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Abstract: Flowshop scheduling deals with determination of optimum sequence
of jobs to be processed on some machines in a fixed order so as to satisfy
certain scheduling criteria. The general problem of scheduling has been
shown to be NP-complete. Exact algorithms, such as integer programming and
branch-and-bound, guarantee optimality but do not yield the optimum solution
in polynomial time even for problems of small size. Heuristics have been shown
to yield good working solutions (not necessarily optimal) in reasonable time.
Although much research on the flowshop problem has been done over several
decades starting from Johnson’s algorithm, only a few good algorithms exist. The
Nawaz-Enscore-Ham heuristic, used for minimisation of makespan, continues to
be the most popular algorithm because of its simplicity, solution quality and
time-complexity. In the present paper we have modified the NEH algorithm,
achieving significant improvement in the quality of the solution while maintaining
the same algorithmic complexity. The proposed approach derives its strength from
the use of a population-based technique. Experimental comparisons have been
made on a large number of randomly generated test problems of varying problem
sizes. Our approach is shown to outperform both the original NEH and NEH’s
best-known competitor to date, the HFC heuristic. Statistical tests of significance
are performed to substantiate the claims of improvement.
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1 Introduction: the problem

The problem of the assignment of times to a set of jobs for processing through a series of
machines has long received the attention of researchers. A great deal of research has been
carried out in manufacturing scheduling. The practical importance of such problems is
great, as scheduling plays a significant role in successful production, planning and control.
A variety of scheduling algorithms have been developed over the past years to address
different production systems. Two common problems that appear regularly in the scheduling
literature of the past 40 years are flowshop scheduling and jobshop scheduling. In flowshop
scheduling it is generally assumed that the jobs must be processed on the machines in the
same technological or machine order. In jobshop scheduling, on the other hand, jobs are
usually processed following different machine orders.

In the flowshop scheduling problem, n jobs are to be processed on m machines. The
order of the machines is fixed. We assume that a machine processes one job at a time and
a job is processed on one machine at a time without preemption. Let tp(i, j) denote the
processing time of job j on machine i and tc(i, j) denote the completion time of job j on
machine i. Let Jj denote the j th job and Mi be the ith machine. The completion times of
the jobs are obtained as follows. For i = 1, 2, . . . , m and j = 1, 2, . . . , n.

tc(M1, J1) = tp(M1, J1)

tc(Mi, J1) = tc(Mi−1, J1) + tp(Mi, J1)

tc(M1, Jj ) = tc(M1, Jj−1) + tp(M1, Jj )

tc(Mi, Jj ) = max{tc(Mi−1, Jj ), tc(Mi, Jj−1)} + tp(Mi, Jj )

Makespan is defined as the completion time of the last job, that is, makespan is denoted by
tc(Mm, Jn). We obtain the n-job sequence that minimises the makespan.

The search space consists of n! possible job sequences. The problem is NP-complete
and exhaustive enumeration of all n! sequences is computationally prohibitive.

In the present paper we present an efficient deterministic heuristic for solving the
n-job, m-machine flowshop scheduling problem. The algorithm seeks to improve upon
the famous NEH (Nawaz et al., 1983) method. The remainder of this paper is organised
as follows: in Section 2 we provide the background information necessary to understand
the present paper, Section 3 explains why the NEH algorithm continues to be important
till today, Section 4 discusses the proposed approach, Section 5 derives the algorithmic
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complexity, Section 6 presents comparative experimental results and finally, Section 7
presents the conclusions.

2 Previous work

Currently available heuristics for solving flowshop scheduling problems can be
broadly divided into two categories: constructive heuristics and improvement heuristics.
A constructive heuristic generates a schedule of jobs so that once a decision is taken it cannot
be changed for improvement. An improvement heuristics starts with an initial sequence of
jobs and an attempt is made to improve the objective function by amending the sequence.
The scheduling approach generally cited as the foundation technique is the one developed
by Johnson (1954) who presented a simple constructive method to minimise the makespan
for n-job, two-machine scheduling problems. In Johnson’s method, job Ji is scheduled first
or last according to whether t1i or t2i is min{tj i}. After removing the scheduled job from
the list, the next job is scheduled to the next available position (starting at the beginning or
at the end of the schedule) following the same min{tj i} criterion. The process continues till
the last job is included. The simplicity and guaranteed optimality of Johnson’s algorithm
led many researchers to extend his idea to the general case of n-jobs, m-machine problems,
but without success. Palmer (1965) proposed a solution to the general (n, m) problem by
computing a slope index to give priorities to jobs to proceed from one machine to another
and then sequencing the jobs in descending order of the slope index. Campbell et al. (1970)
(or CDS for short) proposed a generalisation of Johnson’s method. They developed m − 1
artificial two-machine problems from the original m-machine problem and solved them
using Johnson’s algorithm. The best sequence is taken as the final solution. Dannenbring
(1977), too, used Johnson’s algorithm and proposed two neighbourhood schemes to be
implemented for exploring (possibly) improved solutions. With the ‘rapid access with close
order search (RACS)’neighbourhood, n−1 new sequences are examined based on adjacent
job interchanges and the best one is selected; the other neighbourhood, the ‘rapid access with
extensive search (RAES)’, uses the best immediate neighbour and was shown to be superior
to RACS. Ignall and Schrage (1965) used branch-and-bound to develop an optimisation
algorithm for three-machine flowshop problems. Other examples of the use of the branch-
and-bound technique include Lomnicki (1965), Brown and Lomnicki (1966) and Bestwick
and Hastings (1976).

Nawaz et al. (1983) proposed a heuristics (refereed to as the NEH) that gave priority
to jobs with large total processing times. A heuristic method based on minimising the
idle time of the last machine was proposed by Sarin and Lefoka (1993). Koulamas (1998)
presented a simple constructive heuristics capable of producing non-permutation schedules.
The algorithm works in two phases: the first phase generates a permutation schedule which
then is fed to the second phase; the second phase improves upon the sequence obtained
in the first phase by generating a non-permutation schedule.

3 Relevance of NEH

Despite the existence of a plethora of flowshop scheduling heuristics, the NEH method
continues to be the best constructive heuristic method because of its simplicity, solution
quality and time complexity. Johnson’s two-machine scheme gives the optimal makespan,
but fails to generalise to m-machine problems. Park’s (1981) study, comparing CDS,
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NEH and other heuristics, demonstrates that NEH is the ‘least biased and best-operated’
of the heuristics tested on both small-sized (n = 3 – 9, m = 4 – 20) and medium-sized
(n = 15 – 30, m = 4 – 20) problems and that the CDS comes next. As far as computation
time is concerned, for large problems NEH outperformed the CDS but was outperformed
by the Gupta (1971) algorithm (the NEH times were not unacceptably large, though).
Nawaz et al. argue that their algorithm will continue to perform well for large problem
sizes (m, n ≥ 100). They also point out that for large problems where the number of
machines greatly exceeds the number of jobs, CDS is likely to outperform NEH, because
the former’s effectiveness is dependent on the number of machines while the latter’s on
the number of jobs. Now, Park’s study did not include Dannenbring’s (1977) work and as
mentioned by Turner and Booth (1987), Dannenbring’s RAES is superior to CDS. Turner
and Booth also observed that NEH proved to be more efficient than RAES on both measures
of performance (makespan and CPU time). Sarin and Lefoka (SL) have shown that NEH
is more effective than their SL when the number of machines is ≤ 100 but is inferior for
larger m.

4 The proposed algorithm

The proposed algorithm builds the n-job sequence incrementally and thus is a constructive
method. What leads to its improved performance is its use of a group of promising partial
solutions at each stage (i.e. as each new job is added to the sequence). Here is an outline of
the method:

1 For each job i, find the total processing time Ti which is given by

Ti =
m∑

j=1

tp(j, i)

where tp(j, i) is the processing time of job i on machine j .

2 Sort the n jobs on descending order of their total processing times.

3 Take the first four jobs from the sorted list and form 4! = 24 partial sequences (each
of length 4). The best k (k is a parameter of the algorithm) out of these 24 partial
sequences are selected for further processing. The relative positions of jobs in any
partial sequence is not altered in any later (larger) sequence.

4 Set z = 5.

5 The zth job on the sorted list is inserted at each of the z positions in each of the
k (z − 1)-job partial sequences, resulting in z × k z-job partial sequences.

6 The best k out of the z × k sequences are selected for further processing.

7 Increment z by 1.

8 If z > n, accept the best of the k n-job sequences as the final solution and stop.
Otherwise go to step 5.

5 Computational complexity

In this section we derive the algorithmic complexity of the proposed scheme. Step 1 of
our algorithm computes a sum of m terms for each of the n jobs and is thus of complexity
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�(mn). Step 2 involves sorting n items and can be implemented using any good algorithm
from the literature. Quicksort (Cormen et al., 1990), with an average-case complexity of
�(n lg n), is a natural choice. Step 3 takes a constant amount of time. Steps 5 – 8 together
take a total time given by

n∑
z=5

k × z × TMS(z)

where TMS(z) denotes the time to compute the makespan for a z-job partial sequence.
For a direct comparison with NEH, we note that the total number of enumerations (of

partial and complete sequences) in the present method is

4! +
n∑

z=5

k × z = 4! + k ×
n∑

z=5

z

= �(n2)

The number of enumerations in NEH was shown (Nawaz et al., 1983) to be

n(n + 1)

2
− 1

which, clearly, is �(n2). Thus the asymptotic time complexity of our method is the same
as that of NEH.

6 Experimental results

The algorithm was run on 28 different problem sizes (n = 12, 18, 24, 30, 40, 50, 100 and
m = 5, 10, 15, 20). For each problem size, 15 independent problem instances were created.
Each problem instance corresponds to a new tp matrix: each processing time (tp(., .) value)
was independently obtained from a uniform random u(1,99) discrete distribution. Table 1
shows makespan values (averaged over 15 independent instances) obtained by the original
NEH and the proposed algorithm for two values of k: 6 and 24. These values of k are only
representative. We did not attempt any tuning for the parameter k. These results bring out
the superiority of the proposed approach.

Tables 2 and 3 show results of statistical tests of significance for two separate cases
(k = 6 and k = 24). Each test suite (recall that one test suite comprises 15 independent
instances) gives us 15 pairs of makespan values and we thus have a paired comparison. For
each test suite, the mean and the standard deviation of the 15 differences in makespan are
easily obtained. The difference in each instance is obtained by subtracting the makespan
of the proposed scheme from the NEH makespan. We now test the hypothesis that the
population corresponding to the differences has mean, µ, zero. Specifically, we test the
(null) hypothesis µ = 0 against the alternative µ > 0. We assume that the makespan
difference is a normal random variable, and choose the significance level α = 0.5. If the
hypothesis is true, the random variable

t = √
N

x̄ − µ

s

has a t-distribution with N − 1 degrees of freedom (Kreyszig, 1972). The critical value c is
obtained from the relation
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Table 1 Performance comparison between NEH and the proposed heuristic (H)

Test suite # # of jobs # of machines # of instances Average makespan
NEH Proposed method

H (k = 6) H(k = 24)

1 12 5 15 838 834 831
2 12 10 15 1215 1201 1189
3 12 15 15 1529 1498 1490
4 12 20 15 1904 1888 1866
5 18 5 15 1142 1132 1127
6 18 10 15 1540 1527 1521
7 18 15 15 1843 1829 1810
8 18 20 15 2196 2161 2151
9 24 5 15 1440 1440 1438
10 24 10 15 1863 1859 1849
11 24 15 15 2173 2147 2126
12 24 20 15 2530 2492 2477
13 30 5 15 1819 1816 1811
14 30 10 15 2149 2129 2116
15 30 15 15 2566 2537 2519
16 30 20 15 2892 2842 2823
17 40 5 15 2274 2272 2272
18 40 10 15 2689 2673 2657
19 40 15 15 3125 3076 3052
20 40 20 15 3459 3419 3394
21 50 5 15 2817 2814 2814
22 50 10 15 3157 3135 3115
23 50 15 15 3615 3595 3572
24 50 20 15 4040 3975 3946
25 100 5 15 5473 5470 5470
26 100 10 15 5820 5796 5794
27 100 15 15 6243 6209 6193
28 100 20 15 6660 6593 6580

Prob(t > c) = α = 0.05

From the standard tables of t-distribution, we have for 14 degrees of freedom c = 1.76.
For example, the first entry in Table 1 corresponds to sample size = N = 15, µ = 0,
sample mean = x̄ = 3.467, sample standard deviation = s = 5.678 and the sample
t = √

15(3.467 − 0)/5.678 = 2.33. Since t > 1.76, we conclude that the difference is
statistically significant.

Two additional metrics have been used to quantify the improvement. These are the
Average Relative Percentage Deviation (ARPD) and the Maximum Percentage Deviation
(MPD). These metrics are defined as follows (MS in the equations below stands for
makespan and H represents the proposed heuristic):

ARPDNEH = 100

15

15∑
i=1

MSNEH,i − min(MSNEH,i , MSH,i)

min(MSNEH,i , MSH,i)
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ARPDH = 100

15

15∑
i=1

MSH,i − min(MSNEH,i , MSH,i)

min(MSNEH,i , MSH,i)

MPDNEH = maxi

{
MSNEH,i − min(MSNEH,i , MSH,i)

min(MSNEH,i , MSH,i)

}
× 100

MPDH = maxi

{
MSH,i − min(MSNEH,i , MSH,i)

min(MSNEH,i , MSH,i)

}
× 100

Clearly, the best possible performance corresponds to both ARPD and MPD being zero.
The experimental results show that our method is superior to NEH. To our knowledge,

the HFC heuristic (Koulamas, 1998) is the only competitor of NEH to date, but as the author
of HFC admits, the HFC is no better than NEH for permutation flowshop problems (HFC
is better than NEH only for non-permutation problems). Thus the proposed heuristics is
better than HFC, too.

Table 2 Results of statistical tests. The proposed method H is run with K = 6

Test suite # Difference in 15 instances t-statistic ARPD MPD
Mean SD NEH H(K = 6) NEH H(K = 6)

1 3.467 5.768 2.33 0.533 0 2.179 0
2 13.867 16.22 3.31 1.199 0 3.715 0
3 30.733 23.903 4.98 2.067 0 5.181 0
4 15.267 45.74 1.3 1.361 0.187 4.311 1.371
5 9.867 19.96 1.91 1.133 0.215 4.785 3.231
6 13.2 32.57 1.57 0.958 0.399 2.971 4.196
7 14.4 22.79 2.45 1.001 0.199 3.231 2.071
8 34.67 20.72 6.48 1.603 0 3.555 0
9 0.67 18.33 0.14 0.412 0.162 2.557 2.424
10 4.4 31.49 0.54 0.169 0.301 0.724 2.857
11 25.67 25.54 3.89 1.232 0.048 3.294 0.588
12 38.6 26.2 5.70 1.602 0.051 3.203 0.756
13 3 16.36 0.71 0.378 0.181 2.617 1.327
14 20.07 29.7 2.62 1.028 0.089 3.212 0.883
15 28.8 34.91 3.195 1.372 0.214 3.496 2.045
16 50 20.92 9.26 1.766 0 3.130 0
17 2 10.198 0.76 0.184 0.088 1.376 0.545
18 15.53 20.07 2.3 0.505 0.022 2.33 0.259
19 48.4 48.16 3.89 1.521 0.128 3.725 1.085
20 40.07 29.76 5.21 1.181 0.025 2.131 0.179
21 2.8 8.53 1.27 0.109 0.007 1.204 0.072
22 21.93 35.636 2.38 0.889 0.169 2.314 1.767
23 19.667 43.747 1.74 0.795 0.245 2.846 2.199
24 64.4 53.91 4.63 1.711 0.077 3.824 0.571
25 3.13 7.17 1.69 0.063 0.005 0.418 0.073
26 24.333 38.565 2.44 0.512 0.075 1.771 0.733
27 33.467 39.599 3.036 0.587 0.048 1.698 0.381
28 66.2 63.55 4.03 1.066 0.068 2.308 0.623
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Table 3 Results of statistical tests. The proposed heuristic (H) is run with k = 24

Test suite # Difference in 15 instances t-statistic ARPD MPD
Mean SD NEH H(K = 24) NEH H(K = 24)

1 6.8 7.103 3.71 0.853 0 2.570 0
2 26.6 20.378 5.05 2.255 0 6.269 0
3 38.733 22.176 6.76 2.611 0 5.181 0
4 37.4 27.92 5.19 2.061 0.061 4.311 0.914
5 14.93 14.14 4.09 1.348 0 4.175 0
6 19.33 24.77 3.02 1.522 0.256 3.226 3.636
7 33.27 15.97 8.07 1.844 0 3.914 0
8 45.2 25.26 6.93 1.798 0.003 3.554 0.046
9 1.667 25.68 0.25 0.685 0.529 2.557 3.949
10 14.267 28.767 1.92 0.986 0.175 5.242 1.554
11 47 23.71 7.68 2.197 0 4.325 0
12 52.93 21.96 9.335 1.837 0 3.955 0
13 8 13.62 2.27 0.479 0.037 2.617 0.549
14 33.4 42.998 3.01 1.905 0.314 4.182 4.708
15 46.73 45.55 3.97 1.505 0.166 3.681 2.045
16 68.867 15.343 17.38 2.152 0 3.016 0
17 2.733 7.55 1.4 0.139 0.008 1.376 0.128
18 31.267 39.845 3.04 1.353 0.143 4.151 1.883
19 72.4 39.37 7.12 2.441 0.049 3.638 0.745
20 65.33 26.95 9.39 1.804 0 3.262 0
21 2.867 8.76 1.26 0.119 0.014 1.204 0.107
22 41.93 31.92 3.17 1.386 0.021 2.661 0.321
23 42.867 44.25 3.752 1.342 0.150 2.817 2.144
24 86.87 44.33 7.59 2.374 0 3.681 0
25 2.8 7.37 1.47 0.073 0.007 0.607 0.110
26 25.267 38.98 2.51 0.556 0.095 1.658 0.887
27 49.667 53.28 3.61 0.794 0.096 2.008 0.842
28 79.53 58.51 5.26 1.034 0.028 2.415 0.341

7 Conclusions

This paper presented a new deterministic heuristic for permutation flowshop scheduling
by modifying the classic NEH algorithm (Nawaz et al., 1983). The proposed algorithm is
elegant, easy to implement, yields solutions of better quality than NEH does and yet has
the same order of computational complexity as NEH. Our results have been shown to be
statistically significantly better than those produced by the best deterministic method known
to date. Given the fact that the NEH is still the best deterministic heuristic for this class of
problems and that the proposed method outperforms NEH, our algorithm should serve as a
framework for further research into permutation flowshop sequencing.
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