not within the prescribed tolerance, continue to step (iv) or step (v).

(iv) For all segments where Eq. (30) is of ”uniform-type” increase the number of collocation points in these

segments by the user-specified amount L.

(v) For all segments where Eq. (30) is of ”non-uniform-type,” break the segments at all prescribed points (see

Fig. 3) and set M = 5 in each new segment.

(vi) After all segments have been updated, return to step (ii).

(vii) Terminate when the dynamic constraints, path constraints, and bounds on the state and control are satis-

fied to the tolerance ǫ in all segments.

6.7 Clarification of Various Aspects of hp-Adaptive Pseudospectral Method

Several important aspects of the hp-adaptive pseudospectral method are now clarified. We chooseL =

10 for this paper because increasing by fewer than ten collocation points may result in a significantly

larger number of grid iterations. Whenever the method adds a segment, the number of collocation

points in the newly created segment is set to five in order to keep the number of collocation points

small. The error estimate of Eq. (27) has been found in practice to result in an appropriate termination

of the method and to keep the NLP of reasonable size. To avoid the case where large, computationally

inefficient polynomial approximations are being used to approximate a segment, a user specified limit

on the number of collocation points within a segment should be set. If this limit is exceeded, then

the current segment should be subdivided to avoid computationally large, dense segments. For the

problems of this paper, this scenario was not encountered.

7 Examples

We now apply the hp-adaptive pseudospectral method of Section 6 to several examples. All of the

examples analyzed in this section are taken from the open literature and were solved using a mod-

ified version of the open-source pseudospectral optimal control software GPOPS [12, 13]† using the

NLP solver SNOPT [34]. All computations were performed on a 2 GHz Core 2 Duo machine with 2

gigabytes of RAM running OpenSuse Linux 11.0 and MATLAB R2007a.

†GPOPS[12, 13] is available for download at either http://www.sourceforge.net/projects/gpops or

http://www.gpops.org.
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In the results that follow, the state approximation is shown at the discretization points (collocation

points plus endpoints) and at points between the discretization points. The state approximation at

points between the discretization points was obtained using the Lagrange polynomial approximation

of Eq. (9) on a very fine grid in each segment. On the other hand, the control is shown at only the

collocation points because it does not have a unique function approximation between the collocation

points. Finally, Example 1 has an analytic solution while Examples 2 through 5 do not have an analytic

solution. Thus, for Example 1 the actual error in the solution on the final grid will be computed. For

Examples 2 through 5, the error on the final grid will be estimated by solving the NLP using one

additional collocation point, Ns + 1, ∈ [1, . . . , S], in each segment and taking the difference between

the Ns and Ns + 1 state approximations.

Example 1: Moon-Lander Problem

Consider the following optimal control problem of a soft lunar landing [35]. Minimize

J =

∫ tf

t0

udt (32)

subject to

ḣ = v

v̇ = −g + u,
(33)

the boundary conditions

h(0) = 10 , v(0) = −2

h(tf ) = 0 , v(tf ) = 0,
(34)

and the control path constraint

0 ≤ u ≤ 3 (35)

where g = 1.5, and tf is free. The optimal solution to the optimal control problem given in Eqs. (32)–

(35) is given as

(h∗(t), v∗(t), u∗(t)) =







(−3
4 t

2 + v0t+ h0,−
3
2 t+ v0, 0) , t ≤ s∗

(34 t
2 + (−3s∗ + v0)t+

3
2(s

∗)2 + h0,
3
2 t+ (−3s∗ + v0), 3) , t ≥ s∗

(36)

where s∗ is given as

s∗ =
t∗f
2

+
v0
3

(37)

with

t∗f =
2

3
v0 +

4

3

√

1

2
v20 +

3

2
h0 (38)
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For the boundary conditions given in Eq. (34), we have (s∗, t∗f ) = (1.4154, 4.1641). It is seen that the

optimal control for this problem is “bang-bang” in that it is at its minimum value for t < s∗ and at its

maximum value for t > s∗.

Fig. 4a shows the control for this problem for ǫ = 10−3 while Fig. 4b shows the distribution of col-

location points on each iteration of the method. Initializing the problem with five global collocation

points, it is seen that the method progresses to a final grid such that the collocation points are more

densely located near the control discontinuity, terminating with a six-segment decomposition of five

collocation points in each segment except the segment containing the discontinuity terminated with

15 collocation points. Segment breaks occurred at t = (1.30, 1.37, 1.41, 1.45, 1.70). Furthermore, the

control discontinuity is closely bracketed by a fairly short segment. Fig. 4c displays the state for this

problem, and demonstrates that the nonsmoothness in the state at s∗ is accurately captured. Table 1

shows the performance of the method using ρ = 3 in comparison with a global approach. It is seen

that, when a highly accurate solution is desired, the global approach is simultaneously more com-

putationally expensive and less accurate than the hp-adaptive method. For example, Table 1 shows

that a solution using 200 global collocation points achieves a maximum state error of O(10−3) while a

solution obtained using the hp-adaptive method with 45 collocation points achieves a maximum state

error of O(10−6). In the case of global collocation with ǫ = 10−1, a solution was never obtained be-

cause the maximum value in Eq. (27) only reduced to O(1), even for 200 global collocation points. On

the other hand, the hp-adaptive method was able to solve this problem much more computationally

efficiently and for a much smaller value of ǫ = 10−4. Examining the maximum of Eq. (27) and the

maximum relative error between the NLP solution and the true solution, for this problem, it is seen

that analyzing the value of dynamic collocation at the midpoints between collocation points is a con-

servative estimate of the actual errors in the state (the actual state errors being an order of magnitude

or two smaller than ǫ).

Example 2: Hyper-Sensitive Problem

Consider the following hyper-sensitive [36, 37, 38, 39] optimal control problem adapted from Ref. [37].

Minimize the cost functional

J =
1

2

∫ tf

0
(x2 + u2)dt (39)

subject to the dynamic constraint

ẋ = −x3 + u (40)

and the boundary conditions

x(0) = 1 , x(tf ) = 1 (41)
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where tf is fixed. It is known that for sufficiently large values of tf that the solution to this exam-

ple exhibits a so called “take-off”, “cruise”, and “landing” structure where the interesting behavior

occurs near the initial and final time (see Ref. [37] for details). In particular, the “cruise” segment of

this trajectory is constant (i.e., state, control and, interestingly, costate are all zero) and becomes an

increasingly large percentage of the total trajectory time as tf increases. Given the structure of the

solution, one would expect that the majority of collocation points would be placed in the “take-off”

and “landing” segments while few collocation points would be placed in the “cruise” segment.

Suppose we use a global polynomial to approximate the solution. Fig. 5a shows the solution for

tf = 40 using three different approximations. It is seen that an insufficient degree polynomial (5 and

10 collocation points) results in an inaccurate solution (the solution is inaccurate in the ”take off” and

”landing” segments and also oscillates around the true solution in the “cruise” segment). It should be

noted that not only are the interpolation points between the discretization points inaccurate, but the

discretization points themselves can be highly inaccurate when utilizing an insufficient degree global

polynomial. On the other hand, utilizing a 25th-degree polynomial (i.e., 25 collocation points) results

in a solution that is in better agreement with the optimal solution. It is expected that, as tf increases,

the degree of a global polynomial required to solve the problem will also increase.

This example was solved using the hp-adaptive pseudospectral method of Section 6 for different

values of tf using global collocation and an initial grid of five global collocation points. It is seen

from Table 2 that the problem only solved for relatively large values of ǫ; for smaller values of ǫ, the

problem did not solve. Even for loose tolerances, for large final times, a global polynomial did not

accurately approximate the solution. Also, utilizing such a large number of global collocation points

will become computationally intractable for higher-dimensional problems (i.e., problems with many

more states and controls) due to the increased memory and computational requirements associated

with such a dense NLP.

Suppose now that the hp-adaptive pseudospectral method is applied to this example using ρ = 3

(thus, forcing the method to divide the problem into segments) and ǫ = 10−3, where ǫ = 10−3 was

chosen because this value results in very accurate solutions while maintaining a small computation

time. The results obtained using ρ = 3 and ǫ = 10−3 are shown in Table 3. It is seen that for large values

of tf the number of collocation points are increased, but the problem is still manageable in terms of

CPU time, NLP variables and Jacobian entries. Figs. 5b, 5c, and 5d show the solution for tf = 5000

along with the solution obtained using SOCS [40]. The hp-adaptive pseudospectral solutions and

SOCS solutions are in excellent agreement. As one might expect, the majority of collocation points

are placed in the take-off and landing segments, while many fewer collocation points are placed in

the cruise segment. With regard to CPU time, it is seen that the total computation time using ρ = 3 is
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growing as tf grows but not by a significant amount. Because the problem is divided into segments,

the resulting NLP is significantly more sparse as compared with using global collocation. Also, unlike

global collocation, where no solution was obtained for tf > 200, using ρ = 3 we were able to obtain

solutions for tf = 5000. The final grid for tf = 5000 was increased by one collocation point in each

segment, the NLP was re-solved, and the maximum difference between the state approximations

between these two grids was O(10−4).

Example 3: Dynamic Soaring Problem

Consider the following optimal control problem taken from Ref. [41]. Minimize

J = β (42)

subject to the dynamic constraints

ẋ = V cos γ sinΨ +Wx , mV̇ = −D −mg sin γ −mẆx cos γ sinΨ

ẏ = V cos γ cosΨ , mV γ̇ = L cosσ −mg cos γ +mẆx sin γ sinΨ

ḣ = V sin γ , mV cos γΨ̇ = L sinσ −mẆx cosΨ

(43)

and the boundary conditions

(x(0), y(0), h(0)) = (0, 0, 0)

(x(tf ), y(tf ), h(tf )) = (0, 0, 0),
(44)

where β is the average wind gradient slope, Wx is the wind component along the East direction, m

is the glider mass, V is the air-relative speed, Ψ is the heading angle measured clockwise from the

North, γ is the air-relative flight path angle, h is the altitude, (x, y) are (East, North) position, σ is the

glider bank angle, D is the drag force, and L is the lift force. The drag and lift forces are computed as

D = qSCD

L = qSCL

(45)

where q = ρV 2/2 is the dynamic pressure, S is the vehicle reference area, CD = CD0 + KC2
L is the

coefficient of drag, and CL is the coefficient of lift (where 0 ≤ CL ≤ CL,max). For this example,

CD0 = 0.00873, K = 0.045, and CL,max = 1.5. Finally, it is noted that CL and σ are the controls.

This example was posed in English units, but was solved using the automatic scaling procedure

in GPOPS (see Ref. [30] for details). The hp-adaptive pseudospectral solution with ρ = 3 and ǫ = 10−3

and an initial grid of 10 global collocation points is shown in Figs. 6a–6e, while the Hamiltonian is

shown in Fig. 6f. It is seen that the Hamiltonian is close to zero for this problem, consistent with

the known optimal value. Table 4 summarizes the computational performance of both the global
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pseudospectral method and the hp-adaptive pseudospectral method using ρ = 3. It is seen that the

NLP was solvable using global collocation only for ǫ > 5 × 10−2. In addition, for a similar value

of ǫ, fewer collocation points were utilized with the hp-method as compared with global collocation.

For this example similar computational effort was required using either a global method or the hp-

method. Finally, for ǫ = (10−1, 10−2, 10−3), the maximum relative differences in the state on the final

grid and the solution obtained from the NLP via a one collocation point increase in each segment were

(O(10−2),O(10−3),O(10−3)).

Example 4: Minimum Time-to-Climb of a Supersonic Aircraft

Consider the following optimal control problem which is a variation of the minimum time-to-climb of a

supersonic aircraft [42, 43, 38]. Minimize the cost functional

J = tf (46)

subject to the dynamic constraints

ḣ = v sin γ, , Ė =
v

W
(T −D), , γ̇ =

g

v
(n− cos γ), (47)

the boundary conditions

h(0) = 0 , h(tf ) = 19995 m

E(0) = 852.6 m , E(tf ) = 24435 m

γ(0) = 0 deg , γ(tf ) = 0 deg,

(48)

and the inequality path constraint

γ ≤ 45 deg, (49)

where h is the altitude,E is the energy altitude, γ is the flight path angle, v =
√

2g(E − h) is the speed,

g is the local acceleration due to gravity, and n is the load factor (and is the control for this example).

Further details of the vehicle model and the numerical values of the constants for this model can be

found in Ref. [43] and [38].

The solution to the optimal control problem of Eqs. (46)–(48) using the hp-adaptive pseudospectral

method is shown in Figs. 7 for ǫ = 10−3 and ρ = 3. A key characteristic of the performance of the

hp-method is captured in Fig. 7a, where the flight path angle, γ, is shown to reach the path constraint.

The path constraint is active from approximately t = 18.45 s to t = 31.42 s, after which γ decreases to

near zero at t ≈ 100 s. On its second increase, γ does not attain its maximum allowable value. Because

the first increase hits the upper limit on γ (in this case, γmax = 45 deg), many collocation points and

segments are required in order to obtain an accurate approximation. Also, the Hamiltonian, H , is
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shown in Fig. 7e where it is seen that H is close to −1, (where the optimal Hamiltonian, H∗ is −1 for

this problem). Table 5 displays the computation times and expense for this example using various val-

ues of ǫ. Again, for even a very loose accuracy tolerance, the global approximation never converged

while a segmented approach converged for increasingly tight tolerances. In this problem it is seen

that obtaining an accurate solution to accuracy O(10−4) requires significantly more collocation points,

segments, and CPU time. For ǫ = (10−1, 10−2, 10−3), the maximum relative difference between the

state approximation on the final grid and grid with one extra collocation point per segment was ap-

proximately one order of magnitude less than ǫ. For ǫ = 10−4, this same maximum relative difference

was O(10−4).

Example 5: Aeroassisted Orbital Transfer

Consider the following three-phase optimal control problem taken from Ref. [30]. Minimize the cost

functional

J =

3
∑

i=1

‖∆Vi‖ (50)

subject to the dynamic constraints (that correspond to motion over a spherical non-rotating Earth) are

modeled in spherical coordinates as

Phases 1 and 3:

ṙ = v sin γ

θ̇ =
v cos γ cosψ

r cosφ

φ̇ =
v cos γ cosψ

r
v̇ = −D − g sin γ

γ̇ = −
1

v

(

g −
v2

r

)

cos γ

ψ̇ = −
1

v

v2

r
cos γ cosψ tanφ

,

Phases 2:

ṙ = v sin γ

θ̇ =
v cos γ cosψ

r cosφ

φ̇ =
v cos γ cosψ

r
v̇ = −D − g sin γ

γ̇ =
1

v

[

−
qS

m
u2 −

(

g −
v2

r

)

cos γ

]

ψ̇ = −
1

v

[

qS

m cos γ
u1 +

v2

r
cos γ cosψ tanφ

]

(51)

where r is the geocentric radius, θ is the longitude, φ is the geocentric latitude, v is the speed, γ

is the flight path angle, ψ is the heading angle, g = µ/r2 is the gravitational acceleration, µ is the

gravitational parameter, and q = ρv2/2 is the dynamic pressure. Phases 1 and 3 of this problem

occur outside of the atmosphere while phase 2 occurs in the atmosphere. The impulses ∆V1 ∈ R
3,

∆V2 ∈ R
3, and ∆V3 ∈ R

3 are modeled in Earth-centered inertial (ECI) Cartesian coordinates and

are applied at the beginning of Phase 1, the end of Phase 2, and the end of Phase 3. Each impulse is

transformed to spherical coordinates via the transformation

{∆V}sph = T s
e (∆V) (52)
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where T s
e is the nonlinear transformation from ECI to spherical coordinates (see Appendix). The

first impulse de-orbits the vehicle into the atmosphere, the second impulse boosts the vehicle upon

atmospheric exit, and the third impulse circularizes the vehicle into its final orbit. The controls during

atmospheric flight are u1 and u2, defined as

u1 = −CL cosσ

u2 = −CL sinσ
(53)

where σ is the bank angle. The controls u1 and u2 are constrained by the inequality path constraint

√

u21 + u22 ≤ CL,max (54)

where CL,max is the maximum allowable coefficient of lift. It is noted that the bank angle can be

computed from u1 and u2 as

σ = tan−1(u1, u2) (55)

where tan−1 is the four-quadrant inverse tangent. The initial conditions correspond to an equatorial

circular orbit of altitude h0 and are given in terms of orbital elements as

a = Re + h0 , e = 0

i = 0 deg , Ω = 0 deg

ω = 0 deg , ν = 0 deg

(56)

where a, e, i, Ω, ω, and ν are the semi-major axis, eccentricity, inclination, longitude of ascending

node, argument of periapsis, and true anomaly, respectively [44], and Re is the equatorial radius of

the Earth. Next, the following inequality constraint is imposed at the terminus of Phase 2:

γ
(

t
(2)
f

)

≥ 0 (57)

where t
(2)
f is the time at the end of phase 2. Finally, a terminal constraint is placed on the inclination

as

cos i(tf ) = cosφ(tf ) cos γ(tf ) (58)

For this example we choose i(tf ) = 10 deg and a maximum lift coefficient CL,max = 0.4. The problem

is solved using a canonical system of units where length is in units of Earth radii (Re), time is in units

of
√

µ/Re, speed is in units of
√

µ/Re, and mass is in units of initial spacecraft mass. Finally, it is

noted that the mass drop across an impulse is taken into account by reducing the mass using the

rocket equation

‖∆V‖ = g0Isp ln(m
+/m−) (59)

where m+ and m− are the values of the mass immediately before and application of the impulse, ∆V,

and Isp is the engine specific impulse. Thus, this example contains continuous variables (state and
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control) along with the static optimization parameters ∆V1, ∆V2, ∆V3, and the values of mass m(1)),

m(2), and m(3) that represent the mass during phases 1, 2, and 3.

The solution to the aeroassisted orbital transfer optimal control problem was obtained using the

hp-adaptive pseudospectral method of Section 6 using ρ = 3, ǫ = 10−4 and an initialization of 10

collocation points per phase. In phases 1 and 3 single global segments of 10 collocation points each

were obtained with a maximum value of Eq. (27) of O(10−11). Phase 2 consisted of seven segments

each of 5 collocation points, except that the first and last segments of phase 2 have 15 collocation

points. It was found that the maximum of Eq. (27) of the solution on the final grid in phase 2 is

8.66× 10−5.

The solution on the final grid in phase 2 (i.e., the atmospheric phase) is shown in Fig. 8. In this

problem it is interesting to observe that the collocation points are densely located near the minimum

altitude. The dynamics change most rapidly near the minimum altitude because the atmospheric

force is the greatest in this region (thus providing the greatest lift on the vehicle anywhere on the

trajectory). Consistent with this last observation, Fig. 8d shows that the bank angle changes most

rapidly near minimum altitude. Finally, Fig. 8f shows the Hamiltonian, H , as a function of t. It is seen

that the Hamiltonian is close to zero, as expected because the Hamiltonian is not an explicit function

of time and the final time is free.

8 Discussion of Results

The results of Section 7 demonstrate several key features of the hp-adaptive pseudospectral method

developed in this paper. Examples 1 is a problem with a nonsmooth optimal control where the hp-

adaptive pseudospectral method is both more computationally efficient and more accurate than a

global approach. In addition, the hp-adaptive solution contains many fewer total collocation points

as compared with a global approach. Because the optimal control in Example 1 is non-smooth (in this

case, discontinuous in the control), a global approximation was unable to provide a solution where

tighter tolerances (e.g., 10−2) were used. Also, it was found for this example that using Eq. 27 as a

convergence criteria results in a very conservative approximation of the true accuracy in the state.

The actual accuracy of the state on the final grid was one to two orders of magnitude greater than the

maximum residual of Eq. (27).

In Example 2, the location of the segment breaks and allocation of collocation points changed as

a function of the final time. Specifically, for this example the percentage of the solution in the “take-

off” and “landing” decreases as tf increases. For small to moderate values of tf , a global approach

was feasible for only loose accuracy tolerances. For larger values of tf (e.g., tf = 5000), the hp-

adaptive method developed in this paper was computationally efficient and gave solutions to tighter
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accuracy tolerances than global collocation. In the case of large tf it was found that the placement

of the collocation points was as expected, that is the hp-method placed a large number of collocation

points in the “take-off” and “landing” segments (where the state and control change) and placed many

fewer collocation points in the “cruise” segment. As tf is increased further, greater computational

resources were required but computationally efficient solutions were still obtained.

Examples 3 and 4 re-emphasize the increased accuracy and computational efficiency of the hp-

adaptive pseudospectral method of this paper over global collocation. Example 4 demonstrates how

the hp-method of this paper treats a problem with active inequality path constraints. Similar to the

results of Examples 1, the hp-adaptive method is more efficient and accurate than a p-method. In this

example, the pmethod did not converge for very loose accuracy tolerances. Interestingly, when the hp-

adaptive method is used, the segments are divided near the activity/inactivity of the path constraint.

In addition, many segments and collocation points were used to capture the ascent of the aircraft from

the runway. In contrast, the final segment of the trajectory has significantly less interesting behavior

and, thus, fewer collocation points and segments are used to approximate this section of the trajectory.

Example 5 shows the utility of the hp-adaptive method on a multiple-phase problem. In this

example suitable solutions were found using a mixture of globally collocated phases (phases 1 and 3)

and a phase that requires segmentation (phase 2). The key attribute of the hp-adaptive pseudospectral

method for this example is that the collocation points were more densely located in the middle of the

atmospheric phase. The behavior of the adaptive hp-adaptive pseudospectral method for Example

4 is similar to that of Example 2, i.e., the collocation points are located in regions where the greatest

action takes place.

9 Possible Limitations of the hp-Adaptive Pseudospectral Method

While the hp-adaptive pseudospectral method developed in this paper has been found to be successful

on a range of problems, it has some possible limitations that we now describe. First, in the approach

developed in this paper, the mesh can only increase in size. For example, in Example 1 the method

terminated using more segments than were theoretically necessary. If it was possible to decrease the

number of collocation points or segments, the result might have been a three-segment solution with

a short segment bracketing the control discontinuity. Ideally, two segments connected at the exact

location of the discontinuity would be utilized. The inefficiency of terminating with six segments,

while not significant in Example 1, might be important in other applications (e.g., a problem with a

multiple bang-bang solution). Secondly, the method may have some difficulties on a problem with

a very high frequency periodic solution. For such a problem, because the solution is smooth, the

method may not divide the problem into segments. Instead, the method may simply increase without
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bound the degree of a global polynomial approximation used. Finally, from our experience it typically

takes many grid iterations when ǫ is small. Reducing the number of times the NLP solver is called

would greatly increase the efficiency of this hp scheme.

10 Conclusions

An hp-adaptive pseudospectral method has been developed for solving optimal control problems. A

strategy has been devised that determines the locations of segment breaks and the degree of the poly-

nomial approximation required in each segment. The method has been applied to several examples of

varying complexity. It has been found that the method produces solutions with better accuracy than

global pseudospectral collocation while utilizing less computation time and resources. The method is

demonstrated on a wide variety of applications ranging from problems with nonsmooth solutions to

multiple-phase problems where the dynamics change more rapidly in certain regions of the trajectory

than in other regions. The method has been integrated into a previously developed open-source pseu-

dospectral optimal control software and is found to be a viable way to solve optimal control problems

using pseudospectral methods.
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Appendix: Transformation from ECI Cartesian to Spherical Coordinates

Consider a point in three-dimensional Euclidean space whose position (measured from the center

of the Earth) and inertial velocity are modeled in Earth-centered inertial (ECI) Cartesian coordinates

as r = (x, y, z) and v = (vx, vy, vz). Let r, θ, φ, v, γ, and ψ be the geocentric radius, longitude,

latitude, speed, flight path angle, and heading angle. Together (r, θ, φ, v, γ, ψ) define a set of spherical

coordinates. The transformation from ECI to spherical coordinates is given as follows. First, the radius

and speed are computed as

r = ‖r‖2 =
√

x2 + y2 + z2

v = ‖v‖2 =
√

v2x + v2y + v2z
(60)
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Next, the longitude and latitude are computed as

θ = tan−1(y, x)

φ = tan−1(z,
√

x2 + y2)
(61)

where tan−1(·, ·) is the four-quadrant inverse tangent. Finally, the flight path angle and heading angle

are computed as follows. First, let

er = r/r , eθ =
Ez × r

‖Ez × r‖2
, eφ = er × eθ (62)

where Ez =
[

0 0 1
]T

. We then define the vector vs as

vs =
[

er eθ eφ

]T

v =









vr

vθ

vφ









(63)

The flight path angle and heading angle are then computed as

γ = tan−1(vr,
√

v2θ + v2φ)

φ = tan−1(vφ, vθ)
(64)
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ǫ ρ CPU Time (s) Collocation Points Segments # of Grids Max Infeasibility Maximum Relative Error

100 Global 0.23 5 1 1 9.5× 10−1 5× 10−2

5× 10−1 Global 1.99 65 1 7 4.5× 10−1 2.5× 10−1

10−1 Global – – – – – –

10−1 3 0.89 10 2 4 7.3× 10−2 1.33× 10−3

10−2 3 2.4 45 5 13 8.1× 10−3 8.43× 10−5

10−3 3 3.21 40 6 15 8.2× 10−4 5.0× 10−6

10−4 3 3.71 45 7 17 3.1× 10−5 1.82× 10−6

– Global 13.41 200 1 1 5.94× 10−1 9.03× 10−4

Table 1: Summary of Accuracy and Speed Using the hp-Adaptive Pseudospectral Method for Example
1 Using Various Accuracy Tolerances, ǫ, and Global/Local Threshold Tolerances, ρ.
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tf ǫ CPU Time (s) Collocation Points # of Grids Jacobian Density Jacobian Entries

40 10−2 2.35 105 11 50 11556

200 10−1 20.3 175 18 50 31506

1000 10−1 – – – - –

Table 2: Computational Performance of Global Collocation for Example 2.
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tf ǫ CPU Time (s) Collocation Points Segments # of Grids Jacobian Density Jacobian Entries

40 10−3 12.47 85 7 13 10.8 1830

200 10−3 9.79 70 10 12 8.3 1042

1000 10−3 14.24 120 16 14 5.22 1866

2000 10−3 24.15 140 20 18 4.24 2082

5000 10−3 19.93 135 17 13 4.85 2170

Table 3: Computational Performance of the hp-Adaptive Pseudospectral Method for Example 2 Using
ρ = 3.
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ǫ ρ CPU Time (s) Collocation Points Segments Grid Iterations Jacobian Density Jacobian Entries

10−1 Global 25.6 50 1 5 12.8 19215

5× 10−2 Global 68.6 90 1 9 11.9 56135

10−2 Global — — — — —

10−1 3 26.1 30 4 7 6.8 4409

10−2 3 84.4 65 75 9 2.8 13085

10−3 3 300.8 155 13 14 1.8 30113

Table 4: Summary of Accuracy and Speed Using the hp-Adaptive Pseudospectral Method for Example
3 Using Various Accuracy Tolerances, ǫ.
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ǫ ρ CPU Time (s) Collocation Points Segments # of Grids Jacobian Density Jacobian Entries

100 Global – – – – – –

10−1 3 10.34 30 4 5 10.5 1856

10−2 3 21.47 75 6 8 6.1 5804

10−3 3 36.68 120 14 12 3.0 7796

10−4 3 119.78 260 34 19 1.3 16196

Table 5: Summary of Computational Performance of the hp-Adaptive Pseudospectral Method for
Example 4 Using Various Values of ǫ and ρ.
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