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�e retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. �e layer
they form together inside the retina is the retinal nerve 	ber layer (RNFL). �is paper describes results of a texture RNFL analysis
in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical
coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted
from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. �e linear correlation
coe
cients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary
area from 23 eyes of 15 di�erent normal subjects.

1. Introduction

�e examination of the retina via an ophthalmoscope or
fundus cameras (analog or digital) has been successfully used
in diagnosis of many retinal and eye diseases [1]. Besides the
optic disc, macula, and retinal vascular tree, the retinal nerve
	ber layer (RNFL) can also be observed, particularly in a red-
free light as proposed by Kulwant [2]. �is layer creates a
stripy-like texture pattern, which indicates the presence of
nerve 	bers. �ere has been an e�ort to analyze this layer in
fundus images, which may improve the glaucoma diagnosis.
Table 1 summarizes several important papers, where RNF
analysis in fundus photography (analog or digital) has been
described using di�erent approaches. One of the basic papers
has been published in 1984 by Airaksinen et al. [3]. He
described a method for RNFL quality evaluation around

the optic disc using a scoring system. In 1996 the complex
survey for visual RNFL analysis in fundus with respect to
age and optic disc damage has been described by Jonas and
Dichtl [4]. A simple texture analysis for severe RNFL defects
detection has been described and tested by Yogesan at al.,
1998 [5], on set of 10 digitized fundus photographs with low
resolution. Tuulonen et al. [6] also described themicrotexture
analysis of RNFL in gray level digitized photographs. �e
local properties of texture based onbrightness di�erencewere
computed and used as an input for classi	cation between
glaucoma andnormal and ocular hypertension. In our former
paper [7] we described the fractal based texture analysis

method of RNFL and its application for classi	cation of RNFL
defects. Markov random 	eld has been also used for similar
purpose with simple and subjective comparison with the data
from optical coherence tomography (OCT) [8] as well as
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Table 1: Short summarization of papers describing di�erent approaches for the evaluation of RNF in fundus images (DCFI stands for digital
colour fundus images).

Author Method Data Results/description

Hoyt et al. (1973), [11]

�e 	rst subjective attempt to utilize
fundus cameras for glaucoma
detection by the evaluation of RNFL
visual appearance. Comparison
with perimetric 	ndings.

A few number of black-and-white
photographs

Funduscopic signs of the RNFL
pattern provide the earliest
objective evidence of nerve 	ber
layer atrophy in the retina.

Lundstrom and
Eklundh (1980), [12]

Subjective visual evaluation of the
changes in RNFL pattern intensity
using fundus photographs.

A few number of black-and-white
photographs

Findings that consecutive changes
in RNFL pattern intensity are
connected to progression of
glaucoma disease.

Airaksinen et al.
(1984), [3]

Subjective scoring of visual RNFL
appearance in fundus photographs.

Black-and-white photographs (84
normals, 58 glaucomatous)

Con	rmation of the dependence
between changes in RNFL pattern
and glaucoma progression in
fundus photographs.

Peli (1988), [13]
Semiautomatic analysis of RNFL
texture based on intensity
information.

Digitized black-and-white
photographs (5 normal, 5
glaucomatous, and 5 suspected of
glaucoma)

Additional con	rmation of the
changes in RNFL intensity caused
by glaucoma atrophy.

Yogesan et al. (1998),
[5]

Automatic method for texture
analysis of RNFL based on gray
level run length matrices.

Digitized fundus photographs of
size 648 × 560 pixels (5 normals, 5
glaucomatous)

Promising results for large focal
wedge-shaped RNFL losses well
outlined by surrounding healthy
nerve 	ber bundles. Di�use RNFL
loses could not be detected.

Tuulonen et al.
(2000), [6]

Semiautomatic method using
microtexture analysis of the RNFL
pattern.

Digitized fundus photographs 1280× 1024 pixels (7 normals, 9
glaucomatous, and 8 suspected of
glaucoma

Showing that changes in a
microtexture of RNFL pattern are
related to glaucoma damage. �ere
is a lack of small sample size.

Oliva et al. (2007),
[14]

Semiautomatic method to texture
analysis based on RNFL pattern
intensity. Comparison with OCT
measurement.

DCFI with size of 2256 × 2032
pixels (9 normals, 9 glaucomatous)

Correlation was only 0.424 between
the intensity related parameters
extracted from fundus images and
RNFL thickness was measured by
OCT.

Kolář and Jan (2008),
[7]

Automatic method to texture
analysis of RNFL based on fractal
dimensions.

DCFI with size of 3504 × 2336
pixels (14 normal, 16 glaucomatous)

Local fractal coe
cient was used as
a feature for glaucomatous eye
detection.�ere were problems with
robust estimation of this coe
cient.

Muramatsu, et al.
(2010), [10]

Automatic approach with Gabor
	lters to enhance certain regions
with RNFL pattern and clustering of
these regions aimed to glaucoma
detection.

DCFI with size of 768 × 768 pixels
(81 normals, 81 glaucomatous)

�e method is suitable only for
detection of focal and wider RNFL
losses expressed by signi	cant
changes in intensity.

Odstrcilik et al.
(2010), [8]

Automatic method to texture
analysis of RNFL based on Markov
random 	elds.

DCFI with size of 3504 × 2336 pixels
(18 normals, 10 glaucomatous)

�e features ability to di�erentiate
between healthy and glaucomatous
cases is validated using OCT RNFL
thickness measurement.

Prageeth et al. (2011),
[15]

Automatic method to texture
analysis using only intensity
information about RNFL presence.

DCFI with size of 768 × 576 pixels
(300 normals, 529 glaucomatous)

Intensity criteria were used.
Detection of the substantial RNFL
atrophy.

Acharya et al. (2011),
[16]

Automatic analysis of RNFL texture
using higher order spectra, run
length, and cooccurrence matrices.

DCFI with size of 560 × 720 pixels
(30 normals, 30 glaucomatous)

Speci	city to detect glaucomatous
eye is over 91%. �e article does not
explain thoroughly how the features
were extracted and in which area of
the image were computed.

Jan et al. (2012), [9]

Automatic method to RNFL texture
analysis based on combination of
intensity, edge representation, and
Fourier spectral analysis.

DCFI with size of 3504 × 2336
pixels (8 normals, 4 glaucomatous)

�e ability of proposed features to
classify RNFL defects has been
proven via comparison with OCT.
�e comparison was done only in a
heuristic manner.
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Figure 1: Flowchart of the proposed approach for RNFL visual appearance analysis. fROI stands for region of interest in fundus images and
tROI stands for region of interest in RNFL thickness maps. See Section 2 for detailed description of each block.

directional spectral analysis and structural texture analysis
[9]. An attempt for early glaucoma diagnosis is described
in [10] where Gabor 	lters were used for detection of wider
RNFL defects.

In spite of these applications it is still not clear what is the
correlation between the parameters from the texture analysis
and the RNFL thickness. Independent of texture analysis
methods, the texture parameters (features) describe the
texture visual appearance and they o�er a tool for qualitative
and semiquantitative inspection of RNFL thickness.

�is paper describes the statistically based texture anal-
ysis of the RNFL in high resolution color fundus images
of normal subjects and its correlation with RNFL thickness
obtained by optical coherence tomography in the same
subjects. �e statistically based texture analysis makes the
interpretation of the texture parameters well understandable
and it is hypothesized that this analysis can be predictive
and can lead to glaucoma diagnosis support. Although red-
free photographs might be more appropriate for texture
analysis, we have used color fundus images because they are
widely distributed, inexpensive, and easy to acquire. In early
glaucoma, theRNFL thinning preceded the optic disc damage
and visual 	eld loss so that RNFL can be used as a sensitive
indicator of structural damage; see [17]. Recent papers, for
example, [18], indicate that RNFL thickness measured by
OCT can be used for diagnosis support in di�erent stages of
glaucoma [19], particularly in the early stage, where the RNFL
thickness dramatically decreases.

�e principle of the proposed method is shown
in Figure 1 and this paper is organized as follows. Section 2.1
shortly describes the acquisition devices and obtained
images. Texture analysis of fundus image is described
in Section 2.2 and RNFL segmentation in OCT B-scans
in Section 2.3. Section 2.4 describes the multimodal reg-
istration, which is needed for modality comparison. �e
results are discussed in Section 3 and the paper 	nishes with
concluding remarks in Section 4.

2. Method

2.1. Data Acquisition. Color fundus images were taken
by digital nonmydriatic fundus camera Canon CR-1 with

a digital Canon camera EOS 40D (3888 × 2592 pixels, 45∘
	eld of view) on normal subjects without any suspected
retinal or eye diseases. 23 color images (eyes) from 15 subjects
taken on nondilated eyes in RAW (CR2) format were used
for the presented analysis. Special care was taken during
image acquisition—only sharp images were considered for
presented analysis. For each analyzed eye, OCT volume scans
were also acquired using a spectral domain OCT (Spectralis
OCT, Heidelberg Engineering). Infrared re�ection images
(scanning laser ophthalmoscope, SLO) and OCT cross-
sectional B-scan images of the dual laser scanning system
were acquired simultaneously. From 61 to 121 B-scans per one
eye were acquired, which corresponds to the spacing between
each B-scan from 124.3 �m to 63.1 �m (30∘ 	eld of view). An
example of the positions of B-scans on the retinal surface is
shown in Figure 3(a), where the SLO image, simultaneously
acquired by OCT system, is also presented.

2.2. Texture Analysis of RNFL in Fundus Images. We have
applied basic and advanced texture analysis methods in our
previous work [7, 8, 20–22]. Statistical based methods are
basic tool for the texture characterization and are also a
promising tool for the RNFL texture analysis. �ere are three
main classes of these methods: methods based on 1st-order
statistics, 2nd-order statistics, and higher order statistics.

Here, we applied a 	rst-order statistics, which depend
only on the individual pixel value and not on the interaction
between pixels. �e main reason for this simple statistic is
that the interpretation of these parameters is straightforward
and gives a basic view on texture properties and its visual
appearance. �is statistic includes 	ve parameters (features):
mean, standard deviation, kurtosis, skewness, and Shannon
entropy (as de	ned in information theory). �ey are calcu-
lated from intensity probability distribution, which must be
estimated based on histogram of the analyzed image region.
�e de	nition and description of these parameters can be
found elsewhere [23]. Here we present only the summarizing
equations in Table 2.

�e color fundus imageswere preprocessed in three steps.
In the 	rst step we reconstructed the RGB image from RAW
data to TIFF format with linear gamma correction using
DCRAWso�ware [24].�is step is important, becausewe can
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Figure 2: Fundus image (GB channel only) from our dataset with selected ROIs for analysis. �ese regions were manually placed apart from
the blood vessels to not in�uence the texture features.

(a) (b)

Figure 3: Spectralis SLO and OCT images. (a) SLO image. �e blue lines represent the position of the B-scans on retinal surface (61 B-scans
with spacing 124.3�m). (b) B-scan images with segmentation lines a�er manual correction, internal limiting membrane above and outer
nerve 	ber layer below.

achieve linear relation between image intensity and re�ected
intensity from retinal structures.

�e second step is focused on removing the nonuniform
illumination and increasing the contrast. Several methods
were tested (e.g., [25, 26]) in order to increase the correlation
between image features and RNFL thickness. Finally, the
contrast limited adaptive histogram equalization (CLAHE)
has been used [27].�ismethod locally enhances the contrast
on small tiles, so that the histogram of output region has
approximately uniform distribution. �e size of tiles has
been experimentally set to 20 × 20 pixels, but we observed
that this size is not critical. �e neighboring tiles are then
interpolated to eliminate boundary artifacts. �is approach
has been applied on all color channels separately.

In the third step four grayscale images were generated
for successive analysis. �e red (R), green (G), and blue
(B) channels were used separately. And 	nally the grayscale
image computed as a mean of green and blue channels has
been generated (GB image). �e motivation for this step

comes from the optical properties of green-blue 	lter, which
is usually used for red-free fundus imaging. �is green-blue
channel combination also corresponds to absorption spectra
of rhodopsin with maximum around 500 nm.

�edata for the texture analysis was obtained by amanual
selection of the small regions of interest (ROI) around the
optic disc (Figure 2) including nasal, temporal, inferior, and
superior area. �e positions of ROIs correspond to various
widths of the RNFL, given by the retinal physiology [28],
to cover a large range of RNFL thickness. �e size of ROI
has been chosen to 41 × 41 pixels, which is a compromise
between the ability to locally characterize texture by the
features and the limitation to select su
cient number of these
ROIs without blood vessels. �ese ROIs are located in close
surroundings of the optic disc (approximately within the two
optic disc diameters) and were carefully selected to exclude
blood vessels and capillaries to remove their in�uence for the
ROI texture analysis. �e number of these ROIs in particular
image is around 20 per each image.�e total number of these
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Table 2: De	nitions of the 	rst-order features used for analysis.

Mean � = ∑�−1�=0 �� (�)
H(g) represents the probability density function,
estimated from histogram�(�) = ��/	, where pixel
value � = 0, 1, 2, . . . , 
 − 1, 
 is a number of gray levels,	 is a number of pixels in analyzed image, and �� is a
number of pixels with value �. �� represents statistical
moment of nth order: �� = ∑�−1�=0 (� − �)��(�)

Standard deviation � = ∑�−1�=0 (� − �)2�(�)
Shannon entropy � = −∑�−1�=0 �(�) log2 (� (�))
Skewness 1 = �3/�(3/2)2
Kurtosis 2 = �4/ (�22 − 3)
ROIs for texture analysis is 439. �ese ROIs were de	ned in
R, G, B, and GB channels and the above described statistical
features were computed from each ROI. �is leads to 20
features (5 features for each channel), which will be further
analyzed.

One remark should be made here. Each subset of these
samples comes from the same image, which implies their sta-
tistical dependence. Nevertheless, we can consider each ROI
as representation of retinal structure at independent positions
with various values of RNFL thickness and therefore these
ROIs can be treated as statistically independent.

2.3. Segmentation in OCT Data. �e OCT volume data
has been processed in a semiautomatic way. In the 	rst
step, the inner limiting membrane (ILM) and the outer
nerve 	ber layer boundary (ONFL) have been automatically
segmented. �e parameters of the automated RNFL seg-
mentation algorithm published in [29] have been adapted
for the use on OCT volume scans. �e algorithm can be
summarized as follows.�e retinal pigment epithelium (RPE)
and ILM are detected by an edge detection taking the
second derivative into account. A�er denoising the image
with complex di�usion, the ONFL is found by an energy-
minimization approach that takes the gradient as well as
local and global smoothness constraints into account. �e
B-scans of the volume were segmented sequentially. �is
yielded segmentations that showed segmentation errors in
a few cases, particularly in B-scans crossing the OD. In the
second step, all segmentation errors were corrected manually
using a nonparameterized curve (free line).

A Windows compiled version of the segmentation so�-
ware can be downloaded under http://www5.informatik.uni-
erlangen.de/research/so�ware. It is called OCTSEG (optical
coherence tomography segmentation and evaluation GUI)
and may serve for many OCT related image processing
purposes such as segmentation of the retinal layers and blood
vessels and visualization of the results.

An example of the segmented ILM and ONFL is shown
in Figure 3(b). �is semiautomatic segmentation results in
the RNFL thickness image, which is reconstructed from
segmented B-scans. To ensure that the thickness image will
have the same pixel size as the SLO image, an interpolation
technique must be used (bilinear or spline interpolation is
acceptable for our task [30]). Because we know the B-scans
positions, we can map the thicknesses on the SLO image (see
Figure 4(a)). �is will be utilized in multimodal registration
in the next section.

2.4. SLO to GB Image Registration. To be able to compare
the RNFL thickness map with the texture in the fundus
images, image registration has to be performed.�is bimodal
registration (SLO to GB fundus image) can be automatic
(e.g., [31, 32]) or manual. In this case we have used the reg-
istration based on manually selected landmarks positioned
in the bifurcation points of the blood vessel tree. At least
12 landmarks were selected possibly uniformly throughout
the images (Figure 5(a)). �ese are used for estimation of
the spatial transformation parameters. Two kinds of spatial
transformations aremostly used in retinal applications: a
ne
and second-order polynomial transformations. Authors of
[33] proved the validity of quadratic transformation model
for curved retina, which is applicable particularly for images
with a large 	eld of view.We have also successfully tested this
quadratic transformation together with the a
ne transfor-
mation, which gave us more precise results [34].

�e 12-parametric second-order polynomial transforma-
tion model is described by [34]

(����) = (�11 �12 �13 �14 �15 �16�21 �22 �23 �24 �25 �26)(
(

�2���2��1
)
)

. (1)

Here, (�, �)� denotes the coordinates of landmarks in a �oat-
ing image (the image which will be aligned to the reference

image) and (��, ��)� are the coordinates of these landmarks
a�er transformation in a coordinate of the reference image.
�e image registration is de	ned as a minimization of sum of
squared di�erences (energy functionE) between coordinates

of corresponding landmarks in reference image (�, �)� and
in transformed �oating image (��, ��)�:

E = �∑
	=1

��������(����) − (��)��������2 �→ min, (2)

where 	 is a number of manually selected landmarks. Sub-
stitution leads to

E = �∑
	=1
(�11�2 + �12�� + �13�2 + �14� + �15� + �16 − �)2

+ (�21�2 + �22�� + �23�2 + �24� + �25� + �26 − �)2.
(3)
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Figure 4: An example of the manually segmented RNFL mapped on the SLO image (a) and the green channel of fundus image (b). �e
colormap is scaled in �m and the area around the optic disc has been removed because it does not contain the RNFL.

(a)

(b) (c)

Figure 5: (a) Manually selected corresponding landmarks in SLO and fundus GB image. (b) Chessboard image from registered GB image.
(c) Registered GB image.
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Table 3:�e table summarizes the Spearman’s correlation coe
cients computed from samples in particular image.�emean value, standard
deviation, andminimum andmaximum values are presented together withmean � value.�e described features (mean �, standard deviation�, and Shannon entropy �) were estimated in di�erent channels (R, G, B, and GB).

Feature  
 mean  
 st. deviation  
 min  
 max Mean P value�R 0.461 0.193 0.161 0.726 0.114�R 0.344 0.258 0.037 0.811 0.301�R 0.212 0.249 −0.205 0.583 0.387�G 0.758 0.088 0.621 0.867 0.001�G 0.706 0.110 0.563 0.873 0.002�G 0.646 0.104 0.492 0.830 0.006�B 0.750 0.116 0.516 0.874 0.003�B 0.702 0.107 0.549 0.872 0.002�B 0.566 0.241 −0.015 0.848 0.110�GB 0.765 0.099 0.590 0.874 0.001�GB 0.708 0.108 0.559 0.869 0.002�GB 0.657 0.096 0.531 0.844 0.004

Table 4: Spearman’s correlation coe
cients between considered features and RNFL thickness for the whole dataset; � value < 0.01.�R �R �R �G �G �G �B �B �B �GB �GB �GB

0.383 0.156 0.103 0.681 0.532 0.491 0.667 0.501 0.352 0.694 0.547 0.512

Table 5: �e table shows the model coe
cients, MAE (mean
absolute error), and MCI (mean half width con	dence interval).!1 !2 !3 !4 !5 !6
80.53 24.40 −3.87 3.30 0.29 −3.41

MAE = 15.59, MCI = 4.44,  2 = 0.531
�e energy E is minimized with the respect to entries of
transformation matrix �	�. �is leads to a set of linear equa-
tions, which can be easily solved by the Gauss elimination
method [35]. An example of the registration result is shown
in Figure 5 together with the manually selected landmarks
and chessboard image. �is processing has been applied
on each image pair (SLO and GB images) in our dataset.
�is registration procedure enables an easy thickness image
mapping on the fundus image. �is is shown in Figure 4(b)
together with SLO image. �e next step is the analysis of the
texture feature and RNFL thickness.

3. Results and Discussion

�e result of so far described processing is a set of small ROIs
in fundus images (fROI) and the corresponding ROIs in the
thickness map (tROI). As mentioned, the size of fROI is 41 ×41 pixels, which has been chosen to span a su
ciently large
region with RNFL striation. �e maximum fROI size was
limited by the blood vessels and other anatomical structures
in the retinal image. From the tROI position (determined by
the fROI position) the thickness has been estimated using the
mean value from the 7 × 7 central window. �is tROI size is
equivalent to 0.0066mm2.

3.1. Correlation Analysis. �e 	rst step of correlation analysis
is focused on correlation between each feature and thick-
ness. Spearman’s rank correlation coe
cients  
 have been
calculated between each feature and corresponding RNFL
thickness for each dataset of ROIs in each fundus image. �e 
 values and basic statistics are summarized in Table 3. �e
correlation between R channel and thickness is the lowest
for all R-channel features. �e other channels have higher
Spearman’s correlation, particularly the features from GB
channel (with � value < 0.05). Features computed from this
channel are also better from the other point of view (low
interimage  
 standard deviation and highest minimum and
maximum correlations).

�e Spearman’s correlation coe
cients have been also
computed between individual features and corresponding
RNFL thickness considering the whole dataset of ROIs at
once.�ese values are summarized inTable 4.�e correlation
value higher than 0.5 can be seen formost of the features from
G, B, andGB channels.�e scatter plots between features and
thickness are shown in Figure 6. Rather high variance can be
seen from this data. Nevertheless, the dependence of feature
value on RNFL thickness is obvious. �e linear 	t is shown
for illustration.

Each of the features from R has relatively low correlation
(<0.5), which is probably caused by light re�ections from the
deeper retinal structures and therefore this channel is not
convenient for RNFL texture analysis. Moreover, the light
re�ections within the red spectral band are relatively high
and this re�ected intensity can saturate the R channel of
light sensor. �ese results indicate that the G, B, and GB
channels are the most convenient channels for the texture
analysis. It can be seen that the correlation coe
cients of
particular features are slightly higher for GB channel than
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Figure 6: Scatter plots for three features (�, � and �) and RNFL thickness for di�erent channels (R, G, B and GB).
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Figure 7: Graphical result of the multivariate regression analysis
using the second-order polynomial model.

single G and B channels. However, the correlation between
particular features has also been investigated and it has been
observed that there is a strong linear correlation between
the same features computed from GB, G, or B channel
(>0.86, � value < 0.01), as can be expected. �erefore, we
will use only the GB channel in further analysis. Another
reason for GB channel priority is connected with fundus
camera acquisition. It is clear that appearance of RNFL
striation in G or B channels will depend on the properties
of CMOS/CCD detection element in fundus camera. �e
combination of green and blue channels can decrease this

dependence, because it combines the spectral characteristics
of green and blue 	lters (which can be di�erent for di�erent
manufacturers) and it is therefore more practical.

3.2. Regression Analysis. �e multivariate nonlinear regres-
sion analysis has been applied to create a statistical model.
�e �GB and �GB values have been used as predictors and
RNFL thickness as response. We used a second-order 	tting
model, which is appropriate considering the dependence of
particular feature on thickness values, in the following form:

� = !1 + !2�GB + !3�GB + !4�GB�GB + !5�2GB + !6�2GB,
(4)

where ! is a vector of 	tting coe
cients. A nonlinear
regression function nlin�t implemented in Matlab R2007b
has been used. �e results are graphically shown inFigure 7
and the estimated values are summarized in Table 5. �e
model was 	tted on normalized data to be able to compare the
in�uence of particular coe
cients. One can see the highest
linear dependence on �GB. �e �GB has similar in�uence for
linear and quadratic terms.

�is basic analysis shows that there is a correlation
between several basic statistical features and the RNFL
thickness measured quantitatively by OCT. An example of 8
selected fROIs (fromGB channel) with corresponding feature
values and RNFL thicknesses is shown in Table 6. It can
be seen that with increasing RNFL thickness, the texture
structure is changing from random to more organized. �is
is well described by the �GB, �GB, and �GB values. �e
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Table 6: Several selected fROIs are shown together with RNFL thickness and texture features computed from corresponding fROIs.

�ickness [�m] 27.1 40.8 58.1 74.0 87.7 95.0 118.7 156.6� 36.9 50.7 66.6 74.0 85.1 97.3 142.0 156.6� 6.3 7.3 9.0 9.2 12.3 14.5 17.3 17.9� 4.63 4.87 5.18 5.22 5.39 5.81 5.82 6.06

fROI

gray level mean value has straightforward interpretation—
the re�ected light intensity depends on the RNFL thickness.
�e standard deviation describes the “magnitude” of the gray
level spatial variation of the nerve 	bers independently from
the light illumination. �e Shannon entropy quanti	es the
shape of the intensity probability density function, estimated
by histogram. More uniform histogram, which corresponds
to areawithoutRNFL,will have lower Shannon entropy value.
On the other hand, stripy pattern due to RNFL will create
higher peaks in histogram with higher Shannon entropy
value. Skewness and kurtosis also describe the shape of the
probability density function, but in di�erent way, which is not
signi	cant in this case.

�e regression model has been used to estimate the error
of thickness estimation within each eye. �e relative error
of thickness estimation for each sample has been computed
and the median value has been determined for each eye
separately. �is median value of errors ranges from 11.6% to23.8% with mean value 16.9% and standard deviation 2.9%.
�e number of tested regions in retinal image ranges from 15
to 23. �e level of this mean within-eye error and variance
is promising, considering that we are using only two basic
features: mean and variance texture features. �e mean error
also corresponds to MAE value of regression model for the
whole datasets, which shows unbiased estimates of within-
eye thicknesses. Nevertheless, it is expected that using more
advanced texture analysis methods will enable creating more
precise regression model.

4. Conclusion

�is study on healthy subjects shows that basic local intensity
analysis of the nerve 	bers in the fundus photographs is
related to RNFL thickness. �e local re�ected intensity in
green-blue spectral band depends on RNFL thickness as well
as the local standard deviation and Shannon entropy, which
describe the probability density function of region intensi-
ties. �e correlation between RNFL thickness and analyzed
parameters is above 0.5. �ese values are mainly in�uenced
also by the noise in fundus images, subjects variability, and
also by inaccuracies in RNFL segmentation. However, we
showed that when physicians analyze the fundus image,
the local intensity variation on the nerve 	ber branches is
connected to RNFL thickness. A nonlinear statistical model
has been built using the multivariate nonlinear regression
with the mean absolute error 15.59 �m. �is model o�ers a

possibility for raw estimation of RNFL thickness from texture
features.

In conclusion two remarks should be emphasized. Only
high quality and high resolution fundus images were used in
this study. �is is prerequisite for successful texture analysis.
�e second remark deals with RAW format. All images were
acquired in RAW format and converted to lossless image
format with linear gamma correction. If nonlinear gamma
function is used, the feature values will result in a di�erent
dependence on RNFL thickness. �is might in�uence the
texture features and the visual appearance of RNFL thickness
observed by physicians in fundus intensity image.

�e texture analysis of the nerve 	ber layer in fundus
images seems to be a promising tool, which can be used
for screening purposes and can be added as an additional
feature to a fundus photography based screening protocol
(e.g., the glaucoma risk index presented by Bock at al. [36]).
�e possibility and usefulness of automatic texture analysis
in images of glaucoma patients will be investigated in a next
step.
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