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The intestine is a powerful digestive system and one of the most sophisticated
immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial
cell with distinct morphological characteristics, play a significant role in various
physiological processes. TCs can be broadly categorized into different subtypes
depending on different molecular criteria. In this review, we discuss its biological
properties and role in maintaining homeostasis in the gastrointestinal tract. We
also emphasize its relevance to the immune system and highlight its powerful
influence on intestinal diseases, including inflammations and tumors. In addition,
we provide fresh insights into future clinical diagnostic and therapeutic strategies
related to TCs.
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1 Introduction

TCs within the rat trachea and the gastric wall were originally discovered in the 1950s
(Rhodin and Dalhamn, 1956; Jarvi and Keyrilainen, 1956). Because TCs have apical brush
borders, researchers may identify them based on their distinct morphological traits. As
intestinal TCs were detected above the Paneth cells at the crypt (the +4 position), they were
assumed to be reserved stem cells (May et al., 2008; Dekaney et al., 2009; May et al., 2009;
DelGiorno et al., 2020). Due to similarities between TCs and enteroendocrine cells, it was
commonly considered that TCs were a subset of enteroendocrine cells. Recent
investigations, however, have revealed that TCs are post-mitotic and short-lived,
implying TCs represent a distinct secretory intestinal epithelial cell (IEC) lineage
different from enteroendocrine, Paneth, goblet cells (GCs), and enterocytes (Gerbe
et al., 2009). Further information on post-mitotic cells is depicted in Box 1 (Gerbe
et al., 2012). Their distinct requirements for biomarkers and the transcription factor
testified to their uniqueness. Although rarely discussed, there are multiple TC subtypes
with distinct traits and roles. The functions of this unusual cell type, however, have yet to be
properly examined. As a secretory epithelial cell lineage, TCs can secrete multiple
molecules that are required for the type 2 immune response against helminth and
bacterial infection.

Inflammations or neoplasms may result from TC malfunction in the digestive system.
The identification of one of the TCs markers in CSC raises the hypothesis that aberrant TC
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proliferation is linked to intestinal neoplasms, and more study is
needed to validate the underlying mechanism to treat these
diseases. As a result, the goal of this review is to provide a
comprehensive assessment of the characteristics and functions
of TCs in the digestive tract, as well as a novel strategy for future
clinical practice of intestinal inflammations and tumors.

2 History of TCs discovery

Independent investigations have documented the existence of
TCs in various hollow organs since the first identification in the
mouse gastrointestinal tract (Jarvi and Keyrilainen, 1956) and rat
trachea (Rhodin and Dalhamn, 1956) in the 1950s. Since then, TCs
have been found in several organs of various species (Jarvi et al.,
1967; Luciano et al., 1968; Meyrick and Reid, 1968; Luciano et al.,
1969; Chang et al., 1986; Hofer and Drenckhahn, 1992), including
taste buds, pancreas, submandibular glands, and efferent ductules
of testis (Jeffery, 1983; Sato and Miyoshi, 1988; Hofer and
Drenckhahn, 1992; Hofer et al., 1996). (as Table 1 shown the
TCs discovery milestones).

TCs have been discovered in human airways in pathologic
conditions but not among healthy people (Gordon and Kattan,
1984; Cerezo and Price, 1985; DiMaio et al., 1988).

3 Morphology of TCs

Early studies in rodent models revealed that TCs possess brush
boundaries formed by distinct apical bristles (Silva, 1966; Luciano and
Reale, 1979; Luciano and Reale, 1997). Actin filaments sustain the
microvilli, which could be visualized by phalloidin (Hofer and
Drenckhahn, 1998). Since the identification of this unique cell type,
researchers have given it names such as “fibrillovesicular” “peculiar”
“caveolated” “brush” and “tuft”. In 2005, the term “tuft” was proposed
as a moniker for this cell lineage (Reid et al., 2005). The overall
morphology of TCs varies among hollow organs (Luciano and Reale,
1979; Sato, 2007), and the intestinal TC body is fashioned like a
cylinder with thinner basal and apical ends (Meyrick and Reid, 1968).
Although TCs in various organs have different functions, most
researchers believe they belong to the same cell type.

Furthermore, using ATUM, SBF, and SEM, Hoover et al. (2017)
discovered a novel tubulovesicular system in TCs. Volume
rendering revealed a sophisticated network of tubules
connecting the microvilli to the rough endoplasmic reticulum in
TCs from the gastrointestinal tract. The tubular network may
facilitate molecular interaction between TCs and the intestinal
lumen or adjacent cell nuclei (Herring et al., 2018). However,
unlike TCs in the alimentary tract, those in the respiratory tract
lack a tubular network.

TABLE 1 Milestones of TC identified in different cells and tissues.

Year Organ/tissue Material Model Technique References

1956 Trachea/glandular stomach Rat/Mice Exposure to SO2/methylcholantren-
methocel suspension, which invades

the epithelium, causing
intestinilisation

Electron microscopy Jarvi and Keyrilainen (1956);
Rhodin and Dalhamn (1956)

1956 Gastric wall Mice -- Electron microscopy Jarvi and Keyrilainen, (1956)

1967 Lung Rat -- -- Luciano et al. (1969)

1968 Rectum/Fundic glands of the
stomach

Rat/Canine --/Surgical biopsies Light microscopy/electron
microscopy

Luciano et al. (1968), Hammond
and Ladeur (1968)

1973 Gastrointestinal mucosa Rat -- SEM/TEM Isomaki (1973)

1975 Trachea and principal
bronchi

Rat SD strain SEM/TEM Alexander et al. (1975)

1977 Larynx Rat -- RSEM Breipohl et al. (1977)

1978 Gastric Groove and Cardia Male albino
Wistar rats

-- Microscopy, TEM, Autoradiography Wattel and Geuze, (1978)

1979 Colon Male adult Swiss
mice

Continuous infusion of 3H-
thymidine

Silver-iron hematoxylin
technique, TEM

Tsubouchi and Leblond, (1979)

1979 Pancreas Ruminants Light/electron microscopy Weyrauch (1979)

1981 Bile duct Rat -- TEM/SEM Luciano et al. (1981)

1984 Nasal cavity CDF®(F-344)/
CrlBr rats

-- SEM Popp and Martin, (1984)

1992 Testicular ductuli efferentes Rat -- Immunostaining Hofer and Drenckhahn, (1992)

1996 Taste buds Rat -- Immunostaining, Immunoblotting,
PCR, Sequencing.

Hofer et al. (1996)

1997 Submandibular gland Male Wistar rats -- TEM, HRP treatment, glycoconjugate
cytochemistry

Sato and Miyoshi, (1988)

1998 Pancreatic Adult Wistar rats -- Antibodies (α-gustducin) and
immunostaining, Immunoblotting

Hofer and Drenckhahn, (1998)
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Aside from the well-known brush border, Luciano et al. discorvered
lateral projections formed by basolateral membrane and microvilli in
TCs. Although the protrusions might extend to neighboring cells and
connect to their nuclei, transmission electron microscopy failed to
corroborate the details (Luciano and Reale, 1979; Luciano and Reale,
1990). Hoover et al. (2017) revealed the nanostructure of TCs using
ATUM, SBF, and SEM and dubbed the protrusions “cytospinules.”
Every TC has three or four cytospinules in direct contact with the
nuclear membranes of neighboring cells. Since the specific function of
cytospinules has been vague, it is speculated that this direct cell-to-cell
interaction might play a substantial role in intercellular comminucation
(Figure 1 depicts structure and composition patterns of intestinal TCs).
Moreover, although secretory cells are scarcely distributed in the

intestinal epithelium, TCs may exist close to other secretory cells. It
is now hypothesized that GCs receive cytokine signals when secreting
mucus and expelling helminths during the “weep and sweep” process. If
a TC is adjacent to a GC, would it generate a direct signal to rapidly
promoteGC’s role in “weep and sweep”? The detailed signaling pathway
has yet to be demonstrated.

4 Intestinal TCs originate from Lgr5+

stem cells

TCs account for around 0.4% of the IECs in the murine alimentary
tract (McKinley et al., 2017). TCs, in contrast to GCs, decrease

FIGURE 1
Diagram of the structure and composition patterns of IECs (A) Schematic diagram of Lgr5+ stem cells and differentiated progeny of the crypt-villus (B)
Structure of intestinal TCs and adjacent enterocytes: Intestinal TCs possess distinguishmorphological characteristics, especially the unique brush border. The
cytospinules can directly contact the neighboring cells, serving as a bridge between the extracellular and intracellular environment. The tubular network
within TCs can transport cargo via vesicles. (C) Schematic diagram of the vicinity of the TC cell membrane.
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progressively from the jejunum to the colon, peaking in the proximal
small intestine, according to earlier research. Because the small
intestine performs an important absorptive role and contains the
majority of the TCs, it may be assumed that TCs are associated with
intestinal absorption (Cheng et al., 2018). The differentiated TCs first
appear around the 7 postnatal day and can be promptly detected a
week later, relying on self-renewal stem cells.

Tsubouchi and Leblond’s experiment in the 1970s offered a vital
insight into the TCs progenitors. The label first developed in the
enteroendocrine cells at the base of the crypts after 3H-thymidine
infusion began, and then traveled to the “+4 position,” where the TCs
resided (Tsubouchi and Leblond, 1979). Genetic tracing experiments
using Cre-activable Rosa26-LacZ reporter mouse and the
Lgr5EGFP−IRES-CreERT2 mouse have demonstrated that Lgr5+ crypt
basal columnar (CBC) cells can self-renew and differentiate into
diverse cell lineages over time, implying that Lgr5+ CBC cells
possess characteristics of stem cells and that TCs are generated
from Lgr5+ stem cells (Gerbe et al., 2011). Yui et al. (2012) further
testified the cellular origin of TCs by cultivating organoids derived
from single Lgr5-EGFP cells.

It is hypothesized that intestinal stem cells (ISCs) dwell in the crypt
and are continually feed differentiated progeny from the crypt to the
villi. Although most differentiated daughter cells are phased out after a
short existence of 3–5 days, long-lived ISCs can self-renew. Initially,
cells with preserved labels at the +4 position of the crypt were thought
to represent ISCs (Rea et al., 1975). Recent lineage tracing
investigations, however, have discovered that CBCs positioned at
locations +1 to +3 in the crypt are quickly cycling, self-renewing
ISCs (Barker et al., 2007).

Although we have long assumed that the differentiation of stem
cells is irreversible based on our comprehension of the hematopoietic
system, a series of studies have shown that mature intestinal epithelial
cells (IECs) show a strong capacity for retro-differentiation, indicating
that IECs have more remarkable plasticity (de Sousa and de Sauvage,
2019). A more dynamic model, rather than the traditional view of the
stratified organization of the gut, is thus better suited to explain this
phenomenon, in which various differentiated cells within the
intestinal epithelium can dedifferentiate and function as an
alternative source of stem cells in inflammation and tumorigenesis.
IECs differentiation is regulated by the interaction of growth and
developmental stimuli, metabolites, and signaling pathways such as
Notch, EGF, BMP, and Hippo signaling.

5 TCs qualify as a distinct secretory
epithelial cell

DCLK1+ cells have long been considered to be quiescent stem cells
(Giannakis et al., 2006; May et al., 2008; Dekaney et al., 2009; Jin et al.,
2009; Sureban et al., 2009) and a subset of enteroendocrine cells
(Formeister et al., 2009; Kokrashvili et al., 2009). However, with
further studies of TCs’ characteristics, it has been confirmed that
DCLK1+ TCs are a particular type of IECs (Gerbe et al., 2011).

5.1 Classification of differentiated IECs

The small intestine contains crypt-villus units that repeat. The
pioneering experiments of Barker et al. (2007) demonstrated that

Lgr5+ CBC stem cells are the progenitors of a variety of epithelial cells,
which inhabit the base of the crypt and are intercalated between
Paneth cells. Lgr5+ CBCs rapidly create transit-amplifying (TA)
progenitor cells that move upwards and completely develop before
entering the crypt (Barker et al., 2007). Based on morphology and
expression features, differentiated epithelial cells may be generally
separated into two types: secretory cells and absorptive cells (Flier and
Clevers, 2009). Although as many as seven lineages of cells have been
described in the intestinal epithelium, including cup cells and
“membranous” (M) cells (Madara, 1982; Neutra, 1998), only five of
which are usually considered. (Figure 2 depicts an IEC differentiation
diagram).

Absorptive epithelial cells comprise the majority of differentiated
epithelial cells, while secretory cells account for only 1%. Absorptive
IECs play various roles in digestion, nutrition absorption, and
mucosal defense. Secretory IECs are in charge of secreting
antimicrobial peptides and growth factors, as well as the
controlling the gut flora and surrounding stem cells (Gerbe et al.,
2011).

5.2 Using transcription factors to identify TC
from other IECs

Previous research has emphasized the transcriptional start
sequence, the participation of particular transcription factors,
and epigenetic modification. It is assumed that a multitude of
mechanisms is involved in IEC differentiation, however, it is
disputed whether transcriptional modulation is involved.

5.2.1 Lateral inhibitory notch signaling in IEC fate
decisions

The Notch pathway is one of the critical signaling pathways in
maintaining the balance of epithelial cell proliferation and
differentiation (Kimble and Simpson, 1997; Shen et al., 2004),
which is best known for specifying different cell fates of
neighboring cells via an evolutionarily conserved process of “lateral
inhibition” (Chitnis, 1995).

5.2.1.1 The contribution of notch signaling in intestinal
homeostasis and cell fate decision

Notch signaling is crucial to the maintenance of ISCs and the
differentiation of TA progenitors. To maintain the stem cell pool, the
Notch signaling pathway operates directly on intestinal stem cells. It
also regulates the differentiation of the secretory and absorptive cells
through “lateral inhibition” (Sancho et al., 2015).

Notch “active” TA progenitors are destined to be absorptive
progenitors, in which Notch targets the Hes/Hey transcription
factors, repressing the expression of Atoh1 and Dll-1/4 ligand
(Akazawa et al., 1995; Jensen et al., 2000; Yang et al., 2001). These
cells would ultimately differentiate into post-mitotic enterocytes after
several rounds of proliferation. Notch “low” TA progenitors are
destined to be secretory progenitors, in which low Notch activity
disinhibits the expression of Atoh1 and Dll-1/4 ligand. These cells
would rapidly differentiate into distinct secretory cell types (Jensen
et al., 2000; Yang et al., 2001; Bjerknes and Cheng, 2005). In summary,
using lateral inhibition, Notch promotes differentiation towards the
absorptive lineage, whereas the Notch-low state permits
differentiation towards the secretory cell lineage.
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5.2.1.2 ADAM10 regulates notch signaling
As a family member of Sultidomain, a Disintegrin and

Metalloproteinases (ADAMs) are involved in signal transduction
processes that regulate cell migration and adhesion proteolysis
(Hartmann et al., 2002). Analysis has demonstrated that
ADAM10 is an α-secretase that promotes Notch signaling. The
systemic Adam10-deficient mice embryos die at E 9.5 due to
defective in somatic cell development, angiogenesis, and
neurogenesis, similar to those of the Notch-defective mice
(Hartmann et al., 2002).

5.2.1.3 Notch-signaling driven ternary switching and Gfi1b-
expressing progenitors

Secretory cells are more common in Hes1-deficient epithelial cells
than absorptive cells, according to Bjerknes et al. (Jensen et al., 2000),
suggesting that Hes1 represses secretory cells, potentially via
suppressing the expression of Atoh1 (Akazawa et al., 1995; Jensen
et al., 2000; Yang et al., 2001). Therefore, the reciprocal inhibition
between Hes1 and Atoh1 would lead DOM (daughters of TA
progenitors/daughters of Mix) to pass through a binary switch via
the Notch signaling (Fortini, 2009). (Box 2 depicts alternate
nomenclature for cells in the differentiation process as well as their
relationship).

Unfortunately, this model does not include TCs. Contrary to Gerbe
et al., Bjerknes et al. discovered that conditional Atoh1 deletion
dramatically increases TC populations, suggesting that the
differentiation and survival of TCs are independent of Atoh1, but

Atoh1 may be transiently expressed in TA cells before lineage
commitment (Bjerknes et al., 2012). TCs are derived from
progenitors that express Gfi1b. These findings support a model in
which progenitors develop into three discrete cell fates under the
control of three separate transcription factors, Atoh1, Hes1, and
Gfi1b. Notch signaling leads Hes1 to dominate one of the two major
differentiated cell lineages, producing absorptive cells.
Correspondingly, Atoh1 or Gfi1b dominate the other major cell
lineage, producing secretory cells or TCs, resulting in a ternary
switch for cell fate determination (Bjerknes et al., 2012). The
schematic diagram of the ternary switch is shown in Figure 2. TCs
require another transcription factor to differentiate than
enteroendocrine, GCs, and Paneth cells; non-etheless, Bjerknes et al.
argue that these four lineages share many properties and also
hypothesized that the secretory progenitor gives birth to the TC lineage.

To conclude, Atoh1, Hes1, and Gfi1b are components of a genetic
network that forms a ternary switch in the TCs via Notch signaling.

5.2.1.4 The debatable regulation of TCs by ATOH1
Although the significance of ATOH1 in regulating

enteroendocrine, Paneth, and goblet cells is well established (Yang
et al., 2001), how ATOH1 regulates TCs remains controversial (Gerbe
et al., 2011; Gracz et al., 2018). Recent cell lineage tracing
investigations have revealed that ATOH1+ cells contain stem cell
characteristics and facilitate epithelial regeneration following
damage (Ishibashi et al., 2018; Tomic et al., 2018). Moreover, the
Atoh1−/− mouse model published by Banerjee et al. showed that

FIGURE 2
The underlying mechanism of IEC differentiation. Lgr5+ CBCs generate TA progenitor cells, which then differentiate into a spectrum of different
absorptive and secretory cell lineages. Notch signaling is crucial to the maintenance of ISCs and the differentiation of TA. ADAM10, as an α-secretase,
promotes Notch signaling. Atoh1 is necessary for stem cells to differentiate into secretory cells, while Hes1 acts to repress secretory cells. There is reciprocal
repression betweenHes1 and Atoh1. TCs are produced fromGfi1b-expressing progenitors. Progenitors differentiate into three distinct cell fates through
the guidance of three characteristic transcription factors, Hes1, Atoh1, and Gfi1b. Although TC is not Atoh1-dependent, TCs are hypothesized to derive from
secretory progenitors.
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although colonic TCs depend on ATOH1, TC expansion can be
observed in small intestinal in AtohKO mice, contradicting the
conclusion that TCs are dependent on ATOH1 found in a prior
work by Gerbe et al. (2011). It was inferred that a subset of small
intestinal TCs may be independent of ATOH1 and follow a distinct
path of development (Herring et al., 2018). Banerjee et al. demonstrate
that ATOH1-independent TCs expand through a metabolic
communication network during luminal microbiota perturbations,
a specific mechanism that could be used to suppress inflammation and
repair the epithelial damage caused by Crohn’s disease (CD) (Banerjee
et al., 2020).

5.2.2 Other transcription factors involved in the TC
differentiation

Notch regulates the cell fate decisions of TA progenitors by
influencing the essential transcription factor Atoh1 (Fre et al., 2009;
VanDussen et al., 2012). These events are coordinated by Notch1/
2 receptors and DLL1/4 (Riccio et al., 2008; Pellegrinet et al., 2011;
Carulli et al., 2015). Atoh1 target genes, such as the SAM pointed
domain containing Ets transcription factor (Spdef) genes, Kruppel-like
factor 4 (Klf4), SRY-box containing gene 9 (Sox9), Neurog3, and
growth factor-independent 1 (Gfi1), are responsible for secretory
cell type specification. Although evidence shows that Paneth cells
and GCs have a common ancestor, it is unclear how multipotent
secretory progenitor cells form particular secretory cell types (Barker,
2014; Sancho et al., 2015). Wnt signaling facilitates Paneth cell
development by directly activating lineage-specific transcription
factors and differentiation genes such as defensins (van Es and
Clevers, 2005; van Es et al., 2005; Farin et al., 2012; Kim et al.,
2012; San Roman et al., 2014). However, since this Wnt signaling
pathway was suppressed, the Lgr5+ CBC stem cells could not be
observed (Korinek et al., 1998; Pinto et al., 2003).

Therefore, Notch and Wnt activity must always be in balance
with each other to ensure the survival of intestinal stem cells, the
proper development of all types of epithelial cells, and the
maintenance of crypt stability and intestinal function. Sox9, a
Wnt signaling target, is expressed in crypt epithelial cells. TCs
occur in Sox9-deficient intestinal epithelium due to adequate
Sox9 expression inside differentiated TC (Bastide et al., 2007;
Mori-Akiyama et al., 2007). Growth factor-independent 1b
(Gfi1b) is expressed at greater levels among Trpm5-expressing
TCs, according to a transcriptome comparison (Bezencon et al.,
2008). The growth factor-independent 1 (Gfi1) is detected in goblet
and Paneth cells (Bjerknes and Cheng, 2010), where it may block
the transcription factor of the enteroendocrine cells (Neurog3)
(Jenny et al., 2002; Mellitzer et al., 2010). TCs are also
dependent for their development on the transcription factor
Pou2f3. Pou2f3−/− mice lack intestinal TCs and have defective
mucosal type 2 responses to helminth infection (Gerbe et al.,
2016). The detailed requirements are listed in Table 2.

5.3 Biomarkers of TCs

The lack of identifiable biomarkers has hampered the study of TCs
since their discovery in the 1950s. Identifying more viable unambiguous,
and specific markers has enhanced the research situation, allowing for a
more detailed examination of TCs.With updated biomarker information,
far more complete research is expected.

5.3.1 Ambiguous markers of TCs
Cytokeratin 18 (Hofer and Drenckhahn, 1996), Ulex europaeus lectin

1 (Gebhard and Gebert, 1999; Gebert et al., 2000), neuronal nitric oxide
synthase (Kugler et al., 1994), Villin, and fimbrin (Hofer andDrenckhahn,
1992), are either expressed ubiquitously in the intestinal epithelium, or
also expressed in TCs within limited areas. (Kugler et al., 1994; Gebert
et al., 2000; Jang et al., 2007; Sutherland et al., 2007; Bezencon et al., 2008;
Kokrashvili et al., 2009). Taste-related biomarkers such as α-gustducin, β-
endorphin, uroguanylin, and Met-Enkephalin (Perez et al., 2002;
Bezencon et al., 2007; Kaske et al., 2007) are expressed within TCs.
They may engage in the taste transduction (Hofer et al., 1996; Hofer and
Drenckhahn, 1998). However, the exact relationship between these
biomarkers and TC is not elucidated, so these markers are considered
to be TCs non-specific. Given that TCs secrete such a wide variety of
proteins, the complexity of TC’s functions may be far beyond our
imagination. Therefore, the study of TC function is very promising
and may provide us with enlightenment in many aspects.

5.3.2 Specific markers of TCs
Although TRPM5 (transient receptor potential cation channel,

subfamily M, member 5) is expressed by enteroendocrine cells
(Bezencon et al., 2007), it is one of the best markers for TCs, since
Trmp5-expressing IECs are primarily TCs (Kaske et al., 2007) and the
detailed depiction of TRPM5 is shown in Box 3.

All TCs, characterised by DCLK1 and Growth factor independent
1b (GFI1b) expression also co-expressed the Pou domain, class 2,
transcription factor 3 (POU2F3) (Bjerknes et al., 2012; Gerbe and Jay,
2016). TCs also express the cyclooxygenase 1 (COX1) and
cyclooxygenase 2 (COX2) enzymes (Bezencon et al., 2008). May
et al. (2014) discovered that DCLK1−/− mice had altered gene
expression profiles of growth and functions in TCs, proving the
relevance of DCLK1 in TCs. DCLK1+ cells were formerly assumed
to represent latent intestinal epithelial stem cells (Giannakis et al.,
2006; May et al., 2008; Dekaney et al., 2009; Jin et al., 2009; May et al.,
2009; Sureban et al., 2009). However, it was later proven to be untrue.
Gerbe et al. discovered that DCLK1+ cells were distributed throughout
the adult mouse’s intestinal epithelium, but only 21% of the TCs were
identified in the crypt (Gerbe et al., 2009). This evidence revealed that
the DCLK1+cells do not belong to stem cells. DCLK1 did not co-stain
with any known markers of Paneth cells, enterocytes, GCs, or
enteroendocrine cells, above which gives direct proof that the
DCLK1 represented a gene signature of the intestinal TCs in mice
(Bezencon et al., 2008). A 2019 study showed that DCLK1 is connected
to the activation status of TCs. Still, it was not engaged in TCs growth
(Yi et al., 2019), which was related to the response to intestinal
epithelial damage (May et al., 2014; Westphalen et al., 2014; Qu
et al., 2015). Gerbe et al. validated DCLK1 as a particular marker
of post-mitotic TCs in the mouse intestinal epithelium based on
repeated co-staining experiments and micro-array data (Bezencon
et al., 2008; Gerbe et al., 2009). The data indicate that DCKL1+

intestinal cells are TCs rather than long-lived quiescent stem cells.
Special attention should be paid to SUCNR1 expressed exclusively in
mice, confirming Sucnr1 as a TC gene signature (Lei et al., 2018).

Cells expressing DCLK1, hematopoietic prostaglandin-D synthase
(HPGDS), COX1, COX2, and SOX9 have more significant
immunoreactivity to F-actin, -tubulin, and villin. These properties
resemble the typical TC trait (May et al., 2014). The evidence
presented above shows that DCLK1, HPGDS, COX1, COX2, and
SOX9 coexpression is confined to TCs in the epithelium.
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To summarize, whereas enterocytes, Paneth cells, enteroendocrine
cells, and GCs are derived from Lgr5+ CDC stem cells, TCs constitute a
unique cell lineage with distinct transcription factor requirements and
biomarkers. Apart from Atoh1, TC differentiation is unaffected by
other transcription factors in other epithelial cells. There are no shared
markers between TCs and other epithelial cells.

6 Subtypes of TCs

Immunostaining of combination markers and morphological
inspection are now widely employed to identify TCs; nevertheless,
minor changes between TC subtypes cannot be detected with this
approach. We do not yet know all of the indicators that can
distinguish cell subtypes in the gut. We analyzed multiple
standards for classifying TC subsets using various criteria that
may aid future studies.

6.1 DCLK1/5HT-IR cells represent a novel
subtype of TCs

According to double immunostaining evidence, DCLK1/5HT-IR
cells contain serotonin (5HT) and are a novel subtype of DCLK1-
immunoreactive (IR) TCs. These cells shrank distally from the small to
the large intestine. 5-HT has a wide range of biological roles, including
cognition, learning, memory, emotional control and vasoconstriction
(Young, 2007). Approximately 90% of the serotonin in the human
body is located in the enterochromaffin cells of the GI tract, where it
also involves in the accommodation of gut homeostasis (Berger et al.,
2009). In a word, DCLK1/5HT-IR cells, as a non-negligible neo-
subtype of TCs, may contribute to the intestinal physiological function
(Cheng et al., 2019).

6.2 Tuft 1 and Tuft 2

Transcriptome analysis revealed two additional TC subgroups:
neuronal TCs (tuft 1) and immunological TCs (tuft 2). Despite the fact
that DCLK1 and IL-25 are expressed by both TC subtypes, their roles
are distinct (Haber et al., 2017). Tuft 1 has higher levels of neuronal
gene expression profile, including Ninj1, Nrep, and Nradd.
Immunological genes, such as those encoding CD45 and thymic
stromal lymphopoietin (TSLP), were expressed at higher levels in

tuft 2 (Haber et al., 2017). When parasite infections occur, tuft
2 outnumbers tuft 1 to form the majority of mouse gastrointestinal
TCs (Haber et al., 2017).

According to a 2020 research, there may be another subtype of TC
that mimics intestinal endocrine cells following the treatment of
scopolamine (Middelhoff et al., 2020). The properties and functions
of this novel subtype TCs need to be investigated urgently.

6.3 ATOH1-dependent and ATOH1-
independent TCs

Banerjee et al. (2020) identified heterogeneous TC populations
that respectively undergo ATOH1-dependent and ATOH1-
independent pathways. Both ATOH1-independent and
dependent TCs can be observed in the small intestine, but only
ATOH1-dependent TCs can be observed in the colon. Banerjee
et al. also found that ATOH1-independent TCs are a flexible cell
population that can expand in the presence of luminal
perturbations, whereas the ATOH1-dependent cell population is
constant. Specifically, succinate drives ATOH1-dependent TC gene
expression and growth in symbiotic bacteria (Stumhofer et al.,
2006; Langille et al., 2013).

7 Functions of TCs

Chemosensory cells are used bymost organs to respond to changes
and maintain homeostasis. TCs are responsible for chemoreception
and secretion, which includes sensing and processing chemical signals
as well as mending the epithelium (Chandrakesan et al., 2016).

7.1 Biologically active molecules released
from TCs

Previous research has revealed that TCs release various chemicals,
including NO, leukotrienes, IL-25, opioids, fatty acid metabolism-
related proteins, and components of the eicosanoid pathway. These
molecular secretions demonstrate that TCs may perform a variety of
roles in the digestive tract, as summarized in Table 3. These secretion-
related activities might provide deeper insight into inflammation and
tumor-related pathways. Box 4 depicts the function of TCs in various
organs or tissues.

TABLE 2 Summary of the transcription factors involved in TCs and other secretory IECs.

Transcription factors Cell types References

Tuft Paneth Goblet Enteroendocrine

Atoh1 ? Required Required Required Yang et al. (2001), Shroyer et al. (2007), van Es et al. (2010)

Neurog3 -- -- -- Required Gerbe et al. (2011), Jenny et al. (2002), Mellitzer et al. (2010)

Gfi1 Expressed Required Required -- Bjerknes and Cheng, (2010), Bezencon et al. (2008)

Sox9 Expressed Required -- -- Bastide et al. (2007), Mori-Akiyama et al. (2007)

Klf4 -- -- Required -- Katz et al. (2002)

Spdef -- Required Required -- Gregorieff et al. (2009), Noah et al. (2010)
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7.2 Chemoreception

Changes in nutrition, pH, and microbiota can be detected by
TCs, which are found in the airway and digestive tract. Because of
their physical similarities to lingual taste bud cells, TCs were
assumed to have a role in chemoreception. Members of the
pancreatic and intestinal taste transduction pathways support
this theory (Hofer et al., 1996; Hofer and Drenckhahn, 1998).
TCs express several signaling molecules, including α-gustducin
(also known as the guanine nucleotide binding protein alpha
transducing 3, or GNAT3) (Hofer and Drenckhahn, 1998),
TRPM5 (Kaske et al., 2007), G protein-coupled taste receptor
type 1 member 3 (TAS1R3), the calcium signal transducer
phospholipase Cβ2 (PLCβ2) (Ogura et al., 2010), β-endorphin,
uroguanylin, and Met-Enkephalin, (Perez et al., 2002; Bezencon
et al., 2007; Kaske et al., 2007). According to some study, TCs are a
component of the diffuse chemosensory system (Sbarbati and
Osculati, 2005). Furthermore, succinate receptor 1 (SUCNR1)
was found to be expressed in TCs, and Lei et al. (2018)
identified SUCNR1 as a TC-specific marker in mice, suggesting
that SUCNR1 might aid in detecting infectious pathogens,
triggering the proliferation of TCs and GCs involving in type
2 immune response.

7.3 Tuft-ILC2 circuit mediated helminth
expulsion pathway

Helminth infection is still regarded as a major worldwide health issue
by scientists and practitioners, owing to its widespread occurrence and
severe societal effect, particularly in less developed countries and regions.
However, the early sensing and signaling mechanisms that initiate type
2 immunity against helminths remain unclear. The identification of these
pathways might pave the way for the development of vaccines and
medicines that target type 2 immunity. A recent study found that
helminth infection can cause the synthesis of immunoregulatory
substances that attract immune cells, resulting in infestations and
inflammatory responses (Lightowlers and Rickard, 1988). Nontheless,
the fundamental process, as well as the chemicals and cells involved,
remain unclear. TCs were previously unseen to have great importance in
this immunoreaction. TCs have been discovered as a significant activator
of type 2 immunity in the small intestine by three distinct groups during
the last decade (Gerbe et al., 2016; Howitt et al., 2016; von Moltke et al.,
2016). Through a chemosensory mechanism, TCs in the small intestine
detect helminths such as Heligmosomoides polygyrus, Trichinella spiralis,
Nippostrongylus brasiliensis, and various species of Tritrichomonad
protists.

In response to helminth infection (such as H. polygyrus),
impaired epithelial cells release mediators such as leukotrienes,
IL-22, and IL-33 (Artis and Grencis, 2008). Upon detecting the
ligand, TCs transmit signals to the underlying lamina propria’s
group 2 innate lymphoid cells (ILC2s), evoking an inflammation
response. TCs are the only cell lineage that expresses IL-25
continuously (von Moltke et al., 2016). IL-25 stimulates ILC2s
via the IL-17RB receptor. However, studies have observed that
parasite-secreted H. polygyrus alarmin released inhibitor (HpARI)
could hamper the “weep and sweep” immune response by limiting
the IL-33 synthesis from injured epithelial cells (Osbourn et al.,
2017). When subjected to helminth chemosensing, TCs produce
cysteinyl leukotrienes (cysLTs), which rapidly activate type
2 immunity, accordng to McGinty et al.. CysLTs in
collaboration with IL-25 stimulate ILC2s, and TC-specific
leukotriene synthesis suppresses type 2 immunity and delays
helminth clearance (McGinty et al., 2020). ILC2 activation may
acquire additional signals to regulate the circuit in addition to IL-
25. TCs in the colon, unlike those in the small intestine, respond to
bacteria rather than parasites. Bacterial microflora can control
colonic TC populations and stimulate TC growth, whereas
colonic TCs have been shown to inhibit bacterial penetration
and promote epithelial repair (McKinley et al., 2017; Wilen
et al., 2018; Yi et al., 2019; Banerjee et al., 2020).

As a member of the chemokine family, IL-13 could stimulate
secretory epithelial cells proliferation to boost mucus production and
promote smooth muscle contraction to expel parasites in the intestine
(Kamal et al., 2002; Gerbe et al., 2016; Howitt et al., 2016; Sharpe et al.,
2018). IL-13 signals act directly on ISCs and bias their development
towards the TCs and GCs, resulting in proliferation and a feed-
forward loop in the tuft-ILC2 circuit. Upon the process, the
quantity of TCs might rise tenfold within a few days of parasite
infection (Gerbe et al., 2016; von Moltke et al., 2016). Given that IL-4
and IL-13 share a component, IL-4R, they may promote the
proliferation of TCs (Gerbe et al., 2016), which also initiate smooth
muscle contraction by releasing acetylcholine (ACh) and facilitate TCs
to expel worms (Jonsson et al., 2007).

In mouse models, intestinal TCs appear around two weeks after
birth, coinciding with epithelial changes in metabolic and nutritional
behavior (Gerbe et al., 2011), as well as ILC2 and ILC3 growth (Hoyler
et al., 2012), and the formation of solitary lymphoid clusters in the gut
(Kiss et al., 2011). This research reveals a relationship between the
ILC-epithelial cell axis and metabolic adaptation, showing that the
innate immune system is important in homeostasis. A better
knowledge of the innate immune system might pave the way for
potential immunological advancements. The process of type 2
immune response orchestrated by TCs is shown in Figure 3.

TABLE 3 Molecule secretion of gastrointestinal TCs.

Molecules expressed by TCs Potential functions of TCs References

Nitric oxide (NO), leukotrienes,
prostaglandins, IL-25

GC and TC hyperplasia in inflammation and injury;
ILC2 activation and IL-13 secretion

Hass et al. (2007), Sbarbati et al. (2010), Schutz et al. (2015), Gerbe et al.
(2016), Nadjsombati et al. (2018)

Opioids Intestinal secretion, gut motility, gastric emptying; pain,
paresthesia, and emotion

Holzer (2009), Kokrashvili et al. (2009)

Fatty acid metabolism-related protein Fatty acid sensing or absorption Iseki et al. (1991), Iseki and Kondo, (1990)

Members of the eicosanoid pathway Smooth muscle contraction Bezencon et al. (2008)
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7.4 GPCR-PLCγ2-Ca2+ signaling axis involved
in the elimination of bacterial infection
via TCs

Researchers revealed in 2022 that, in addition to their role in the
immunological response to helminth infection, TCs (tuft 2) also
contribute to bacterial clearance via a Vmn2r26-mediated

mechanism. Animals lacking CD45+ tuft 2 were more vulnerable to
pathogenic bacteria, indicating that tuft 2 might develop and respond
to harmful bacteria. Tuft 2 was also shown to recognize the microbial
chemical N-undecanoylglycine via its vomeronasal receptor
Vmn2r26, which can activate the GPCR-PLC2-Ca2+ signaling axis
and produce prostaglandin D2 (PGD2), causing GCs to generate
mucus and increases gut immunity (Xiong et al., 2022).

FIGURE 3
Type 2 immune response orchestrated by TCs in the small intestine: A feed-forward loop of the tuft 2-ILC2 axis can be observed in the early stage of
intestinal helminth infection. Once the epithelial cells are damaged by a helminth, they release IL-33 and trigger TCs to secrete IL-25. Activated by these
cytokines, ILC2 then produces IL-4 and IL-13, which promotes goblet and tuft hyperplasia and smoothmuscle contraction. Although the exactmechanism of
how TCs sense an infection in the first place is still unclear, TCs might sense succinate secreted by helminth and bacteria via protein-coupled succinate
receptor SUCNR1. An intracellular Ca2+ flux follows the signal and opens the cation channel TRPM5, causing a Na+ influx which depolarizes TCs.
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7.5 Potential role of TC in the amelioration
of IBD

Inflammatory bowel disease (IBD), also known as ulcerative
colitis (UC) and Crohn’s disease (CD), is a chronic inflammatory
illness characterized by inflammation and mucosal destruction that
threatens the intestine’s integrity. The primary objective of IBD
treatment is to repair the inflammatory mucosa, which improves
clinical symptoms, decreases disease recurrence, and increases
survival without resection (Pineton de Chambrun et al., 2010;
Colombel et al., 2011; Neurath and Travis, 2012).

TCs serve as important sentinels in the intestine, directing host
responses to particular injuries, including helminth infection (Gerbe
et al., 2016; Grencis and Worthington, 2016; Howitt et al., 2016; von
Moltke et al., 2016; Gerbe and Jay, 2016), as well as facilitating
epithelial repair after tumorigenesis and acute injury (Westphalen
et al., 2014).

Although helminth infection itself is a global health issue, it may
have an impact on the treatment of CD (Summers et al., 2005;
Broadhurst et al., 2010). It is widely accepted that anti-parasitic
immune responses can neutralize CD’s pro-inflammatory signals
(Summers et al., 2005). Banerjee et al. (2020) observed a reduction
in the number of TCs in ileal tissues of mouse models and CD patients,
therefore they postulated that TCs could act as a hub between parisites
and the host, thus can be used to counteract pro-inflammatory signals
in the gut. In pathological situation, the absence of TCs and
DCLK1 causes a regeneration deficiency, resulting in impaired
recovery of the epithelium (Yi et al., 2019). In addition, the
helminth-induced tuft-ILC2 loop promotes mucus secretion by
GCs and TCs and protects the intestinal mucosa, which may
contribute to alleviating the symptoms of IBD. To conclude, TC is
a clinically feasible strategy for reducing IBD symptoms and
prognosis.

7.6 DCLK1 is protective against radiation
enteritis and DSS enteritis

Radiotherapy has become a popular treatment in many cancers,
although it has certain unavoidable adverse effects. Chronic radiation
enteritis has been documented in up to one in every five patients
treated with pelvic irradiation, with the real number being greater
(Daly et al., 1989; Yeoh et al., 1993; Miller et al., 1999; Ooi et al., 1999).
Colonic inflammation should not be ignored as it is one of the key
factors for colon cancer (Kim and Chang, 2014). Experiments showed
that DCLK1 ablation in the intestinal epithelium worsens the outcome
during acute intestinal injury induced by radaition and dextran-
sodium sulfate (DSS), since inadequate DCLK1 promotes protective
intestinal epithelial regeneration (May et al., 2014; Qu et al., 2015).
These findings prove that DCLK1 maintains integrity of the intestinal
epithelial barrier and modulates the inflammatory response (Qu et al.,
2015).

7.7 TCs involve in regulating satiety and
energy metabolism

TCs are assumed to be engaged in the gut-brain axis and
metabolic control due to their closeness to metabolic-regulating

enteroendocrine and enteric neurons in the gut (Cheng et al.,
2018). Although the underlying mechanisms of TC participation
are unknown, intestinal TCs boost secretory ability while
suppressing absorptive capacity during type 2 immune response,
indicating that TCs are engaged in satiety mice and energy
metabolism. Furthermore, the population of TCs rises in starved
mice and persists even after refeeding (McKinley et al., 2017).
Evidence above suggests that TCs may aid in adapting to various
dietary situations (Arora et al., 2021).

8 Diseases linked to TCs

A deeper understanding of the properties and functions of TCs
may bring insights into studies of TC dysfunctions. Aberrant TC
numbers and secretory behaviour have been observed in
inflammation, infection, and tumors of the GI tract in both
mice and humans (Saqui-Salces et al., 2011). TCs are normally
quiescent but can be induced to proliferate in response to
inflammatory stimuli (Westphalen et al., 2014; Middelhoff et al.,
2017). When TCs poliferate, they may acquire mutations from stem
cells and commence cancer when exposed to inflammation and
damage (Westphalen et al., 2014). When the secretory behavior of
TC changes, the downstream pathways are misregulated and
ultimately lead to diseases. The precise processes and cause-and-
effect link between TC anomalies and illnesses, however, remain
unknown.

8.1 TC as a potential target of MNV

MNV is the primary cause of acute viral gastroenteritis
worldwide, with similar incidence in high and low-income
nations (Mans, 2019). Evidence shows that TCs is the principal
target of chronic MNV in both the small and large intestines and
may enhance immune evasion (Baldridge et al., 2015; Tomov et al.,
2017; Wilen et al., 2018). In mice, TCs express high levels of MNV
receptor CD300lf, which acts as a target for viral infection. Viral
shedding occurs several weeks after the acute phase of infection
(Teunis et al., 2015; Wilen et al., 2018).

8.2 Underlying linkage of IBD and TC-
secreted IL-25

IBD is a collection of chronic idiopathic inflammatory illnesses
that are widespread in Europe and North America. However, with
industrialization and urbanization in the last 20 years, the
prevalence of IBD in China has increased, attracting the
attention of clinical practitioners and strengthening research
into the condition.

IBD is distinguished by hidden asymptomatic intervals and
repeated bouts of various degrees of gastrointestinal inflammation
(Chang, 2020; Kobayashi et al., 2020; Roda et al., 2020). Blocking
the p40 subunit shared by IL-12 and IL-23 was shown to induce
colitis, leading to the conclusion that both the IL-12/Th1 and IL-
23/Th17 axis may be implicated in the pathophysiology of CD and
UC. (Gulati and Dubinsky, 2009; Strober and Fuss, 2011; Chang,
2020).
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The considerable decrease in IL-25 in both inflamed intestinal
mucosa and serum in patients with dilated IBD and healthy
controls, as well as non-inflamed tissues and serum in patients
with quiescent UC and CD, is cause for concern. When IBD was
treated with infliximab, a TNF-α inhibitor, serum IL-25 levels
returned to normal (Su et al., 2013). IL-25 may have a role in
the etiology of IBD. Because TC acts as the sole generator of IL-25
in the mucosa, increasing IL-25 expression by TCs is a possible
treatment strategy for IBD. The particular role of TC and the
location of IL-25 expression, however, remain unknown. Yet, this
simply suggests a correlation between IBD and the aberrant TC
decrease, not a causal link. The findings presented here, that the
quantity of TC in IBD may be altered, will provide vital insights
into the underlying mechanism of IBD and clinical practice in the
future.

8.3 Obesity may be associated with low
secretion of IL-25 by TC

Obesity is a globally increasing disease that is a risk factor for the
development of a variety of ailments, including numerous
cardiovascular issues and digestive system changes. In both rats
and humans, diet-induced obesity is characterized by chronic low-
grade systemic inflammation as well as alterations in gut flora (Lee
et al., 2018). Especially, the proportion of TCs to total epithelial cells
was not altered, and TC-specific expression of IL-25 and TLSP was
reduced (Arora et al., 2021) along with activation of the GABAA/B

receptor pathways, which is positively correlated with alterations in
the expression of the TC signature genes IL-25 and TSLP (Arora et al.,
2021). This may provide solution for obesity by modulating TC
secretion of IL-25 and TLSP.

8.4 TC-related DCLK1 may involve in
alimentary tumor

DCLK1 is recognized as a possible marker since it is over-
expressed in a variety of solid malignant tumors and has been
associated to malignant biological activity and poor tumor
prognosis (Chandrakesan et al., 2014; Ji et al., 2018).

Under normal circumstances, the only source of DCLK1 is TCs.
DCLK1 has been detected in cancer stem cells (CSCs) from
esophageal, pancreatic, and colon cancers (May et al., 2009; Vega
et al., 2012; Weygant et al., 2015; Cao et al., 2020), suggesting that
CSCs are derived from malignant TCs. CSCs interact with the
immunosuppressive tumor microenvironment (TME) and aid in
the activity of stem cells. An increasing body of data suggests that
DCLK1+ TCs influence the formation and progression of
inflammation-related malignancies (May et al., 2009; May et al.,
2010; Vega et al., 2012; Weygant et al., 2015). Konishi et al. (2019)
discovered in 2019 that TCs can induce Lgr5+ stem cells in the
gastrointestinal tract, hence hastening cancer growth. Recent
studies have further revealed that gastrointestinal TCs can promote
hepatocellular carcinoma (HCC) development by secreting IL-25 to
activate macrophages in TME (Friedrich et al., 2019). This “long-
distance communication channel of the gut-liver axis” adds a new
dimension to the study of TC function. Although TC markers can be
found in mouse adenomas, they are uncommon in human cancer cell

biopsies (Gerbe et al., 2011; Saqui-Salces et al., 2011), implying that
animal studies are not yet useful for speculating on the association
between human cancer and TC.

DCLK1 is expressed by certain pancreatic acinar and epithelial
cells. Acinar-ductal metaplasia in pancreatic acinar cells may lead to
cancer; DCLK1+ pancreatic epithelial cells are involved in regeneration
following injury or inflammation (according to the lineage-tracing
experiment); KRAS mutation in DCLK1+ pancreatic epithelial cells in
pancreatitis may lead to pancreatic cancer (Nakanishi et al., 2013).
Notably, utilizing a DCLK1 kinase inhibitor can reduce these DCLK1+

cells in the pancreas (Ferguson et al., 2020). These results suggest that
DCLK1 may be a potential target for pancreatic cancer in clinical
practice (Cao et al., 2020).

TC has been considered as a source of mature cell-derived
carcinogenesis, alongside Paneth cells. In one word, DCLK1+ TCs
(Nakanishi et al., 2013) or IL17RB+ TC-like cells (Goto et al., 2019)
have been shown to act as stem cells in an intestinal tumor model.
Similarly, in the context of further DSS-induced inflammation, Apc
deletion in DCLK1+ TCs resulted in the development of colon
tumors, whereas no DCLK1-expressing cells developed tumors in
the steady state. Furthermore, following an acute assault, intestinal
TC can act as colon cancer beginning cells (Westphalen et al.,
2014). During validation, however, multiple essential pathways
may be implicated in limiting TC activity and TC-derived
tumor growth. For example, NF-κB signaling activation may be
necessary for non-stem cell dedifferentiation and tumor
development. At present, there are still many mysteries in this
field. Future research will need to address this issue (Schwitalla
et al., 2013).

9 Conclusion

We focused on the characteristics and functions of this peculiar cell
lineage in this review. TCs secrete various molecules, suggesting that TCs
may be associated with intrinsic immunity, intestinal secretion, contraction,
pain, fatty acid metabolism, etc. TCs have chemosensory capabilities since
they are comparable to tongue taste bud cells. It is worth noting that TC
contains SUCNR1, which may detect pathogen invasion. The tuft-ILC2
circuit promotes TC and GC proliferation in type 2 immunity, ultimately
expelling pathogens (especially helminth), which is of social significance. To
eliminate bacterial infection, TCs also participate in (GPCR-PLCγ2)-Ca2+
signaling axis. Furhtermore, TCsmight be involved in the gut-brain axis, as
well as satiety and energy metabolism.

Diseases associated with TCs are of great concern. Murine TC has
been identified as aMNV target. Reduced levels of TC-secreted IL-25may
be linked to IBD, obesity, duodenal ulcer, and acute duodenitis. However,
as current studies are still inadequate, there is no more evidence
supporting the precise involvement of TCs in these disorders, which is
a limitation of our review. Despite the drawbacks, we believe that this
evaluation will be useful for future TC-related research. Future research
will reveal innovative paths for the diagnosis and treatment of these
diseases if the causal link between TCs and the disorders is clarified.
DCLK1+ cells have been shown to induce tumor growth in the GI tract.
Given that TC is the only source of intestinal DCLK1 in the physiological
state in mice, it can be hypothesized that carcinogenesis is associated with
aberrant TC proliferation. Once the aforesaid molecular mechanisms are
elucidated, new approaches for early molecular screening and therapy of
GI cancers will emerge.
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Boxes

BOX 1 Post-mitotic cells
According to research, TCs are short-lived post-mitotic cells with a

lifespan of at least seven days and are regularly replenished (Gerbe et al.,
2011). In the “transit-amplifying” zone, the Lgr5+ stem cell transformed
into shorter-lived cells. Cells continue to move but cease proliferating
when they reach the crypt-villus border, resulting in a villus composed
entirely of post-mitotic cells.

BOX 2 Different terminology for cells in the differentiation process
and their correspondence

Bjerknes et al. define TA cells as “Mix”, so the “daughters of Mix” was
abbreviated as “DOM”, which equals the “daughters of TA cells”. Bjerknes
et al. refered to DOM entering different states as DOMNotch (Absoprive
progenitor) and DOMΔ (Secretory progenitor), respectively.

BOX 3 TRPM5
TRPM5 is a critical component of taste transduction, such as bitter,

sweet, and umami. It also has a possible role in fat taste signaling (Liu
et al., 2011; Mattes, 2011). Expressed in pancreatic β-cells (Colsoul et al.,
2010), TRPM5 was proposed to be related to insulin secretion and lower
risk of type 2 diabetes in mice (Philippaert et al., 2017). TRPM5 is
expressed in sensory cells, including solitary chemosensory cells
and TCs.

BOX 4 Functions of TCs in other organs or tissues
This cell lineage behaves differently in various organs and tissues than

in the gastrointestinal tract. Pancreatic TCs could reduce carcinogenesis
by secreting prostaglandins (Delgiorno et al., 2014); tracheal TCs could
participate in mucociliary clearance (Perniss et al., 2020); and thymic
TCs could take part in the nurture of B cells, NK cells, and T cells
(Bornstein et al., 2018).
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Glossary

TC Tuft cell

GC Goblet cell

RSEM Reflection scanning electron microscopy

TEM Transmission electron microscopy

SEM Scanning Electron Microscopy

SBF Serial Block-Face

ATUM Automated Tape-collecting Ultra-Microtome

IEC Intestinal epithelial cell

Lgr5 Leucine rich repeat containing G protein-coupled receptor 5

HES1 Hes family bHLH transcription factor 1

ATOH1 Atonal bHLH transcription factor 1

CBC Crypt basal columnar

ISCs Intestinal stem cells

IEC Intestinal epithelial cell

TA cells Transit amplifying cells (Mix)

M cell membranous cell

Dll1 Delta like canonical Notch ligand 1

Dll4 Delta like canonical Notch ligand 4

ErbB Erb-b2 receptor tyrosine kinase

EGF Epidermal growth factor

BMP Bone morphogenetic protein

Tcf4 Transcription factor 4

Hes Hes family bHLH transcription factor

Gfi1b Growth factor independent 1B transcriptional repressor

Atoh1 Atonal homologue 1 gene, also known as Math1

ADAMs a Disintegrin and Metalloproteinases

ADAM10 ADAM metallopeptidase domain 10

Spdef SAM pointed domain containing Ets transcription factor

Klf4 Kruppel-like factor 4

Sox9 SRY-box containing gene 9

Neurog3 Neurogenin 3

Gfi1 Growth factor-independent 1

TRPM5 Transient receptor potential cation channel, and subfamily
M, member 5

COX1 Cyclooxygenase 1

COX2 Cyclooxygenase 2

DCLK1 Doublecortin like kinase 1

SUCNR1 Succinate receptor 1

HPGDS Hematopoietic prostaglandin-D synthase

5HT Serotonin

IL-25 Interleukin 25

TSLP thymic stromal lymphopoietin

NO Nitric oxide

GNAT3 Guanine nucleotide binding protein alpha transducing 3/α-
gustducin

ILC2 Group 2 innate lymphoid cell

HpARI H. polygyrus alarmin released inhibitor

IL-33 Interleukin 33

cysLTs cysteinyl leukotrienes

IL-4 Interleukin 4

IL-13 Interleukin 13

ACh Acetylcholine

GPCR G protein-coupled receptor

PLC Phospholipase C

PGD2 prostaglandin D2

MNV murine norovirus

CD300lf CD300 molecule like family member 1

UC Ulcerative colitis

CD Crohn’s disease

PRR Pattern recognition receptors

TNF-α Tumor necrosis factor-α
GABA γ-aminobutyric acid

IL17RB Interleukin 17 receptor B

NF-κB Nuclear factor kappa B subunit 1

CSCs cancer stem cells

IBD inflammatory bowel disease

GI Gastrointestinal

DOM Daughters of TA cells/daughters of Mix

DOMNotch Absoprive progenitor

DOMΔ Secretory progenitor

NK cells Natural killer cells

HCC Hepatocellular carcinoma
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