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Abstract

The processes that cause and influence movement are one of the main points of enquiry in movement ecology.

However, ecology is not the only discipline interested in movement: a number of information sciences are

specialising in analysis and visualisation of movement data. The recent explosion in availability and complexity

of movement data has resulted in a call in ecology for new appropriate methods that would be able to take full

advantage of the increasingly complex and growing data volume. One way in which this could be done is to form

interdisciplinary collaborations between ecologists and experts from information sciences that analyse movement.

In this paper we present an overview of new movement analysis and visualisation methodologies resulting from

such an interdisciplinary research network: the European COST Action “MOVE - Knowledge Discovery from Moving

Objects” (http://www.move-cost.info). This international network evolved over four years and brought together

some 140 researchers from different disciplines: those that collect movement data (out of which the movement

ecology was the largest represented group) and those that specialise in developing methods for analysis and

visualisation of such data (represented in MOVE by computational geometry, geographic information science,

visualisation and visual analytics). We present MOVE achievements and at the same time put them in ecological

context by exploring relevant ecological themes to which MOVE studies do or potentially could contribute.
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Introduction

Understanding the processes that cause and influence

movement is one of the challenges in ecological enquiry

with consequences for other disciplines, such as biodiver-

sity [1-3]. Movement ecology investigates fundamental

questions about organismal movement, which include

why, how, when and where the organisms move and how

this process is linked to external factors [1,4]. This know-

ledge leads to understanding not only movement but also

how and why animals use specific resources, how they

interact with each other, with other species and with their

environment and how they compete and reproduce - the

key elements of evolutionary processes that determine

survival and fitness [5]. Understanding the processes at

the basis of movement will provide the link to population

distribution and dynamics [6], which is essential to fore-

cast the impact of human-caused environmental change

and outline conservation strategies.

With recent advances in positional technology, ubiqui-

tous accessibility and widespread use of global position-

ing devices, researchers are now able to track movement

at unprecedented levels of spatial and temporal detail.

Tracking devices have and will become smaller, cheaper

and more accessible, new satellite tracking technologies

are introduced, data download methodologies become

more efficient, battery life increases, numbers and variety

of sensors on tracking tags increase, and all this leads to

more data being collected at even higher spatial and tem-

poral resolutions. Thus, movement ecology transformed

itself from its data-poor beginnings into a data-rich discip-

line, allowing to find new answers to the burning research

questions in animal ecology. Additionally, due to the
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miniaturisation of devices, more and more species can be

tracked, such as birds, small mammals or even insects,

opening new possibilities for quantitative ecological inves-

tigation of species hitherto considered too small [7-11].

In addition, the diversity and integration of different

sensors allow the focus of data collection to move from

the observer to the observed individual. That is, by

collecting information from various sensors (e.g. body

temperature, heart rate, acceleration) and incorporating

environmental information into movement analysis, it is

now becoming possible to reconstruct an animal’s per-

ception of the world. We can find out where the animal

was, its activities in various places and at various times,

how these places looked and felt like and how they

might have impacted the behaviour. Such observations

could eventually lead towards the animal becoming the

sensor informing us about its environment [9,12,13].

The basis of all such investigations is positional infor-

mation through time, which is currently mostly collected

using some type of animal-borne GPS tracking device.

Sometimes, data collection is also complemented with

the conventional very high frequency (VHF) or satellite

systems data (Argos system and ICARUS system- Inter-

national Cooperation for Animal Research Using Space),

but GPS data are becoming increasingly prevalent as lo-

cational information in movement studies [7,8,14].

Trajectory data, defined here as a discrete time series of

measured locations, are collected at detailed temporal res-

olutions and on particular temporal schedules. Depending

on sampling frequency and schedules, such data volume

can be very large (long, densely sampled trajectories).

Additional complexity is introduced with simultaneous

collection of related information either directly from other

sensors or derived from environmental data [5].

There are many challenges with trajectories, the most

basic and urgent being to visualise and explore such

data. New analytical and visualisation methods are ne-

cessary for this purpose [1,2]. While there has been little

cross-disciplinary exchange so far, we believe that there

is a significant potential in interdisciplinary connections

between movement ecology and information sciences

that analyse movement data. Such connections would

facilitate and enhance the necessary new methodological

developments to mutual benefit. They would provide

information scientists with an opportunity to explore real

problems and get access to real data, while movement

ecologists would get support for challenging data issues

from researchers who specialise in spatio-temporal data

analysis and visualisation. New methodologies from such

collaborations would be based on both data expertise and

ecological domain knowledge, thus likely outperforming

mono-disciplinary methods.

Trajectory data are commonly collected in many other

disciplines where movements of objects are being observed

(e.g. vehicle, vessel or plane trajectories for transportation,

human trajectories in time geography, pedestrian trajec-

tories for urban planning). Further, a set of disciplines

across information sciences (geographic information sci-

ence (GIScience), computational geometry, visualisation,

visual analytics) specialises in analysis and visualisation of

spatio-temporal data on movement, including trajectories

[15]. Each of these disciplines has their own approaches to

trajectory analysis and visualisation, but the underlying

concepts are the same.

As an example of what can be achieved in such inter-

disciplinary collaborations, this paper presents a review

of movement studies from the European COST Action

IC0903 “Knowledge Discovery from Moving Objects

(MOVE)” (http://www.move-cost.info/). A COST action

is an international research network bringing together

researchers from across Europe to collaborate on a com-

mon topic. The main objective of the MOVE action was

to facilitate collaborations between researchers in dispar-

ate disciplines interested in movement, thus establishing

a network of ICT researchers and domain specialists to

enable the development of novel methods for movement

analysis and visualisation. Researchers from various

subdomains in computer and geographic information

sciences joined domain specialists from a broad range of

disciplines that collect movement data. The network was

active in the period 11/2009 to 10/2013 and consisted of

close to 140 individual researchers in 24 European coun-

tries. The network generated a wide range of activities

including 6 network conferences; 13 workshops, includ-

ing one in the Lorentz workshop series [16] and two in

the Dagstuhl seminar series in computer science [17,18];

5 PhD training schools; 7 data challenges; and 53 Short-

Term Scientific Missions (short visits). The main activity

was the formation of collaborative teams between re-

searchers in information and communication technologies

(ICT) and domain scientists, out of which movement

ecologists were the most prominent group. These collabo-

rations were active both formally (through funded joint

research projects or PhD student co-supervision) and in-

formally (through joint experiments and paper authoring)

and are continuing after the end of the action.

On the ICT side, MOVE has inspired many novel

methodological developments through the exposure of

ICT researchers to real data and domain knowledge;

[19] provides an example documenting this process of

interdisciplinary collaboration. The aim of this review

paper is to serve as the knowledge transfer vehicle into

the opposite direction. By providing an overview of

MOVE achievements and their potential relevance to

movement ecology, we hope to contribute to increased

recognition in the movement ecology community of the

potential that collaborations with ICT researchers could

bring.
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This paper presents an overview of methods for ana-

lysis and visualisation of trajectory data that were devel-

oped in MOVE and were either 1) specifically aimed for

movement ecology or 2) were not specifically developed

for movement ecology, but have a potential to be used

in this context, as they address similar topics in other

application areas. We further list some related work

from information sciences but outside MOVE which

may be of interest to ecologists. To facilitate the inter-

disciplinary knowledge transfer, we put these studies in

the context of four ecological themes that we were able

to identify in MOVE collaborations. These themes are:

� Theme 1: Spatio-temporal dynamics of home ranges

and utilisation distribution

� Theme 2: Identification of spatio-temporal patterns

in movement

� Theme 3: Classification or identification of

behaviour from movement data

� Theme 4: Linking movement data with

environmental context

In the next section we provide a short introduction to

each of these themes and discuss data analysis challenges

inherent to each theme. In the second part of this review

we then look at methods developed in MOVE and how

each of these addresses one or more of the four eco-

logical themes.

ECOLOGICAL THEMES related to research in MOVE

T1: Spatio-temporal dynamics of home ranges and utilisation

distribution

Utilisation distribution, the probability of encountering

an animal in a given location given the available loca-

tional data, is a formal way to quantify or represent ani-

mal home ranges [20-24], with the idea to identify areas

that provide vital resources (food, protection, nest or

bedding sites, support for mating encounters or group

living), thus allowing maximisation of individual fitness.

In practice, home range is still often derived as a certain

probability contour of the utilisation distribution that

represents the proportion of time spent by animals

within this contour [25]. With the increased availability

of detailed, and thus highly spatially and temporally

autocorrelated data, the methodological limitations of

most widely used methods of utilisation distribution quan-

tification are becoming more and more apparent. For

example, many methods are sensitive to sampling fre-

quency, where with very high sampling the contours of

the utilisation distribution hug the data increasingly tigh-

ter and therefore home range shrinks to the area of the

measurement error around the trajectory. This means that

current utilisation distribution methods may not properly

represent the home range concept, as data are not

invariant to sampling method and frequency and therefore

violate the requirement of the statistical independence of

the observations.

In this section we focus on a selection of methods for

estimation of the utilisation distribution directly relevant

to MOVE. Other reviews include [24,26-29]. A common

approach is to employ kernel density estimators, which

place a decay probability function on each observed

location and sum these up into a surface [30]. The choice

of density parameters (kernel function types, bandwidth

size) is widely debated [25,26,31-33]. As in many statistical

methods, there is a trade-off between bias and variance

that needs to be taken into consideration with KDEs.

While a higher level of smoothing increases precision,

it also increases the bias. However as we collect data at

increasingly higher sampling frequencies, the variance

decreases – this means that less smoothing is necessary

and bias is reduced [33].

One of the problems with standard kernel density esti-

mators is that they rarely consider the temporal dimen-

sion and sequentiality of points in a trajectory. Linking

spatial variation to fluctuations in size and distribution

over time and between populations is sometimes done

by determining space use separately in each temporal

period (in different seasons, months or years) [34-36]. Al-

ternatively, time can be included in definition of kernels,

either in the calculation of the kernel [37] or by extending

the kernels to cover trajectory segments between two con-

secutive points rather than individual points [38]. Among

the latter the Brownian bridge kernels incorporate uncer-

tainty in movement between two consecutive locations in

the definition of the kernel [39-42]. Other approaches

incorporate movement behaviour (such as periodicity of

visits), landscape properties or memory into home range

estimators [43,44].

Most of the existing temporal approaches to home range

estimation in ecology are based on 2-D statistical tradition.

Developments in MOVE however have addressed the

problem of the temporal dynamics of space use from the

perspective of analysis and visualisation of multidimen-

sional spatio-temporal data resulting in conceptually new

approaches discussed in the review section.

T2: Identification of spatio-temporal patterns in movement

Movement of an individual organism is an interplay of

four mechanistic components: its internal state, its mo-

tion capacity, its navigation capacity and the external

factors [1]. The dynamic interaction of these compo-

nents at various spatio-temporal scales is reflected in

spatio-temporal patterns in movement data, which is

why ecologists are particularly interested in identifying

these patterns. We are searching for patterns from a var-

iety of perspectives: within individuals or groups over

time, between individuals, between groups, between
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populations, between species. In some cases, similarity

in movement patterns is of interest, but so is identifica-

tion of differences and relationships of these to both

geographic space and time. In the following we present

(non-exhaustive) lists of spatio-temporal pattern types of

interest as well as of methods developed in movement

ecology to identify these patterns in movement data.

One particular type of patterns is related to routines.

These patterns are usually linked to temporal develop-

ment of migration behaviour. Migration is a regular,

seasonal pattern of movement that is strongly directional

and seasonally reversible [45] and an obvious challenge

is how to identify such routines or regular returns

[46,47]. An unsolved problem in the study of migration

is how learning affects migration journeys and migration

ranges and how the range and/or route fidelity develop

over time with an individual’s progressing age [48].

Route fidelity is a focus of many studies and can be

investigated between individuals (birds flying in pairs),

between the same individual at different times (consistency

of the migration journey or route across seasons), or be-

tween individuals of co-existing species [49-52].

A related important question addresses navigation in

migration [48]. How do orientation and long-distance

navigation mechanisms influence the geometry of migra-

tion routes? What is the relationship between these

mechanisms and migratory decisions (when to go, where

to turn, what route to take)? Do the same navigational

decisions occur at the same time and location in every

migratory circle? What is the consistency of these deci-

sions across individuals, groups and species? How do new

migration routes evolve? Many studies are now exploring

patterns in trajectory data in an attempt to answer these

questions [48,53].

Another pattern type describes dynamic interaction,

which is the inter-dependency of the movements of two or

more individuals and is sometimes also called association,

correlation or relative motion between two objects [54]. It

can be investigated between individuals or groups of the

same species, to see identify the frequency of individual

encounters and patterns of avoidance, attraction, grouping

or following [52,55]. Alternatively, patterns of interaction

between co-occurring species can be of interest [51,56].

Identifying patterns from trajectory data requires a di-

verse set of methodologies. Temporal variability in move-

ment can be explored through comparing long-term vs.

short-term patterns, looking at seasonal patterns or pres-

ence of periodicity of varied lengths [47,51,55-59]. Route

fidelity calls for geometric similarity analysis [50,52,53].

Migratory behaviour can be investigated through segmen-

tation of trajectories at various spatio-temporal scales

[46,47,53], where cross-scale analysis is of particular im-

portance [60]. Interaction patterns can be identified using

geometric approaches [61-63].

MOVE’s contribution to this theme is a series of alter-

native methods for spatio-temporal pattern identifi-

cation. Computational geometry developed methods for

median trajectories, segmentation, geometric similarity

of trajectories and quantification of dynamic interaction.

Spatio-temporal and attribute similarity of trajectories

has been explored by GIScience through development of

new data mining methods, such as geometric clustering,

spatio-temporal clustering and clustering based on derived

parameters of movement. Several contributions have also

been made to cross-scale analysis.

T3: Classification or identification of behaviour from

movement data

Animal movement is linked to behavioural responses

[64,65], so that specific behaviours correspond to differ-

ent movement types. For example, foraging, escaping

predators, sitting in the nest, soaring in search of prey,

all intuitively correspond to different movement pat-

terns. Two recent technological developments support

new ways of analysing behaviour beyond traditional

methodologies (direct observation). First, the ever increas-

ing availability of movement data provides the opportunity

to infer behaviour from movement types [5]. Second,

behaviour can be remotely monitored through a variety of

sensors [66,67]. The advantages of these two approaches

with respect to direct observations are twofold: they limit

the interference of the observer, and exponentially in-

crease the range of analysis.

The challenge is how to identify different types of

behaviour from movement data. Behaviour types are

often extracted from trajectories with various forms of

statistical modelling, including state-space models, vari-

ous types of random walk models and behavioural

change point analysis [68-71]. Alternatively, data mining

techniques, such as clustering are used for this purpose

[72,73]. Or movement-derived parameters, such as speed

are used to classify behaviour types [74].

Another promising perspective is the simultaneous

recording of movement and information derived from

other sensors, especially accelerometers. Accelerometers

measure changes in velocity over time in three dimensions

at very high temporal resolutions (10 Hz). These data can

be used to identify two types of patterns: first, it is possible

to identify changes in body posture and behaviour and

second, the variation in measurements has been linked to

speed and energy expenditure [67,75,76].

When accelerometers are used in combination with a

GPS tracking device, acceleration data can be used to

segment bird trajectories into behaviour classes includ-

ing flying, foraging, body care, standing and sitting

[76,77]. Accelerometer data can also be linked to GPS

and magnetometer data [78] or alternatively in combin-

ation with a gyroscope, which measures the orientation
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and aids the accelerometer in high-frequency motion sit-

uations [79].

In many of these cases, video observations are col-

lected simultaneously with locational and/or accelerom-

eter data. Video footage serves as ground truthing for

behaviour types, automatically derived through data min-

ing [76,78,79]. Behaviour can also be identified directly

from video-tracked data [80] or movement parameters

can be derived from 3-D trajectories derived from video

using computer vision: an example is data mining of

movement parameters on 3-D trajectories of zebrafish

movement [81].

MOVE studies utilise methods from computational

geometry, spatial data mining and visualisation/visual

analytics to support behaviour identification from

movement data, as described in the second part of this

review.

T4: Linking movement data with environmental context

The movement of an organism is affected by the internal

state of the organism and by the external factors includ-

ing environmental context of the individual’s location

[1]. External factors affect the movement in many ways.

They can trigger behavioural patterns or migratory deci-

sions. Animals may decide to move at times with condi-

tions supportive for a particular movement type while

allowing them to optimise energy expenditure. Move-

ment is therefore often linked to spatial and temporal

variability in environmental conditions [82].

To investigate the influence of environment on move-

ment, tracking data can be complemented by environ-

mental data from many sources and of many types.

Some studies incorporate remotely sensed satellite data

with trajectories [82-85], others link trajectories to either

meteorological information such as wind direction and

speed [86] or to weather radar data [87,88]. For inter-

ested readers, there is an on-going COST Action ES1305

on this topic: “European Network for the Radar surveil-

lance of Animal Movement (ENRAM)”, 2013–2017. For

land animals, weather effects (snow) and topographic

factors (slope) can be linked to movement [47]. Trajector-

ies can be linked to field data on home range productivity

and related indices derived from remotely sensed data, e.g.

the normalised difference vegetation index (NDVI) [89].

For marine mammals (whales, dolphins, seals), passive

and active acoustic monitoring is used in combination

with trajectories [90].

An alternative to external environmental data is to in-

clude more than one sensor on an animal tag. This is

particularly common for marine animals, where tags are

traditionally referred to as bio-loggers and incorporate

both locational and environmental sensors [5,8,66,91].

Frequently used are oceanographic sensors, such as the

conductivity, temperature and depth (CTD) loggers and

specific sensors for salinity, turbidity, fluorescence, level of

chlorophyll, presence of cyanobacteria and other oceano-

graphic parameters [92-94]. Locational sensors for marine

species are often a combination of GPS tracking devices

and various marine Satellite Relay Data Loggers (SRDL),

which measure location, speed and depth of the diving

animal [92,95]. Researchers have used data from com-

bined oceanographic and locational sensors to model not

only animal movement, but also the state of the oceans in

remote areas inaccessible for human observers, but which

animals (e.g. polar seals) visit regularly and periodically

[93,94].

In many studies, movement data are linked to environ-

mental or other sensor data through trajectory annota-

tion. This is a process that semantically enriches

trajectories with environmental and sensor information at

each location and time [86,96]. Due to large data volumes

of both tracking and environmental or sensor data, this

has to be done automatically and systems are being devel-

oped to support this procedure. An example is the Envir-

onmental Data Automated Track Annotation System

(EnvDATA) that allows annotation of trajectories from the

animal movement online data repository Movebank

(www.movebank.org, [10]) with satellite remotely sensed

information [82]. Another example is the spatial database

of environmental data linked to the species-distribution

range in the Eurodeer project (www.eurodeer.org, [47]).

Is semantic trajectory annotation the best way to con-

nect movement and environmental data? The problem is

that these two types of data are collected at different

spatial and temporal scales. Animal movement can be

collected with 1 Hz resolution at times with accurate

GPS locational measurements down to sub meter accur-

acy, while satellite data for a particular location may only

be available from half-daily or daily satellite passes and

collected at spatial scales of several tens or hundreds of

meters [82]. Data pre-processing measures (e.g. spatio-

temporal interpolation or aggregation) are therefore

required prior to semantic trajectory annotation. This

process may propagate the uncertainty related to coarser

spatio-temporal resolution of environmental data into

higher-resolution trajectory analysis. A question is there-

fore how to capture and describe or eliminate the uncer-

tainty resulting from matching the spatially and/or

temporally misaligned data. This is an area where MOVE

contributed with cross-scale analysis for context-aware

trajectory analysis.

Review

This section presents methodologies for movement ana-

lysis and visualisation developed in MOVE grouped in

the following categories:

1. Geometrical analysis of trajectories
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2. Similarity and clustering

3. Visualisation and visual analytics

For each of these categories we describe methods

developed in MOVE and link them to the ecological

themes from the first part of this review.

Category 1: Geometrical analysis of trajectories

Geometrical analysis of spatial data is developed in a

number of information sciences in which methods are

based on geometry and location of data entities in space.

In terms of trajectories, geometrical methods are useful

for a number of problems relating to the form and rela-

tive positions of trajectories in the 3-D (or 4-D) physical

framework space of 2-D (or 3-D) position and time. In

MOVE, geometrical analysis was represented by compu-

tational geometry [97] and GIScience [98] and the stud-

ies can be grouped into the following topics:

� trajectory segmentation,

� identifying a representative path from a set of

trajectories,

� scale-dependent geometric analysis and

� identification of spatio-temporal patterns.

These methods may be useful for themes T2 and T3

(Table 1).

Trajectory segmentation

Geometric trajectory segmentation refers to the problem of

splitting a trajectory into pieces (referred to as segments)

such that each piece fulfils a geometric criterion. If the

geometric criteria characterise behaviours of a moving

entity, this problem is closely linked to classification of

behaviour (T3). Buchin et al. [99] developed a segmentation

method for animal trajectories based on individual move-

ment states of the moving object (animal). They look at dif-

ferent types of bird movement (flying, foraging and resting)

and by linking these to different types of geometrical prop-

erties of trajectories (location, speed, angular range, head-

ing, time, etc.) they developed a method that automatically

segments bird trajectories into segments that correspond to

these states (Figure 1). The results of such an algorithm can

then be used for further exploratory ecological analysis of

birds’ movement.

Geometric segmentations are often optimised based on a

set of general spatio-temporal criteria. This means that the

methods aim to minimise the number of segments while

guaranteeing that each segment fulfils one of the criteria

[100]. Various approaches are concerned with the scale at

which the criteria are satisfied, for example, if they are satis-

fied on one particular segment and all its sub-segments or

all larger segments that include this one particular segment.

An efficient framework for geometric segmentation was pro-

posed by [100] for criteria that are monotonically decreas-

ing, i.e. if they are fulfilled on a segment, then they also are

on its sub-segments. This framework was extended [101] to

include combinations of monotonically decreasing and

increasing criteria (as in Figure 1). If segments are not re-

stricted to start at points, the general segmentation problem

becomes computationally intractable [102], but can still be

solved efficiently for monotonically decreasing criteria [100].

Geometric segmentation can also be linked to statistical

analysis, which is an approach that may be more familiar to

ecologists. Alewijnse et al. [103] propose a model-based ap-

proach to segmentation of movement data. In this approach,

a segment is defined by a uniform model parameter and an

information criterion is used to select the number of seg-

ments. This approach assumes little knowledge on geomet-

ric characteristics of the input trajectory data, yet it

identifies the optimal segmentation by optimising the infor-

mation criterion, linked to the complexity of the movement

model. This particular approach uses Brownian bridges, but

can be generalised to any parameterised movement model.

Segmentation methods were also developed in MOVE for

other types of trajectories. Sester et al. [104] present a

method to link segments to human movement behaviour.

Their segmentation is based on identifying important places

from trajectories (most frequently visited places for the

longest time). Segments between these places are classified

based on movement parameters linked to travel mode

(walk, bus). This approach could serve to identify equivalent

patterns in animal movement, for example, important stop-

over places of longest duration in data on annual migration

(theme T2).

Panagiotakis et al. [105] present a method for segment-

ing trajectories into representative and non-representative

segments based on other nearest trajectories. They use

vehicle trajectories for their experiments. As their data

vary according to spatial and temporal density in location

sampling, this could be relevant to animal trajectories

obtained with irregular sampling schemes.

Identifying a representative path from a set of trajectories

Another frequent geometric problem is how to identify a

representative path for a set of given similar trajectories.

Table 1 MOVE studies in Geometrical analysis, categorised

per method type vs. ecological themes (T) they address

Sources relevant for
ecological themes

1. Geometrical analysis T2 T3

Trajectory segmentation 104, 105 99-104

Identifying a representative path 106-110

Scale-dependent geometric analysis 113 114, 115

Identification of spatio-temporal patterns 116, 117

T2: Identification of spatio-temporal patterns in movement and

T3: Classification or identification of behaviour from movement data.
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Is there an optimal route that can be used to represent

this set? How can this route or path be defined, while the

path may or may not be one of the actual trajectories?

This could be useful in ecological terms for theme T2:

identification of routines and consistency in migration

[49,50].

In MOVE, Buchin et al. [106] introduced a computa-

tional geometry approach to compose such a representa-

tive route from parts of the actual trajectories. Here the

trajectories do not need to be temporally correlated, but

just need to follow a similar spatial route. They call their

representative route a median trajectory and build it from

pieces of the trajectories in the data set (Figure 2).

Identifying a representative route from a set of trajectories

is a common topic in GIScience and there are many

approaches outside MOVE. Brudson [107] uses principal

curves to identify the most probable route from a set of

GPS pedestrian trajectories. Similar methods are widely

used in navigation and even developed for reconstruction

of representative 3-D trajectories: [108] reconstruct 3-D

bicycle tracks from GPS trajectories – a method that could

be of interest for movement of animals freely moving in

3-D (birds, sea mammals). In MOVE, Etienne et al. [109]

developed a method to identify the main naval route

from a set of vessel trajectories, sampled at equal times.

Pelekis et al. [110] take an alternative approach and

consider the uncertainty in trajectory measurements by

constructing a fuzzy vector representation of each trajec-

tory. They use this representation to construct a so-

called centroid trajectory as the representative path based

on density of trajectory points at each moment in time.

Note that purely geometrical methods of identifying a

representative trajectory have certain limitations when

considering animal data. For example, a median trajectory

provides a population-average summary of paths, however,

its characteristics may not match up with the movement

of any particular individual. The difference between the

average model of movement vs. individual models is a

well-known issue in ecology [111], which is analogous to

the problem of global vs. local modelling in spatial statis-

tics. We discuss this similarity in concepts in ecology and

GIScience as part of one of the future challenges.

Scale-dependent geometric analysis

Movement characteristics are influenced by processes

operating at different spatio-temporal scales [1]. There is

Figure 1 (after [103]). A geometric segmentation of a trajectory. Red/pink segments are migration flight, yellow segments are stopovers (one

stopover is shown in more detail in the lower right corner). Blue markers indicate end of a stopover. Stopovers are described by staying within a

bounded activity radius for at least 2 days. This is a conjunction of a monotone-decreasing criterion (if the sequence (B, C,…, G) stays in a disk

of small radius then so does every subsequence, e.g. (D, E, F)) and a monotone-increasing criterion (if the sequence (B,…, G) corresponds to a

duration of at least two days then so does every sequence which includes it, e.g., (A, B,…,G, H)).
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therefore a need to support movement analysis across dif-

ferent scales and investigate how these multiple-scale pro-

cesses act together. On this topic, movement ecology could

benefit from the dependency of geographic phenomena on

spatio-temporal scale, which is one of the most well-known

and longest-standing topics in GIScience [112].

In MOVE, a number of GIScience studies explored the

issue of scale. Laube and Purves [113] investigate how

temporal scale affects the calculation of movement

parameters (speed, sinuosity and turning angle) of animal

trajectories. They demonstrate what they call the “granularity

grief”: the fact that derivation of any kind of movement

parameter from trajectory data is influenced by the

temporal sampling rate and thus scale-dependent. They

further demonstrate the relationship between uncertainty

in individual GPS measurements at different scales and

how these affect the fine-scale movement descriptions. This

could be of interest to theme T2.

In a recent study on cross-scale movement analysis [114]

show how the derivation of different movement parameters

over a range of spatial and temporal scales significantly

improves the subsequent classification of movement

behaviour from a set of zebrafish trajectories, compared to

a single-scale approach. This could be relevant to theme

T3. Soleymani et al. [115] use cross-scale extraction of

movement parameters and context information as input

features to detect foraging behaviour in GPS trajectories of

wading birds. Their results suggest that it is possible to

classify, with high accuracy, fine-grained behaviours based

on high-resolution GPS data, providing an opportunity to

build a prediction model in cases where no additional

sensor (e.g. accelerometer) or observational data is available.

Identification of spatio-temporal patterns

This sub-topic is linked to theme T2. Predating MOVE, a

study [116] provides a general framework of spatio-temporal

movement patterns that can be identified from trajectories.

In MOVE, Orellana et al. [117] propose a method to identify

suspension patterns in movement, which represent an

attraction or an obstruction for the moving object.

Category 2: Similarity and clustering

A frequent task in trajectory analysis is to partition the data

into groups of similar trajectories. In data mining, cluster-

ing takes a set of data objects and partitions these into

groups (clusters) so that the objects in the same group are

more similar to each other than to objects in other groups

[118]. The procedure consists of two steps: first, a similarity

measure has to be defined based on the data domain and

second, a grouping procedure is used to partition data into

clusters based on similarity between data objects. In this

section we focus on similarity measures for trajectories –

for reviews of clustering methods see [118,119].

We group trajectory similarity methods from MOVE

based on what part of trajectory data space they con-

sider. Trajectories are spatio-temporal data and their

data space can therefore be partitioned into three separ-

ate sub-spaces: spatial part (location), temporal part

(time) and attribute part (derived movement parameters

or other). The following trajectory similarity measures

were developed in MOVE:

� geometrical similarity, based on location and time

only,

� similarity based on physical attributes of movement

(speed, acceleration, direction, etc.) and

� context-aware similarity based on a combination of

attributes.

For ecological themes, similarity and clustering of tra-

jectories can support identification of particular spatio-

temporal patterns in movement, that may also be related

to behaviour, thus supporting themes T2 and T3

(Table 2).

Figure 2 (after [106]). a) three trajectories with a common start and end point and b) a median trajectory (bold) representing these three trajectories.

The median trajectory is built of segments of the original trajectories and switches the original underlying trajectory at each intersection.

Demšar et al. Movement Ecology  (2015) 3:5 Page 8 of 24



Geometrical grouping and similarity

Geometrical similarity methods rely on the notion of

distance between trajectory points, which is usually a spatial

distance. Originally such measures were developed to

compare shapes of polygonal lines and only considered

locations of points. Traditional geometrical similarity

measures include Euclidean distance between each pair of

points, Hausdorff distance that identifies the largest

distance from a point on one trajectory to the closest point

on the other trajectory, and Fréchet distance that takes into

account the location and ordering of trajectory points and

is sometimes also called the dog-walking distance (it

represents the minimum length of a leash between two

objects, i.e. a person and its dog, that move along respective

trajectories without backtracking). More recently the

temporal aspects of movement are also considered [120].

In MOVE, Buchin et al. [121] compare data points at

equal times, whereas [122] compare data points with a

bounded local time shift. Pelekis et al. [123] develop a simi-

larity measure based on the area between two trajectories.

Merki and Laube [124] define a set of grouping patterns

(pursuit, escape, avoidance and confrontation) and present

algorithms for their detection. Outside of MOVE, Rinzivillo

et al. [125] use several geometric similarities in their

clustering. First they consider only the distance between

the start and end points of each trajectory; then they use

distances between a selected number of sampled points on

each trajectory and finally the smallest distance between

two trajectories at a certain time.

Several of these methods have been used for clustering

of sub-trajectories to identify entities moving in a group

over some period of time [120,126]. Groups occur when

a large set of moving entities moves sufficiently close for a

sufficiently long time and may split or merge with other

groups. This may be useful for identification of dynamic

interaction patterns (T2). In MOVE, Buchin et al. [127]

propose a representation of how such groups evolve over

time (Figure 3). Outside of and pre-dating MOVE,

methods that identify similar sub-trajectories are often

based on either dynamic time warping or identification

of the longest common subsequence [128].

Similarity based on physical attributes of movement

A number of recent studies in GIScience approaches tra-

jectory similarity by looking at physical properties of

movement, which include physical descriptors of move-

ment (speed, direction, acceleration, turning angle, angu-

lar speed) and path shape properties (curvature, sinuosity,

tortuosity). These quantities are either measured by the

tracking device or derived from trajectories and are re-

ferred to as movement parameters [116,129]. In terms of

movement ecology, clustering based on these parameters

can be used for inference about movement behaviour

[130] and thus contribute to theme T3. In the following

we describe MOVE studies that use movement parame-

ters to define trajectory similarity.

Pelekis et al. [123] introduce four types of trajectory

similarity, out of which two are geometrical (spatio-

temporal similarity and spatial-only similarity) and two

based on movement parameters (speed/acceleration-based

similarity and directional similarity).

Dodge et al. [129] define the term “movement parameter”

and use various individual parameters (velocity, acceleration,

turning angle, displacement, straightness index) to build

temporal movement parameter profiles. These profiles are

used to decompose trajectories into segments of homo-

geneous movement. Dodge et al. [131] use the conceptual

space of movement parameters (MP space) to compare two

or more trajectories and define their similarity based on the

temporal progression of the respective trajectories in the

MP space. They use speed, azimuth, turning angle and ac-

celeration to identify groups of concurrent and coincident

trajectories. Concurrence is defined as similar progression

through MP space and coincidence as similar progression

through 3-D space, a space-time cube (STC, see visualisa-

tion section). The study is performed on a well-known

trajectory data set of hurricanes in the Atlantic. Dodge et al.

[132] extend their 2009 segmentation method with an

alternative similarity measure based on producing a string

of symbols for each temporal profile in the MP space and

using a modified string edit distance metric for trajectory

clustering. Soleymani et al. [114] use the MP space

parameters for cross-scale spatio-temporal identification of

different animal behaviours.

McArdle et al. [133,134] combine physical properties of

movement in the space-time cube with time series

clustering methods to classify a set of pedestrian tracking

trajectories into several behaviour types. They decompose

the 3-D space-time cube into two 2-D projections of time

vs. one of the two geographical coordinate axes and then

compare similarities of trajectories in each (or both) of

these projected spaces based on their shape as mathematical

curves.

Table 2 MOVE studies in Similarity and clustering,

categorised per method type vs. ecological themes (T)

they address

Sources relevant for
ecological themes

2. Similarity
and clustering

T2 T3 T4

Geometrical grouping
and similarity

121-128

Similarity based on physical
attributes of movement

123, 129–132,
135, 136

114, 130, 133, 134

Context-aware similarity 137, 138

T2: Identification of spatio-temporal patterns in movement, T3: Classification or

identification of behaviour from movement data and T4: Linking movement

data with environmental context.
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Çöltekin et al. [135] use a set of eye tracking specific

movement parameters for eye- and mouse-tracking tra-

jectories obtained during a task of visual search on a

computer display to investigate hand-eye interaction. In

Human-Computer Interaction (HCI), eye tracking is a

way to evaluate the usability of visual interfaces, where

trajectories of gaze on the screen are collected using an

eye tracking device. Trajectories of mouse movement on

the screen are also collected for a similar purpose and

this study investigates if there is a connection between

the two trajectory types using trajectory analysis. Move-

ment parameters used to evaluate similarity of the eye

and mouse movement are distances from gaze or mouse

to target and distance between gaze and mouse trajectory

(Figure 4). Such studies, while using trajectory data from

an unrelated domain (HCI), could be relevant for analysis

of dynamic interaction patterns in theme T2, as data type

(trajectories) and conceptual formulation of the problem

(interaction of two moving objects, in this case gaze and

mouse pointer on the screen) are the same as in the

dynamic interaction problem.

Outside of MOVE, Ranacher and Tzavella [136] provide

a broader review of physical movement trajectory similarity

measures in GIScience.

Context-aware similarity based on a combination of

attributes

As discussed in theme T4, animal movement is inherently

embedded in the environmental context. In MOVE, sev-

eral developments integrated contextual information into

similarity analysis contributing to theme T4.

Buchin et al. [137] present a method for integrating land

cover information into similarity analysis. They extend

geometric similarity (equal time distance, Hausdorff dis-

tance and Fréchet distance) with context distance, which

for their hurricane trajectories consists of external and

internal factors that influence hurricane movement. Exter-

nal factors include atmospheric conditions (temperature,

air pressure), land use (land, sea) and topography of the

region, while internal factors relate to properties of hurri-

canes themselves (intensification, wind speed, move speed,

diameter). Their method is able to distinguish between

hurricanes that have a similar spatio-temporal track, but

different context.

In a more sophisticated attempt at incorporating con-

text into similarity analysis [138] consider the temporal

variation in the sequential use of environmental features

(relevant to T2 and T4). Their objective is to explore

spatio-temporal patterns in the sequential habitat use by

animals and they propose a tree-based approach using

sequence alignment method (SAM) [139]. Sequences are

constructed from roe deer trajectories by linking location

to four habitat use classes, defined from two geographical

parameters: habitat type and elevation. SAM is used to

cluster the sequences into dendrograms (Figure 5), where

clusters of similarly-moving animals can be identified at

different levels of detail. By linking additional covariates to

their results, they explore the relationship between identi-

fied clusters and animal characteristics.

Category 3: Visualisation and visual analytics

Two final MOVE disciplines interested in movement are

visualisation and visual analytics [140]. Vision is the most

important sense in communication between humans and

computers and visualisation plays an important part in

cognitive processing. It supports data analysis in several

ways: it provides an ability to portray and understand large

amounts of data; it allows identification of patterns in the

data that were not previously evident and thus supports

hypothesis generation; the patterns are identifiable at

large and small scales; and problems with the data can

become quickly apparent [140]. Different visualisation

Figure 3 (after [127]). Progression of a set of trajectories through time (represented as horizontal axis and progression is from left to right).

Colours indicate groupings of various sizes based on location and proximity of moving objects at that moment. A beige group has three objects,

a yellow one four, an orange one five, a grey one six. At each moment in time the grouping is maximal.
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communities include scientific visualisation, information

visualisation and visual analytics. The first two portray

spatial and non-spatial data respectively [140,141], while

visual analytics combines human reasoning and pattern

recognition ability with the computational capabilities

of a computer to support a more efficient data analysis

[142-144].

The increased recent availability of all types of movement

data has kick-started visualisation and visual analytics de-

velopments for movement, resulting in a wide variety of

methods and tools [145-147]. Many of these applications,

while firmly anchored in visualisation or visual analytics,

use animal movement data as inspiration [148-150] as did

many of the participants in MOVE. We categorise MOVE

contributions into the following three categories:

– Spatio-temporal visualisations: space-time cube and

other approaches

– Visual aggregations: geometric aggregations and

kernel densities

– Visual analytics of movement

Many of these studies (Table 3) contribute to themes

T2 and T4 by providing the ability to visually identify

Figure 4 (after [135]). Eye and mouse trajectories in a visual search task: the participant was asked to identify the target (green square) on a

map (not shown) and click on it. a) Eye and mouse trajectories generated in this task. b) Time series plot of distances from eye & mouse to

target vs. time. In both charts, eye is in red, mouse is in blue.

Figure 5 (after [138]). Tree classifying individuals based on spatio-temporal sequential habitat use during May-June. An extract of the habitat

use sequences for the first five days (01/05 – 05/05) is shown. Covariates can be associated to each individual and help to identify relations

between identified clusters of similar sequential habitat use and animal characteristics.
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various previously unknown spatio-temporal patterns.

Aggregations support theme T1 by visualising temporal

dynamics of space use.

Spatio-temporal visualisations: Space-time cube and other

approaches

The problem of representing time along with two spatial

dimensions has a long tradition in GIScience [151,152].

In 1970s, a branch of geography called time geography

established one of the most frequently used visual repre-

sentations of interlinked geography and time: the space-

time cube (STC) [153]. In an STC, the spatio-temporal

data are shown in a 3-D space, where the bottom 2-D

plane represents the 2-D geographic space and the third

axis represents time. The main assumption of time geog-

raphy is that geographic space and time are inseparable

and the STC was developed to portray this assumption

in a visual manner. Since then, the STC has become

popular in GIScience for visualisation of human activity

patterns [154-156]. In the visualisation community (and

outside of GIScience), the STC popularity to show the

temporal component of any type of spatio-temporal data

(not just trajectories) has also recently increased [157].

In MOVE, the basic form of STC for trajectories (where

trajectories are shown as polylines in the STC space)

was used in several studies. McArdle et al. [133,134]

superimposes the STC on a virtual globe (Google Earth),

so that the third dimension consists of a sum of elevation

and time, thus making it appropriate for locations with flat

terrain. Of note is the linkage to Google Street View [134],

which allows for visual ground-truthing of automatically-

derived stopping points (e.g. one frequent stopping point

turned out to be a shop, another a dentist’s office). This

may be of interest to ecologists who try to understand

stops in migration (relevant to T2). At present the

availability of Street View limits this kind of exploration to

specific countries, however, the coverage is likely to be

extended in the future.

Çöltekin et al. [135,158] apply the STC concept to

visualise interaction between gaze and mouse trajector-

ies. Here the base 2-D plane represents the display of

the stimulus on the computer screen and the third

dimension represents time. Their approaches might be

of interest to ecologists who are exploring the dynamic

interaction between animals (relevant to T2), to which

the interaction between the eye and mouse movement is

analogous.

The inherent inseparability of space and time in the

3-D STC is difficult to achieve if only spatial or only

temporal visualisations are used. However, as a 3-D display,

it is complex to use and its usability needs to be empirically

examined [159]. MOVE contributed to this through usabil-

ity experiments in which the authors deconstructed the

STC from the traditional cartographic point of view and

made recommendations about the strengths and weak-

nesses of this popular 3-D display [160,161].

STC is only one of many temporal visualisations (see

[162,163] for reviews). In MOVE, several collaborations

between practitioners and visual developers resulted in

alternative temporal displays, some specifically aimed at

animal ecology. One study [164] developed bespoke spatio-

temporal displays of bird migration patterns (relevant to

T2). They focus on a specific set of migration-related

questions, such as timing of annual migration, route fidelity

and identification of stops. They also explore how these

events relate to the time of the year (onset of spring) and

how the spatio-temporal patterns vary between individuals

and years. Another collaboration between visualisation

experts and ecologists developed space-time visualisations

to explore changes in biodiversity [165], using timeline

and species density displays, relevant to visualising tem-

poral dynamics of population distribution (T2).

In MOVE, Zhang et al. [166] present a timeline display

developed for a set of identification, localisation and

movement comparison tasks to study urban movement

trajectories. Outside MOVE, Wang and Yuan [167] use a

similar set of temporal visualisations, including a timeline, a

straightness plot and others to investigate spatio-temporal

patterns in urban movement.

Visual aggregations: geometric aggregations and kernel

densities

When movement data sets are large, visual displays that

show all trajectories become unsatisfactory, as the over-

printing and clutter increase to the point that no patterns

can be reliability identified anymore. In MOVE, Netzel

et al. [168] have investigated how different line render-

ing styles can help improve the perception of dense

Table 3 MOVE studies in Visualisation and visual analytics, categorised per method type vs. ecological themes (T)

they address

Sources relevant for ecological themes

3. Visualisation and visual analytics T1 T2 T4

Spatio-temporal visualisations 133-135, 157, 158, 160, 161, 164-167

Visual aggregations 15, 62, 175-190 145, 168–173, 182, 188

Visual analytics, attribute visualisations, linked views 135, 146, 147, 158, 165, 166, 170, 173, 183, 193-198 193, 194

T1: Spatio-temporal dynamics of home ranges and utilisation distribution, T2: Identification of spatio-temporal patterns in movement and T4: Linking movement

data with environmental context.
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visualisations of trajectories and do so using oyster-

catcher trajectories as a case study.

Even with improved trajectory rendering methods, the

overplotting problem eventually becomes too severe for

complex and large data sets. In such cases a frequently

used concept is visual data aggregation. Aggregation refers

to combining several data elements into a single unit that

is then shown in some other way than the original data

would be. This operation reduces the size of the data to be

displayed, while at the same time there is inevitable

information loss as patterns are generalised. Andrienko

et al. [145] present an overview of aggregation methods

for movement data and [157] discuss this concept in the

context of an STC. Studies in MOVE developed two types

of aggregations: geometric aggregations (relevant for T2)

and aggregations using kernel density estimation (relevant

for T1 and T2).

Geometric aggregations A common approach to aggregate

movement data for spatial visualisation is edge bundling,

which merges nearby sub-paths into one. It is often used for

origin–destination data (movement data where only start

and end points are known). Methods for edge bundling are

popular and include force-directed approaches [169,170],

combinatorial techniques [171] and image-based methods

[172]. In MOVE, Hurter et al. [172] demonstrate the useful-

ness of edge bundling for simplifying and aggregating

various types of movement trajectories, in particular eye

tracking data. Höferlin et al. [170] enrich the aggregation of

groups of trajectories by applying abstracted schematic

rendering that reflects the aggregation process. Another

MOVE study [173] incorporates the edge-bundling principle

into a time lens display of car movement.

Aggregations with kernel densities As mentioned, the

concepts of utilisation distribution and home range are

often shown using kernel density estimators of trajectory

points. These methods traditionally assume that the

points form an independent sample taken from a static

2-D probability distribution of the individual’s locations

and ignore the sequentiality of points. This is often ad-

dressed through sequential kernels where kernels are

placed not over trajectory points but over trajectory seg-

ments and are added into a two-dimensional probability

surface, as is normally done with point kernels. Note

that for visualisation purposes we call a segment a line

between two consecutive trajectory points. This is differ-

ent from the segments in trajectory segmentation in

geometric analysis, where a segment refers to a sub-

trajectory, which may consist of any number of consecu-

tive points. Figure 6 presents an overview of segment

kernel approaches and lists relevant GIScience and eco-

logical references, some from MOVE and some preced-

ing MOVE.

In GIScience, segment kernels are often defined based

on principles of time geography [153] and space-time

probability prisms [174]. Considering movement in terms

of space-time prisms results in elliptical kernels that

define the area covered by all possible movement paths

between two trajectory points. This is a popular GIScience

approach to model animal movement [15,62,175,176]. In

MOVE, researchers modelled vessel line density based on

similar principles and convolution of density fields around

two consecutive points [177,178]. Vessel line densities

were linked into interactive systems with other geovisuali-

sations [179,180]. Other researchers in MOVE took into

account acceleration and velocity of movement through

directional segment kernels [181].

A MOVE collaboration addressed the problem of low

sampling rate between consecutive trajectory points using

Brownian bridges [182]. If the temporal sampling rate is

too low for the linear movement between two observed

locations to make sense, a segment kernel that takes into

account movement uncertainty is more appropriate to use.

Buchin et al. [182] develop their approach to visualise

uncertainty in movement as well as identify interaction

patterns such as encounter, avoidance/attraction, regular

visits, and following (Figure 7).

All of the kernel density models of utilisation distribu-

tion described so far, whether they incorporate time or

sequentiality into the algorithm or not, are represented

as surfaces in two geographical dimensions. MOVE

researchers have combined the STC principle with a

generalisation of the 2-D kernel density into three dimen-

sions (Figure 8). A MOVE study used density of gaze

points from eye tracking to enrich the STC visualisation

of gaze points from a large number of eye tracking experi-

ments by colour coding [183]. Outside of MOVE, a 3-D

point kernel density in STC has been used in crime visual-

isation [184] and in spatial epidemiology [185]. Another

GIScience study combined the 3-D point kernel density

with the principle of space-time prisms in time geography

to generate probabilistic space-time prisms for under-

standing the movements and activities of animals at fine

temporal and spatial scales [186]. Also outside of MOVE,

a recent ecological study [187] develops 3-D densities

in real physical 3-D space (i.e. not the STC) taking into

consideration elevation as well as the two geographical

coordinates of location.

Generalising the concept of point density into a model

that considers sequentiality of movement, one MOVE

study developed the space-time density of polylines

[188]. Here, the kernels are not calculated for each point

nor each segment, but span the entire trajectory, which

is represented as a polyline in the STC. The kernel

around each trajectory is built within a volumetric union

of rounded-cylinders, one cylinder for each trajectory

segment. A further MOVE collaboration produced a
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faster optimised version of the 3-D polyline density, the

stacked space-time density, and linked it to the concept

of home range dynamics. This study also provides sev-

eral alternative kernels, including a three-dimensional

Brownian bridge kernel [189,190]. Figure 9 shows an

example of the stacked space-time density for a month

of daily trajectories of one lesser black-backed gull [190].

As volumes, such 3-D densities can be displayed in vari-

ous ways, either using direct volume rendering or isosur-

faces. They allow for identification of spatio-temporal

patterns that are otherwise undistinguishable from

spatial-only patterns in a standard 2-D density surface.

An HCI study [158] investigates the level of interaction

between the eye and mouse trajectories using the 3-D

stacked space-time density [190] combined with 3-D volu-

metric change detection methods to quantify the level of

interaction between eye and mouse trajectories. In terms

of movement ecology, this may be relevant to dynamic

interaction (T2).

Visual analytics of movement

A common design approach for visual analytics systems for

highly-dimensional complex data is to use linked views,

that is a set of interactively connected visualisations, each

of which provides a different perspective on the data [191].

This methodology takes a set of data displays (each showing

a selection of the given dimensions in some particular way)

and then allows the interaction in one view (e.g. selection,

Figure 6 (after [190]). Two-dimensional kernels for trajectories that produce two-dimensional density surfaces. The point-based kernels

in panel a) do not consider the temporal dimension of trajectory points, but treat them as independent observations in a point data set. Panels

b), c) and d) show line-segment kernels, where sequentiality of two consecutive trajectory points is taken into account in kernel construction.

Figure 7 (after [182]). Two trajectories (blue/purple) with a potential encounter (red/green) computed based on the Brownian bridge movement model.
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zoom in, zoom out, etc.) to simultaneously modify displays

in all views [192]. This is relevant to visual exploration of

spatio-temporal data, since it enables generating a unique

spatial, temporal or spatio-temporal perspective on a pat-

tern appearing in a linked attribute-only view [144].

Many MOVE studies mentioned above employ the

linked views paradigm (e.g. [165,166,183]). Others include

not only spatio-temporal displays, but also attribute visua-

lisations. Tominski et al. [173] introduce a trajectory wall.

Here, car trajectories are represented as ribbons in a 3-D

space, where the bottom 2-D plane represents the

geographic space and the third axis the vehicle count.

Ribbons are stacked over their geographic path and their

segments coloured according to an attribute (speed). This

view is interactively linked to a time lens, where clusters

of temporally similar trajectories are shown using edge-

bundling. The system allows identification of temporal

patterns in car movement and in particular anomalies in

regular flow, such as traffic jams.

Andrienko et al. [193,194] present linked views for a

comprehensive visual exploration of any type of move-

ment trajectories. These systems include STCs, a num-

ber of attribute visualisations, density maps, temporal

visualisations and a number of other displays that allow

incorporation of contextual information.

Another trajectory type widely represented in MOVE

are eye movement trajectories, generated in HCI studies

of visual displays. A number of MOVE studies used vis-

ual analytics for exploration of eye trajectories from such

experiments. Andrienko et al. [195] introduce a compre-

hensive visual analytics methodology for exploring eye

movement – their system is based on their previous

work and visualisations [144,145,193]. Ooms et al. [196]

use a combination of selection, simplification and aggre-

gation operations to visualise and analyse patterns in eye

tracking data. Kurzhals and Weiskopf [183] and [197]

use a system with multiple linked views including a

density-based STC representation for a set of gaze tra-

jectories collected in an experiment with dynamic visual

stimuli (videos, Figure 10). Finally, as described above,

[158] and [135] use the STC and stacked space-time

densities for concurrent visualisation of eye and mouse

trajectories in an attempt to quantify the interaction be-

tween the eye and mouse.

The visual interfaces of visual analytics systems often in-

clude the aforementioned multiple linked views to provide

a comprehensive visual representation of complex data.

Another component that makes visual analytics particu-

larly interesting for complex data is its incorporation of

(semi)-automatic analysis methods. Here we can make

direct use of the new MOVE trajectory analysis methods

reviewed earlier in this paper. In particular similarity mea-

sures and clustering methods are useful because they

allow us to group, aggregate and simplify large data sets.

One example of MOVE research on this topic is a study

that employs trajectory clustering to group the trajectories

and then allow for interactive selection of subgroups and

re-clustering [170]. The process allows for top-down

exploration of the data set, repeatedly selecting one or

a few clusters and re-clustering remaining trajectories.

Clustering supports faceted exploration that allows to

cluster trajectories according to a variety of similarity

measures between trajectories (e.g. coverage, distance

between means, distance between standard deviations)

and facets (related to geometric information from the

trajectories, e.g. position, velocity, direction of motion,

time, and object class). Another example from MOVE

is the analysis of gaze trajectories with the system by

[183] and [197,198]. They support spatio-temporal clus-

tering of gaze points on trajectories, as well as hierarchical

Figure 8 (after [190]). Three-dimensional kernels for trajectories that produce volumes in geo-time space. Panel a shows a) point space-time density

with cylindrical kernels that do not take into account the temporal sequence of points in a trajectory. Panels b), c) and d) show polyline kernels, where

there is one kernel for the entire trajectory (and not a separate kernel for each line segment). Distance from each voxel to trajectory in panel b) (shown

in kernel with a dashed grey line) is calculated in 3-D, perpendicularly to the trajectory. Distance from each voxel to trajectory in panels c)-d) is measured

at a constant moment in time (i.e. horizontally) and is calculated as 2-D distance. Panel d) shows the Brownian bridges version of the stacked 3-D kernel,

where the width of the kernel at each moment in time depends on the position on the trajectory between each two consecutive points.
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clustering of the sequences of gaze trajectories based on

some distance metric. Many of these metrics are based on

string metrics such as the Levenshtein distance [199],

which measures the difference between two words

(sequences of characters) based on how many single-

character edits (insertions, deletions, substitutions) are

needed to convert one sequence into another. In [197] the

Levenshtein distance is used to compare and cluster gaze

trajectories represented as a string of subsequently viewed

areas of interest.

A comprehensive overview of spatio-temporal visual

analytics for movement is given by [146,147].

Conclusions

Interdisciplinary collaborations such as the ones fostered

in MOVE and described in this paper are reducing

boundaries between disciplines that are interested in

movement. To conclude, we propose as set of challenges

that will be important to address in continued interdis-

ciplinary collaborations between animal ecologists and

Figure 9 (after [190]. Stacked space-time density of animal trajectories. a) Space-time cube representation of one month of trajectories of one

individual bird. The x-y plane represents geographic space and the z-axis is time (0-24 hrs). b) Brownian stacked space-time density of the

trajectories from the space-time cube. c) Gaussian stacked space-time density of the same data and d) isosurface of the highest values in the

Gaussian density, indicating a temporal column and a space-time hotspot.
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ICT researchers. We identified five challenges, three

based on specific themes in movement research and two

more general ones, linked to characteristics of disparate

scientific communities interested in movement.

Challenge 1: Navigation

An important topic in animal movement analysis is the

question of navigation, specifically long-distance animal

navigation [48]. How do animals navigate in their migra-

tion? Some species (terrestrial birds) may exhibit genetic-

ally or culturally inherited patterns, others (pelagic birds)

do not, and other as yet unexplained mechanisms seem to

account for their migratory navigation control [50]. Yet

other species may rely on map related cues and relation-

ships between celestial and magnetic compass for their

orientation [48]. Long-term tracking can assist investiga-

tions into navigation and migration mechanisms, but this

has to be combined with behavioural experiments and

exploration of internal mechanisms, such as sensory per-

ception, neurobiological state and genetic characteristics

of migrant animals. Identifying spatial principles of long-

distance animal navigation from such a complex set of

sources will require interdisciplinary collaborations of the

type that MOVE has shown, but on a broader scale with

inclusion of biology, genetics and neuroscience. It will also

require simulation methods to efficiently generate null

model trajectories for long-haul displacements [200].

Challenge 2: Spatio-temporal dependency and

heterogeneity

Movement trajectories are a special type of spatio-temporal

data, that is, data with specific geographic and temporal

location. Since recorded positions in a trajectory are not

random, but are generated by continuous movement, the

points in a trajectory are highly correlated in both space

and time [5,201]. Indeed, the higher the temporal frequency

of collection, the higher the correlation. This property is

called the spatio-temporal dependency or the spatio-

temporal autocorrelation and is a well-known issue in

GIScience and spatial statistics [98,202-204]. A recent

movement ecology study [205] incorporates geostatistical

semivariogram modelling into movement analysis and an-

other recent GIScience study incorporated spatial statistics

measures (Getis-Ord Gi* statistic) with kernel density

Figure 10 Eye tracking data shown in the visual analytics tool ISeeCube [183,197] with multiple linked views. The data shows gaze

information from multiple participants watching the same video [189]. The visual workspace is separated into several regions that can be freely

adjusted by the user. Region a) displays the scanpaths of selected participants in an STC (coloured lines), along with clustered gaze point data

(coloured regions on the two grey walls). The STC also contains a snapshot of the video at a time frame that can be adjusted by the user. At the

top-left of region a), the same video replay is shown with two areas of interest marked by blue boxes (person and kite). Region b) provides a

hierarchical clustering of the trajectories according to the similarity of their distribution of attention to areas of interest. Region c) shows the detailed

information of one of the areas of interest (kite), including overall distribution of attention, as well as size and position of the area over time.
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estimation and spatial data mining to identify periodicity

patterns in migration trajectories of Arctic Barnacle Goose

[206]. However, these are just first attempts and movement

ecology could benefit from other developments in spatial

and spatio-temporal statistics.

The second well-known property of spatio-temporal

data is spatio-temporal heterogeneity or the property of

geographical processes to vary over space and time [98].

Global statistical models used on spatial data often average

characteristics from each location into descriptors that are

valid over the entire area, but in fact are not valid any-

where. To address this, spatial statistics uses various local

models, such as geographically and temporally weighted

methods [203,204] to disaggregate descriptions of pro-

cesses to individual locations in space and/or time. In

ecology, an analogous problem is the distinction between

modelling of movement at the population and individual

levels [111] and exploration of local modelling could per-

haps help address this problem in alternative ways.

Challenge 3: Human movement behaviour vs. animal

movement behaviour

Recently, a number of studies in computer science focused

on identification of human movement behaviour patterns

from GPS trajectories. These studies look at identification

of significant places (i.e. locations which play an important

role in the activities of a user) [207-209], classification of

human behaviour in these places [210,211] and analysis of

spatial interactions between significant places identified

from trajectories [212]. In addition to this, new tracking

technologies for observation of human movement have

been deployed as alternatives to GPS technology: an ex-

ample are short range wireless technologies such as Blue-

tooth [213-216] and wireless networks [217].

The deployment of wireless sensors is a relatively new

avenue in biologging sciences, with an ever increasing

number of wildlife studies using them as ‘proximity sen-

sors’ [218-221]. An interesting problem is therefore the

question if and how much are human-centric movement

methods and technologies transferrable into the animal-

tracking context. For example, Bluetooth experiments

generate a data set of flows between sensor locations;

the animal-tracking analogue could be flows between

most-visited places in a home range, which can be de-

tected by deployment of wireless sensors on animals and

in the environment [219]. Alternatively, methods for hu-

man significant places could be used for identification of

animal significant places and the movement between

these further investigated with human-behaviour related

methods, such as spatial interaction.

Challenge 4: Statistics vs. exploratory data analysis

Ecology as a field is geared towards a hypothesis-driven

approach that seeks confirmation through statistical

testing. Indeed, most methodological questions on the re-

cent list of one hundred fundamental ecological questions

[2] are of a statistical nature. The information sciences are

at the other side of the spectrum, geared towards explora-

tory data analysis, data-driven methods, data mining, visu-

alisation and visual analytics. These perspectives are

complementary and can enhance each other, but the chal-

lenge is how to best communicate and inform and learn

from each other in achieving the goal: developing new

methodologies for the analysis of large and complex new

ecological movement data. One of the areas that could

contribute to this challenge is visual analytics, where the

links between exploration/visualisation and statistical

methods are already being developed [222,223].

Challenge 5: Publication and dissemination

Interdisciplinary collaborations face the challenge of dis-

ciplinary differences in how results are published and dis-

seminated in each discipline, as is well-illustrated by the

vast variety of the publication venues in our literature list.

In MOVE, animal ecologists paired up with researchers

from GIScience and computer science, such as specialists

in computational geometry, data mining, spatio-temporal

databases, or visualisation. These disciplines and subdisci-

plines all have their specific cultures in how results are

published and disseminated and target specific venues.

A challenge for interdisciplinary teams is therefore how

to decide upon the best target for their work: should their

work find place in a technical journal or a domain specific

journal in order to reach the broadest possible audience?

With increased availability of electronic sources, search

engines are likely to return results from all sources, and

hence findability is not an issue anymore. Perhaps more

challenging is the culture of scientific recognition of publi-

cations, which differs widely between different disciplines.

We support a holistic approach by disseminating interdis-

ciplinary results as widely as possible and in all relevant

communities. For this, information scientists could be en-

couraged to explore new possibilities and publish their

novel methods in outlets of the target domain science, in

this case movement ecology. Many of these methods have

been developed for a purpose, and the ICT researchers

have been able to benefit in the interdisciplinary collabora-

tions from the data and expert knowledge contributed by

the domain specialists. On the other hand, ecologists

should be encouraged to collaboratively publish in ICT

venues and follow these in order to benefit from the state-

of-the-art in movement analysis in technical disciplines.

This paper offers a useful list of ICT sources that are less

familiar to ecologists, but worth exploring.

The above are some of the challenges that interdisciplin-

ary collaborations in movement ecology may be facing. Of

course, there are more challenges, particularly regarding

technical issues or priorities of the research agenda. Some
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of these have already been addressed in the review of this

paper. Challenges for the research agenda in movement

research have also been sketched out in other initiatives

that took place within the MOVE network, such as [224],

who defined a research agenda focusing on the implica-

tions of working with real movement data, or [225] who

defined the grand challenges of computational movement

analysis. With new developments in tracking and other

sensor technology, movement research is entering a

golden age, with many more opportunities than challenges

lying ahead. We believe that working across disciplines

will allow researchers to address more and more ambi-

tious questions about movement and we trust that MOVE

has demonstrated this in a first attempt to raise interdis-

ciplinary awareness. Further, we believe that interdisciplin-

arity can spark and foster unusual, innovative and exciting

new ideas for movement research that no single discipline

can produce on its own. We have experienced this within

the MOVE network, as we hope this review demonstrates.

We therefore also hope that the paper will achieve its goal

of serving as a catalyst for further interdisciplinary collab-

orations in movement research.
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