
Please do not remove this page

An overview of recent progress in the study of
distributed multi-agent coordination
Cao, Yongcan; Yu, Wenwu; Ren, Wei; Chen, Guanrong
https://researchrepository.rmit.edu.au/discovery/delivery/61RMIT_INST:ResearchRepository/12246869400001341?l#13248385820001341

Cao, Yu, W., Ren, W., & Chen, G. (2013). An overview of recent progress in the study of distributed
multi-agent coordination. IEEE Transactions on Industrial Informatics, 9(1), 427–438.
https://doi.org/10.1109/TII.2012.2219061

Published Version: https://doi.org/10.1109/TII.2012.2219061

Downloaded On 2022/08/05 17:14:42 +1000
© 2005-2012 IEEE.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page



Thank

Citat io

See th

Version

Copyri

Link to

you for do

on: 

is record i

n:

ght  Statem

o Published

wnloading

in the RMI

m ent :  ©   

d Version:

 this docum

I T Researc

ment from 

ch Reposit

the RMIT R

ory at :   

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Cao, Y, Yu, W, Ren, W and Chen, G 2013, 'An overview of recent progress in the study of
distributed multi-agent coordination', IEEE Transactions on Industrial Informatics, vol. 9, no.
1, pp. 427-438.

http://researchbank.rmit.edu.au/view/rmit:20438

Accepted Manuscript

2005-2012 IEEE.

http://researchbank.rmit.edu.au/view/rmit:20438

http://researchbank.rmit.edu.au/


1

An Overview of Recent Progress in the Study

of Distributed Multi-agent Coordination

Yongcan Cao, Member, IEEE, Wenwu Yu, Member, IEEE,

Wei Ren, Member, IEEE, and Guanrong Chen Fellow, IEEE

Abstract

This article reviews some main results and progress in distributed multi-agent coordination, with

the focus on papers published in major control systems and robotics journals since 2006. Distributed

coordination of multiple vehicles, including unmanned aerial vehicles (UAVs), unmanned ground vehicles

(UGVs) and unmanned underwater vehicles (UUVs), has been a very active research subject studied

extensively by the systems and control community. The recent results in this area are categorized into

several directions, such as consensus, formation control, optimization, distributed task assignment, and

estimation. After the review, a short discussion section is included to summarize the existing research

and to propose several promising research directions along with some open problems that are deemed

important therefore deserving further investigations.

Index Terms

Distributed coordination, formation control, sensor network, multi-agent system

I. INTRODUCTION

Control theory and practice may date back to the beginning of the last century when Wright Brothers

attempted their first test flight in 1903. Since then, control theory has gradually gained popularity, receiving

more and wider attention especially during the World War II when it was developed and applied to fire-

control systems, missile navigation and guidance, as well as various electronic automation devices. In
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the past several decades, modern control theory was further advanced due to the booming of aerospace

technology based on large-scale engineering systems.

During the rapid and sustained development of the modern control theory, technology for controlling

a single vehicle, albeit higher-dimensional and complex, has become relatively mature and has produced

many effective control tools such as PID control, adaptive control, nonlinear control, intelligent control,

and robust control methodologies. In the past two decades in particular, control of multiple vehicles

has received increasing demands spurred by the fact that many benefits can be obtained when a single

complicated vehicle is equivalently replaced by multiple yet simpler vehicles. In this endeavor, two ap-

proaches are commonly adopted for controlling multiple vehicles: a centralized approach and a distributed

approach. The centralized approach is based on a basic assumption that a central station is available and

powerful enough to control a whole group of vehicles. Essentially, the centralized approach is a direct

extension of the traditional single-vehicle-based control philosophy and strategy. On the contrary, the

distributed approach does not require a central station for control, at the cost of becoming far more

complex than the centralized one in structure and organization. Although both approaches are considered

practical depending on the situations and conditions of the real applications, the distributed approach

is believed more promising due to many inevitable physical constraints such as limited resources and

energy, short wireless communication ranges, narrow bandwidths, and large sizes of vehicles to manage

and control. Therefore, the focus of this overview is placed on the distributed approach.

In distributed control of a group of autonomous vehicles such as UAVs, UGVs and UUVs, the main

objective typically is to have the whole group of vehicles working in a cooperative fashion throughout

a distributed protocol. Here, cooperative refers to a close relationship among all vehicles in the group

where information sharing plays a central role. The distributed approach has many advantages in achiev-

ing cooperative group performances, especially with low operational costs, less system requirements,

high robustness, strong adaptivity, and flexible scalability, therefore has been widely recognized and

appreciated.

The study of distributed control of multiple vehicles was perhaps first motivated by the work in

distributed computing [1], management science [2], [3], and statistical physics [4]. In the control systems

society, some pioneering works are generally referred to [5], [6], where an asynchronous agreement

problem was studied for distributed decision-making problems. Thereafter, some consensus algorithms

were studied under various information-flow constraints [7]–[11]. There are several journal special issues

on the related topics published after 2006, including the IEEE Transactions on Control Systems Technol-

ogy (vol. 15, no. 4, 2007), Proceedings of the IEEE (vol. 94, no. 4, 2007), ASME Journal of Dynamic
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Systems, Measurement, and Control (vol. 129, no. 5, 2007), SIAM Journal of Control and Optimization

(vol. 48, no.1, 2009), and International Journal of Robust and Nonlinear Control (Vol. 21, no. 12, 2011).

In addition, there are some more recent reviews and progress reports given in the surveys [12]–[15] and

the books [16]–[21].

This article reviews some main results and recent progress in distributed multi-agent coordination,

published in major control systems and robotics journals since 2006. For results before 2006, the readers

are referred to [12]–[15].

Specifically, this article reviews the recent research results in the following directions, which are not

independent but actually may have overlapping to some extent:

1. Consensus and the like (synchronization, rendezvous). Consensus refers to the group behavior that

all the agents asymptotically reach a certain common agreement through a local distributed protocol,

with or without predefined common speed and orientation.

2. Distributed formation and the like (flocking). Distributed formation refers to the group behavior

that all the agents form a pre-designed geometrical configuration through local interactions with or

without a common reference.

3. Distributed optimization. This refers to algorithmic developments for the analysis and optimization

of large-scale distributed systems.

4. Distributed task assignment. This refers to the implementation of a task-assignment algorithm in a

distributed fashion based on local information.

5. Distributed estimation and control. This refers to distributed control design based on local estimation

about the needed global information.

The rest of this article is organized as follows. In Section II, basic notations of graph theory and

stochastic matrices are introduced. Sections III, IV, V, VI, and VII describe the recent research results

and progress in consensus, formation control, optimization, task assignment, and estimation, respectively.

Finally, the article is concluded by a short section of discussions with future perspectives.

II. PRELIMINARIES

This section introduces basic concepts and notations of graph theory and stochastic matrices.

A. Graph Theory

For a system of n connected agents, its network topology may be modeled as a directed graph denoted

G = (V,W), where V = {v1, v2, · · · , vn} and W ⊆ V ×V are, respectively, the set of agents and the set
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of edges which directionally connect the agents together. Specifically, the directed edge denoted by an

ordered pair (vi, vj) means that agent j can access the state information of agent i. Accordingly, agent i is

a neighbor of agent j. A directed path is a sequence of directed edges in the form of (v1, v2), (v2, v3), · · · ,

with all vi ∈ V . A directed graph has a directed spanning tree if there exists at least one agent that has

a directed path to every other agent. The union of a set of directed graphs with the same set of agents,

{Gi1 , · · · ,Gim}, is a directed graph with the same set of agents and its set of edges is given by the union

of the edge sets of all the directed graphs Gij , j = 1, · · · ,m. A complete directed graph is a directed

graph in which each pair of distinct agents is bidirectionally connected by an edge, thus there is a directed

path from any agent to any other agent in the network.

Two matrices are frequently used to represent the network topology: the adjacency matrix A = [aij ] ∈
R
n×n with aij > 0 if (vj , vi) ∈ W and aij = 0 otherwise, and the Laplacian matrix L = [ℓij ] ∈ R

n×n

with ℓii =
∑n

j=1 aij and ℓij = −aij , i 6= j, which is generally asymmetric for directed graphs except

complete directed graphs. The Laplacian L has at least one single zero eigenvalue with a corresponding

eigenvector 1 consisting of all numeric 1. Here and throughout, all matrices and vectors are assumed to

have comparable dimensions unless otherwise indicated.

B. Stochastic Matrices

A nonnegative square matrix is called (row) stochastic matrix if its every row is summed up to one.

The product of two stochastic matrices is still a stochastic matrix. A row stochastic matrix P ∈ R
n×n is

called indecomposable and aperiodic if limk→∞ P k = 1yT for some y ∈ R
n [22].

III. CONSENSUS

Consider a group of n agents, each with single-integrator kinematics described by

ẋi(t) = ui(t), i = 1, · · · , n, (1)

where xi(t) and ui(t) are, respectively, the state and the control input of the ith agent. A typical consensus

control algorithm is designed as

ui(t) =

n
∑

j=1

aij(t)[xj(t)− xi(t)], (2)

where aij(t) is the (i, j)th entry of the corresponding adjacency matrix at time t. The main idea behind (2)

is that each agent moves towards the weighted average of the states of its neighbors. Given a switching

network topology, coupling coefficients aij(t) in (2), hence the graph topologies, are generally time-

varying, due to the continuous motions of the dynamic agents. It is shown in [10], [11] that consensus is
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achieved if the underlying directed graph has a directed spanning tree in some jointly fashion in terms

of a union of its time-varying graph topologies.

The idea behind consensus serves as a fundamental principle in the design of distributed multi-agent

coordination algorithms. Therefore, investigating consensus has been a main research direction in the study

of distributed multi-agent coordination. To bridge the gap between the study of consensus algorithms

and many physical properties inherited in practical systems, it is necessary and meaningful to study

consensus by considering many practical factors, such as actuation, control, communication, computation,

and vehicle dynamics, which characterize some important features of practical systems. This is the main

motivation to the study of consensus.

A. Stochastic Network Topologies and Dynamics

In multi-agent systems, the network topology among all vehicles plays a crucial role in determining

consensus. The objective here is to explicitly identify necessary and/or sufficient conditions on the network

topology such that consensus can be achieved under properly designed algorithms.

It is often reasonable to consider the case when the network topology is deterministic under ideal

communication channels. Accordingly, main research on the consensus problem was conducted under a

deterministic fixed/switching network topology. That is, the adjacency matrix A(t) is deterministic. Some

other times, when considering random communication failures, random packet drops, communication

channel instabilities inherited in physical communication channels, etc., it is necessary and important to

study consensus problem in the stochastic setting where a network topology evolves according to some

random distributions. That is, the adjacency matrix A(t) is stochastically evolving. This motivates the

study of the consensus problem under a stochastic network topology.

In the deterministic setting, consensus is said to be achieved if all agents eventually reach agreement

on a common state. In the stochastic setting, consensus is said to be achieved almost surely (respectively,

in mean-square or in probability) if all agents reach agreement on a common state almost surely

(respectively, in mean-square or with probability 1). Note that the problem studied in the stochastic

setting is slightly different from that studied in the deterministic setting due to the different assumptions

in terms of the network topology. Consensus over a stochastic network topology was perhaps first studied

in [23], where some sufficient conditions on the network topology were given to guarantee consensus

with probability 1 for systems with single-integrator kinematics (1), where the rate of convergence was

also studied. Further results for consensus under a stochastic network topology were reported in [24]–

[32], where research effort was conducted for systems with single-integrator kinematics [24]–[31] or
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double-integrator dynamics [32]. Consensus for single-integrator kinematics under stochastic network

topology has been extensively studied, in particular, where some general conditions for almost-surely

consensus was derived [26], [27], [30]. Loosely speaking, almost-surely consensus for single-integrator

kinematics can be achieved, i.e., xi(t) − xj(t) → 0 almost surely, if and only if the expectation of

the network topology, namely, the network topology associated with the expectation E[A(t)], has a

directed spanning tree. It is worth noting that the conditions are analogous to that in [10], [11], but in

the stochastic setting. In view of the special structure of the closed-loop systems concerning consensus

for single-integrator kinematics, the basic properties of the stochastic matrices play a crucial role in the

convergence analysis of the associated control algorithms. Consensus for double-integrator dynamics was

studied in [32], where the switching network topology is assumed to be driven by a Bernoulli process,

and it was shown that consensus can be achieved if the union of all the graphs has a directed spanning

tree. Apparently, the requirement on the network topology for double-integrator dynamics is a special

case of that for single-integrator kinematics due to the difference nature of the final states (constant final

states for single-integrator kinematics and possible dynamic final states for double-integrator dynamics)

caused by the substantial dynamical difference. It is still an open question as if some general conditions

(corresponding to some specific algorithms) exist for consensus with double-integrator dynamics.

Instead of focusing on analyzing the conditions on the network topology such that consensus can

be achieved, a special type of consensus algorithm, the so-called gossip algorithm [33], [34], has been

used to achieve consensus in the stochastic setting. Due to probabilistic pairwise communications, the

gossip algorithm can always guarantee consensus almost surely if the available pairwise communication

channels satisfy certain conditions (such as a connected graph or a graph with a directed spanning tree).

The way of network topology switching does not play any role in the consideration of consensus.

The current study on consensus over stochastic network topologies has shown some interesting results

regarding: (1) consensus algorithm design for various multi-agent systems, (2) conditions of the network

topologies on consensus, and (3) effects of the stochastic network topologies on the convergence rate.

Future research in this topic includes, but not limited to, the following two directions: (1) when the network

topology itself is stochastic, how to determine the probability of reaching consensus almost surely? (2)

compared with the deterministic network topology, what are the advantages and disadvantages of the

stochastic network topology, regarding such as robustness and convergence rate?

As is well known, disturbances and uncertainties often exist in networked systems, for example,

channel noise, communication noise, uncertainties in network parameters, etc. In addition to the stochastic

network topologies discussed above, the effect of stochastic disturbances [35]–[40] and uncertainties [41],

July 31, 2011 DRAFT



7

[42] on the consensus problem also needs investigation. Study has been mainly devoted to analyzing

the performance of consensus algorithms subject to disturbances and to presenting conditions on the

uncertainties such that consensus can be achieved. In addition, another interesting direction in dealing

with disturbances and uncertainties is to design distributed local filtering algorithms so as to save energy

and improve computational ability. Distributed local filtering algorithms play an important role and are

more effective than traditional centralized filtering algorithms for multi-agent systems. For example, the

authors of [43]–[45] designed some distributed Kalman filters to implement data fusion. In [46], by

using the analysis of consensus and pinning control in synchronization of complex networks, the authors

discussed distributed consensus filtering in sensor networks. Recently, Kalman filtering over a packet-

dropping network was designed through a probabilistic approach [47]. Today, it remains a challenging

problem to incorporate both dynamics of consensus and probabilistic filtering (Kalman) into a unified

methodology.

B. Complex Dynamical Systems

Since consensus is concerned with the behavior of a group of vehicles, it is natural to consider the

system dynamics for practical vehicles in the study of the consensus problem. Although the study of

consensus under various system dynamics is due to the existence of complex dynamics in practical

systems, it is also interesting to observe that system dynamics play an important role in determining

the final consensus state. For instance, the well-studied consensus of multi-agent systems with single-

integrator kinematics as in (1) often converges to a constant final value (i.e., a time function) instead.

However, consensus for double-integrator dynamics might admit a dynamic final value. These important

issues motivate the study of consensus under various system dynamics.

As a direct extension of the study of the consensus problem for systems with simple dynamics, for

example, with single-integrator kinematics or double-integrator dynamics, consensus with general linear

dynamics was also studied recently [48]–[53], where research is mainly devoted to finding feedback

control laws such that consensus (in terms of the output states) can be achieved for general linear

systems

ẋi = Axi +Bui, yi = Cxi, (3)

where A, B, and C are constant matrices with compatible sizes. Apparently, the well-studied single-

integrator kinematics and double-integrator dynamics are special cases of (3) for properly choosing

A, B, and C .

July 31, 2011 DRAFT



8

As a further extension, consensus for complex systems has also been extensively studied. Here, the term

consensus for complex systems is used for the study of consensus problem when the system dynamics

are nonlinear [54]–[56], [56]–[87] or with nonlinear consensus algorithms [88]–[90]. Examples of the

nonlinear system dynamics studied in the consensus problem include:

• Nonlinear oscillators [59]. The dynamics are often assumed to be governed by the Kuramoto equation

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi), i = 1, 2, · · · , N, (4)

where θi and ωi are, respectively, the phase and natural frequency of the ith oscillator, N is the

number of oscillators, and K is the control gain. Generally, the control gain K plays a crucial role

in determining the synchronizability of the network.

• Complex networks [57], [69]–[73], [82]–[84], [86], [91]. The dynamics are typically represented as

ẋi(t) = f(xi(t)) + c

N
∑

j=1,j 6=i

aij(t)Γ(xj(t)− xi(t)), i = 1, 2, · · · , N, (5)

where xi = (xi1, xi2, · · · , xin)T ∈ R
n is the state vector of the ith node, f : R

n 7→ R
n is a

nonlinear vector function, c is the overall coupling strength, A(t) = [aij(t)] is the outer coupling

matrix with aij(t) = 1 if node i and node j are connected at time t but otherwise aij(t) = 0,

with aii(t) = ki (degree of node i), and Γ is a general inner coupling matrix describing the inner

interactions between different state components of agents. It is easy to see that model (1) with

control input (2) is a special case of (5) with f = 0.

• Nonholonomic mobile robots [56], [79], [85], [92]. The dynamics are described by

ẋi = ui cos θi, ẏi = ui sin θi, θ̇i = ωi, i = 1, · · · , N, (6)

where [xi, yi] denotes the location of the ith agent, and ui and ωi denote, respectively, its translational

and rotational velocity. Note that there are three states and two control inputs. Therefore, the dynamics

for nonholonomic mobile robots are underactuated. This poses substantial difficulties in designing

proper consensus algorithms with corresponding stability analysis.

• Rigid bodies and the like [65]–[68], [80], [81], [87]. One typical (but not unique) description of the

dynamics is

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, · · · , N, (7)

where qi ∈ R
p is the vector of generalized coordinates, Mi(qi) ∈ R

p×p is the symmetric positive-

definite inertia matrix, Ci(qi, q̇i)q̇i ∈ R
p is the vector of Coriolis and centrifugal torques, gi(qi) is
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the vector of gravitational torques, and τi ∈ R
p is the vector of torques produced by the actuators

associated with the ith agent. In practice, the dynamics of many mechanical systems are similar

to (7). A notable property regarding the dynamics of rigid bodies is that Ṁi(qi) − 2Ci(qi, q̇i) is

skew-symmetric (i.e., zT [Ṁi(qi) − 2Ci(qi, q̇i)]z = 0 for all z ∈ R
p), which plays a crucial role in

finding Lyapunov functions and the subsequent stability analysis.

Although the aforementioned system dynamics are different from the well-studied single-integrator kine-

matics and double-integrator dynamics, the main research problem is same, namely, to drive all agents

to some common states through local interactions among agents. Similarly to the consensus algorithms

proposed for systems with simple dynamics, the consensus algorithms used for these models are also based

on a weighted average of the state differences, with some additional terms if necessary. Main research

work has been conducted to design proper control algorithms and derive necessary and/or sufficient

conditions such that consensus can be achieved ultimately.

Note that although the objective is same, i.e., to guarantee reaching agreement on some final states,

the problem is more complicated due to the nonlinearity of the closed-loop systems. In addition, most

properties of stochastic matrices cannot be directly applied to their convergence analysis. The main

techniques used in their stability analysis include dissipativity theory [54], nonsmooth analysis [89],

[92], [93], and especially Lyapunov functions [59], [65], [67], [68], [92], [94].

One particular interesting topic is synchronization in complex networks which has been widely in-

vestigated in the past decade [95], [96]. Mathematically, the definitions for synchronization in complex

networks and consensus in multi-agent systems are very similar, so to differentiate these two definitions

and promote research exchanges in these two topics, their differences are briefly summarized below.

1) Different Asymptotic States (Nonlinear Dynamics versus Linear Dynamics). In the studies of synchro-

nization in complex networks, researchers focus on synchronization with self-nonlinear dynamics where

each single system is unstable and thus the final asymptotic synchronization state is typically time-varying

[95], [97]. However, in the investigations of multi-agent systems, the individual self-dynamics on each

system is usually linear or zero and therefore the asymptotic consensus state is usually a constant [7],

[9].

2) Different Focuses (Known Connectivity versus Time-varying Distributed Protocol). In synchroniza-

tion of complex networks, the aim is to reveal how the network structure, which is known in priori, affects

the nonlinear collective dynamics [95], [96], while the aim of consensus in multi-agent systems is to

figure out how the designed distributed local protocol concerning mobile time-varying network structure

affects the consensus behavior [7], [9], [10].
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3) Different Approaches (Lyapunov Method versus Stochastic Matrix Theory). Since both complex

networks and multi-agent systems are networked systems, algebraic graph theory [98] is a common

approach to use. Because of the nonlinear terms in synchronization of complex networks, Lyapunov

function method is usually used together with matrix theory [57], [91], [97]. In order to show consensus

in multi-agent systems with time-varying network structures, stochastic matrix theory [5]–[7], [10] and

convexity analysis [11] are often applied.

4) Different Inner Matrices Γ (General Inner Matrix versus Particular Inner Matrix). In the typical

simple consensus model, the inner matrices Γ are usually an identity matrix and a rank-one matrix




0 1

0 0



 for multi-agent systems with single-integrator kinematics [9] and double-integrator dynamics

[99]–[101], respectively. In consensus models with higher-order dynamics [102], the inner matrix is

similar. However, the inner matrix in system (5) is a general one.

In summary, synchronization in complex networks focuses on nonlinear dynamics while consensus in

multi-agent systems focuses on distributed cooperative control, and thus different approaches are utilized.

The current research on consensus with complex systems focuses on fully-actuated systems although

consensus for nonholonomic mobile robots [79], [85], [92], which is a typical underactuated system, has

also been studied. Note that many mechanical systems are described by systems with underactuation.

Therefore, it is important to develop appropriate consensus algorithms for underactuated systems.

C. Delay Effects

Time delay appears in almost all practical systems due to several reasons: (1) limited communication

speed when information transmission exists; (2) measurement time required by the sensor to get the

measurement information; (3) computation time required for generating the control inputs; and (4)

execution time required for the inputs being acted. In general, time delay reflects an important property

inherited in every practical systems due to actuation, control, communication, and computation.

Knowing that time delay might degrade the system performance or even destroy the system stability,

studies have been conducted to investigate the effect of time delay on system performance and stability.

A well-studied consensus algorithm for (1) is given in (2), where it is now assumed that time delay

exists. Two types of time delay, communication delay and input delay, have been considered in the

literature. Communication delay accounts for the time for information being transmitted from its origin

to its destination. More precisely, if it takes time Tij for agent i to receive information from agent j, the
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closed-loop system of (1) using (2) under a fixed network topology becomes

ẋi(t) =

n
∑

j=1

aij(t)[xj(t− Tij)− xi(t)]. (8)

An interpretation of (8) is that at time t, agent i receives information from agent j and uses data xj(t−Tij)

instead of xj(t) due to the time delay. Note that agent i can get its own information instantly, therefore,

input delay can be considered as the summation of computation time and execution time. More precisely,

if the input delay for agent i is given by T p
i , then the closed-loop system of (1) using (2) becomes

ẋi(t) =

n
∑

j=1

aij(t)[xj(t− T p
i )− xi(t− T p

i )]. (9)

Clearly, (8) refers to the case when only communication delay is considered while (9) refers to the case

when only input delay is considered. It should be emphasized that both communication delay and input

delay might be time-varying and they might co-exist at the same time.

In addition to time delay, it is also important to consider packet drops in exchanging state information.

Fortunately, consensus with packet drops can be considered as a special case of consensus with time

delay because re-sending packets after they were dropped can be easily done but just having time delay

in the data transmission channels.

Thus, the main problem involved in consensus with time delay is to study the effects of time delay on

the convergence and performance of consensus, refer to as consensusability [103].

Because time delay might affect the system stability, it is important to study under what conditions

consensus can still be guaranteed even if time delay exists. In another word, can we find conditions on the

time delay such that consensus can be achieved? For this purpose, several papers investigated the effect

of time delay on the consensusability of (1) using (2). When there exists only (constant) input delay, a

sufficient condition on the time delay to guarantee consensus under a fixed undirected interaction graph

is presented in [9]. Specifically, an upper bound of the time delay is derived under which consensus can

be achieved. This is a well-expected result because time delay normally degrades the system performance

gradually and will not destroy the system stability unless the time delay is above certain threshold. Further

studies can be found in, e.g., [104]–[114], which demonstrate that for (1) using (2), the communication

delay does not affect the consensusability but the input delay does. In a similar manner, consensus with

time delay was studied for systems with different dynamics, where the dynamics (1) are replaced by

other more complex ones, such as double-integrator dynamics and the like [100], [115]–[122], complex

networks [123]–[126], rigid bodies and the like [127], [128], and general nonlinear dynamics [129].
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In summary, the existing study of consensus with time delay mainly focuses on analyzing the stability

of consensus algorithms with time delays for various types of system dynamics, including linear and

nonlinear dynamics. Generally speaking, consensus with time delay for systems with nonlinear dynamics

is more challenging. For most consensus algorithms with time delays, the main research question is to

determine an upper bound of the time delay under which time delay does not affect the consensusability.

For communication delay, it is possible to achieve consensus under a relatively large time delay. A notable

phenomenon in this case is that the final consensus state is constant. Considering the linear/nonlinear sys-

tem dynamics in consensus, the main tools for stability analysis of the closed-loop systems include matrix

theory [105], [106], Lyapunov functions [123], [124], frequency-domain approach [109], passivity [125],

and the contraction principle [104].

Although consensus with time delay has been studied extensively, it is often assumed that time delay

is either constant or random. However, time delay itself might obey its own dynamics, which possibly

depend on the communication distance, total computation load and computation capability, etc. Therefore,

it is more suitable to represent the time delay as another system variable to be considered in the study

of the consensus problem. In addition, it is also important to consider time delay and other physical

constraints simultaneously in the study of the consensus problem.

D. Sampled-data Framework

The previous three subsections describe the main research work in the study of the consensus problem.

The following introduces a few other aspects, namely, sampled-data framework, quantization, asyn-

chronous effect, convergence speed, and finite-time convergence, that have been considered in the con-

sensus problem as well. Among these topics, sampled-data framework, quantization, and asynchronous

effects are considered due to some physical limitations in practical systems while convergence speed and

finite-time convergence are concerned with the performance for some proposed consensus algorithms.

Due to the limitations in the measurement and control units, it is often impossible to acquire information

measurements at an arbitrarily fast speed and to execute the control inputs instantaneously. Accordingly,

the closed-loop systems are modeled in a hybrid fashion. That is, the system plant is described in a

continuous-time setting while the measurements and control inputs are described in a piecewise constant

fashion. For instance, in a sampled-data setting, (2) becomes

ui(t) = ui(kT ) =

n
∑

j=1

aij(kT )[xj(kT )− xi(kT )], kT ≤ t < (k + 1)T, (10)
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where T is the sampling period and k is the discrete-time index. Essentially, (10) is a zero-order-hold

version of ui(t) in the sense that the control inputs remain unchanged during each sampling period. Under

this circumstance, consensus is studied in a sampled-data framework, called sampled-data consensus,

which reflects the limitations inherited in physical measurement and control units. Meanwhile, it is also

important to point out that the sampled-data consensus algorithms require much less information exchange

and computational power than the continuous-time consensus algorithms. Accordingly, consensus under

the sampled-data framework deserves certain consideration.

Sampled-data consensus was investigated in, e.g., [118], [130]–[134], [134]–[139]. Consensus for

systems with single-integrator kinematics (1) was studied under a sampled-data framework with a fixed

or a switching network topology, in [131], [132], where some necessary and/or sufficient conditions were

presented to guarantee achieving consensus. Sampled-data consensus of systems with double-integrator

kinematics was studied under fixed or switching network topologies in [118], [130], [133]–[138], [138],

[139]. Due to the fact that an infinitely large sampling period will cause no information exchange among

the agents, the main research question is to find conditions on the sampling period T , which might

be time-varying, such that consensus can be achieved. The conditions on the network topology for

the sampled-data closed-loop systems are mostly similar to that for the continuous-time closed-loop

systems. Note that the existing research on consensus in a sampled-data framework mainly focuses on

the simple system dynamics and thus the closed-loop system can be represented in terms of a linear

matrix equation. The corresponding network stability can be analyzed by investigating the properties

of the system matrices constructed based on the proposed consensus algorithms and the given network

topology. Various approaches, including Lyapunov functions [130], [134], matrix theory [118], [135],

[138], [139], stochastic matrices [136], and linear matrix inequalities [133], [134], have been adopted, and

some necessary and/or sufficient conditions have been derived for guaranteeing sampled-data consensus.

It is natural to consider the sampled-data effect for consensus with general linear or nonlinear dynamics.

In addition, it is meaningful to consider the case when all vehicles do not necessarily share the same

sampling period or the sampling period is not necessarily constant. Accordingly, it is expected that

a careful design of the sampling periods (associated with the proposed algorithms) might lead to the

optimization of the closed-loop systems under the proposed algorithms subject to certain cost functions,

such as maximum convergence rate and minimum total information exchange. In another word, it is

intriguing to move from analysis to design when investigating the consensus problem in a sampled-data

framework.
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E. Asynchronous Effects

In most existing research of the consensus problem, it is assumed that all agents update their states

synchronously, which requires a synchronized clock for the whole group of agents. However, such a

synchronized clock might not exist in real applications. This motivates the design of consensus algorithms

in an asynchronous fashion; that is, each agent updates its own states regardless of the update times of

other agents.

In most studies of the asynchronous consensus problem for networked systems, due to the intrinsic

technical difficulties, usually only single-integrator kinematics (1) and double-integrator dynamics are

considered. In [106], such an asynchronous consensus problem with time delay was investigated by

utilizing some basic properties of stochastic matrices. Similarly in [140], the asynchronous consensus

problem was studied by using matrix theory and graph theory, and in [141], by employing the paracon-

tracting theory. In [142], the authors studied the asynchronous consensus problem for double-integrator

dynamics and presented sufficient conditions to guarantee consensus, where a condition based on linear

matrix inequalities was given.

Note that consensus in an asynchronous fashion has been considered mainly for single-integrator

kinematics and double-integrator dynamics but not for other system dynamics. For certain linear systems,

it might be expected that asynchronous communication does not affect the consensusability as shown

in [106], [140] for single-integrator kinematics. However, a similar conclusion may not hold for systems

with general dynamics, especially nonlinear dynamics. It is important to quantify the effects of the

asynchronous communication on the consensus problem.

F. Quantization

Quantized consensus has been studied recently with motivation from digital signal processing. Here,

quantized consensus refers to consensus when the measurements are digital rather than analog therefore

the information received by each agent is not continuous and might have been truncated due to digital

finite precision constraints. Roughly speaking, for an analog signal s, a typical quantizer with an accuracy

parameter δ, also referred as quantization step size, is described by

Q(s) = q(s, δ), (11)

where Q(s) is the quantized signal and q(·, ·) is the associated quantization function. For instance, a

quantizer rounding a signal s to its nearest integer can be expressed as [143]

Q(s) = n, if s ∈ [(n− 1/2)δ, (n + 1/2)δ], n ∈ Z, (12)
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where Z denotes the integer set. Note that the type of quantizer might be different for different systems,

hence Q(s) may differ for different systems. Due to the truncation of the signals received, consensus is

now considered achieved if the maximal state difference is not larger than the accuracy level associated

with the whole system. A notable feature for consensus with quantization is that the time to reach

consensus is usually finite. That is, it often takes a finite period of time for all agents’ states to converge

to an accuracy interval. Accordingly, the main research is to investigate the convergence time associated

with the proposed consensus algorithm.

Quantized consensus was probably first studied in [143], where a quantized gossip algorithm was

proposed and its convergence was analyzed. In particular, the bound of the convergence time for a

complete graph was shown to be polynomial in the network size. In [144], coding/decoding strategies

were introduced to the quantized consensus algorithms, where it was shown that the convergence rate

depends on the accuracy of the quantization but not the coding/decoding schemes. In [145], [146],

quantized consensus was studied via the gossip algorithm, with both lower and upper bounds of the

convergence time derived in terms of the network size. Further results regarding quantized consensus

were reported in [147]–[154], where the main research was also on studying the convergence time for

various proposed quantized consensus algorithms as well as the quantization effects on the convergence

time. It is intuitively reasonable that the convergence time depends on both the quantization level and the

network topology. It is then natural to ask if and how the quantization methods affect the convergence

time. This is an important measure of the robustness of a quantized consensus algorithm (with respect

to the quantization method).

Note that it is interesting but also more challenging to study consensus for general linear/nonlinear

systems with quantization. Because the difference between the truncated signal and the original signal is

bounded, consensus with quantization can be considered as a special case of one without quantization

when there exist bounded disturbances. Therefore, if consensus can be achieved for a group of vehicles

in the absence of quantization, it might be intuitively correct to say that the differences among the states

of all vehicles will be bounded if the quantization precision is small enough. However, it is still an open

question to describe the quantization effects on consensus with general linear/nonlinear systems.

G. Convergence Speed

In addition to the study on the consensus problem with physical constraints mentioned in the previous

subsections, it is also important to study the control performance of the consensus problem. From the

control’s perspective, it is natural to propose proper control algorithms and analyze the stability, and to
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optimize the proposed control algorithms under certain control performance indexes. In this subsection,

the convergence speed problem is reviewed, which is an important performance measure for consensus

algorithms.

For dynamics (1) using algorithm (2) in a connected undirected graph, the worst-case convergence

speed was shown in [9] to be the Laplacian spectral gap:

min
X 6=0,1TX=0

XTLX
‖X‖2

= λ2, (13)

where 0 is an all-zero column vector, X = [x1, · · · , xn]T , L is the Laplacian matrix with λ2 being

smallest nonzero eigenvalue. Here, one should recall that the smallest eigenvalue of a Laplacian matrix

for a connected undirected graph is zero and all the other eigenvalues are positive.

In order to increase the convergence speed, therefore, the above spectral gap should be enlarged.

For this purpose, an iterative algorithm was proposed in [155] to maximize the above spectral gap, by

employing a semidefinite programming solver.

Other than the smallest nonzero eigenvalue of the Laplacian matrix, another commonly used measure

for the convergence speed is the following ratio, introduced in [156], [157]:

ρ = lim
t→∞,X(t)6=X⋆

( ‖X(t)−X⋆‖
‖X(0) −X⋆‖

)1/t

, (14)

where X⋆ represents the final equilibrium given by σ1, where σ is a constant.

In [156], this problem of finding the fastest convergence speed was casted into a semidefinite program-

ming problem. Furthermore, the convergence speed defined by (14) was studied in both deterministic

and stochastic settings. In the deterministic setting, it was studied in [157]–[159] with estimation of

lower bounds. In the stochastic setting, this problem was studied in [23], [26], [160], with a per-step

convergence factor introduced and discussed in [160], which itself can be considered a measure of the

convergence speed.

The existing study mainly focuses on the analysis of the convergence speed under various network

topologies and optimization of the convergence speed for certain given network topologies. Considering

the fact that consensus under different network topologies may demonstrate different convergence speeds,

a natural question arising to this topic is how to design an optimal (switching) network topology with

proper adjacency matrix such that optimal convergence speed can be achieved.

H. Finite-time Convergence

As an extension of the study of convergence speed for the consensus problem, finite-time consensus,

reaching consensus in a finite time, has also been studied recently. Compared with most existing research
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in the consensus problem, finite-time consensus demonstrates a disturbance rejection property and robust-

ness against uncertainties. In addition, due to the finite-time convergence, it is often possible to decouple

the consensus problem from other control objectives when they are considered simultaneously.

For a group of n agents, e.g. with dynamics (1), the objective is to design ui(t) such that xi(t) = xj(t)

for t ≥ T , where T is a constant. Here, T is also called the consensus time.

Finite-time consensus for networked systems with single-integrator kinematics (1) in the continuous-

time setting was solved in [88], [93], [161]–[164]. Finite-time consensus for networked systems with

double-integrator dynamics in the continuous-time setting was studied in [165]. An important common

characteristic of the proposed algorithms is the use of the signum function. It is well known that linear

consensus algorithms can normally guarantee asymptotic convergence, but not finite-time convergence.

On the contrary, the finite-time consensus algorithms developed in [88], [93], [161], [162], [165], which

utilize the signum function, are able to do so.

Note that the existing research on finite-time consensus mainly focuses on systems with simple

dynamics, such as single-integrator kinematics and double-integrator dynamics. Because many practical

systems are better and more proper to be described by general linear/nonlinear dynamics, it is natural to

study finite-time consensus for systems with general linear/nonlinear dynamics in the future.

I. Remarks

In summary, the existing research on the consensus problem has covered a number of physical properties

for practical systems and control performance analysis. However, the study of the consensus problem

covering multiple physical properties and/or control performance analysis has been largely ignored. In

another word, two or more problems in the aforementioned subsections might need to be taken into

consideration simultaneously when studying the consensus problem. In addition, consensus algorithms

normally guarantee the agreement of a team of agents on some common states without taking any group

formation into consideration. To reflect many practical applications where a group of agents are normally

required to form some preferred geometric structure, it is desirable to consider a task-oriented formation

control problem for a group of agents, which motivates the study of formation control presented in the

next section.

IV. FORMATION CONTROL

Compared with the consensus problem where the final states of all agents typically become a singleton,

the final states of all agents can be more diversified under the formation control scenario. Indeed,
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formation control is more desirable in many practical applications such as formation flying, cooperative

transportation, sensor networks, as well as combat intelligence, surveillance, and reconnaissance. In

addition, the performance of a team of agents working cooperatively often exceeds the simple integration

of the performances of all individual agents. For its broad applications and advantages, formation control

has been a very active research subject in the control systems community, where a certain geometric

pattern is aimed to form with or without a group reference. More precisely, the main objective of formation

control is to coordinate a group of agents such that they can achieve some desired formation such that

some tasks can be finished by the collaboration of the agents. Generally speaking, formation control

can be categorized in terms of a group reference. Formation control without a group reference, called

formation producing, refers to the algorithm design for a group of agents to reach some pre-desired

geometric pattern in the absence of a group reference, which can also be considered as the control

objective. Formation control with a group reference, called formation tracking, refers to the same task

following the predesignated group reference. Due to the existence of the group reference, formation

tracking is usually much more challenging than formation producing and control algorithms for the latter

might not be useful for the former. As of today, there are still many open questions in solving the

formation tracking problem.

In the following, recent research results and progress in formation control, including formation produc-

ing, formation tracking, and connectivity maintenance for consensus and formation control, are reviewed

and discussed.

A. Formation Producing

The existing work in formation control aims at analyzing the formation behavior under certain control

laws, along with stability analysis.

1) Matrix Theory: Considering the nature of multi-agent systems, matrix theory has been used fre-

quently in the stability analysis of their distributed coordination.

Note that consensus input to each agent (see e.g., (2)) is essentially a weighted average of the differences

between the states of the agent’s neighbors and its own. As an extension of the consensus algorithms, some

coupling matrices were introduced here to offset the corresponding control inputs by some angles [166]–

[169]. For example, given the single-integrator kinematics in (1), the control input (2) is revised as

ui(t) =

n
∑

j=1

aij(t)C[xj(t)− xi(t)], (15)
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where C is a coupling matrix with compatible size. If xi ∈ R
3, then C can be viewed the 3-D rotational

matrix. The main idea behind (15) is that the original control input for reaching consensus is rotated

by some angles. The closed-loop system can be expressed in a vector form, whose stability can be

determined by studying the distribution of the eigenvalues of a certain transfer matrix. Main research

work was conducted in [166]–[169] to design proper algorithms and analyze the collective motions for

systems with single-integrator kinematics and double-integrator dynamics.

Note that the collective motions for nonholonomic mobile robots were also studied recently, in,

e.g., [170], [171]. Although the study in [166]–[169] is different from that in [170], [171], similarities

exist in the sense that all agents will not move to the weighted average of the states of neighboring

agents, but to some offsetted state. Noticeably, the offsetted state in [166]–[169] is properly designed,

yet the offsetted state in [170], [171] is induced by the special nonlinear system dynamics.

In the study of formation producing with linear closed-loop systems, it is observed that the associated

system matrix has two interesting properties: (1) the existence of at least one zero eigenvalue, and (2) the

existence of at least one pair of eigenvalues on the imaginary axis. The two properties play an important

role in the formation producing problem under a fixed network topology. However, the two properties

might not be able to solve the formation producing problem under a switching network topology, which

is still a challenging problem due to the complexity in the analysis of switching systems.

2) Lyapunov Function Approach: Although matrix theory is a relatively simple approach for stability

analysis of the formation producing problem, it is not applicable in many formation producing scenarios,

especially with nonlinear systems. It is then natural to consider the Lyapunov function approach, a

powerful and efficient approach that has been used frequently to perform stability analysis.

By using the Lyapunov function approach, several typical formation producing scenarios have been

studied, including the inverse agreement problem [172], leaderless flocking and stabilization [173]–[183],

and circular formation alike [170], [171], [184]–[187]. In the inverse agreement problem [172], the

objective is to force a team of agents to disperse in space. Roughly speaking, for the single-integrator

kinematics (1), the corresponding control input has the form given by

ui(t) =

n
∑

j=1

bij(‖xi − xj‖)[xi(t)− xj(t)], (16)

where bij(·) is a nonnegative function. Assuming that each agent can communicate with all other agents

within a radius R, the agents will disperse in space with the relative distance between any pair of agents

larger than R.

For the case of leaderless flocking, research has been conducted to stabilize a group of agents towards

July 31, 2011 DRAFT



20

some desired geometric formation, where the inter-agent interaction is described directly or indirectly by

some nonnegative potential function Vij(‖xi − xj‖) regardless of the final group velocity. Some notable

properties for Vij(‖xi − xj‖) includes: (i) Vij(‖xi − xj‖) achieves its minimum when ‖xi − xj‖ is equal

to the desired inter-agent distance between agents i and j, (ii) Vij(‖xi − xj‖) increases as ‖xi − xj‖
decreases from the desired distance to zero and Vij(‖xi − xj‖) could approach infinity as ‖xi − xj‖
approaches zero, and (iii) Vij(‖xi − xj‖) increases as ‖xi − xj‖ increases from the desired distance

to the maximum communication range. The basic idea behind the potential function Vij(‖xi − xj‖) is

to drive the inter-agent distance to the desired value while avoiding possible inter-agent collision. The

corresponding control law for each agent is usually chosen to be the same as the corresponding consensus

algorithm except that the xi−xj term is replaced by ∇xi
V (‖xi − xj‖) here. A fundamental limitation is

that all agents will normally converge to some (constant) inter-agent configuration locally in the sense that

some nonnegative potential function achieves its local minimum. Accordingly, the inter-agent distance

might not converge to the desired value globally. It is an interesting future research topic to ensure that

the desired inter-agent distance can be achieved globally under properly designed control algorithms. In

addition, the network topology associated with a team of agents is usually assumed to be undirected,

which is not applicable to many practical systems which are directed.

For the case of circular formation and the like, the main research in [170], [171], [184], [186], [188]

was devoted to the collective motion for nonhonolomic mobile robots with the dynamics given in (6).

Denote ri = xi + ιyi, where ι =
√
−1. Then (6) becomes

ṙi = uie
ιθi , θ̇i = ωi, i = 1, · · · , N. (17)

Due to the nature of the nonlinear dynamics, a consensus-like algorithm often renders a circular-like

ultimate formation where the trajectories of all agents are circular and the relative phase difference

(namely, θi − θj) is constant. The current work mainly focuses on the case when all agents share a

common unit speed. Similar circular-like formation was analyzed in [185], [187], where the system

dynamics are different from (6) but share a similar nonlinearity. Due to the nonlinearity of the system

dynamics, it is a challenging task to incorporate time delay, disturbances, quantization, etc, into the

existing research.

3) Graph Rigidity: For a network with a given number of agents, the edges are closely related to

the shape of formation. Roughly speaking, if enough information regarding edge distances for a team of

agents is available, the geometric structure of all agents is determined. Then the graph for the agents is

rigid. According to [189], a graph of n agents is rigid if at least 2n− 3 edge distances are available.
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Motivated by the graph rigidity, research has been conducted in [190]–[194] to drive a group of

agents to the desired inter-agent configuration by ensuring that a certain number of edge distances are

identical to the desired ones. The graph rigidity recovery after loss of an agent has also been investigated.

Compared with other formation producing algorithms which require edge vector information (i.e., xi−xj),

less information is required in edge distance information (i.e., ‖xi − xj‖). As a tradeoff, some unstable

equilibria, such as a collinear initial configuration (the initial states of all agents are linearly dependent)

and a common initial state (the initial states of all agents are identical), rather than the desired inter-agent

configuration, might exist. In practical applications, it is important to design proper control algorithms

such that a team of agents can avoid converging to the unstable equilibria.

4) Receding Horizon Approach: Receding horizon control (RHC), known also as model predictive

control, has been introduced into the formation stabilization problem. By nature, RHC is a finite-horizon

optimization problem. The employment of RHC in the formation stabilization problem is motivated by

the fact that RHC is more capable of dealing with constraints.

The main research in this topic [195]–[197] has been devoted to deriving proper distributed control

algorithms for a team of agents such that they can reach some desired formation by optimizing some

finite-horizon cost functions in scenarios with or without time delay. Because RHC is essentially an

optimization-based control strategy, the distributed control algorithms are typically given by solving

optimization problems. Therefore, more computational time is required by RHC than other control

approaches. Therefore, the potential computation-induced time delay needs to be taken into consideration

in practical applications.

B. Formation Tracking

Although formation control without a group reference is interesting in theory, it is more realistic to

study formation control in the presence of a group reference because it may represent a control objective

or a common interest of the whole group. This scenario is now reviewed in this subsection.

1) Matrix Theory: Similarly to the case of formation producing, matrix theory is often used in the

study of formation tracking problem.

An interesting problem in formation tracking is to design a distributed control algorithm to drive a

team of agents to track some desired state. For example, given the single-integrator kinematics, control

algorithms were designed in [198], [199], where the algorithms are similar to those consensus algorithms

except that an extra term is introduced here due to the existence of the group reference. If properly

designed, all agents can track the group reference accurately as reported in [198] while, with bounded
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tracking errors analyzed in [199], where a discretized version in [198] was considered. It is worth

mentioning that the group reference can be arbitrarily chosen as long as its derivative is bounded. In [200]–

[202], the synchronization of a group of linear systems to the output of another linear exosystem was

investigated with or without parameter uncertainties. In [198], [199], a general group reference was

discussed while in [200]–[202] a general system model was considered. How to solve formation tracking

for general linear systems with a general group reference is still an open problem.

The formation tracking problem can be converted to a traditional stability problem by redefining the

variables as the errors between each agent’s state and the group reference. Then, the formation tracking

problem is solved if the corresponding errors can be driven to zero. However, the formation producing

problem, in general, cannot be solved in this way. Therefore, under a switching network topology, the

formation tracking problem is generally easier than the formation producing problem.

2) Lyapunov Function Approach: Due to the broad applications of the Lyapunov function approach

in the stability analysis, it has become an important tool in the study of the formation tracking problem

as well.

Flocking with a dynamic group reference has been studied recently [203]–[206], where the objective

is to design distributed control algorithms such that a team of agents move cohesively along the group

reference. Compared with leaderless flocking, the study of flocking with a dynamic group reference is

much more challenging both theoretically and technically. If enough information of the group reference is

known, such as acceleration and/or velocity information of the group reference, flocking with a dynamic

group reference can be solved by employing a gradient-based control law [203]–[205]. Another approach

was proposed in [206], where a variable structure-based control law was used to solve the problem

with less information required. Similarly to the study of the leaderless flocking problem, the existing

research on flocking with a dynamic group reference can only reach a local minimization of certain

potential functions because the potential function is generally unspecified but satisfies the conditions

stated in Subsection IV-A. Accordingly, the inter-agent distance is not identical to the desired one.

However, the potential based control can be easily designed to guarantee collision avoidance and maintain

the initial inter-agent communication patterns. Nevertheless, it is still an open problem to consider the

task with global inter-agent distance stabilization, collision avoidance, and initial communication pattern

maintenance.

Formation control with a group reference was studied in both linear systems [207]–[209] and nonlinear

systems [210]–[218] when the potential function V (‖xi − xj‖) is replaced by some known functions,

generally in the form of ‖xi − xj − dij‖2, where dij denotes the desired distance between agents i and j.
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Briefly, the nonlinear systems studied in this case include nonholonomic mobile robots (see (6)) [212]–

[216], rigid bodies (see (7)) [217], [218], and linear systems with nonlinear terms [210], [211]. Compared

with the flocking problem, the problem studied here is relatively easier due to the known V (‖xi − xj‖).
In general, the inter-agent distance can be driven to the desired one. As a tradeoff, the collision avoidance

and initial communication pattern maintenance need to be considered separately.

C. Connectivity Maintenance for Consensus and Formation Control

In both consensus and formation control problems, it is often assumed that the network topology

satisfies certain fundamental conditions, for example, is connected or has a directed spanning tree.

However, a practical communication model is typically distance-based, i.e., two agents can communicate

with each other if and only if their distance is smaller than a certain threshold, called communication

range. This is particularly true for sensor networks. In order to guarantee consensus or formation control

be achieved asymptotically, a connectivity maintenance mechanism is essential, which has been studied

recently.

The main approach to maintaining the connectivity of a team of agents is to define some artificial

potentials (between any pair of agents) in a proper way such that if two agents are neighbors initially

then they will always communicate with each other thereafter [206], [219]–[228]. In general, the artificial

potential between a pair of agents grows to be sufficiently large (could be unbounded) when the distance

between them increases to be equal to the communication range. For properly designed control algorithms,

which are usually composed of the gradients of the artificial potentials, the total artificial potential is

nonincreasing. This then indicates that the initial communication patterns can be preserved because

otherwise the total potential will become larger than the initial total artificial potential, as soon as some

communication pattern is broken. Although this approach provides a systematic way to guarantee the

connectivity, the corresponding control algorithms might require infinite large control inputs, which is not

practical. Meanwhile, it is not even necessary to always maintain the initial communication patterns in

order to guarantee the connectivity. Therefore, how to find a more effective way to guarantee connectivity

deserves further investigation. In contrast to the studies in [206], [219]–[228], the authors in [229]

investigated an interesting problem where the number of initially existing communication patterns plays a

role in the connectivity maintenance for the consensus problem with single-integrator kinematics (1) and

control input (2). Roughly speaking, if the initial graph is “sufficiently” connected in the sense that each

agent has at least a certain number of neighbors, consensus can be guaranteed to be achieved. Note that

the result can only be applied to systems with single-integrator kinematics therefore further investigation
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is expected for systems with high-order linear dynamics or nonlinear dynamics.

D. Remarks

Current research in formation control mainly focuses on a fixed formation where the inter-agent distance

is fixed. Considering practical applications, however, it might require that the formation be adaptive with

respect to the events performed by the team of agents. In addition, it is important to consider constraints,

such as input saturation, quantization, and power limitation, in the formation control problem. Meanwhile,

the robustness is another important factor that deserves considerable attention in real applications where

noise and disturbances exist.

In terms of connectivity maintenance for consensus and formation control, research has been devoted to

continuous-time systems but practical systems are more suitable to be modeled in a discrete-time setting,

which makes the study of connectivity maintenance for discrete-time systems more meaningful. In general,

the connectivity maintenance for discrete-time systems is more challenging due to the fundamental

limitation of the corresponding control input, which is usually piecewise constant rather than continuous.

V. OPTIMIZATION

Optimization is an important subject in the studies of control systems. The main objective of opti-

mization is to find an optimal strategy subject to some given constraints such as cost functions. Recently

optimization in distributed multi-agent coordination has been studied concerning convergence speed and

some specific cost functions, which are respectively reviewed below.

A. Convergence Speed

As discussed above, one important problem in consensus is the convergence speed, which characterizes

how fast consensus can be achieved therefore is desirable to optimize. In this regard, the convergence

speed is the cost function to be optimized.

Consider a group of n agents with dynamics described by the single-integrator kinematics (1). Equipped

with (2), the dynamical equation (1) can be written in a matrix form, as

Ẋ(t) = −LX(t), (18)

where X(t) = [x1(t), · · · , xn(t)]T and L is the Laplacian matrix. For a network with a fixed topology,

L is a constant matrix.
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Motivated by the observation that the smallest nonzero eigenvalue of the Laplacian matrix, λ2(L),
determines the worst-case convergence speed [9], research has been conducted to maximize the conver-

gence speed [155], [230] by choosing optimal weights associated with edges. In contrast to [155], [230],

where the systems are assumed to have single-integrator kinematics, optimization of the convergence

speed for double-integrator dynamics was considered in [231], where the convergence speed is defined

in a similar way to the λ2(L) for the case with single-integrator kinematics. It is worth mentioning that

optimal convergence for general linear systems and nonlinear systems is still an open problem.

As mentioned above, other than λ2(L), another commonly used measure for the convergence speed is

given by (14). The corresponding optimization problem is

max
ui(t)

ρ, (19)

where ρ is defined in (14). Existing research in [156], [232] focuses on the case when all agents converge

to the average of the initial states, i.e., X⋆ = [ 1n
∑n

i=1 xi(0)]1. For an arbitrary fixed or switching

network topology, the optimization problem (19) is challenging if X⋆ is unknown. But if X⋆ is chosen

as [ 1n
∑n

i=1 xi(t)]1, then the problem becomes much easier.

B. Specific Cost Functions

In addition to the fastest convergence speed requirement, various cost functions are also subject to

minimization.

One interesting problem studied in this setting is distributed multi-agent optimization, which is mo-

tivated by solving one challenge in wireless sensor networks, namely, to estimate the environment

parameters and/or some functions of interest, such as temperature and source location [233]. As a simple

strategy, each sensor node can send its data to some existing central location which can then process

the data if the central location is sufficiently powered. However, due to the limited power resources and

communication capabilities, this strategy is often not applicable. An alternative approach to achieving a

similar objective is to estimate the environment parameters and/or some functions of interest locally, which

requires much less communication bandwidth and power. In wireless sensor networks [233], the estimation

problem is usually modeled as a distributed multi-agent optimization problem. Roughly speaking, the

objective of distributed multi-agent optimization is to cooperatively minimize the cost function

n
∑

i=1

fi(x),

where the function fi : R
n 7→ R represents the cost of agent i, known by this agent only, and x ∈ R

m

is a decision vector. In [233], an incremental subgradient approach was used to solve the optimization
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problem for a ring type of network. It should be noted that [233] does not provide much discussion on

the optimization problem under other types of network topologies.

Ref. [234] was probably the first paper studying the distributed multi-agent optimization problem under

a consensus-based framework. The problem considered therein is formulated as

minimize
∑n

i=1 fi(x)

s.t. x ∈ R
n,

where each fi : R
n → R is assumed to be a convex function. Inspired by the average consensus algorithm

and the standard subgradient method, a consensus-like algorithm was proposed as

xi(k + 1) =

n
∑

j=1

aij(k)xj(k)− αgi(xi(k)) (20)

where α is the step size and gi(xi(k)) is the subgradient of fi(x) at x = xi(k). In [233],
∑n

j=1 aij(k)xj(k)

in (20) was replaced by xi−1(k) with x0(k) = xn(k − 1). Note that the algorithm (20) can only

find sub-optimal solutions, determined by the constant step size α. Further results in this topic can be

found in [235]–[237], where a similar distributed multi-agent optimization problem was studied within

various scenarios, such as under constraints [235], over random networks [236], and with broadcast-based

communications in an asynchronous setting [237]. In the existing research, time delay and disturbances

have not been taken into consideration. Therefore, it is important to consider time delay and disturbances in

the distributed multi-agent optimization problem due to their wide existence in wireless sensor networks.

In addition to the distributed multi-agent optimization problem where the cost function is a sum of

a series of convex functions, distributed optimization has also been considered for both infinite-horizon

cost functions [238]–[242] given by

Ji =

∫ ∞

0
[XT (t)QX(t) + UT (t)RU(t)]dt

and finite-horizon cost functions [243]–[246] given by

Jf =

∫ tf

0
[XT (t)QX(t) + UT (t)RU(t)]dt,

where X ∈ R
n is the state, U ∈ R

n is the control input, and tf is a positive constant. It is worth

mentioning that the RHC approach discussed in Section IV-A typically has finite-horizon cost functions.

Different from the research reported in [234]–[237], which is to find the optimal estimated state, the

objective here is to find the optimal control laws subject to the minimization of certain cost functions.

Due to requirements of optimizing the cost functions when designing the control laws, the computational

complexity becomes an important problem to study. Meanwhile, the network topology plays a significant
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role in the optimization problem with certain cost functions, therefore it is also useful to optimize the

network topology subject to certain cost functions.

VI. DISTRIBUTED TASK ASSIGNMENT

Distributed task assignment refers to the study of task assignment of a group of dynamical agents in a

distributed manner, which can be roughly categorized into coverage control, scheduling, and surveillance.

Compared with the previous studies discussed in Sections III, IV, and V, distributed task assignment

focuses on the three task-oriented research problems, where each topic has its unique features.

A. Coverage Control

Coverage control is an active research direction in mobile sensor networks, where the objective is to

properly assign the mobile sensors’ motion in order to maximize the detection probability.

Let Q be a convex space with φ represent the distribution density function which indicates the

probability that some event takes place over Q [247]. Consider a group of n mobile sensors whose

locations are specified by P = [p1, · · · , pn]. The sensor performance at a point q degrades with respect

to the distances ‖q − pi‖, which are all described by a nondecreasing differentiable function, f . The

coverage control problem is to find a local controller for each mobile sensor such that the following cost

function is minimized:

J =

n
∑

i=1

∫

f(‖q − pi‖)φ(q)dq . (21)

This coverage control by nature is an optimization problem. Main research in this topic was reported in,

e.g., [248]–[255], where the coverage control problem was considered in two directions, namely, analysis

of coverage control under various practical constraints, such as limited sensing/communication capac-

ities [248], load balancing [254], and nonholonomic mobile robots [255], and algorithms for coverage

control [251]. Noting that time delay and uncertainties have not been considered in the coverage control

problem, it is interesting to consider the effect of time delay and uncertainties in the coverage control

problem. Moreover, the density function φ might be time-dependent in real systems, which is another

interesting research topic for further study.

B. Scheduling

Another interesting topic in distributed task assignment is distributed scheduling, which refers to the

scheduling of a group of dynamical agents in a distributed manner. Distributed scheduling has many
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potential applications in military and civilian sectors, and can be roughly categorized into two typical

problems, namely sequence optimization [256] and task allocation [257]–[261]. The objective of sequence

optimization is to schedule a team of agents such that some metrics can be optimized. For instance,

in [256], an optimal scheduling sequence was designed to fuel a group of UAVs via dynamic programming,

where the metric is the total spending time. The objective of task allocation is to distribute certain number

of tasks to a team of agents such that they can balance the total tasks. If the number of tasks for each agent

is considered a variable in the consensus problem, the task allocation might be viewed as a consensus

problem except that a limitation on the total number of tasks for all agents exists. A notable feature

of the distributed task assignment problem is that various constraints may exist due to the physical

properties associated with the agents. In view of the difference objectives for sequence optimization

and task allocation, it is an interesting topic to consider combining both objectives of the two problems

simultaneously.

C. Surveillance

Distributed surveillance means to monitor a certain area by using a group of mobile agents in distributed

coordination. Distributed surveillance has a number of potential applications, such as board security

guarding, forest fire monitoring, and oil spill patrolling.

The main motivation of distributed surveillance is that a team of agents can monitor a given (large)

area more effectively than a single agent when the team of agents works in a cooperative fashion.

Accordingly, an important research problem in distributed surveillance is to design environment-based

cooperative control laws for all coordinated agents such that the given area can be monitored efficiently.

Recent research in distributed surveillance has been reported in [262]–[269], where a number of physical

limitations were identified and considered such as time delay and uncertainties [265], [268], collision

avoidance between agents [266], and heterogeneously distributed agents [268]. The current research is

conducted under the assumption that each agent has enough power such that any designed control law can

be applied. However, due to the power constraints, each agent might be subjected to constraints such as

bounded control input, limited distance to travel, and finite accuracy level, etc., therefore it is interesting

and important to consider these limitations in the distributed surveillance problem in the future.

VII. ESTIMATION

Due to the absence of global information, used for achieving group coordination in many cases, a

distributed estimation scheme is needed for estimation. The first problem is to design local distributed
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estimators such that some global information can be estimated asymptotically or in finite time. The

second problem is to design local controllers based on the local estimators such that the closed-loop

system is stable. The estimation-based distributed control is essentially a combination of both centralized

control and distributed control in such a way that distributed control is used in the estimation of some

global information and the centralized control is used in the local controllers design. The estimation-based

distributed control strategy often inherits the merits of both centralized control and distributed control.

However, it is worth emphasizing that a closed-loop system with distributed estimators is much more

complicated to design than one without distributed estimators.

Main research in this topic has been reported in [163], [270]–[275], where the joint estimation and

control problem was considered subject to disturbances [270], [272], [273] or without disturbances [163],

[271], [274], [275]. In [163], [270]–[275], a joint estimation and control problem is solved in the sense

that the distributed estimator is used in the design of proper control algorithms such that certain global

objective can be achieved. Without the aid of distributed estimators, the control design is very hard

and even impossible. As can be noticed from [276]–[282], the distributed estimation problem has been

considered without much discussion on specific control problems. In general, the joint estimation and

control idea has been an important approach in the study of distributed multi-agent coordination where

only neighbor-based information is not sufficient for the controllers design. On the other hand, in real

applications properly designed distributed estimators might be used to replace some expensive sensor.

In general, it remains a challenging problem to study task-oriented coordination control systems where

the use of distributed estimation is either necessary or an appropriate replacement of certain expensive

measurement devices, at the costs of difficult control system design and complex system stability anal-

ysis. Moreover, physical limitations such as bounded control input, asynchronous communication, and

information quantization, could potentially enhance the applicability of the joint estimation and control

scheme in various distributed multi-agent coordination systems.

VIII. DISCUSSION

This article has reviewed some recent research and development in distributed multi-agent coordination.

In addition to the theoretical results reviewed above, many experiments were also conducted to validate the

theoretical designs and analysis, as can be found in [283]–[288], to name just a few representative reports.

Although the existing theoretical research and experiments have solved a number of technical problems

in distributed multi-agent coordination, there are still many interesting, important and yet challenging

research problems deserving further investigation. Some of them are briefly summarized as follows:
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• Quantization effects in distributed coordination algorithms. The current research efforts focus on

studying distributed coordination problems with control inputs and measurements being analog sig-

nals with continuous values. However, digital signal processing techniques require digital inputs and

sampled-data measurements. Although quantization effects have been studied in several coordination

problems, the quantization effect in some other distributed coordination problems remain unsolved

and even untouched.

• Optimization with integrated individual and global cost functions. Optimization problem in dis-

tributed coordination has been studied with various cost functions. In real systems, each individual

agent has both local and global objectives, contributing to an integration of both individual and

global cost functions. Therefore, optimizing a combined objective is more realistic but also more

challenging. Another interesting problem is to investigate how to balance the individual cost functions

and the global cost function toward a common objective.

• Intelligent coordination. Intelligent coordination refers to the distributed coordination of a team

of agents in the presence of (artificial) intelligence, namely, each agent is intelligent, therefore

can choose the best possible responses based on its own objective. Intelligent coordination has

potential applications not only in engineering and technology but also in economics and social

studies. Although research problems, such as pursuer-invader problem [289]–[292] and the game

theory in distributed coordination [293]–[298], have been studied recently, there are still many open

questions, especially the understanding of group behaviors in the presence of agent intelligence. One

interesting problem is how to interpret the underlying complex networks as well as to stabilize and

optimize the network in the presence of agent intelligence.

• Competition and cooperation. Today, most research is conducted based on local cooperation but not

competition. This posts an obvious limitation because competition not only exists but also plays an

positive role in group coordination. For example, due to the lack of competition, the final states of

the traditional consensus algorithms are always limited to be within some region in the state space

determined by the initial agent states. One interesting question is how to introduce competition into

distributed coordination so as to arrive at different regions and to improve the system performance

that rewards different agents with different benefits.

• Centralization and decentralization. Although decentralization shows obvious advantages over cen-

tralization, such as scalability and robustness, decentralization also has its own drawbacks. One

shortcoming is that, under decentralized protocols, some agents cannot predict the group behavior

based only on the available local information. Consequently, some group behavior cannot be con-
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trolled. As a sensible example, current economic crisis actually illustrates some disadvantages of

behavioral decentralization. One interesting question, therefore, is how to balance decentralization

and centralization so as to further improve the overall systems performance.
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[57] J. Zhou, J.-A. Lu, and J. Lü, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Transactions

on Automatic Control, vol. 51, no. 4, pp. 652–656, April 2006.

[58] ——, “Pinning adaptive synchronization of a general complex dynamical network,” Automatica, vol. 44, no. 4, pp. 996–

1003, 2008.

[59] N. Chopra and M. W. Spong, “On exponential synchronization of kuramoto oscillators,” IEEE Transactions on Automatic

Control, vol. 54, no. 2, pp. 353–357, February 2009.

July 31, 2011 DRAFT



34
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