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So
ware-de�ned networking o�ers several bene�ts for networking by separating the control plane from the data plane. However,
networks’ scalability, reliability, and availability remain as a big issue. Accordingly, multicontroller architectures are important for
SDN-enabled networks. 	is paper gives a comprehensive overview of SDN multicontroller architectures. It presents SDN and its
main instantiation OpenFlow. 	en, it explains in detail the di�erences between multiple types of multicontroller architectures,
like the distribution method and the communication system. Furthermore, it provides already implemented and under research
examples of multicontroller architectures by describing their design, their communication process, and their performance results.

1. Introduction

Unlike traditional networks, so
ware-de�ned networking
(SDN) [1] separates the control from the data plane in
network devices, like switches and routers. 	is new concept
suggests the use of a centralized controller that determines
the behavior of all forwarding components in the network.

Southbound interfaces permit communication between
the control plane and the data plane, while northbound
interfaces provide enormous possibilities for networking pro-
grammability, like creating applications that can automate all
networking tasks. Consequently, SDNwill enhance creativity,
as well as innovation, in the domain of networking.

	ree critical requirements are not achievable in an SDN-
enabled centralized network, which was the main tendency
for early proposed SDN architectures, using just one con-
troller: �rst, eciency that is not enough established with just
one centralized controller, second, scalability that is one of
themost issues that pushes network architects to consider the
idea of multicontrollers, and, third, high availability, which
has two items, redundancy and security. Redundancy is one
of the most signi�cant aspects of any design. One controller
could fail anytime and, for this reason, abandon the network
without its control plane. Security is considered an important
item. If an attacker compromises the controller, subsequently
it loses the entire management over the network. Clearly, if
we have multiple controllers, we can certainly minimize the

issue, because they will team up to identify that another one
is misbehaving and for that reason separate the attacker from
the network.

All these arguments push network designers to think
seriously about integrating multicontroller architectures in
their designs, and several works have been proposed in this
context. 	erefore, we were motivated to write a compre-
hensive overview that explains in detail di�erent aspects
and characteristics related to distributed architectures in a
so
ware-de�ned network and clari�es some notions that
can be confused, as the di�erence between logically and
physically distributed architectures.

Many papers have done surveys and overviews about
SDN; for example, the authors of [1] explained in detail almost
all notions and concepts related to SDN. 	ey mention mul-
ticontrollers when they talk about the scalability issue. 	ey
also provide a table that distinguishes the di�erence between
centralized and distributed controllers; however, they do
not give more information about the distribution method.
Another survey [2] discusses SDN by explaining its features
and clarifying in detail its layers. It mentions multicontrollers
brie�y when it talks about methods to enhance the control
layer performance. 	ere is another interesting survey [3]
about SDN that presents chronologically its development.
	eir authors mention multicontrollers, by providing in a
paragraph the di�erence between centralized and distributed
controllers. To the best of our knowledge, we have found only

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2016, Article ID 9396525, 8 pages
http://dx.doi.org/10.1155/2016/9396525



2 Journal of Computer Networks and Communications

Application layer

Northbound API

Control layer

East-west
interface

Southbound API (OpenFlow)

Infrastructure
layer

East-west
interface

Figure 1: SDN architecture.

one paper [4] that presents a speci�c survey about the control
plane. Nevertheless, it does not give enough information
about the implementations of multicontrollers it provides.

	e remainder of this paper is organized as follows:
we provide a review of the architecture of SDN and its
main implementation OpenFlow in Section 2. Further, we
present a thorough explanation about the characteristics and
related subjects of the distribution of multicontroller designs
in Section 3. In Sections 4 and 5, we present some of the
proposed multicontrollers by explaining their architectures,
classifying them by distribution method, while mentioning
the performance results of each model. Finally, in Section 6,
we give a conclusion.

2. SDN Architecture

In this section, we will present a review of the architecture of
SDN and OpenFlow, its main implementation, as shown in
Figures 1 and 2, respectively.

2.1. SDN Architecture. An SDN architecture contains six
major components.

First is the management plane, which is a set of network
applications that manage the control logic of a so
ware-
de�ned network. Rather than using a command line inter-
face, SDN-enabled networks use programmability to give
�exibility and easiness to the task of implementing new
applications and services, such as routing, load balancing,
policy enforcement, or a custom application from a service
provider. It also allows orchestration and automation of the
network via existing APIs [1].

Second is the control plane that is the most intelligent
and important layer of an SDN architecture. It contains one
or various controllers that forward the di�erent types of
rules and policies to the infrastructure layer through the
southbound interface [1].
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Figure 2: OpenFlow architecture.

	ird, the data plane, also known as the infrastructure
layer, represents the forwarding devices on the network
(routers, switches, load balancers, etc.). It uses the south-
bound APIs to interact with the control plane by receiving
the forwarding rules and policies to apply them to the
corresponding devices [1].

Fourth, the northbound interfaces that permit communi-
cation between the control layer and the management layer
are mainly a set of open source application programming
interfaces (APIs) [1].

Fi
h, the east-west interfaces, which are not yet standard-
ized, allow communication between the multiple controllers.
	ey use a system of noti�cation and messaging or a dis-
tributed routing protocol like BGP and OSPF.

Sixth, the southbound interfaces allow interaction
between the control plane and the data plane, which can be
de�ned summarily as protocols that permit the controller
to push policies to the forwarding plane. 	e OpenFlow
protocol is the most widely accepted and implemented
southbound API for SDN-enabled networks.

OpenFlow is normalized by the Open Networking Foun-
dation (ONF) [5], backed by the leaders of IT industry like
Facebook, Cisco, Google, HP, and others. For this reason,
understanding the OpenFlow architecture is important to
grasp the notion of SDN, which we are going to present in the
next subsection. Before that, we should realize thatOpenFlow
is just an instantiation of SDN, as there are many existing and
under development southbound APIs, for instance, OpFlex
[6], which distributes some of the complexity ofmanaging the
network to the infrastructure layer to improve the scalability.
On the other hand, ForCES [7] proposes a �exible method to
ameliorate the management of traditional networks without
using a logically centralized controller, while ROFL [8], which
relies on OpenFlow, provides an API for so
ware developers
to enable full development of new applications [1].

2.2. OpenFlow Architecture. In an OpenFlow-enabled net-
work, �ow can be represented as a transmission control
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protocol (TCP) connection. Flows can also be packets with
a matching MAC address, an IP address, a VLAN tag, or a
switch port [6].

	eOpenFlow switch has one or more �ow tables. A �ow
table is a set of �ow entries. A �ow entry is used to match and
process packets. It consists of many matching �elds to match
packets, a set of encounters to track packets, and instructions
to apply [9].	eOpenFlow switch uses anOpenFlow channel
to communicate with the OpenFlow controller [9].

	e OpenFlow channel is a secure channel between the
OpenFlow switch and the OpenFlow controller. It permits
communication by allowing the control plane to send instruc-
tions, receive requests, or exchange information. Allmessages
are encrypted, using transport layer security (TLS) [9]. 	e
OpenFlow channel has three types of messages. 	e con-
troller/switch message is initiated by the controller and may
not require a response from the switch. 	e asynchronous
message informs the controller about a packet arrival, a
switch state change, or an error. 	e symmetric message can
be sent in both directions for other purposes [9].

	e OpenFlow controller handles �ow tables inside the
switch by adding and removing �ow entries. It uses the
OpenFlow channel to send and receive information [9]. It can
be considered as an operating system that serves the whole
network.

	e OpenFlow protocol is the southbound interface that
permits communication between the OpenFlow controller
and the OpenFlow switch via the OpenFlow channel [9].

3. Architectures of a Multicontroller
Software-Defined Network

A multicontroller architecture is a set of controllers working
together to achieve some level of performance and scalability.
In a so
ware-de�ned network, multicontroller architectures
can have di�erent aspects and characteristics that we are
going to discover in the next paragraphs, the di�erences
between logically or physically centralized and distributed
architectures, and �at and hierarchical designs. 	en, we
will try to describe some aspects, like elasticity, controller
placement, and communication intercontrollers.

3.1. Physically Centralized versus Physically Distributed. In a
so
ware-de�ned network, there are two types of architec-
tures, physically centralized and physically distributed.When
SDN appeared, the main tendency was to have a physically
centralized controller; however, due to some issues, like the
single point of failure and the scalability problem, network
experts suggest physically distributed designs.

It is important to understand that we are talking about a
multicontroller architecture, just in the case of the physically
distributed network. 	us, in the next sections and para-
graphs, we will always assume that the controllers are always
physically distributed.

Controllers like Beacon [10] and NOX [11] have used
multithreading techniques to split a single controller logically
to increase its performance. In this case, it is so obvious, since

we have a single controller, that we are not talking about a
multicontroller architecture.

A physically distributed network can di�er on various
levels, like how to place controllers and also which type of
communication to use among them.

In the next paragraphs, we will explain the di�erent
related subjects to a physically distributed architecture.

3.2. Logically Distributed versus Logically Centralized. A
physically distributed architecture can be either logically
centralized or logically distributed.

Logically centralized means that we take advantage of
the concept of a multicontroller design, but at the same
time, we always consider that we have a single controller.
In other words, we take the charge, and we distribute it
among the multiple controllers; however, for the underlying
layer, it is like there is just one controller that commands the
whole network. Another idea was proposed [3] before imple-
menting multiple controllers, which is installing replicated
controllers to remove the single point of failure. Nevertheless,
this method has many disadvantages such as using passive
controllers that will be active, just in case the main controller
fails. In a logically centralized architecture, all the controllers
have the same responsibilities, and they split the charge
equally.	ey are always aware of every change in the network,
and they share the same information instantly, thanks to the
network synchronization.

In a logically distributed architecture, the controllers
are physically and logically distributed. Additionally, every
controller has just a view of the domain it is responsible for,
and it can take decisions for it, unlike a logically centralized
design, where each controller makes a decision based on the
global network view.

In a word, a logically centralized architecture stays near to
the initial tendency of SDN, which is using a single controller,
or a multicore controller to improve the performance.

On the other hand, a logically distributed architecture
goes away from the �rst tendency of SDN, by making several
controllers have several responsibilities inside the network.

3.3. Flat Architecture versus Hierarchical Architecture. In the
majority of papers relevant to our context, we have found that
multicontroller architecture can follow a �at or a hierarchical
design.

In a �at or horizontal architecture, the controllers are
positioned horizontally on one single level. In other words,
the control plane consists of just one layer, and each controller
has the same responsibilities at the same time andhas a partial
view of its network.

In a hierarchical or vertical architecture, the controllers
are positioned vertically. 	ey are portioned among multiple
levels, which means that the control plane has several layers,
generally two or three. 	e controllers have di�erent respon-
sibilities, and they can take decisions based on a partial view
of the network.

	ese two methods have many advantages and disadvan-
tages; for example, both of these approaches can improve the
switch/controller latency in comparison to a single controller
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architecture or a multicore architecture. In �at design, the
network provides more resilience to failures. However, the
task of managing controllers becomes harder. On the other
hand, a hierarchical design gives a simpler way to manage
the controllers, but the problem of a single point of failure
remains, because of the upper layer of the control plane. To
explain more this �nal idea, in a hierarchical architecture, we
usually have about three layers. Each layer contains a type
of controllers. Typically, the bottom layer contains the local
controllers, while the upper layer contains one root controller,
which means that we have the problem of a single point of
failure, even if it concerns just one layer of the control plane.

3.4. Dynamic Architecture versus Static Architecture. A logi-
cally centralized architecture can be dynamic or static.

In a dynamic or an elastic architecture, the links and the
positions between the controllers, as well as the switches, are
changeable, which makes the network �exible.

In a static architecture, the links and the positions
between the controllers and also the switches are unchange-
able, which gives more stability and less overhead to the
network in comparison to a dynamic architecture.

3.5. Intercontrollers Communication. Communication inter-
controllers are the method used to allow exchanging infor-
mation among the multiple controllers of a so
ware-de�ned
network.

For instance, the “publish and subscribe” messaging
paradigm works as follows: in this system, a set of switches
subscribe to a particular controller and each controller does
the same. A
er that, controllers publish information between
each other to build a global network view.

Another example is a system of noti�cations exchange.
Each controller will send information to its neighbors about
its local state to create a global network view.

Previous examples can be more suitable for centralized
architectures, while distributed architectures are more likely
to implement well-known distributed routing protocols, like
BGP, OSPF, and IS-IS.

Building a global network view is always connected to the
notion of consistency. 	is last mentioned one can be either
weak, which implies that updates between controllers take
a period to be fully applied, or strong that signi�es that the
multiple controllers read the updates at the same time, which
a�ects the performance of the network positively [1].

3.6. Placement Problem in Multicontroller So	ware-De
ned
Architecture. 	e number of used controllers and their
positions in distributed network architectures will certainly
impact the overall performance of the control plane, which
is a signi�cant challenge for network designers. A research
paper [12] discusses this problemdeeply, called the placement
problemof controllers. It tries to solve the placement problem
of controllers in WAN networks by improving the delay
between a controller and a switch, as well as between two
controllers, in order to minimize the response time and
enhance the ability of the network to interact more quickly.

	e authors also demonstrated that a way to determine
how many controllers to use and where to place them is to
control three factors: �rst, the desired reaction limits, notably
the latency requirements, second, the metric choices, such as
availability, fairness of state of the network, processing, and
bandwidth, and, third, the network topology.

	ey also found that surprisingly a single controller is
enough to meet response time requirements in a medium-
size network.

4. Logically Centralized Architectures

In this section, we will present examples of logically central-
ized multicontroller architectures.

4.1. ONIX. ONIX [13] is a distributed control plane that
contains a cluster of one or more physical servers; each one
may run multiple ONIX instances.

To understand howONIX works, we should grasp its role
in the network and the utility of its API.

A network controlled by ONIX has four components:
�rst, the physical infrastructure, which includes all the
network switches and routers, and other network devices,
such as load balancers and �rewalls. ONIX interacts with
the physical infrastructure by reading and writing the state
controlling of each element, for example, the forwarding
table entries, second, the connectivity infrastructure, which
is the communication between the physical network and
ONIX, third, the control logic that relies on the top of
ONIX’s API. It controls the desired network behavior, and,
fourth, ONIX, which is responsible for giving the control
logic programmatic access to the network.

	e ONIX API is a useful API developed for network
control. It allows control applications to read and write the
state of any element in the network. It is a data model
that represents the entire network infrastructure, with each
network element corresponding to one or more data objects.
	e control logic, already de�ned, can read the current
state of each object. Each copy of the network state of an
object that is related to a network element is stored in the
Network Information Base, NIB. 	is NIB is a graph that
contains all the network entities. Also, network applications
are implemented by reading and writing to the NIB, while
ONIX distributes the NIB data between multiple running
instances.

NIB has a collection of network entities. Each one has
key-value pairs. Based on these pairs, each entity has a set of
attributes.	eNIB providesmultiplemethods for the control
logic to access the network entities. It has the complete
control over the state of an entity, because it maintains an
index for each one of them.

	eNIBuses a systemof noti�cations. For example, when
it receives the noti�cation “Query,” it means that the NIB
needs to �nd one or multiple network entities, while when
it receives “Create,” it means that it must create a new entity.

ONIX provides three methods to improve the scalability
of its network. First is by partitioning the network logically, in
other words, by distributing the workload on multiple ONIX
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instances. Second,ONIX can allowmultiple nodes to showup
as a single node in the upper layer, which is called aggregation.
	ird, ONIX allows data state applications that can be used to
improve the consistency and the durability of the network.

ONIX provides a scenario where we can experience the
scalability of the network: a network with a modest number
of switches that can be easily managed by a single ONIX
instance. 	e authors found that the control logic can record
all forwarding information from the switches. Also, it can
coordinate all the data and share them on the multiple
instances.

	e main results of the evaluation study of ONIX have
found that, thanks to the partitioning process, ONIX can
partition the workload over multiple ONIX instances. So,
in case there is an overhead inside an ONIX instance,
already assigned switches can be reassigned to another ONIX
instance.

4.2. HyperFlow. HyperFlow [14] is an application developed
on the top of the NOX controller, to enable logically central-
ized multicontroller architectures.

	e HyperFlow-based network contains three parts: a
control layer, a forwarding layer, and an application layer.
	e control layer contains multiple NOX controllers that are
working cooperatively. In the forwarding layer, the switches
are connected to the nearest controller. However, a switch can
be reassigned to another controller in case of failure.

To propagate information in the control plane, Hyper-
Flow uses a “publish/subscribe” messaging paradigm. 	is
system aims to provide a guaranteed event delivery. It is also
responsible for keeping the ordering of events published by
the same controller. Also, it minimizes the trac required for
intercontrollers to have less overhead.

	is “publish/subscribe” system runs on the top of
WheelFS [15], a distributed �le system that delivers �exible
wide area storage for distributed application. It permits the
applications to have more control over the control plane.

In a HyperFlow-based network, we �nd three channels
to permit interaction between the di�erent components: the
data channel, the control channel, and the controller channel.

	e controllers publish and subscribe to all of them.
OpenFlow commands are published only on the controller
channel, which is also used to prevent failures inside the
network. 	e data and the control channel are mainly used
to execute the publish/subscribe system to permit communi-
cation intercontrollers.

A large number of network events request only some
types of services, like routing. 	e global network view is
not a�ected by the changing order of arriving events or
those that target the same switch. In some cases, when
the network is not able to identify the events that might
change the network’s state, HyperFlow can implement state
synchronization among applications running on the top of
the controllers to resolve the problem.

	e authors have found that HyperFlow-based con-
trollers can operate more smoothly under heavy load syn-
chronization and keep minimal latency in comparison to
NOX controllers.

	ey also found that HyperFlow can keep an acceptable
amount of consistency among controllers for some 1000
arriving events per second, for instance, 1000 events that
include switch and host connecting and disconnecting the
network and a link state change. Nevertheless, we noticed a
disadvantage, which is the added delaywhen a controller con-
verges or reaches network synchronization, which increases
the response time.

4.3. ONOS. ONOS [16] provides two prototypes of a
so
ware-de�nedmulticontrollermodel, which di�er inmany
aspects.

	e �rst prototype has three characteristics: the global
network view, the scalability, and the fault tolerance. 	is
prototype keeps a global network view by gathering switch,
port, and link information.

	e network view has three components: Titan [17] (a
graph database), Cassandra [18] (a key-value store), and
Blueprints [19] (a graph API to expose network state to the
application layer).

ONOS can add supplementary instances to distribute the
workload on the control plane when it is scaling out.

ONOS can reassign a task to another instance to prevent
failures.

	e results of the evaluation study of ONOS prototype
1 showed that ONOS can control hundreds of switches and
hosts. Moreover, ONOS can add dynamically and eciently
switches and instances and deal instantly with network
failures.

ONOSpresents a decent level of consistency and integrity,
because it uses Titan that maintains the graphs’ structural
integrity and Casandra, which has a high level of consistency.

	e �rst problem of prototype 1 is excessive data store
operations. In otherwords, the task ofmapping data, from the
Titan graph to Cassandra, results in a signi�cant number of
data store operations, which slows the network. 	e second
problem is the lack of noti�cation and messaging system,
which is essential for the proper communication between the
controllers.

	e second prototype focuses on improving the perfor-
mance of the �rst prototype, while keeping the global network
view consistent. Since themain problem of the �rst prototype
was an excessive data store operation, in prototype 2, the
authors will try to solve this issue, following two comple-
mentary approaches. 	e �rst one concerns making remote
operations as fast as possible, while the second approach
focuses on reducing the number of remote operations.

Following the �rst approach, they implemented the
Titan/Cassandra systemwith aBlueprints graph implementa-
tion on the top of a data store called: RAMCloud [20], which
has a low latency of order of 15–30�s.

Following the second approach, they created a cache
topology system. 	is way some of the remote data store
operations are stored in thememory cache. Likewise, they can
reduce the number of data storage operations globally in the
system.

To remove the problem of noti�cations intercontrollers,
the authors adopted a communication system based on
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Hazelcast [21]. 	ese communications will go through some
channels installed at the top of all instances of the control
plane.

4.4. DISCO. DISCO [22] has two parts: an intradomain and
an interdomain.

	e intradomain part is responsible for monitoring the
network and managing the �ow prioritization. It contains
a set of modules that dynamically handle the multiple net-
work issues, like broken links, high latency, and bandwidth.
	e most important module is the Extended Database,
which is the central component where all controllers store
their information. Next is the Monitor Manager Module,
which is responsible for gathering information, such as
�ow throughput, and calculating the one-way latency and
the packet loss rate. Doing these operations periodically,
the controller sends a current view of the link and the
network devices’ performances to the Extended Database
Module. Additionally, the Events Processing Module keeps
track of the variation or the saturation events while the
Path Computation Module computes routes for �ows, from
a source to a destination inside the control plane. Finally,
the Service Manager Module handles the network SLAs. An
SLA is a service-level agreement, which is a contract that
documents what customers have requested from a service
provider.

	e interdomain part provides the communication
among the multiple controllers and has two modules.

First is the Messenger Module that builds channels
between neighboring controllers to share information with
the link state and the host presence. Communications use
in general a well-known protocol as OSPF or BGP. 	e
authors have chosen a protocol called AMQP [23], which
provides routing, messaging with orientation, and prioritized
querying. 	e Messenger only helps local agents to exchange
information, but it does not support communication for wide
area networks.

	e Agents Module contains four main agents, start-
ing with the Connectivity Agent that shares information
about connecting controllers and their neighboring infor-
mation. Next is the Monitoring Agent, which periodically
sends information about latency and bandwidth that are
available for the network to all the connected devices.
	en it is the Reachability Agent that advertises the pres-
ence of a device in the network to become reachable by
all the other devices. And �nally, the Reservation Agent
reserves update requests of the network, including capability
requirements.

	e evaluation study of DISCO followed three use cases.
	e �rst one was a scenario that puts in the challenge of self-
adaptation of the control plane in a case of failure.	e results
have shown that, a
er the Monitoring Agent discovers the
failure, the Connectivity and the Reachability Modules take
in charge the task of failure recovery, working together with
the Messenger.

	e second scenario showed how DISCO is helpful in
resource reservation, thanks to the Service Manager and
Reservation Agents.

	e third scenario shows how DISCO can manage to
migrate a virtualmachine, fromone domain to another inside
a DISCO architecture, with low latency and high reachability.

4.5. ELASTICON. ELASTICON [24] has an elastic architec-
ture. It has a cluster of autonomous controllers that share
the workload to provide a global network view for the
management layer. 	is global network view is built by the
Distributed Data Store Module. Likewise, every controller
has a TCP channel, connecting it to a neighboring controller
to ensure exchanging messages intercontrollers and switch
migration.

At the physical layer, which contains switches, each one
is connected to multiple controllers where one of them is
the master, and the others are slaves. Each controller has
the Core Controller Module that takes in charge all the
responsibilities of a centralized controller. It also gives the
controller the ability to negotiate with other controllers to
choose the master of the topology. 	e primary feature of
ELASTICON is elasticity, which is represented in this case as
the switch migration procedure.

In the switch migration process, controllers can be added
or removed according to some prede�ned thresholds, which
represent the trac load of the network.	e load balancing is
performed periodically and independently of the trac load.

For its evaluation study, ELASTICON used an enhanced
Mininet Testbed [25], which emulates a network of Open
v-Switches [26]. 	e experimental results show that adding
controller nodes increases the throughput almost linearly,
and also the throughput reduces when they restrict the
controllers to two cores. Additionally, it proves that the
response time increases marginally, up to the point when
there is a higher packet generation rate when ELASTICON
has a higher number of nodes. Also, the study shows that
the load balancing via switch migration can improve the
performance.

	e evaluation process also indicates that the switch
migration process takes about 20ms, which proves the speed
of the process.

5. Logically Distributed Architectures

5.1. KANDOO. KANDOO [27] is a logically distributed
controller with a hierarchical design of two layers.

	e lower layer contains local controllers, where each one
controls its subdomain, while the upper layer contains the
root controller, which leads all the lower layer.

	e local controllers only reply to events that are pre-
viously subscribed by the root controllers. 	erefore, if
the developers want to deploy new applications, they need
to con�gure the root controller manually to permit it to
subscribe to the new application. So, this controller is not a
zero con�guration framework.

KANDOO can coexist with other controllers on the same
network and be customized to the speci�ed needs of the
network.

KANDOO’s authors did a performance study using dif-
ferent applications in an emulated environment by presenting
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the results obtained about the elephant �ow detection prob-
lem.

	is elephant �ow is a large continuous �ow over a
network link that decreases the total bandwidth a
er a certain
amount of time.

KANDOO has two types of deployed applications, App
detect, which is running on the top of all the local controllers,
while App reroute is installed only on the root controller.
App detect �res one �ow per second and reports a �ow as
an elephant, if it has sent more than 1MB of data. 	e �nal
results show that KANDOO scales signi�cantly better than
a traditional OpenFlow network, while solving the elephant
�ow problem increasingly.

However, the study has shown no information about
workload and performance of local controllers, comparing to
a standard OpenFlow topology.

5.2. ORION. ORION [28] is a hybrid hierarchical control
plane, which is a mix of �at and hierarchical architectures.
It tries to combine the bene�ts of both designs and put them
all together in a hybrid structure to avoid the issues that each
architecture separately faces, such as the superlinear compu-
tational complexity growth, caused by �at architectures when
the network scales to a large one, and the path stretch problem
of hierarchical designs.

A network controller by ORION has three layers: the
physical layer, which contains all the physical devices, such
as OpenFlow switches; the bottom layer of the control plane
that includes the area controllers, which handle collecting
physical device and link information, as well as dealing
with intra-area requests and updates. 	is layer also has
a signi�cant task in the network, which is abstracting the
network view and sending it to the management layer of the
control plane, and, �nally, the upper layer, which contains
the domain controllers. A distributed protocol synchronizes
the information of interdomain controllers to keep a global
network view for the application layer. Abstracting views
from the bottom to the upper layer can reduce the problem
of computational complexity in large scale networks.

ORION relies on multiple modules to operate. First, the
OpenFlow Base Module, which handles OpenFlow-related
tasks, such as collecting information from switches and
forwarding them to the control plane; second, the Host
Management Module, which gathers the host information in
the bottom layer using ARP packets and deals with prob-
lems, resolving unknown MAC addresses; third, the Link
Discovery Module that manages collecting information on
the multiple areas; next, the Topology Management Module,
which abstracts the infrastructure layer’s topology and sends
it to the bottom layer and then abstracts the bottom layer’s
topology and sends it to the upper layer; and �nally, the
Storage Module, which stores information regarding hosts,
switches, links, and other parts of the network.

ORION interdomain controllers’ communication relies
on theHorizontal CommunicationModule that synchronizes
the information among domain controllers to build a global
network view, while interarea and domain controllers’ com-
munication relies on the Vertical Communication Module,

which is a set of TCP connections that permit area controllers
to send the abstracted topology of the infrastructure layer and
request information from the domain controller when a host
in some domain wants to reach a particular host in another
domain. 	is discussion leads us to talk about the Routing
Management Module, which controls all the routing tasks,
using the Dijkstra algorithm.

ORION has made a theoretical and an experimental
evaluation to test the performance of its control plane.

On one hand, the theoretical evaluation shows that the
computing time of ORION has a linear growth, which is
much lower than the traditional Dijkstra routing algorithm.

On the other hand, the experimental evaluation tried
to verify the feasibility and the e�ectiveness of ORION.
	e study, made using Mininet, demonstrated that when
the number of areas increases, the delay time also increases
gradually. Additionally, ORION has low overhead.

Before the conclusion of this paper, we would like to
discuss this section and the previous section, which provide
various examples ofmulticontroller distributed architectures.
On one hand, in Section 4, we have presented some proposals
of physically distributed but logically centralized designs,
like ONIX and HyperFlow, which are more suitable for
datacenter and enterprise networks, and in many cases, they
do not need a distributed protocol to ensure communication
intercontrollers, and they have strong consistency. On the
other hand, in this section, we have provided some examples
of physically and logically distributed designs, which are
more suitable forWAN networks.	ey are more likely to use
a distributed protocol like BGP, and they usually have weak
consistency. Finally, we think that there has been signi�cant
work concerning logically centralized architectures contrary
to logically distributed architectures, which present many
future research issues, like �nding new methods to improve
the global consistency, or developing standardized east-west
interfaces to connect between di�erent types of controllers.

6. Conclusion

So
ware-de�ned networking is based on the idea of splitting
the control plane and the forwarding plane and, following
that, centralizing the whole control plane in one single
controller that manages the entire network.

However, throughout the years, the academia and the
industry in the networking �eld started to realize that the
future of SDN relies on distributed architectures, because
centralized architectures do not ful�ll the needs of eciency,
scalability, and availability. In this paper, we tried to provide
a comprehensive overview of SDN multicontroller architec-
tures by explaining their characteristics and presenting in
detail di�erent examples of implemented and under research
architectures and solutions.

Network researchers and designers will have to deal with
many problems that distributed architectures face to enhance
a multicontroller network, like developing an ecient com-
munication process, creating an adequate network design, or
integrating new applications into the northbound interface
that support multiple controllers.
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