
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Analysis of Edge-Optimized Deep
Learning Classifiers for Radar-based
Gesture Recognition

MATEUSZ CHMURSKI12, MARIUSZ ZUBERT2, (MEMBER, IEEE), KAY BIERZYNSKI1, AVIK

SANTRA1, (Senior Member, IEEE)
1
Infineon Technologies AG, 85579 Neubiberg, Germany

2
Lodz University of Technology, 90924 Lodz, Poland

Corresponding author: Mateusz Chmurski (e-mail: Mateusz.Chmurski@infineon.com).

This work has received funding from the Electronic Components and Systems for European Leadership Joint Undertaking under grant

agreement No 826655 (Tempo). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation

programme and Belgium, France, Germany, Switzerland, Netherlands. The publication has been funded by the internal university grant of

the Lodz University of Technology.

ABSTRACT The increasing significance of technology in daily lives led to the need for the development of

convenient methods of human-computer interaction (HCI). Given that the existing HCI approaches exhibit

various limitations, hand gesture recognition-based HCI may serve as a more intuitive mode of human-

machine interaction in many situations. In addition, the system has to be deployable on low-power devices

for applicability in broadly defined Internet of Things (IoT) and smart home solutions. Recent advances

exhibit the potential of deep learning models for gesture classification, whereas they are still limited to

high-performance hardware. Embedded neural network accelerators are constrained in terms of available

memory, central processing unit (CPU) clock speed, graphics processing unit (GPU) performance, and a

number of supported operations. The aforementioned problems are addressed in this paper by namely two

approaches - simplifying the signal processing pipeline to avoid recurrent structures and efficient topological

design. This paper employs an intuitive scheme allowing for the generation of the data in the compressed

form from the sequence of range-Doppler images (RDI). Thus, it allows for the design of a neural classifier

avoiding the usage of recurrent layers. The proposed framework has been optimized for Intel® Neural

Compute Stick 2 (Intel® NCS 2), at the same time achieving promising classification accuracy of 97.57%.

To confirm the robustness of the proposed algorithm, five independent persons have been involved in the

algorithm testing process.

INDEX TERMS Accelerator, Data Augmentation, Edge Computing, FMCW, Gesture Recognition, Neural

Networks, DNNs, Optimization, Radar, Intel NCS2

I. INTRODUCTION

Currently, artificial intelligence (AI) has led to rise in smart

sensors and devices in the market [1]. It is leveraged in

big data to Internet of Things (IoT) devices to smart homes

to autonomous cars [2]. This growth is manifested in their

increasing performance in pattern recognition tasks. DNNs

and their varieties, namely, convolutional neural networks

(CNNs), Recurrent Neural Networks (RNNs), Generative

Adversarial Networks (GANs) [3], are becoming the most

important methods in pattern recognition problems. Deep

Learning methods have made distinct breakthroughs in a

broad spectrum of fields, including computer vision, speech

recognition, natural language processing, medical diagnosis,

and board games [3]–[5].

In the last few years, researches carried out by numerous

teams in R&D centers have led to the remarkable develop-

ment of architectures such as AlexNet [6], VGGNet [7], and

ResNet [8], which can learn a deep representation of the data

and have become one of the most popular architectures in the

field of computer vision. Recent advances in deep learning

are the driving force for further research heading towards op-

timizing those solutions and deployment on the edge devices.

According to Ericsson [4], 45.00% of the global internet

congestion will be generated by IoT devices, which confirms

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

the need for thorough research in this direction.

Neural network optimization, including both architectural

design and post training optimization, gives the developers

the possibility to convert a very complex deep learning

model into a streamlined implementation [9]. Architectural

optimization in mobile deep learning models are based on

the replacement of traditional convolutions with depthwise

separable convolutions, squeezing the output channels of the

network using 1x1 convolution [10], or splitting up the chan-

nels into groups and applying a depthwise convolution with

a different kernel size to each group [10]. Such architectural

optimizations are part of several renowned architectures such

as MobileNetV1 [10], SqueezeNet [11], MixNet [12], and

GoogleLeNet [13], [14]. Other approaches involve hyperpa-

rameter configuration and automatic architecture search [15],

[16]. Post-training quantizations involve network pruning,

quantizations, format optimization [17], [18]. Furthermore,

another challenge is the choice of appropriate optimization

strategy that highly depends on the data characteristics. In

this regard, system optimization gives the developers the

capacity to tune the system for the best system performance

[19], [20].

The main idea behind the notion of edge computing is

pushing the computational and communication resources

from the cloud to the edge of networks to perform com-

putations [3], [4], [21], [22], thereby avoiding unnecessary

communication latencies, providing a privacy protection ca-

pability, and enabling faster response for the end-users [3],

[4], [21], [22]. Thus, the necessity to optimize neural network

models for such edge devices is of fundamental significance

towards the improvement of an overall system performance.

The typical machine learning pipeline consists of the fol-

lowing steps: data collection, model training, and inference

[23], [24]. For resource constrained embedded devices, an

important aspect to be considered is an appropriate data

processing, which allows for a low-dimensional represen-

tation of the data [25]. Low-dimensional data allows for

the design of the less computationally complex algorithm.

During the prototyping of the intelligent systems, one of the

major concerns in designing a robust system is the amount

of available data [26], [27]. It is unfeasible for the system

designer to provide a huge source of data to train the system

that does not overfit. For that reason, to avoid this problem,

it is necessary to use data augmentation to increase the

number of training examples [26], [27]. However, the data

augmentation is very application-specific. For instance, the

same data augmentation applied to images does not fit the

model training for radar images or medical images.

The next steps in model generation are model training and

optimization, where optimization involves appropriate hyper-

parameters tuning that lead to the best results [28]. Once a

model is finalized, the model is deployed for inference on

the edge device. Post-training optimization involves weight

quantizations, node fusions, and network pruning for opti-

mized performance for the specific embedded deployment.

Gesture sensing technology is one of the most intuitive and

common approaches in the field of human-computer inter-

action (HCI) giving computers the possibility to understand

human gestures and analyze human intentions [29]–[31].

Recent advances in this field are mainly vision-based

products, (i.e., they use camera sensors, e.g., RGB and ToF)

[29]–[31]. These systems are mainly based on analyzing

the spatially-temporal relations between consecutive frames

using CNN3D and long short-term memory (LSTM) [32],

[33]. The analysis of consecutive frames is a computationally

complex task which can not be implemented on resource-

constrained devices such as contemporary neural network

accelerators [34]–[38]. In the era of continuously increasing

privacy needs, personal data protection, and the popularity of

energy-efficient solutions, the development of algorithms that

can be deployed on the edge of the network is a significant

challenge [5], [22]. Therefore, the main focus of this paper is

placed on the design of an intuitive signal processing scheme

allowing for optimization and deployment of deep learning

gesture classifier on the edge.

In this work, we propose an optimized deep learning model

on the edge computing platform. First of all, to create the

dataset, we collect data from the BGT60TR13C FMCW radar

sensor [39]. The samples are assigned to a corresponding

label, and a sophisticated preprocessing scheme is applied to

raw radar signal, which allows for avoidance of computation-

ally complex neural network operators [38]. Secondly, the

dedicated deep learning topology is trained on the collected

data and compared with state-of-the-art topologies [40]. In

order to find the model with the best hyperparameters, the 5-

fold cross-validation has been applied. Thirdly, the dedicated

CNN layers pruning is applied [21], [41], the model is

fine-tuned and tested. The pruned models are deployed on

Rasperry Pi4 with Intel® NCS 2 to enable the decentralized

and embedded application. The dataset has four gestures:

up-down, down-up, left-right, rubbing. In order to prevent

our system from overfitting effect, the sophisticated data

augmentation scheme is applied during training. The model

is trained using CPU optimization and hyperparameter tun-

ing. Keras [42] with Tensorflow [18] backend is used as

a framework for model design and training. The dedicated

topology is proposed and benchmarked against topologies

utilized in embedded application deployment. The Model

Optimizer (MO) [43] is utilized to tune the model and deploy

it on the edge device.

The main contributions of this paper are as follows:

1) The implementation of proof-of-concept edge-efficient

gesture recognition radar system.1

2) Design of the data preprocessing, enabling the avoid-

ance of application ineffective deep learning operators.

3) Rigorous comparison among topologies for edge ges-

ture recognition solution.

4) Family of the deep neural classifiers optimized for the

deployment on the NCS 2.

1Demonstration video: https://youtu.be/TrDcmcVKpiY.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

II. RELATED WORKS

Lien et al. [44] has taken the initial steps in exploring

the radar as a new sensing modality in the field of ges-

ture recognition, proposing the whole gesture recognition

pipeline (i.e., data collection, digital signal pre-processing,

signal transformations, feature extraction and training the

classifier). They have chosen the low-dimensional features to

implement possibly streamlined gesture sensing system. The

extracted features have been used as an input for the Random

Forest Classifier. The developed solution has been tested on

two energy efficient platforms such as Raspberry Pi2 running

at 900 MHz and the Qualcomm Snapdragon 400 (APQ8028)

running at 1.6 GHz.

Molchanov et al. [45] has proposed the gesture sensing

system based on the radar. They have developed the signal

processing methodology, which allowed them to generate

the range-Doppler maps (RDMs) and estimate the angle

information. The angle information has been used for the

calibration of the radar with the Time-of-Flight (ToF) camera.

The result of this work has been part of the larger multi-

sensor system, which included an RGB camera and a depth

sensor [46]. They developed the multi-sensor gesture sensing

system for automotive applications basing their solution on

the CNN3D classifier. They achieved satisfactory classifica-

tion results, however their solution is undeployable on the

edge device, such as NCS 2, due to lack of support for

CNN3D.

Hazra et al. [47], [48] proposed a radar gesture sensing

system based on Long Recurrent All Convolutional Neural

Network (LRACN) making use of time-distributed layer

wrapper, which applies the same set of convolutional layers

to each input time step. The extracted feature vector is passed

to an LSTM layer for temporal feature modeling in the

next phase. They show in their results, satisfying recognition

accuracy 94.0%; however, the proposed algorithm is not de-

ployable on resource-constrained devices (i.e., NCS 2, Edge

TPU). The inference time is 1.0 s, which prevents it from

providing a real-time interactive experience.

Zhang et al. [33] suggested an alternative solution. Their

approach relies on the utilization of CNN3D with LSTM.

They use CNN3D for short spatial-temporal modeling and

LSTM for global temporal feature extraction.

Their results exhibit a satisfying average recognition capa-

bility of 94.00%. However, this classifier utilizes the opera-

tions, which significantly increase the memory footprint, and

resource-constrained devices (i.e., NCS 2, Edge TPU) do not

support them [38].

Hazra et al. [32], [48] suggested the classifier based on

CNN3D feature embedding. This work essentially proposes

the use of CNN3D with triplet loss for learning the embedded

feature vectors, which are subsequently utilized by kNN (k-

Nearest Neighbours) algorithm for classification. This ap-

proach exhibits similar limitations to the mentioned above.

Ahmed et al. [49] propose a hand gesture recognition sys-

tem using an IR-UWB radar with an inception module based

classifier. In this work, they implement a neural network

classifier with nine 3D inception modules. The results of

this research outperform state-of-the-art solutions. The com-

plicated signal processing scheme results in high resource

consumption, and it imposes the utilization of operations not

supported by the OpenVINO framework [38].

III. BACKGROUND REVIEW

This section presents the used tools, optimizations for edge

deployment, and model assessment methods. The next sub-

sections discuss each of the components in more detail.

A. DEEP LEARNING FRAMEWORK

Keras [42] with TensorFlow [18] backend is used as a base-

line framework for the design of our classifier. It is an open-

source tool that supports fast prototyping with numerous

auxiliary tools for efficient model analysis. In this work, we

use the dedicated version of TensorFlow for Intel proces-

sors [50], which is built on top of the Intel® Math Kernel

Library for Deep Neural Network (Intel® MKL-DNN) [51].

Furthermore, TensorFlow can be efficiently deployed on a

wide range of devices such as CPUs, GPUs, and low-power

devices with minimum effort.

B. TOPOLOGY DESIGN AND OPTIMIZATIONS

There are several aspects to be considered designing

the topology, which must be deployable on a resource-

constrained device, i.e., training time, model size, memory

footprint during model execution, accuracy, the instruction

set of the target device, and inference time. Those limitations

generate the topology design problem, which must be taken

into account during experimentations and system deploy-

ment. InceptionV1 and MobileNetV1 are the topologies sup-

ported by the edge device used in this work (i.e., Intel® NCS

2). This paper proposes a family of custom deep learning

classifiers, which have been designed and optimized for the

embedded deployment and benchmarked against baseline

classifiers.

The number of trainable parameters is critical for resource-

constrained devices and needs to be carefully optimized.

While a shallow neural network leads to underfitting, a

deeper neural network with a large number of trainable

parameters can lead to overfitting and poor generalization if

enough training data are not available. An optimized embed-

ded system design needs to account for both accuracy and

smaller memory footprint.

C. MODEL ANALYSIS

This section lists the classification metrics used in this work

for the assessment of the model performance.

• Precision. This metrics is defined in the following

way:

P =
TP

TP + FP
(1)

where: P is a Precision, TP is the number of true

positives, and FP is the number of false positives.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

Precision is the measure of the ability to label the

sample as truly positive. The worst value is 0, and the

best is 1.

• Recall. This metrics is defined in the following way:

R =
TP

TP + FN
(2)

where: R is a Recall, TP is the number of true posi-

tives, and FN is the number of false negatives. Recall is

the measure of what percentage of the positive samples

is correctly classified. The worst value is 0, and the best

is 1.

• F1 score. This metrics is described with the following

equation:

F1 =
2(P ×R)

P +R
(3)

where: F1 is an F1 score, P is the precision, and

R is the recall. Intuitively, this is the combination of

precision and recall in a single number. The F1 score
is the number between 0 and 1, which is a harmonic

mean of precision and recall.

IV. SYSTEM DESCRIPTION AND IMPLEMENTATION

This section considers system components and implemen-

tation details (i.e., hardware details, operating parameters,

experimental setup, proposed signal processing, data aug-

mentation and gesture vocabulary).

A. RADAR

The radar used in this work is the BGT60TR13C frequency

modulated continuous wave (FMCW) radar sensor manufac-

tured by Infineon Technologies AG with a center frequency of

60.0 GHz. The BGT60TR13C is a low-cost, low-power, and

high-resolution solution. Fig. 1 depicts the radar board. Fig.

2 presents the block diagram of radar sensor. Radar chip is

equipped with three receive channels RX, and one transmit

channel TX. The core functionality of BGT60TR13C is to

transmit the FMCW signal via the TX channel and receive

the echo signals from the target object via one of the three RX

channels. Both transmitted and received signals are mixed

and passed to a baseband chain and an analog to digital

converter (ADC) with 12 bits resolution and up to 4 MSps

sampling rate. Each baseband chain consists of a high pass

filter, a voltage gain amplifier (VGA), and antialiasing filters.

The digitized signal is stored in a FIFO buffer. The data is

transferred to an external host for further signal processing.

FIGURE 1. BGT60TR13C Radar Board [39]

FIGURE 2. BGT60TR13C Radar Sensor Block Diagram [39]

B. RADAR SIGNAL MODEL

A transmitted FMCW waveform can be expressed in the

following form [52]:

sT (t) = AT cos

(

2πfct+ 2π

∫ t

0

fT (τ) dτ

)

(4)

where fT = B
T
· τ is the transmit frequency as a linear func-

tion of time, fc is the carrier frequency, B is the bandwidth,

AT is the transmitted signal amplitude, and T is the time

duration.

Reflected signal is received with the following time delay td:

td = 2 ·
R0 + vt

c
(5)

with the Doppler shift:

fD = −2 ·
fcv

c
(6)

The receive frequency can be formulated as follows [52]:

fR(t) =
B

Tc

(t− td) + fD (7)

where R0 is the range at t = 0, v is the target velocity, and c
is the speed of light.

The received signal can be described as follows [52]:

sR(t) = AR cos

(

2πfc(t− td) + 2π

∫ t

0

fR(τ) dτ

)

(8)

where AR is the received signal amplitude. An intermediate

frequency (IF) signal is generated as a result of mixing the

received signal and the transmitted signal. The IF signal is

forwarded to the low-pass filter and it is expressed with the

following formula [52]:

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

sIF (t) =
1

2
cos

(

2π

(

fc ·
2R0

c

)

+ 2π

(

2R0

c
·
B

T
+

2fcv

c

)

t

) (9)

C. RADAR OPERATING PARAMETERS

The BGT60TR13C operates in the 60 GHz unlicensed band

and it provides a resolution in centimeters. This feature

makes this device suitable for the hand gesture recognition

application. Since BGT60TR13C is operating in the V-band

and it is transmitting signal of up to 6 GHz (57 GHz - 63

GHz) bandwidth, thereby it may provide a range resolution

∆r of 2.5 cm and a Doppler resolution ∆v of about 122 cm/s.

∆r and ∆v can be calculated using the following equations:

∆r =
c

2B
= 2.5 cm (10)

∆v =
c

2fc
·

1

ncTc

= 122 cm/s (11)

where c is the speed of light, approximately 3×108 m/s, and

fc is the center frequency between 57 and 63 GHz, which is

set to 60 GHz. Accordingly, B is the bandwidth of the chirp

signal and it is calculated as 6 GHz. Tc is the chirp duration,

nc is the number of repeatedly transmitted chirp signals, and

they are set to 37 µs and 64, respectively. In our application,

the BGT60TR13C sends a periodic chirp signal through a

transmitting antenna, and it receives a signal reflected from

an object using one receiving antenna. The transmitted chirp

signal is frequency modulated by a sawtooth wave function

and the time delay τ and the Doppler shift fD occur between

the transmitted signal and the received signal, as shown

in Fig. 3. The blue and red line in Fig. 3 represent the

transmitted signal and reflected signal, respectively. In this

work, the chirp signal consists of 32 samples. The frame

frequency is configured to 10 Hz. The time delay τ is caused

by the distance between the radar and the object reflecting

the signal, the Doppler shift fD is caused by the movement

of the object relative to radar.

F
re

q
u

e
n

cy

B = 6 GHz

t

Time

32 samples

1 RX channel

….1 2 64

Tc = 37 μs

FIGURE 3. FMCW Waveform in the Frequency Domain

D. EXPERIMENTAL SETUP

The experimental setup consists of BGT60TR13C radar sen-

sor, 3D-printed case which is fixed to the camera tripod,

Raspberry Pi4 and NCS 2. Fig. 4 presents the experimental

setup.

(a) Raspberry Pi4 with

NCS 2

(b) Tripod with the

case and Radar Sensor

(c) Experimental Setup

FIGURE 4. Experimental Setup

E. RADAR SIGNAL PROCESSING

The radar signal is processed in multiple steps. First, the

intermediate frequency signal sIF (t) corresponding to time

within a chirp, also referred to as fast time, is brought to

zero by subtracting the mean value of the chirp from each

of the samples. Then, the raw intermediate frequency signal

is multiplied with the Hann window function. The range rt
of the target in front of the radar is computed with the first

order fast Fourier transform (FFT) along the fast time with

an FFT size of 128, from which the positive part is taken.

Next, in order to resolve the signal in velocity vt, the result of

first order FFT is multiplied with the Hann function along the

slow time direction, and the second order FFT is calculated

with an FFT size of 64 along the slow time direction, forming

the range-Doppler image (RDI) with 64 x 64 dimensions. In

order to increase the signal to noise ratio, the absolute value

of RDI is smoothened with wiener and median filter. Then

to remove ghost targets, RDI is thresholded with OS-CFAR

in both directions. Fig. 5 and 6 illustrate detailed and general

signal processing workflow, respectively.

sIF(t)
Window function

along fast time

1D FFT along

fast time

Window function

along slow time

1D FFT along

slow time

Set of RDIs

2D Median

filter

1D OS-CFAR

along Doppler

1D OS-CFAR

along range

Absolute

value

Mean

subtraction

2D Wiener

filter

FIGURE 5. Detailed Signal Processing Workflow

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

Range

D
o

p
p

le
r

Range

D
o

p
p

le
r

Range

D
o

p
p

le
r

Range

D
o

p
p

le
r

Range

D
o

p
p

le
r

Range

D
o

p
p

le
r

Range

S
lo

w
 T

im
e

Range

S
lo

w
 T

im
e

Fast Time

S
lo

w
 T

im
e

Fast Time

S
lo

w
 T

im
e

Projection of RDIs into

2D image

(a) (b) (c)

d)

(e)(f)

FIGURE 6. Signal Processing Workflow

In this work, we introduce an approach allowing for the

transformation of the data from a high-dimensional space

into a low-dimensional space and the formation of the range-

time dependency map. Derived RDIs make up the volume

SR ∈ R
t×x×y×f where t ≥ 1. Each timestep stores an RDI

denoted by Φ ∈ R
x×y×f , where x×y are range and Doppler

dimensions and f is the number of feature channels, which is

in our case 1, as only one RX channel is used. A single RDI

is a matrix of dimensions m × n, where x ∈ {1, ..,m} and

y ∈ {1, .., n}.

Φm,n =











a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn











We have to find an index (i, j) of the largest element amax
i,j

in the matrix, denoting I = {1, ...,m} and J = {1, ..., n} as

sets of row and column indices. There is an index i, j, ∃i ∈ I
and ∃j ∈ J such that aij is the maximum element of the

matrix. The next phase is slicing the Ct
1×n vector represent-

ing the distance of the object in the given time step of the

gesture. Subseqently, the Ct
1×n vector is transposed Ct

1×n
T

and concatenated with the subsequent time slices forming

range-time plot. The steps of the projection algorithm are

depicted in Fig. 7. As it is illustrated in Fig. 7, the projection

algorithm produces the unique 2D gesture signature, which

can be used for training ML classifier.

...

TransposeTranspose ... Stack Stack

Projected 2D
Radar Image

Set of RDIs

FIGURE 7. Projection of the extracted RDIs into 2D Radar Image

F. THE GESTURE VOCABULARY

The system defines four gestures: Up-down, Down-up, Left-

right, Rubbing

• Up-down

• Down-up

• Left-right

• Rubbing

The training samples were collected in different environ-

ments by five different individuals to ensure the maximum

variance of the dataset. Each sample represents unique ges-

ture signature, which is used for training. The examples of

the gesture signatures are depicted in the Fig. 8.

(a) Down-up(a) Down-up (b) Up-down(b) Up-down (c) Left-right(c) Left-right (d) Rubbing(d) Rubbing

FIGURE 8. Exemplary Data Samples

G. DATA AUGMENTATION

To increase the number of training samples and handle the

imbalance of the dataset, we have applied data augmentation

techniques allowing to avoid the overfitting and increase

the overall performance of the model. To generate one

augmented sample, we iterate over the whole dataset and

randomly choose one of the techniques mentioned below, i.e.,

one data augmentation procedure generates one augmented

sample. We apply randomly the following procedures:

• Random shifting of the 2D Radar Images:

2D Radar image is shifted randomly in the time and

range dimension (±0.05x, ±0.1y). The empty space is

filled with zeros.

• Zeroing out regions:

Random selection of square area (patch) in the 2D Radar

Image, which is filled with zeros. Patch sizes are from

one pixel up to a square of 5 x 5 pixels.

• Adding constants to the sequence:

To reduce the impact of numerical values, a random

integer with a value up to 10% of the maximum pixel

value is added to the 2D Radar Image.

The examples of augmented samples are illustrated in Fig. 9.

(b) Up-down(a) Down-up (c) Left-right (d) Rubbing

FIGURE 9. Augmented examples

V. TOPOLOGY AND EMBEDDED OPTIMIZATION

This section discusses the proposed topology and the em-

bedded optimization. First of all, we present the details of

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

the training environment, which has been used for the model

optimization and training. Secondly, we show the details of

the training procedure. Thirdly, we present the details of the

proposed topology and the design challenges, which have

to be met with regards to the model optimizer. Finally, we

present the optimization workflow, which has been done on

the x86 platform.

A. TRAINING ENVIRONMENT

The training environment of the system is shown in Fig.

10. The computational farm is based on Red Hat Enter-

prise Linux Server 7.7, twenty seven Intel® Xeon processors

with 503 GB RAM memory. The system utilizes Python

programming language with the TensorFlow version [53]

dedicated for Intel processors based on Intel® MKL-DNN

library, which replaces the default Eigen kernels by MKL

kernels, optimizes default TensorFlow operations, and offers

graph fusion capabilities for faster graph computation.

ModelModelDataData

FIGURE 10. Training Environment

B. TRAINING PROCEDURE

Fig. 11 shows the steps to train the model. The first step

is the data collection. The second step is a choice of one

of the supported frameworks to build the model according

to MO requirements. In the next step, model is trained and

optimized. Then the system retrains the model and generates

intermediate representation (IR) in the form of .bin and .xml

files.

Choose One of the

Supported

Frameworks

Generate IR Model

Train Model
Design Topology

Supported by MO

Hyperparameters

Tuning
Retraining Model Pruning

Collect Data

FIGURE 11. Training steps

C. PROPOSED TOPOLOGY

To meet the requirements related to the set of operations

supported by the NCS 2. We had to design possibly stream-

lined topology, avoiding the utilization of such operations as

LSTM, TimeDistributed, CNN3D and RNN. Table 1 outlines

the set of operations supported by the neural network accel-

erator used in this project. We can distinguish between three

groups of support. Full support, not supported and partially

supported. In this case, Batch Normalization is partially

supported due to lack of the capability of the MO to fuse the

Batch Normalization and CNN2D into one operation, what is

manifested in the bigger model size.

TABLE 1. Model Requirements for NCS 2. 3D: CNN3D, BN: Batch

Normalization, 2D: CNN2D, TS: Time Distributed. Symbols: FS - fully

supported, NO - not supported, PS - partially supported

RNN LSTM 3D BN DropOut 2D TS

NCS2 NO NO NO PS FS FS NO

The proposed topology is depicted in the Fig. 12. The

model is comprised of six convolutional layers extracting

the visual features. All convolutional layers are followed by

ReLu activation and MaxPooling2D to decrease the dimen-

sionality of the data. To make our classifier more robust

and prevent it from the overfitting effect, we have applied

the dropout after the first two convolutions and before the

classification layer. The first convolution utilizes kernel size

7x7 with stride 1 to increase field of view of the kernel and

extract the most significant features, the next four convolu-

tional layers make use of the kernel size 3x3 and stride 1.

The successive convolutional layers increase the number of

filters, however the last convolution uses 1x1 kernel size to

decrease the dimensionality. The activation function of the

classification layer is the softmax. The overall number of

parameters is 386614.

64

3
2

conv1

pool1

32

1
6

dropout1
1
6

relu2

pool2
1
6

dropout2

78

conv3
1
6

relu3

pool3

128

8conv4

4pool4

64

2
5
6

flatten

4
64

64

32

96

8

8

8

128

4
4

2 2

78

relu1

16

96

132

pool5

132
2

relu5conv5

3
2

16 4 2

1

conv2

relu4
conv6relu6pool6

SoftMax

FIGURE 12. Proposed topology

D. SYSTEM WORKFLOW

Fig. 13 presents the system workflow diagram consisting of

two stages. The first stage is localized in the cloud, it includes

data acquisition and labelling process, followed by the data

preprocessing. The preprocessed data have been augmented

to increase the number of the training samples. In the next

step, the model is trained and optimized for the NCS 2. Dur-

ing the training process, we use the ADAM optimizer with

the Crossentropy loss function. To optimize and convert the

model, first we prune the selected filters of the classifier, then

we perform the fine tuning and finally we perform the final

conversion with the dedicated optimizations, i.e., weights

quantization. In the second stage, the converted model is

deployed on the edge device and tested.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

FIGURE 13. System Workflow

E. OPTIMIZATIONS

Fig. 14 describes the model optimization environment used

in the system development. The system implements the data

augmentation to increase the number of training samples

and to improve the model performance. The system applies

dedicated MKL-DNN kernels, to speed-up the calculations.

To decrease the number of training parameters, the model

is pruned and its training variables are converted into con-

stants. The freezed models are converted into IR using Intel®

OpenVino Toolkit for inference on the target device. The

detailed optimization workflow is shown in Fig. 14. To prune

the model, we calculate L1 norm of the convolutional filters.

Then, the results are sorted in the ascending order and the

least significant filters are removed.

EDGE DEPLOYMENT

Intel Distribution of Python, Intel Distribution of TensorFlow Built

on a High-performance MKL-DNN Library, Keras wrapper

FREEZING THE MODEL

SavedModel in

the Form of

Computational

Graph

Freezed Model

in the Form of

.PB file

Conversion

Weights to

Constants

MODEL PRUNING

DATASET PREPARATION

Data Gathering, Data Labelling, Data Processing, Data

Augmentation For Radar Signal

DEEP LEARNING MODEL FRAMEWORK

Intel Distribution of Python, Intel Distribution of TensorFlow Built

on a High-performance MKL-DNN Library, Keras wrapper

Inference on the Edge and

Optimization on the Cloud

Freezing the Model

on the Cloud

Pruning

on the Cloud

Training

on the Cloud

Dataset Preparation

on the Cloud

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

Filter 1

Filter 2

Filter 3

Filter 4

Filter 5

FIGURE 14. Optimization Workflow

F. PRUNING DETAILS (NO OPTIMIZATION FOR INTEL®

NCS 2)

According to [54], the filters with smaller kernel weights

produce feature maps with weak activations as compared

to the filters with high activations. To decrease the number

of training parameters, we calculated the L1 norm of each

convolutional filter’s weights. Subsequently, the result of an

L1 norm has been plotted. Basing on those plots, we have

been able to choose the filters with the least value of an

L1 norm, which do not contribute a lot to the network.

Fig. 15 shows an L1 norm of each of filter’s weight. After

experimentations, we have decided to prune the second, third,

fourth and fifth convolutional layer filter. Table 2 shows

the number of convolutional filters in different variants of

the proposed classifier. It can be seen that the number of

convolutional filters is decreased gradually. From the plot,

it can be noticed that the first ten channels do not store any

important information. For that reason, we cut ten filters from

the second, third, fourth and fifth layer. Subsequently, we

pruned 12 filters in the second layer, 15 filters in the third

and fourth layer and 10 filters in the fifth layer. In the next

model, we increased the number of pruned filters to 18 in the

third and fourth layer and to 20 in the fifth layer. In the last

model, we removed 32 filters in fourth and fifth layer.

(a)

(c)

(b)

(d)

(e) (f)

FIGURE 15. L1 norms: a) Conv1 - L1 norm, b) Conv2 - L1 norm, c) Conv3 -

L1 norm, d) Conv4 - L1 norm, e) Conv5 - L1 norm, f) Conv6 - L1 norm

TABLE 2. Pruning summary (no optimization)

No pruning Pruning 1 Pruning 2 Pruning 3 Pruning 4

Conv1 64 64 64 64 64

Conv2 78 68 66 66 66

Conv3 96 86 81 78 78

Conv4 128 118 113 108 96

Conv5 132 122 122 112 100

Conv6 64 64 64 64 64

Model size 4.79 MB 4.42 MB 4.13 MB 3.85 MB 3.56 MB

G. EDGE ENVIRONMENT

On the edge side, the RaspberryPi 4 and NCS 2 are used.

RaspbianOS has been chosen as an operating system. On

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

the software side, the TensorFlow with Keras backend is

used as a base tool for inference. In order to run our model

on the NCS 2, OpenVino package is used as a library for

optimizing the inference process. The BGT60TR13C radar

sensor is applied as device performing the measurements.

The edge environment is illustrated in Fig. 16.

Intermediate

Representation (IR)

+

FIGURE 16. Edge Environment

VI. OPTIMIZATION AND INFERENCE ON THE EDGE

This section introduces the utilities used for model optimiza-

tion. It presents the model types offered by the MO. We also

discuss the inference steps.

A. MODEL OPTIMIZATION FOR THE EDGE

The system utilizes MO to convert the model to IR. MO

removes from the NN graph unnecessary operations, fuses

some of the mathematical operations into one node. In this

project, there are two types of IR model: FPS32 and FPS16.

B. INFERENCE ON THE EDGE

Inference on the Edge creates the topology design problem,

due to lack of support of all layers by the MO and limitations

of hardware resources. For that reason, the data represen-

tation must meet the specific requirements imposed by the

basic NN operations. The inference workflow proceeds as

follows:

1) The core object is created, initialized and, the required

device plugins are loaded, depending on the required

device (e.g., VPU, CPU, GPU, NCS2).

2) The core object instance reads an IR file into the

CNNNetwork object.

3) The input and output data format is set to be compliant

with the NN topology.

4) The model is compiled, configured and loaded into the

host device memory.

5) The inference request is created to allocate the buffers

for the input data.

6) The input data is copied into the input data buffers.

7) The inference mode is selected (i.e., synchronous,

asynchronous) and the inference request is executed.

8) The output of the inference request is read and pro-

cessed.

The list of NN operations is given in the table 1 and the steps

included in the inference process are described in the Fig. 17.

Initialize Core Read Model IR

Create Infer

Request

Load Model
Configure Input

and Output

Prepare InputInferProcess Output

FIGURE 17. Inference steps

VII. EXPERIMENTAL RESULTS

This section discusses the experimental results. First, we

analyse the 5-fold cross-validation which gives us the general

information about model performance. Second, we analyse

the accuracies before and after optimization. Third, we in-

vestigate the relationship between the model size, the ac-

curacy, inference time (i.e., inference time vs model size

and accuracy vs inference time) and load time. Fourth, we

analyse classification report giving the detailed information

about the classification metrics, i.e., accuracy, precision, F1

score, recall (model test classification metrics before and

after optimization). Lastly, we study the end-to-end system

latency for each kind of gesture.

A. 5-FOLD CROSS-VALIDATION

To prove the stability of our classifier, we performed the

5-fold cross-validation. Basing on 5-fold cross-validation,

we are able to determine an average performance of each

model. It can be seen that proposed classifier achieves

significantly better performance than the Inception family

models with an average accuracy of 97.57%. Proposed algo-

rithm achieves comparable performance with MobileNetV1

models. Whereas accuracies of MobileNetV1 for decreasing

values of α parameter are 98.12%, 98.08%, 96.33%, and

90.24%, proposed classifier offers comparable performance

maintaining low number of training parameters, what has

a direct impact on the model size. Classifiers exhibit sim-

ilar behaviour in each fold. The performance of Inception

family networks deteriorates with the decreasing number of

Inception modules. The best performance exhibits Inception

network with three Inception modules achieving an average

accuracy of 88.67%. The average accuracy of Inception

network with one and two inception modules is 74.65%

and 78.39%, respectively. Classifier accuracies and losses for

each k-fold are presented in Fig. 18 and 19.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

1st fold 2nd fold 3rd fold 4th fold 5th fold
Kth fold

0.0

20.0

40.0

60.0

80.0

100.0

A
c
c
 (

%
)

Model

Inception 3 modules

Inception 2 modules

Inception 1 module

MobileNetV1 =1.00

MobileNetV1 =0.75

MobileNetV1 =0.50

MobileNetV1 =0.25

K-fold Cross-Validation

Proposed

FIGURE 18. 5-fold Cross-Validation - accuracy

1st fold 2nd fold 3rd fold 4th fold 5th fold
Kth fold

0.00

0.25

0.50

0.75

1.00

1.25

L
o

s
s

Proposed

Inception 3 modules

Inception 2 modules

Inception 1 module

MobileNetV1 =1.00

MobileNetV1 =0.75

MobileNetV1 =0.50

MobileNetV1 =0.25

K-fold Cross-Validation

Model

FIGURE 19. 5-fold Cross-Validation - loss

B. ACCURACY

Fig. 20-22 present accuracies for the optimized and non-

optimized variants of our classifier. From the plots for non-

optimized as well as optimized versions, it can be seen that

classifiers exhibit the promising tendency together with de-

creasing number of training parameters, i.e., the test accuracy

improves (Proposed topology (x86) - 97.4%, Pruned 1 (x86)

- 98.1%, Pruned 2 (x86) - 98.0%, Pruned 3 (x86) - 97.7%,

Pruned 4 (x86) - 97.6%).

Proposed
topology

(x86)

Pruned 1
(x86)

Pruned 2
(x86)

Pruned 3
(x86)

Pruned 4
(x86)

Model

0

20

40

60

80

100

A
c
c
u

ra
c
y

[%
]

Accuracies (no optimization)

FIGURE 20. Accuracies (no optimization - x86 architecture)

From Fig. 21-22, it can be seen that the test accuracy

in the case of optimized versions attains acceptable trade-

off between classifier performance, model size and inference

time with respect to the non-optimized versions, what has

been depicted in Fig. 23-28. In case of optimized versions,

the tendency is similar, namely the test accuracy slightly

increases in comparison to variant which is not optimized

(i.e., Proposed topology - 98.0%, Pruned 1 - 98.1%, Pruned

2 - 98.0%, Pruned 3 - 97.6%, Pruned 4 - 97.5%).

Proposed
topology
(FPS16)

Pruned 1
(FPS16)

Pruned 2
(FPS16)

Pruned 3
(FPS16)

Pruned 4
(FPS16)

Model

0

20

40

60

80

100

A
c
c
u

ra
c
y

[%
]

Accuracies (FPS16)

FIGURE 21. Accuracies (optimized - FPS16)

Proposed
topology
(FPS32)

Pruned 1
(FPS32)

Pruned 2
(FPS32)

Pruned 3
(FPS32)

Pruned 4
(FPS32)

Model

0

20

40

60

80

100

A
c
c
u

ra
c
y

[%
]

Accuracies (FPS32)

FIGURE 22. Accuracies (optimized - FPS32)

C. DETAILED MODEL PERFORMANCE

Fig. 23-25 presents the plots representing the relation be-

tween inference time and the model size. Green, orange and

pink rectangles group the classifier families. Green corre-

sponds to MobileNetV1, pink to Inception and orange to the

proposed classifier.

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

704.0 MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

1100.0975.0 1120.0 1196.0 1276.0 1520.0 2520.0 2652.0 4132.0 5492.0 9624.0

Size (KB)

In
fe

re
n
c
e
 T

im
e
 (

m
s)

Inference Time vs Model Size (x86)

MobileNetV1 family

Inception family

Proposed

FIGURE 23. Time vs Model Size (x86)

From the plots, we can observe that optimized versions of

the classifiers offer significantly shorter inference times in

comparison with non-optimized versions. FPS32 version of

each model is slightly bigger than the standard size versions,

what is caused by MO, whereas FPS16 versions are much

smaller and they preserve a good performance.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

0.0

10.0

20.0

30.0

40.0

50.0

MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

484.0 513.0 575.0 593.0 623.0 662.0 785.0 1384.0 1392.0 2140.0 2880.0 4944.0

Size (KB)

Inference Time vs Model Size (NCS2 – FPS16)

In
fe

re
n
c
e
 T

im
e
 (

m
s)

MobileNetV1 family

Proposed Inception family

FIGURE 24. Time vs Model Size (FPS16)

0.0

10.0

20.0

30.0

40.0

50.0

MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

812.0 997.0 1124.0 1156.0 1220.0 1300.0 1544.0 2624.0 2700.0 4192.0 5600.0 9732.0
Size (KB)

Inference Time vs Model Size (NCS2 – FPS32)

In
fe

re
n
c
e
 T

im
e
 (

m
s)

MobileNetV1 family

Proposed Inception family

FIGURE 25. Time vs Model Size (FPS32)

Fig. 26-28 represent the dependency between the accuracy

and the inference time. It can be noticed that the proposed

classifier and its derivatives achieve the best trade-off be-

tween accuracy and inference time.

80.0

85.0

90.0

95.0

100.0

36.0 37.0 38.0 39.0 40.0 41.0 46.0 51.0 54.0
Inference Time (ms)

A
c
c
 (

%
)

MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

Accuracy vs Inference Time (x86)

MobileNetV1 family
Proposed

Inception family

FIGURE 26. Accuracy vs Inference Time (x86)

80.0

85.0

90.0

95.0

100.0

2.40 2.54 2.63 2.65 2.66 2.86 2.87 3.02 14.61 27.05 39.77 52.14
Inference Time (ms)

Accuracy vs Inference Time (NCS2 – FPS16)

A
c
c
 (

%
)

MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

Inception family

MobileNetV1 family

Proposed

FIGURE 27. Accuracy vs Inference Time (FPS16)

80.0

85.0

90.0

95.0

100.0

2.54 2.55 2.57 2.68 2.72 2.84 2.88 2.95 14.53 27.11 39.63 52.22
Inference Time (ms)

Accuracy vs Inference Time (NCS2 – FPS32)

A
c
c
 (

%
)

MobileNetV1 =0.25
MobileNetV1 =0.50
MobileNetV1 =0.75
MobileNetV1 =1.00
Inception 1 Module
Inception 2 Modules
Inception 3 Modules
Pruned 4
Pruned 3
Pruned 2
Pruned 1
No pruning

Inception family

MobileNetV1 family

Proposed

FIGURE 28. Accuracy vs Inference Time (FPS32)

Fig. 29-31 represent model loading times. As it can be

seen, loading times in the case of optimized versions are

much shorter than in the case of non-optimized versions.

For the proposed classifier (non-optimized version), loading

times vary from 7.21 s to 8.86 s, what makes them compa-

rable with loading times of MobileNetV1 family models and

Inception family models.

0

2

4

6

8

10
L
o
a
d
 t

im
e

(s
)

No pruning Pruned 1 Pruned 2 Pruned 3 Pruned 4 Inception

3 Modules

Inception

2 Modules

Inception

1 Module

MobileNetV1 = 1.0

MobileNetV1 = 0.75

MobileNetV1 = 0.50

MobileNetV1 = 0.25

Name

Load time (x86)

FIGURE 29. Loading time (x86)

In the case of the optimized versions, loading times exhibit

similar behaviour, however they are much shorter than in the

non-optimized versions.

No pruning Pruned 1 Pruned 2 Pruned 3 Pruned 4 Inception

3 Modules

Inception

2 Modules

Inception

1 Module

MobileNetV1 = 1.0

MobileNetV1 = 0.75

MobileNetV1 = 0.50

MobileNetV1 = 0.25

0

20

40

60

80

100

120

L
o
a
d
 t

im
e

(s
)

Name

Load time (FPS16)

FIGURE 30. Loading time (FPS16)

0

20

40

60

80

100

120

L
o
a
d
 t

im
e

(s
)

No pruning Pruned 1 Pruned 2 Pruned 3 Pruned 4 Inception

3 Modules

Inception

2 Modules

Inception

1 Module

MobileNetV1 = 1.0

MobileNetV1 = 0.75

MobileNetV1 = 0.50

MobileNetV1 = 0.25

Name

Load time (FPS32)

FIGURE 31. Loading time (FPS32)

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

D. CLASSIFICATION REPORT

Tables 3-6 present the classification report representing the

classification metrics (i.e., Accuracy, Precision, Recall and

F1 Score) for each classifier.

TABLE 3. Accuracy - all topologies. N: no pruning, F16: NCS2 FPS16, F32:

NCS2 FPS32, B: NCS2 FPS16/FPS32

Accuracy

Proposed topology (x86) 0.974

Pruned 1 (x86) 0.982

Pruned 2 (x86) 0.980

Pruned 3 (x86) 0.977

Pruned 4 (x86) 0.976

Inception Net
with 1 module (x86) 0.780

Inception Net
with 2 modules (x86) 0.786

Inception Net
with 3 modules (x86) 0.792

MobNetV1 α = 0.25 (x86) 0.916

MobNetV1 α = 0.50 (x86) 0.985

MobNetV1 α = 0.75 (x86) 0.994

MobNetV1 α = 1.00 (x86) 0.993

Proposed topology (NB) 0.980

Pruned 1 (B) 0.981

Pruned 2 (B) 0.980

Pruned 3 (B) 0.976

Pruned 4 (B) 0.975

Inception Net
with 1 module (F16) 0.785

Inception Net
with 1 module (F32) 0.784

Inception Net
with 2 modules (B) 0.785

Inception Net

with 3 modules (B) 0.793

MobNetV1 α = 0.25 (F16) 0.918

MobNetV1 α = 0.25 (F32) 0.917

MobNetV1 α = 0.50 (F16) 0.986

MobNetV1 α = 0.50 (F32) 0.985

MobNetV1 α = 0.75 (B) 0.993

MobNetV1 α = 1.00 (B) 0.993

TABLE 4. Precision - all topologies. N: no pruning, F16: NCS2 FPS16, F32:

NCS2 FPS32, B: NCS2 FPS16/FPS32

down_up left_right rubbing up_down

Proposed topology (x86) 0.973 0.968 0.975 0.980

Pruned 1 (x86) 0.983 0.989 0.976 0.981

Pruned 2 (x86) 0.983 0.989 0.969 0.981

Pruned 3 (x86) 0.983 0.979 0.962 0.985

Pruned 4 (x86) 0.986 0.962 0.969 0.990

Inception Net
with 1 module (x86) 0.927 0.575 0.940 0.000

Inception Net
with 2 modules (x86) 0.939 0.754 0.696 1.000

Inception Net
with 3 modules (x86) 0.890 0.730 0.751 1.000

MobNetV1 α = 0.25 (x86) 0.935 0.982 0.911 0.837

MobNetV1 α = 0.50 (x86) 0.980 0.996 0.986 0.976

MobNetV1 α = 0.75 (x86) 0.997 0.996 0.990 0.995

MobNetV1 α = 1.00 (x86) 0.997 0.996 0.986 0.990

Proposed topology (NB) 0.979 0.986 0.975 0.980

Pruned 1 (B) 0.982 0.989 0.972 0.980

Pruned 2 (B) 0.982 0.989 0.968 0.980

Pruned 3 (B) 0.982 0.978 0.962 0.985

Pruned 4 (B) 0.986 0.962 0.968 0.989

Inception

with 1 module (F16) 0.986 0.635 0.798 0.000

Inception

with 1 module (F32) 0.983 0.633 0.800 0.000

Inception

with 2 modules (B) 0.938 0.754 0.695 1.000

Inception
with 3 modules (B) 0.892 0.731 0.750 1.000

MobNetV1 α = 0.25 (F16) 0.939 0.982 0.911 0.839

MobNetV1 α = 0.25 (F32) 0.939 0.982 0.911 0.835

MobNetV1 α = 0.50 (F16) 0.980 1.000 0.986 0.976

MobNetV1 α = 0.50 (F32) 0.980 1.000 0.986 0.972

MobNetV1 α = 0.75 (B) 0.997 0.996 0.986 0.995

MobNetV1 α = 1.00 (B) 1.000 0.996 0.983 0.990

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

TABLE 5. Recall - all topologies. N: no pruning, F16: NCS2 FPS16, F32:

NCS2 FPS32, B: NCS2 FPS16/FPS32

down_up left_right rubbing up_down

Proposed topology (x86) 0.993 0.955 0.972 0.976

Pruned 1 (x86) 0.990 0.955 0.989 1.000

Pruned 2 (x86) 0.990 0.955 0.989 0.990

Pruned 3 (x86) 0.983 0.958 0.989 0.976

Pruned 4 (x86) 0.986 0.969 0.986 0.956

Inception Net
with 1 module (x86) 0.997 0.913 0.986 0.000

Inception Net
with 2 modules (x86) 0.997 0.927 0.989 0.005

Inception Net
with 3 modules (x86) 0.997 0.875 0.986 0.117

MobNetV1 α = 0.25 (x86) 0.993 0.743 0.968 0.976

MobNetV1 α = 0.50 (x86) 0.997 0.955 0.993 1.000

MobNetV1 α = 0.75 (x86) 0.997 0.986 0.996 1.000

MobNetV1 α = 1.00 (x86) 0.997 0.983 0.996 0.995

Proposed topology (NB) 0.989 0.951 0.989 0.995

Pruned 1 (B) 0.989 0.954 0.989 0.995

Pruned 2 (B) 0.989 0.954 0.989 0.990

Pruned 3 (B) 0.982 0.958 0.989 0.975

Pruned 4 (B) 0.986 0.968 0.985 0.956

Inception Net

with 1 module (F16) 0.996 0.930 0.989 0.000

Inception Net

with 1 module (F32) 0.993 0.930 0.989 0.000

Inception Net

with 2 modules (B) 0.996 0.927 0.989 0.004

Inception Net

with 3 modules (B) 0.996 0.878 0.985 0.117

MobNetV1 α = 0.25 (F16) 0.993 0.747 0.979 0.966

MobNetV1 α = 0.25 (F32) 0.993 0.743 0.979 0.966

MobNetV1 α = 0.50 (F16) 0.997 0.955 0.996 1.000

MobNetV1 α = 0.50 (F32) 0.997 0.951 0.996 1.000

MobNetV1 α = 0.75 (B) 0.997 0.983 0.996 1.000

MobNetV1 α = 1.00 (B) 0.997 0.983 0.996 0.995

TABLE 6. F1 score - all topologies. N: no pruning, F16: NCS2 FPS16, F32:

NCS2 FPS32, B: NCS2 FPS16/FPS32

down_up left_right rubbing up_down

Proposed topology (x86) 0.983 0.962 0.974 0.978

Pruned 1 (x86) 0.986 0.972 0.983 0.990

Pruned 2 (x86) 0.986 0.972 0.979 0.985

Pruned 4 (x86) 0.986 0.965 0.977 0.973

Pruned 4 (x86) 0.986 0.965 0.977 0.973

Inception Net
with 1 module (x86) 0.960 0.706 0.962 0.000

Inception Net
with 2 modules (x86) 0.967 0.832 0.817 0.010

Inception Net
with 3 modules (x86) 0.940 0.796 0.852 0.210

MobNetV1 α = 0.25 (x86) 0.963 0.846 0.939 0.901

MobNetV1 α = 0.50 (x86) 0.988 0.975 0.989 0.988

MobNetV1 α = 0.75 (x86) 0.997 0.991 0.993 0.998

MobNetV1 α = 1.00 (x86) 0.997 0.990 0.991 0.993

Proposed topology

(NB) 0.985 0.968 0.982 0.987

Pruned 1 (B) 0.986 0.971 0.980 0.987

Pruned 2 (B) 0.986 0.971 0.979 0.985

Pruned 3 (B) 0.982 0.968 0.975 0.980

Pruned 4 (B) 0.986 0.965 0.977 0.972

Inception Net

with 1 module (F16) 0.991 0.754 0.883 0.000

Inception Net

with 1 module (F32) 0.988 0.753 0.885 0.000

Inception Net
with 2 modules (B) 0.966 0.831 0.816 0.009

Inception Net

with 3 modules (B) 0.941 0.798 0.852 0.209

MobNetV1 α = 0.25 (F16) 0.965 0.848 0.944 0.898

MobNetV1 α = 0.25 (F32) 0.965 0.846 0.944 0.896

MobNetV1 α = 0.50 (F16) 0.988 0.977 0.991 0.988

MobNetV1 α = 0.50 (F32) 0.988 0.975 0.991 0.986

MobNetV1 α = 0.75 (B) 0.997 0.990 0.991 0.998

MobNetV1 α = 1.00 (B) 0.998 0.990 0.990 0.993

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

E. STUDY OF THE END-TO-END SYSTEM LATENCY

This section investigates the end-to-end system latency. For

each kind of gesture, we measured the duration of the gesture

sample - ts, data processing time - tp, inference time - ti and

we summed those times, obtaining the total time - Tt. The

measurements have been repeated 10 times for each gesture

type then the average times have been calculated. Depending

on the gesture type, the duration of the gesture sample is

different. We assume that the gesture can maximally last 3.2

s, i.e., in case of shorter sample duration, it is zero padded.

The measurements have been performed for the proposed

topology (non-pruned version - FPS16) deployed on the NCS

2. The tables 7-10 present the end-to-end latency for each

kind of gesture.

TABLE 7. Down-up gesture - end-to-end latency

ts [s] tp [s] ti [s] Tt [s]

0.752 0.757 0.004 1.514

0.951 0.925 0.003 1.879

0.952 0.913 0.003 1.867

0.852 0.809 0.002 1.663

0.952 0.909 0.003 1.863

0.852 0.834 0.003 1.688

0.751 0.732 0.003 1.487

0.701 0.679 0.002 1.382

0.852 0.820 0.003 1.675

0.801 0.774 0.003 1.578

Average time 0.842 0.815 0.003 1.660

TABLE 8. Left-right gesture - end-to-end latency

ts [s] tp [s] ti [s] Tt [s]

0.301 0.311 0.004 0.616

0.301 0.321 0.004 0.626

0.300 0.314 0.003 0.616

0.400 0.391 0.002 0.793

0.451 0.456 0.003 0.910

0.401 0.395 0.003 0.799

0.451 0.430 0.002 0.883

0.050 0.07465 0.003 0.126

0.318 0.341 0.003 0.662

0.350 0.353 0.003 0.706

Average time 0.332 0.339 0.003 0.674

TABLE 9. Rubbing gesture - end-to-end latency

ts [s] tp [s] ti [s] Tt [s]

1.153 1.221 0.004 2.378

1.203 1.158 0.003 2.364

1.102 1.047 0.002 2.152

1.252 1.182 0.002 2.437

1.302 1.270 0.003 2.575

1.203 1.144 0.003 2.350

1.252 1.196 0.002 2.451

1.252 1.201 0.003 2.456

1.252 1.206 0.003 2.461

1.553 1.538 0.003 3.094

Average time 1.252 1.216 0.003 2.472

TABLE 10. Up-down gesture - end-to-end latency

ts [s] tp [s] ti [s] Tt [s]

0.552 0.620 0.005 1.177

0.701 0.687 0.003 1.391

0.551 0.557 0.003 1.110

0.501 0.503 0.003 1.007

0.551 0.522 0.002 1.076

0.050 0.071 0.003 0.124

0.471 0.492 0.003 0.966

0.551 0.531 0.003 1.085

0.601 0.600 0.003 1.204

0.500 0.491 0.003 0.994

Average time 0.503 0.507 0.003 1.013

VIII. SUMMARY

This paper demonstrates an optimized radar gesture classi-

fication model with the dedicated signal processing scheme.

The conducted experiments covered training process on the

cloud, pruning, optimization for the edge and inference.

The results of the experiments exhibit the significant im-

provements in the widely understood model performance.

We examined the model performance before and after op-

timization (i.e., 5-fold cross-validation, test accuracy, clas-

sification report, relations between accuracy, model size,

inference time and loading time). From the accuracy analysis

and classification report, it can be noticed that the pruned

versions (x86) of our classifier exhibit a better performance

than the non-pruned version. With regards to classification

performance of all classifiers, classification report shows

that the inference results are comparable with FPS16 and

FPS32 versions. Whereas the classification performance of

all classifiers (both optimized as well as non-optimized al-

ternatives) remain on the similar level, the more detailed

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

analysis of model sizes, inference times and loading times

allows to observe the benefits of pruning and optimization

for the Intel® NCS 2. In terms of accuracy and model

size, we can observe that each alternative (x86, FPS16 and

FPS32) of our classifier preserves the most beneficial relation

between accuracy and the model size. The optimized version

of the proposed classifier achieves in the worst case 97.50%

accuracy, it provides the most beneficial relation between the

model performance and the model size. Especially in the case

of FPS16 version. Another aspect worth of consideration is

the relationship between the inference time and the model

size. This relationship has been depicted in Fig. 23-25. Com-

paring the relationship between the inference time and the

model size, we can notice the significant improvement of

each variant of the proposed classifier. Another significant

issue from the deployment on the edge perspective is the

dependency between the accuracy and the inference time.

This relationship has been presented in the Fig. 26-28. As

we can see, the optimized versions of the classifiers exhibit

the tendency in the direction of decreasing inference time and

preserving the good accuracy, what is particularly important

in the domain of model execution on the edge and providing

the real time inference time. The next examined issue are the

model loading times, which have been depicted in Fig. 29-31.

In the case of non-optimized classifiers, model loading times

vary from 7.21 s to 9.65 s. In the case of optimized versions

of the classifiers, the optimization results are particularly

visible regarding the proposed classifier and Inception family

models. The loading times of MobileNet family classifiers

are significantly worse in comparison to the proposed and

Inception family models. The last considered aspect is the

end-to-end latency of the system. The tables 7-10 list end-

to-end latencies measured for each kind of gesture. It can

be noticed that the average times for down-up, left-right,

rubbing and up-down gestures are 1.660 s, 0.674 s, 2.472

s, 1.013 s, respectively. Those results prove the real-time

operation of our system.

To sum up, we proposed the optimized radar gesture

classifier with the dedicated radar signal processing scheme

allowing for deployment on the edge device. To the best

of our knowledge, we have proposed the first radar gesture

classification model which has been deployed on the edge

device such as NCS 2. The proposed solution has been

compared with the InceptionV1 and MobileNetV1 family

models in various variants. All topologies have been assessed

in terms of various aspects, i.e., classification performance,

inference times, model sizes. The proposed models (i.e., No

Pruning, Pruned 1, Pruned 2, Pruned 3, Pruned 4) achieve

the best results in terms of model sizes and inference times.

In terms of accuracy, our classifier achieves better results

than in case of the classifiers with 3 Inception modules, 2

Inception modules, 1 Inception module, and MobileNetV1

with α = 0.25. MobileNets with α = 0.50, α = 0.75
and α = 1.00 offer slightly better classification results,

at the same time offering bigger model size and longer

inference time, what is of great significance in the case of

the deployment on the edge. In the future, we are going to

increase the number of recognized gestures and implement

our solution on the other accelerators (i.e., NVIDIA Jetson

Nano, RockPi, Edge TPU). Moreover, we will also extend

our optimization ideas and computing approaches to process

full 3D data [55]–[57].

REFERENCES

[1] A. Shehab and S. Al-Janabi, "Edge Computing: Review and Future Di-

rections (Computación de Borde: Revisión y Direcciones Futuras)", RE-

VISTA AUS Journal, no. 26-2, pp. 368-380, 2019. [Accessed 15 December

2020].

[2] F. Alemuda and F. J. Lin, "Gesture-Based Control in a Smart Home

Environment," 2017 IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications (Green-

Com) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), Exeter, 2017, pp. 784-791, DOI:

10.1109/iThings-GreenCom-CPSCom-SmartData.2017.120.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence:

Paving the Last Mile of Artificial Intelligence With Edge Computing," in

Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019, DOI:

10.1109/JPROC.2019.2918951.

[4] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar and A. Y. Zomaya,

"Edge Intelligence: The Confluence of Edge Computing and Artificial

Intelligence," in IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457-

7469, Aug. 2020, DOI: 10.1109/JIOT.2020.2984887.

[5] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing

of Deep Neural Networks: A Tutorial and Survey," in Proceedings

of the IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, DOI:

10.1109/JPROC.2017.2761740.

[6] "ImageNet classification with deep convolutional neural networks | Com-

munications of the ACM", Dl.acm.org, 2020. [Online]. Available: https:

//dl.acm.org/doi/10.1145/3065386. [Accessed: 15- Dec- 2020].

[7] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for

Large-Scale Image Recognition", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/1409.1556. [Accessed: 15- Dec- 2020].

[8] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for

Image Recognition," 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi:

10.1109/CVPR.2016.90.

[9] "Improving TensorFlow* Inference Performance on In-

tel® Xeon® Processors", Intel. [Online]. Available: https:

//www.intel.com/content/www/us/en/artificial-intelligence/posts/

improving-tensorflow-inference-performance-on-intel-xeon-processors.

html. [Accessed: 18- Dec- 2020].

[10] A. Howard et al., "MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications", arXiv.org, 2020. [Online]. Available:

https://arxiv.org/abs/1704.04861. [Accessed: 15- Dec- 2020].

[11] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally and K. Keutzer,

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size", arXiv.org, 2020. [Online]. Available: https://arxiv.

org/abs/1602.07360. [Accessed: 15- Dec- 2020].

[12] M. Tan and Q. Le, "MixConv: Mixed Depthwise Convolutional Kernels",

arXiv.org, 2019. [Online]. Available: https://arxiv.org/abs/1907.09595.

[Accessed: 16- Dec- 2020].

[13] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Boston, MA,

2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethink-

ing the Inception Architecture for Computer Vision", arXiv.org, 2015.

[Online]. Available: https://arxiv.org/abs/1512.00567. [Accessed: 15- Dec-

2020].

[15] T. Elsken, J. Metzen and F. Hutter, "Neural Architecture Search: A

Survey", arXiv.org, 2019. [Online]. Available: https://arxiv.org/abs/1808.

05377. [Accessed: 18- Dec- 2020].

[16] P. Ren et al., "A Comprehensive Survey of Neural Architecture Search:

Challenges and Solutions", arXiv.org, 2020. [Online]. Available: https://

arxiv.org/abs/2006.02903. [Accessed: 18- Dec- 2020].

[17] "OpenVINOTM Toolkit Overview - OpenVINOTM Toolkit",

Docs.openvinotoolkit.org, 2020. [Online]. Available: https:

//docs.openvinotoolkit.org/latest/index.html. [Accessed: 14- Dec- 2020].

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

[18] M. Abadi et al., "TensorFlow: A system for large-scale machine learning",

arXiv.org, 2016. [Online]. Available: https://arxiv.org/abs/1605.08695.

[Accessed: 14- Dec- 2020].

[19] S. Sun, Z. Cao, H. Zhu and J. Zhao, "A Survey of Optimization Methods

From a Machine Learning Perspective", 2019. .

[20] R. Sun, "Optimization for deep learning: theory and algorithms",

NASA/ADS, 2019. [Online]. Available: https://ui.adsabs.harvard.edu/abs/

2019arXiv191208957S/abstract. [Accessed: 27- Dec- 2020].

[21] J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review,"

in Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019,

DOI: 10.1109/JPROC.2019.2921977.

[22] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen,

"Convergence of Edge Computing and Deep Learning: A Comprehensive

Survey," in IEEE Communications Surveys and Tutorials, vol. 22, no. 2,

pp. 869-904, Secondquarter 2020, DOI: 10.1109/COMST.2020.2970550.

[23] "Overview of ML Pipelines | Testing and Debugging in Machine

Learning", Google Developers. [Online]. Available: https://developers.

google.com/machine-learning/testing-debugging/pipeline/overview. [Ac-

cessed: 16- Dec- 2020].

[24] "What is an ML pipeline and why is it important? | Algorithmia

Blog", Algorithmia Blog, 2020. [Online]. Available: https:

//algorithmia.com/blog/ml-pipeline\#:~:text=One\%20definition\%20of\

%20a\%20machine,the\%20ML\%20model\%20fully\%20automated.

[Accessed: 16- Dec- 2020].

[25] A. Bernstein and A. Kuleshov, "Low-Dimensional Data Representation in

Data Analysis",fv 2014.

[26] M. Alom et al., "A State-of-the-Art Survey on Deep Learning Theory and

Architectures", 2019. .

[27] Y. Roh, G. Heo and S. E. Whang, "A Survey on Data Collec-

tion for Machine Learning: A Big Data - AI Integration Perspec-

tive," in IEEE Transactions on Knowledge and Data Engineering, DOI:

10.1109/TKDE.2019.2946162.

[28] T. Yu and H. Zhu, "Hyper-Parameter Optimization: A Review of Al-

gorithms and Applications", arXiv.org, 2020. [Online]. Available: https:

//arxiv.org/abs/2003.05689. [Accessed: 27- Dec- 2020].

[29] J. S. Sonkusare, N. B. Chopade, R. Sor and S. L. Tade, "A Review on

Hand Gesture Recognition System," 2015 International Conference on

Computing Communication Control and Automation, Pune, 2015, pp.

790-794, DOI: 10.1109/ICCUBEA.2015.158.

[30] M. Oudah, A. Al-Naji, and J. Chahl, “Hand Gesture Recognition Based on

Computer Vision: A Review of Techniques,” Journal of Imaging, vol. 6,

no. 8, p. 73, Jul. 2020.

[31] M. Yasen and S. Jusoh, "A systematic review on hand gesture recognition

techniques, challenges and applications", 2019.

[32] S. Hazra and A. Santra, "Short-Range Radar-Based Gesture Recognition

System Using 3D CNN With Triplet Loss," in IEEE Access, vol. 7, pp.

125623-125633, 2019, DOI: 10.1109/ACCESS.2019.2938725.

[33] Z. Zhang, Z. Tian and M. Zhou, "Latern: Dynamic Continuous Hand

Gesture Recognition Using FMCW Radar Sensor," in IEEE Sen-

sors Journal, vol. 18, no. 8, pp. 3278-3289, 15 April15, 2018, doi:

10.1109/JSEN.2018.2808688.

[34] "Exploration of task-based scheduling for convolutional neural networks

accelerators under memory constraints | Proceedings of the 16th ACM In-

ternational Conference on Computing Frontiers", Dl.acm.org, 2019. [On-

line]. Available: https://dl.acm.org/doi/10.1145/3310273.3323162. [Ac-

cessed: 16- Dec- 2020].

[35] Z. Li, Y. Wang, T. Zhi and T. Chen, "A survey of neural network

accelerators", 2017.

[36] D. Xu et al., "Resilient Neural Network Training for Accelerators

with Computing Errors," 2019 IEEE 30th International Conference on

Application-specific Systems, Architectures and Processors (ASAP), New

York, NY, USA, 2019, pp. 99-102, DOI: 10.1109/ASAP.2019.00-23.

[37] Y. Chen, Y. Xie, L. Song, F. Chen and T. Tang, "A Survey of Accelerator

Architectures for Deep Neural Networks", 2020.

[38] "Supported Framework Layers - OpenVINOTM Toolkit",

Docs.openvinotoolkit.org. [Online]. Available: https://docs.

openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_model_

Supported_Frameworks_Layers.html#tensorflow_supported_operations.

[Accessed: 16- Dec- 2020].

[39] Infineon Technologies AG Internal Technical Documentation, Munich,

2019.

[40] "Overview of OpenVINOTM Toolkit Public Models - OpenVINOTM

Toolkit", Docs.openvinotoolkit.org. [Online]. Available: https:

//docs.openvinotoolkit.org/latest/omz_models_public_index.html.

[Accessed: 27- Dec- 2020].

[41] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. Graf, "Pruning Filters

for Efficient ConvNets", arXiv.org, 2017. [Online]. Available: https://arxiv.

org/abs/1608.08710. [Accessed: 16- Dec- 2020].

[42] F. Chollet and others, "Keras", Keras.io, 2015. [Online]. Available: https:

//keras.io. [Accessed: 15- Dec- 2020].

[43] "Model Optimizer Developer Guide - OpenVINOTM Toolkit",

Docs.openvinotoolkit.org. [Online]. Available: https://docs.

openvinotoolkit.org/latest/openvino_docs_MO_DG_Deep_Learning_

Model_Optimizer_DevGuide.html. [Accessed: 27- Dec- 2020].

[44] Lien, J., Gillian, N., Karagozler, M., Amihood, P., Schwesig, C.,

Olsen, E., Raja, H. and Poupyrev, I., 2016. Soli: Ubiquitous

Gesture Sensing With Millimeter Wave Radar: ACM Transactions

On Graphics: Vol 35, No 4. [online] Dl.acm.org. Available at:

<https://dl.acm.org/doi/10.1145/2897824.2925953> [Accessed 17 Jan-

uary 2021].

[45] P. Molchanov, S. Gupta, K. Kim and K. Pulli, "Short-range FMCW

monopulse radar for hand-gesture sensing," 2015 IEEE Radar

Conference (RadarCon), Arlington, VA, 2015, pp. 1491-1496, doi:

10.1109/RADAR.2015.7131232.

[46] P. Molchanov, S. Gupta, K. Kim and K. Pulli, "Multi-sensor system for

driver’s hand-gesture recognition," 2015 11th IEEE International Confer-

ence and Workshops on Automatic Face and Gesture Recognition (FG),

Ljubljana, 2015, pp. 1-8, doi: 10.1109/FG.2015.7163132.

[47] S. Hazra and A. Santra, "Robust Gesture Recognition Using Millimetric-

Wave Radar System," in IEEE Sensors Letters, vol. 2, no. 4, pp. 1-4, Dec.

2018, Art no. 7001804, DOI: 10.1109/LSENS.2018.2882642.

[48] A. Santra and S. Hazra, Deep learning applications of short-range radars.

ARTECH HOUSE Incorporated, 2020.

[49] S. Ahmed and S. H. Cho, “Hand Gesture Recognition Using an IR-UWB

Radar with an Inception Module-Based Classifier,” Sensors, vol. 20, no. 2,

p. 564, Jan. 2020.

[50] "Intel® Optimization for TensorFlow* Installation Guide", Intel. [Online].

Available: https://software.intel.com/content/www/us/en/develop/articles/

intel-optimization-for-tensorflow-installation-guide.html. [Accessed: 18-

Dec- 2020].

[51] "Intel® Math Kernel Library for Deep Learning Networks: Part...",

Intel. [Online]. Available: https://software.intel.com/content/www/us/en/

develop/articles/intel-mkl-dnn-part-1-library-overview-and-installation.

html. [Accessed: 18- Dec- 2020].

[52] J. Lin, Y. Li, W. Hsu and T. Lee, "Design of an FMCW radar baseband sig-

nal processing system for automotive application", 2016. [Online]. Avail-

able: https://link.springer.com/content/pdf/10.1186/s40064-015-1583-5.

pdf. [Accessed: 30- Mar- 2021]

[53] Introduction to TensorFlow with Intel Optimizations. 2018 [Online].

Available: https://indico.cern.ch/event/762142/sessions/290684/

attachments/1752969/2841010/Tensorflow.pdf. [Accessed: 02- Mar-

2021]

[54] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. Graf, "Pruning

Filters for Efficient ConvNets", arXiv.org, 2017. [Online]. Available:

https://arxiv.org/abs/1608.08710v3. [Accessed: 02- Mar- 2021]

[55] Y. Liang, F. He, and X. Zeng, “3D mesh simplification with feature

preservation based on Whale Optimization Algorithm and Differential

Evolution,” Integrated Computer-Aided Engineering, vol. 27, no. 4, pp.

417–435, 2020

[56] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-

Or, “MeshCNN,” ACM Transactions on Graphics, vol. 38, no. 4, pp. 1–12,

2019

[57] Y. Wu, F. He, D. Zhang and X. Li, "Service-Oriented Feature-Based

Data Exchange for Cloud-Based Design and Manufacturing," in IEEE

Transactions on Services Computing, vol. 11, no. 2, pp. 341-353, 1 March-

April 2018, doi: 10.1109/TSC.2015.2501981

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081353, IEEE Access

Mateusz Chmurski et al.: Analysis of Edge-Optimized Deep Learning Classifiers for Radar-based Gesture Recognition

MATEUSZ CHMURSKI received the B.Sc. and

M.Sc. degrees in computer science from Technical

University of Lodz (TUL), Lodz, Poland, in 2018.

From 2015 to 2018, he was a Research Assistant

in the laboratory of Infineon Technologies AG,

pursuing his bachelor and master degrees. Since

2018, he has been employed in the headquarter

of Infineon Technologies AG, Munich, Germany,

pursing his PhD degree in Artificial Intelligence

on the Edge.

MARIUSZ ZUBERT (M’12) received the Ph.D.

degree in electronic from the Technical University

of Lodz (TUL), Lodz, Poland, in 1999. Then, he

received the D.Sc. degree in computer science

from the Silesian University of Technology (SUT),

Gliwice, Poland, in 2011. Since 1999, he has been

employed at TUL, where he is a university pro-

fessor. He is an author or co-author of over 100

publications. His interests include heat transfer

problems; VLSI, MEMS/MOEMS and nano tech-

nologies; the multi-domain modeling and simulation of ASIC and SiC PiN

Schottky Diodes; the design and modeling of ASICs for mobile industry;

the real-time monitoring system of high voltage power lines for Ontario

Hydro, Kinectrics Inc. for New York City and Ontario (grant NATO);

Modeling of Electromagnetic Interactions in Modern (More-Than-Moore) 3-

D Integrated Semiconductor Structures; The image processing and diagnosis

of neurodegenerative diseases (e.g., BSE – Mad cow disease, Alzheimer,

etc); the 3D ultrastructural amyloid plaque reconstruction and proliferation

model using Gaussian Hidden Markov Random Fields; the biometric iden-

tification of people using the iris pattern, the automatic translation of multi-

physical problems described by PDE/DAEs to Hardware Description Lan-

guages (VHDL-AMS, HDL-A, etc) as-well-as the complex interdisciplinary

research including informatics, electronic, higher mathematics, physics as-

well-as health informatics and biometrics.

KAY BIERZYNSKI received M.Sc. degree in

computer science from the Technical University

of Dresden. Then, in December 2015, he joined

Infineon Technologies AG as a PhD candidate and

worked on artificial intelligence at the network

edge. Since December 2018 he works as a tech-

nical project lead in Infineon Technologies AG

and is responsible for the technical management of

funding projects in the area of machine learning.

AVIK SANTRA (S’09-M’10-SM’18) received his

M.S. degree in Signal Processing with first class

distinction from Indian Institute of Science, Ban-

galore in 2010. He is currently leading signal pro-

cessing and deep learning algorithm/solutions re-

search & development for radar and depth sensors

processing for human-machine interface applica-

tions at Infineon, Neubiberg. Earlier in his career,

he has worked as system engineer for LTE/4G

modem at Broadcom Communications, and also

has worked as research engineer developing cognitive radars at Airbus. He is

a reviewer at various IEEE and Elsevier journals, and is recipient of several

outstanding reviewer awards. He is author of the book titled ’Deep Learning

Applications of Short-Range radars’, published by ArTech House. He has

filed over 50 patents and published more than 35 research papers related to

various topics of radar waveform design, radar signal processing and radar

machine/deep learning topics.

VOLUME 4, 2016 17

