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1 Introduction

Social experiments can produce valuable information about the effectiveness of interventions.

However, many social experiments are compromised by departures from initial randomization

plans.1 Many have small sample sizes. Applications of large sample statistical procedures

may produce misleading inferences. In addition, most social experiments have multiple

outcomes. This creates the danger of selective reporting of “significant” effects from a large

pool of possible effects, biasing downward reported p-values. This paper develops tools for

analyzing the evidence from experiments with multiple outcomes as they are implemented

rather than as they are planned. We apply these tools to reanalyze an influential social

experiment.

The HighScope Perry Preschool program, conducted in the 1960s, was an early childhood

intervention that provided preschool education to low-IQ, disadvantaged African-American

children living in Ypsilanti, Michigan. The study was evaluated by the method of random

assignment. Participants were followed through age 40 and plans are under way for an age-

50 followup. The beneficial long-term effects reported for the Perry program constitute a

cornerstone of the argument for early childhood intervention efforts throughout the world.

Many analysts discount the reliability of the Perry study. For example, Hanushek and

Lindseth (2009), among others, claim that the sample size of the study is too small to make

valid inferences about the program. Herrnstein and Murray (1994) claim that estimated

effects of the program are small and that many are not statistically significant. Others ex-

press the concern that previous analyses selectively report statistically significant estimates,

biasing the inference about the program (Anderson, 2008).

There is a potentially more devastating critique. As happens in many social experi-

ments, the proposed randomization protocol for the Perry study was compromised. This

compromise casts doubt on the validity of evaluation methods that do not account for the

compromised randomization and calls into question the validity of the simple statistical

1See the discussion in Heckman (1992); Hotz (1992); and Heckman, LaLonde, and Smith (1999).
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procedures previously applied to analyze the Perry study.2

In addition, there is the question of how representative the Perry population is of the

general African-American population. Those who advocate access to universal early child-

hood programs often appeal to the evidence from the Perry study, even though the project

only targeted a disadvantaged segment of the population.3

This paper develops and applies small-sample permutation procedures that are tailored

to test hypotheses on samples generated from the less-than-ideal randomizations conducted

in many social experiments. We apply these tools to the data from the Perry experiment.

We correct estimated treatment effects for imbalances that arose in implementing the ran-

domization protocol and from post-randomization reassignment. We address the potential

problem that arises from arbitrarily selecting “significant” hypotheses from a set of possible

hypotheses using recently developed stepdown multiple-hypothesis testing procedures. The

procedures we use minimize the probability of falsely rejecting any true null hypotheses.

Using these tools, this paper demonstrates the following points: (a) Statistically signifi-

cant Perry treatment effects survive analyses that account for the small sample size of the

study. (b) Correcting for the effect of selectively reporting statistically significant responses,

there are substantial impacts of the program on males and females. Results are stronger

for females at younger adult ages and for males at older adult ages. (c) Accounting for the

compromised randomization of the program strengthens the evidence for important program

effects compared to the evidence reported in the previous literature that neglects the imbal-

ances created by compromised randomization. (d) Perry participants are representative of a

low-ability, disadvantaged African-American population.

This paper proceeds as follows. Section 2 describes the Perry experiment. Section 3

2This problem is pervasive in the literature. For example, in the Abecedarian program, randomization
was also compromised as some initially enrolled in the experiment were later dropped (Campbell and Ramey,
1994). In the SIME-DIME experiment, the randomization protocol was never clearly described. See Kurz
and Spiegelman (1972). Heckman, LaLonde, and Smith (1999) chronicle the variety of “threats to validity”
encountered in many social experiments.

3See, for example, The Pew Center on the States (2009) for one statement about the benefits of universal
programs.
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discusses the statistical challenges confronted in analyzing the Perry experiment. Section 4

presents our methodology. Our main empirical analysis is presented in Section 5. Section 6

examines the representativeness of the Perry sample. Section 7 compares our analysis to

previous analyses of Perry. Section 8 concludes. Supplementary material is placed in the

Web Appendix.4

2 Perry: Experimental Design and Background

The HighScope Perry Program was conducted during the early- to mid-1960s in the district

of the Perry Elementary School, a public school in Ypsilanti, Michigan, a town near Detroit.

The sample size was small: 123 children allocated over five entry cohorts. Data were collected

at age 3, the entry age, and through annual surveys until age 15, with additional follow-ups

conducted at ages 19, 27, and 40. Program attrition remained low through age 40, with over

91% of the original subjects interviewed. Two-thirds of the attrited were dead. The rest

were missing.5 Numerous measures were collected on economic, criminal, and educational

outcomes over this span as well as on cognition and personality. Program intensity was low

compared to that in many subsequent early childhood development programs.6 Beginning at

age 3, and lasting 2 years, treatment consisted of a 2.5-hour educational preschool on week-

days during the school year, supplemented by weekly home visits by teachers.7 HighScope’s

innovative curriculum, developed over the course of the Perry experiment, was based on the

principle of active learning, guiding students through the formation of key developmental

factors using intensive child-teacher interactions (Schweinhart et al. 1993, pp. 34–36; Weikart

et al. 1978, pp. 5–6, 21–23). A more complete description of the Perry program curriculum

is given in Web Appendix A.8

4http://jenni.uchicago.edu/Perry/
5There are two missing controls and two missing treatments. Five controls and two treatments are dead.
6The Abecedarian program is an example (see, e.g., Campbell et al., 2002). Cunha, Heckman, Lochner,

and Masterov (2006) and Reynolds and Temple (2008) discuss a variety of these programs and compare their
intensity.

7An exception is that the first entry cohort received only 1 year of treatment, beginning at age 4.
8The website can be accessed at http://jenni.uchicago.edu/Perry/.
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Eligibility Criteria The program admitted five entry cohorts in the early 1960s, drawn

from the population surrounding the Perry Elementary school. Candidate families for the

study were identified from a survey of the families of the students attending the elementary

school, by neighborhood group referrals, and through door-to-door canvassing. The eligibility

rules for participation were that the participants should (i) be African-American; (ii) have

a low IQ (between 70 and 85) at study entry,9 and (iii) be disadvantaged as measured by

parental employment level, parental education, and housing density (persons per room).

The Perry study targeted families who were more disadvantaged than most other African-

American families in the United States. but were representative of a large segment of the

disadvantaged African-American population. We discuss the issue of the representativeness

of the program compared to the general African-American population in Section 6.

Among children in the Perry Elementary School neighborhood, Perry study families were

particularly disadvantaged. Table 1 shows that compared to other families with children

in the Perry School catchment area, Perry study families were younger, had lower levels of

parental education, and had fewer working mothers. Further, Perry program families had

fewer educational resources, larger families, and greater participation in welfare, compared

to the families with children in another neighborhood elementary school in Ypsilanti, the

Erickson school, situated in a predominantly middle-class white neighborhood.

We do not know whether, among eligible families in the Perry catchment, those who

volunteered to participate in the program were more motivated than other families, and

whether this greater motivation would have translated into better child outcomes. However,

according to Weikart, Bond, and McNeil (1978, p. 16), “virtually all eligible children were

enrolled in the project,” so this potential concern appears to be unimportant.

Randomization Protocol The randomization protocol used in the Perry study was com-

plex. According to Weikart et al. (1978, p. 16), for each designated eligible entry cohort,

9Measured by the Stanford-Binet IQ test (1960s norming). The average IQ in the general population is
100 by construction. IQ range for Perry participants is 1–2 standard deviations below the average.
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Table 1: Comparing Families of Participants with Other Families with Children in the
Perry Elementary School Catchment and a Nearby School in Ypsilanti, Michigan

Perry School
(Overall)a

Perry
Preschoolb

Erickson
Schoolc

M
o
th

e
r

Average Age 35 31 32
Mean Years of Education 10.1 9.2 12.4
% Working 60% 20% 15%
Mean Occupational Leveld 1.4 1.0 2.8
% Born in South 77% 80% 22%
% Educated in South 53% 48% 17%

F
a
th

e
r % Fathers Living in the Home 63% 48% 100%

Mean Age 40 35 35
Mean Years of Education 9.4 8.3 13.4
Mean Occupational Leveld 1.6 1.1 3.3

F
a
m
il
y
&

H
o
m
e

Mean SESe 11.5 4.2 16.4
Mean # of Children 3.9 4.5 3.1
Mean # of Rooms 5.9 4.8 6.9
Mean # of Others in Home 0.4 0.3 0.1
% on Welfare 30% 58% 0%
% Home Ownership 33% 5% 85%
% Car Ownership 64% 39% 98%
% Members of Libraryf 25% 10% 35%
% with Dictionary in Home 65% 24% 91%
% with Magazines in Home 51% 43% 86%
% with Major Health Problems 16% 13% 9%
% Who Had Visited a Museum 20% 2% 42%
% Who Had Visited a Zoo 49% 26% 72%

N 277 45 148

Source: Weikart, Bond, and McNeil (1978). Notes: (a) These are data on parents who attended parent-

teacher meetings at the Perry school or who were tracked down at their homes by Perry personnel (Weikart,

Bond, and McNeil, 1978, pp. 12–15); (b) The Perry Preschool subsample consists of the full sample (treatment

and control) from the first two waves; (c) The Erickson School was an “all-white school located in a middle-

class residential section of the Ypsilanti public school district.” (ibid., p. 14); (d) Occupation level: 1 =

unskilled; 2 = semiskilled; 3 = skilled; 4 = professional; (e) See the notes at the base of Figure 3 for the

definition of socio-economic status (SES) index; (f) Any member of the family.
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children were assigned to treatment and control groups in the following way, which is graph-

ically illustrated in Figure 1:

1. In any entering cohort, younger siblings of previously enrolled families were assigned

the same treatment status as their older siblings.10

2. Those remaining were ranked by their entry IQ scores.11 Odd- and even-ranked subjects

were assigned to two separate unlabeled groups.

Balancing on IQ produced an imbalance on family background measures. This was

corrected in a second, “balancing”, stage of the protocol.

3. Some individuals initially assigned to one group were swapped between the unlabeled

groups to balance gender and mean socio-economic (SES) status, “with Stanford-Binet

scores held more or less constant.”

4. A flip of a coin (a single toss) labeled one group as “treatment” and the other as

“control.”

5. Some individuals provisionally assigned to treatment, whose mothers were employed

at the time of the assignment, were swapped with control individuals whose mothers

were not employed. The rationale for these swaps was that it was difficult for working

mothers to participate in home visits assigned to the treatment group and because

of transportation difficulties.12 A total of five children of working mothers initially

assigned to treatment were reassigned to control.

10The rationale for excluding younger siblings from the randomization process was that enrolling children
in the same family in different treatment groups would weaken the observed treatment effect due to within-
family spillovers.

11Ties were broken by a toss of a coin.
12The following quotation from an early monograph on Perry summarizes the logic of the study planners:

“Occasional exchanges of children between groups also had to be made because of the inconvenience of half-day

preschool for working mothers and the transportation difficulties of some families. No funds were available

for transportation or full-day care, and special arrangements could not always be made.” (Weikart, Bond,
and McNeil, 1978, p. 17)
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Even after the swaps at stage 3 were made, pre-program measures were still somewhat

imbalanced between treatment and control groups. See Figure 2 for IQ and Figure 3 for SES

index.

3 Statistical Challenges in Analyzing the Perry Pro-

gram

Drawing valid inference from the Perry study requires meeting three statistical challenges: (i)

small sample size; (ii) compromise in the randomization protocol; and (iii) the large number

of outcomes and associated hypotheses, which creates the danger of selectively reporting

“significant” estimates out of a large candidate pool of estimates, thereby biasing downward

reported p-values.

Small Sample Size The small sample size of the Perry study and the non-normality of

many outcome measures call into question the validity of classical tests, such as those based

on the t-, F -, and χ2-statistics.13 Classical statistical tests rely on central limit theorems

and produce inferences based on p-values that are only asymptotically valid.

A substantial literature demonstrates that classical testing procedures can be unreliable

when sample sizes are small and the data are non-normal.14 Both features characterize

the Perry study. There are approximately 25 observations per gender in each treatment

assignment group and the distribution of observed measures is often highly skewed.15 Our

paper addresses the problem of small sample size by using permutation-based inference

procedures that are valid in small samples.

The Treatment Assignment Protocol The randomization protocol implemented in

the Perry study diverged from the original design. Treatment and control statuses were

13Heckman (2005) raises this concern in the context of the Perry program.
14See Micceri (1989) for a survey.
15Crime measures are a case in point.
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Figure 2: IQ at Entry by Entry Cohort and Treatment Status

Control Treat. Control Treat. Control Treat. Control Treat. Control Treat.

88 2 1 87 2 1 87 3 1 86 2 88 1

86 1 86 2 86 1 2 85 2 85 2 1

85 1 85 1 84 1 84 2 84 1

84 2 84 2 83 1 1 83 3 2 83 3

83 1 83 1 82 1 1 82 2 1 82 2

82 2 79 1 81 1 2 81 1 81 1

80 1 1 73 1 80 2 80 1 80 1 2

79 1 72 2 79 1 1 79 1 1 79 2

77 1 2 71 1 75 1 1 78 2 1 78 1 1

76 1 70 1 73 1 1 77 1 76 2 1

73 1 69 1 71 1 76 2 75 1 1

71 1 64 1 69 1 75 1 71 1

70 1 9 8 68 1 73 1 61 1

69 3 14 12 66 1 13 12

68 1 14 13

67 1

66 1

63 2

15 13

Counts Counts
IQIQIQIQIQ

Counts Counts Counts

Class 5Class 1 Class 2 Class 3 Class 4

Note: Stanford-Binet IQ at study entry (age 3) was used to measure the baseline IQ.

reassigned for a subset of persons after an initial random assignment. This creates two

potential problems.

First, such reassignments can induce correlation between treatment assignment and base-

line characteristics of participants. If the baseline measures affect outcomes, treatment as-

signment can become correlated with outcomes through an induced common dependence.

Such a relationship between outcomes and treatment assignment violates the assumption

of independence between treatment assignment and outcomes in the absence of treatment

effects. Moreover, reassignment produces an imbalance in the covariates between the treated

and the controlled, as documented in Figures 2 and 3. For example, the working status of

the mother was one basis for reassignment to the control group. Weikart, Bond, and McNeil

(1978, p. 18) note that at baseline, children of working mothers had higher test scores. Not

controlling for mother’s working status would bias downward estimated treatment effects for

schooling and other ability-dependent outcomes. We control for imbalances by conditioning

on such covariates.
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Figure 3: SES Index by Gender and Treatment Status

(a) Male

6 8 10 12 14
0

0.05

0.1
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0.2
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Treatment

(b) Female

6 8 10 12 14
0
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0.35

0.4

0.45

F
ra
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n

Control

Treatment

Notes: The socio-economic status (SES) index is a weighted linear combination of three variables:

(a) average highest grade completed by whichever parent(s) was present, with a coefficient 0.5; (b)

father’s employment status (or mother’s, if the father was absent): 3 for skilled, 2 for semi-skilled,

and 1 for unskilled or none, all with a coefficient 2; (c) number of rooms in the house divided by

number of people living in the household, with a coefficient 2. The skill level of the parent’s job

is rated by the study coordinators and is not clearly defined. An SES index of 11 or lower was

the intended requirement for entry into the study (Weikart, Bond, and McNeil, 1978, p. 14). This

criterion was not always adhered to: out of the full sample, 7 individuals had an SES index above

the cutoff (6 out of 7 were in the treatment group, and 6 out of 7 were in the last two waves).
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Second, even if treatment assignment is statistically independent of the baseline variables,

compromised randomization can still produce biased inference. A compromised randomiza-

tion protocol can generate treatment assignment distributions that differ from those that

would result from implementation of the intended randomization protocol. As a conse-

quence, incorrect inference can occur if the data are analyzed under the assumption that no

compromise in randomization has occurred.

More specifically, analyzing the Perry study under the assumption that a fair coin decides

the treatment assignment of each participant — as if an idealized, non-compromised random-

ization had occurred — mischaracterizes the actual treatment assignment mechanism and

hence the probability of assignment to treatment. This can produce incorrect critical values

and improper control of Type-I error. Section 4.5 presents a procedure that accounts for

the compromised randomization using permutation-based inference conditioned on baseline

background measures.

Multiple Hypotheses There are numerous outcomes reported in the Perry experiment.

One has to be careful in conducting analyses to avoid selective reporting of statistically

significant outcomes, as determined by single-hypothesis tests, without correcting for the

effects of such preliminary screening on actual p-values. This practice is sometimes termed

cherry picking.

Multiple-hypothesis testing procedures avoid bias in inference arising from selectively

reporting statistically significant results by adjusting inference to take into account the overall

set of outcomes from which the “significant” results are drawn.

The traditional approach to testing based on overall F -statistics involves testing the null

hypothesis that any element of a block of hypotheses is rejected. We test that hypothesis as

part of a general stepdown procedure, which also tests which hypotheses within the block of

hypotheses are rejected.

Simple calculations suggest that concerns about the overall statistical significance of

11



Table 2: Percentage of Test Statistics Exceeding Various Significance Levelsa

All Data Male Subsample Female Subsample

Percentage of p-values smaller than 1% 7% 3% 7%

Percentage of p-values smaller than 5% 23% 13% 22%

Percentage of p-values smaller than 10% 34% 21% 31%

aBased on 715 outcomes in the Perry study. (See Schweinhart, Montie, Xiang, Barnett, Belfield, and Nores,

2005, for a description of the data.) 269 outcomes are from the period before the age-19 interview; 269

are from the age-19 interview; 95 are outcomes from the age-27 interview; 55 are outcomes from the age-40

interview.

treatment effects for the Perry study may have been overstated. Table 2 summarizes the

inference for 715 Perry study outcomes by reporting the percentage of hypotheses rejected

at various significance levels.16 If outcomes were statistically independent and there was no

experimental treatment effect, we would expect only 1% of the hypotheses to be rejected

at the 1% level, but instead 7% are rejected overall (3% for males and 7% for females). At

the 5% significance level, we obtain a 23% overall rejection rate (13% for males and 22% for

females). Far more than 10% of the hypotheses are statistically significant when the 10%

level is used. These results suggest that treatment effects are present for each gender and

for the full sample.

However, the assumption of independence among the outcomes used to make these cal-

culations is quite strong. In our analysis, we use modern methods for testing multiple

hypotheses that account for possible dependencies among outcomes. We use a stepdown

multiple-hypothesis testing procedure that controls for the Family-Wise Error Rate (FWER)

— the probability of rejecting at least one true null hypothesis among a set of hypotheses

we seek to test jointly. This procedure is discussed below in Section 4.6.

16Inference is based on a permutation testing method where the t-statistic of the difference in means
between treatment and control groups is used as the test statistic.
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4 Methods

This section presents a framework for inference that addresses the problems raised in Sec-

tion 3, namely, small samples, compromised randomization, and cherry picking. We first

establish notation, discuss the benefits of a valid randomization, and consider the conse-

quences of compromised randomization. We then introduce a general framework for repre-

senting randomized experiments. Using this framework, we develop a statistical framework

for characterizing the conditions under which permutation-based inference produces valid

small-sample inference when there is corruption of the intended randomization protocol.

Finally, we discuss the multiple-hypothesis testing procedure used in this paper.

4.1 Randomized Experiments

The standard model of program evaluation describes the observed outcome for participant

i, Yi, by Yi = DiYi,1 + (1−Di)Yi,0, where (Yi,0, Yi,1) are potential outcomes corresponding

to control and treatment status for participant i, respectively, and Di is the assignment

indicator: Di = 1 if treatment occurs, Di = 0 otherwise.

An evaluation problem arises because either Yi,0 or Yi,1 is observed, but not both. Se-

lection bias can arise from participant self-selection into treatment and control groups so

that sampled distributions of Yi,0 and Yi,1 are biased estimators of the population distri-

butions. Properly implemented randomized experiments eliminate selection bias because

they produce independence between (Yi,0, Yi,1) and Di.
17 Notationally, (Y0, Y1) ⊥⊥ D, where

Y0, Y1, and D are vectors of variables across participants, and ⊥⊥ denotes independence.

Selection bias can arise when experimenters fail to generate treatment groups that are

comparable on unobserved background variables that affect outcomes. A properly conducted

randomization avoids the problem of selection bias by inducing independence between un-

observed variables and treatment assignments.

Compromised randomization can invalidate the assumption that (Y0, Y1) ⊥⊥ D. The

17Web Appendix B discusses this point in greater detail.
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treatments and controls can have imbalanced covariate distributions.18 The following nota-

tional framework helps to clarify the basis for inference under compromised randomization

that characterizes the Perry study.

4.2 Setup and Notation

Denote the set of participants by I = {1, . . . , I}, where I = 123 is the total number of Perry

study participants. We denote the random vector representing treatment assignments by

D = (Di; i ∈ I). The set D is the support of the vector of random assignments, namely

D = [0, 1] × · · · × [0, 1], 123 times, so D = [0, 1]123. Define the pre-program variables used

in the randomization protocol by X = (Xi; i ∈ I). For the Perry study, baseline variables

X consist of data on the following measures: IQ, enrollment cohort, socio-economic status

(SES) index, family structure, gender, and maternal employment status, all measured at

study entry.

Assignment to treatment is characterized by a function M . The arguments of M are

variables that affect treatment assignment. Define R as a random vector that describes the

outcome of a randomization device (e.g., a flip of a coin to assign treatment status). Prior

to determining the realization of R, two groups are formed on the basis of pre-program

variables X. Then R is realized and its value is used to assign treatment status. R does

not depend on the composition of the two groups. After the initial treatment assignment,

individuals are swapped across assigned treatment groups based on some observed back-

ground characteristics X (e.g., mother’s working status). M captures all three aspects of

the treatment assignment mechanism. The following assumptions formalize the treatment

18Heckman and Smith (1995), Heckman, LaLonde, and Smith (1999), and Heckman and Vytlacil (2007)
discuss randomization bias and substitution bias. The Perry study does not appear to be subject to these
biases. Randomization bias occurs when random assignment causes the type of person participating in
a program to differ from the type that would participate in the program as it normally operates based
on participant decisions. The description of Weikart, Bond, and McNeil (1978) suggests that because of
universal participation of eligibles, this is not an issue for Perry. Substitution bias arises when members
of an experimental control group gain access to close substitutes for the experimental treatment. During
the pre-Head Start era of the early 1960s, there were few alternative programs to Perry, so the problem of
substitution bias is unimportant for the analysis of the Perry study.
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assignment protocol:

Assumption A-1. D ∼ M (R,X) : supp(R)×supp(X) → D;R ⊥⊥ X, where supp(D) = D,

and supp denotes support.

Let Vi represent the unobserved variables that affect outcomes for participant i. The

vector of unobserved variables is V = (Vi ; i ∈ I). The assumption that unobserved variables

are independent of the randomization device R is critical for guaranteeing that randomization

produces independence between unobserved variables and treatment assignments, and can

be stated as follows:

Assumption A-2. R ⊥⊥ V .

Remark 4.1 . The random variablesR used to generate the randomization and the unobserved

variables V are assumed to be independent. However, if initial randomization is compromised

by reassignment based on X, the assignment mechanism depends on X. Thus, substantial

correlation between final treatment assignments D and unobserved variables V can exist

through the common dependence between X and V .

As noted in Section 2, some participants whose mothers were employed had their initial

treatment status reassigned in an effort to lower program costs. One way to interpret the

protocol as implemented is that the selection of reassigned participants occurred at random

given working status. In this case, the assignment mechanism is based on observed variables

and can be represented by M as defined in assumption A-1. In particular, conditioning on

maternal working status (and other variables used to assign persons to treatment) provides a

valid representation of the treatment assignment mechanism and avoids selection bias. This

is the working hypothesis of our paper.

Given that many of the outcomes we study are measured some 30 years after random

assignment, and a variety of post-randomization period shocks generate these outcomes, the

correlation between V and the outcomes may be weak. For example, there is evidence that

earnings are generated in part by a random walk with drift (see, e.g., Meghir and Pistaferri,
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2004). If this is so, the correlation between the errors in the earnings equation and the errors

in the assignment to treatment equation may be weak. By the proximity theorem (Fisher,

1966), the bias arising from V correlated with outcomes may be negligible.19

Each element i in the outcome vector Y takes value Yi,0 or Yi,1. The vectors of counterfac-

tual outcomes are defined by Yd = (Yi,d ; i ∈ I); d ∈ {0, 1}, i ∈ I. Without loss of generality,

assumption A-3 postulates that outcomes Yi,d, where d ∈ {0, 1}, i ∈ I, are generated by a

function f :

Assumption A-3. Yi,d ≡ f(d,Xi, Vi); d ∈ {0, 1}, ∀ i ∈ I.20

Assumptions A-1, A-2, and A-3 formally characterize the Perry randomization protocol.

The Benefits of Randomization The major benefit of randomization comes from avoid-

ing the problem of selection bias. This benefit is a direct consequence of assumptions A-1,

A-2, and A-3, and can be stated as a lemma:

Lemma L-1. Under assumptions A-1, A-2, and A-3, (Y1, Y0) ⊥⊥ D | X.

19However, if reassignment of initial treatment status was not random within the group of working mothers
(say favoring those who had children with less favorable outcomes), conditioning on working status may not
be sufficient to eliminate selection bias. In a companion paper, Heckman, Pinto, Shaikh, and Yavitz (2009)
develop and apply a more conservative approach to bounding inference about the null hypothesis of no
treatment effect where selection into treatment is based on unobserved variables correlated with outcomes,
so that the assignment mechanism is described by D ∼ M(R,X, V ). Bounding is the best that they can do
because the exact rules of reassignment are unknown, and they cannot condition on V . From documentation
on the Perry randomization protocol, they have a set of restrictions used to make reassignments that produce
informative bounds.

20At the cost of adding new notation, we could distinguish a subset of X, Z, which does not determine
M but does determine Y . In this case, we write an amended assumption:

Assumption A-3′. Yi,d = f(d,Xi, Zi, Vi); d ∈ {0, 1}, ∀ i ∈ I.

In addition, assumption A-2 is strengthened to the following statement:

Assumption A-2′. R ⊥⊥ (V, Z).

In practice, conditioning on Z can be important for controlling imbalances in variables that are not used
to assign treatment but that affect outcomes. For example, birth weight (a variable not used in the Perry
randomization protocol) may, on average, be lower in the control group and higher in the treatment group,
and birth weight may affect outcomes. In this case, a spurious treatment effect could arise in any sample
due to this imbalance, and not because of the treatment itself. Such imbalance may arise from compromises
in the randomization protocol. To economize on notation, we do not explicitly distinguish Z, but instead
treat it as a subset of X.
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Proof. Conditional on X, the argument that determines Yi,d for d ∈ {0, 1} is V , which is

independent of R by assumption A-2. Thus, R is independent of (Y0, Y1). Therefore, any

function of R and X is also independent of (Y0, Y1) conditional on X. In particular, as-

sumption A-1 states that conditional on X, treatment assignments depend only on R, so

(Y0, Y1) ⊥⊥ D | X.

Remark 4.2 . Regardless of the particular type of compromise to the initial randomization

protocol, Lemma L-1 is valid whenever the randomization protocol is based on observed

variables X, but not on V . Assumption A-2 is a consequence of randomization. Under it,

randomization provides a solution to the problem of biased selection.21

Remark 4.3 . Lemma L-1 justifies matching as a method to correct for irregularities in the

randomization protocol.

The method of matching is often criticized because the appropriate conditioning set that

guarantees conditional independence is generally not known, and there is no algorithm for

choosing the conditioning variables without invoking additional assumptions (e.g., exogene-

ity).22 For the Perry experiment, the conditioning variablesX that determine the assignment

to treatment are documented, even though the exact treatment assignment rule is unknown

(see Weikart, Bond, and McNeil, 1978).

When samples are small and the dimensionality of covariates is large, it becomes imprac-

tical to match on all covariates. This is the “curse of dimensionality” in matching (Westat,

1981). To overcome this problem, Rosenbaum and Rubin (1983) propose propensity score

matching, in which matches are made based on a propensity score, that is, the probability

of being treated conditional on observed covariates. This is a one-dimensional object that

21Biased selection can occur in the context of a randomized experiment if treatment assignment uses infor-
mation that is not available to the program evaluator and is statistically related to the potential outcomes.
For example, suppose that the protocol M is based in part on an unobserved (by the economist) variable V

that impacts Y through the f(·) in assumption A-3:

Assumption A-1′. M(R,X, V ) : supp(R)× supp(X)× supp(V ) → D.

22See Heckman and Navarro (2004), Heckman and Vytlacil (2007), and Heckman (2010).
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reduces the dimensionality of the matching problem at the cost of having to estimate the

propensity score, which creates problems of its own.23 Zhao (2004) shows that when sample

sizes are small, as they are in the Perry data, propensity score matching performs poorly

when compared with other matching estimators. Instead of matching on the propensity

score, we directly condition on the matching variables using a partially linear model. A fully

nonparametric approach to modeling the conditioning set is impractical in the Perry sample.

4.3 Testing the Null Hypothesis of No Treatment Effect

Our aim is to test the null hypothesis of no treatment effect. This hypothesis is equivalent

to the statement that the control and treated outcome vectors share the same distribution:

Hypothesis H-1. Y1
d
= Y0 | X,

where
d
= denotes equality in distribution.

The hypothesis of no treatment effect can be restated in an equivalent form. Under

Lemma L-1, hypothesis H-1 is equivalent to the following statement:

Hypothesis H-1′. Y ⊥⊥ D | X.

The equivalence is demonstrated by the following argument. Let AJ denote a set in the

support of a random variable J . Then

23See Heckman, Ichimura, Smith, and Todd (1998).
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Pr((D, Y ) ∈ (AD, AY )|X) = E(1[D ∈ AD]⊙ 1[Y ∈ AY ]|X)

(where ⊙ denotes a Hadamard product.24)

= E(1[Y ∈ AY ]|D ∈ AD, X) Pr(D ∈ AD|X)

= E(1[(Y1 ⊙D + Y0 ⊙ (1−D)) ∈ AY ]|D ∈ AD, X) Pr(D ∈ AD|X)

= E(1[Y0 ∈ AY ]|D ∈ AD, X) Pr(D ∈ AD|X) by hypothesis H-1

= E(1[Y0 ∈ AY ]|X) Pr(D ∈ AD|X) by Lemma L-1

= Pr(Y ∈ AY |X) Pr(D ∈ AD|X),

We refer to hypotheses H-1 and H-1′ interchangeably throughout this paper. If the

randomization protocol is fully known, then the randomization method implies a known

distribution for the treatment assignments. In this case, we can proceed in the following

manner:

1. From knowledge of the treatment assignment rules, one can generate the distribution

of D|X;

2. Select a statistic T (Y,D,X) with the property that larger values of the statistic provide

evidence against the null hypothesis, hypothesis H-1 (e.g., t-statistics, χ2, etc.);

3. Create confidence intervals for the random variable T (Y,D,X) | X at significance level

α based on the known distribution of D|X;

4. Reject the null hypothesis if the value of T (Y,D,X) calculated from the data does not

belong to the confidence interval.

Implementing these procedures requires solving certain problems. To produce the distri-

24A Hadamard product is an element-wise product.
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bution of D|X requires precise knowledge of the ingredients of the assignment rules, which

are only partially known. Alternatively, the analyst could use the asymptotic distribution of

the chosen test statistic. However, given the size of the Perry sample, it seems unlikely that

the distribution of T (Y,D,X) is accurately characterized by large sample distribution theory.

We address these problems by using permutation-based inference that addresses the prob-

lem of small sample size in a way that allows us to simultaneously account for compromised

randomization when assumptions A-1–A-3 and hypothesis H-1 are valid. Our inference is

based on an exchangeability property that remains valid under compromised randomization.

4.4 Exchangeability and the Permutation-Based Tests

The main result of this subsection is that, under the null hypothesis, the joint distribution

of outcome and treatment assignments is invariant for certain classes of permutations. We

rely on this property to construct a permutation test that remains valid under compromised

randomization. Permutation-based inference is often termed data-dependent because the

computed p-values are conditional on the observed data. These tests are also distribution-

free because they do not rely on assumptions about the parametric distribution from which

the data are sampled. Because permutation tests give accurate p-values even when the

sampling distribution is skewed, they are often used when sample sizes are small and sample

statistics are unlikely to be normal. Hayes (1996) shows the advantage of permutation tests

over the classical approaches for the analysis of small samples and non-normal data.

Permutation-based tests make inferences about hypothesis H-1 by exploring the invari-

ance of the joint distribution of (Y,D) under permutations that swap the elements of the

vector of treatment indicators D. We use g to index a permutation function π, where the

permutation of elements of D according to πg is represented by gD. Notationally, gD is
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defined as

gD =
(
D̃i; i ∈ I | D̃i = Dπg(i)

)
,where πg is a permutation function (i.e., πg : I → I is a bijection).

Lemma L-2. Let the permutation function πg : I → I within each stratum of X, such that

Xi = Xπg(i), ∀ i ∈ I. Then, under assumption A-1, gD
d
= D.

Proof. gD ∼ M (R, gX) by construction, but gX = X by definition, so gD ∼ M (R,X).

Remark 4.4 . An important feature of the exchangeability property used in Lemma L-2

is that it relies on limited information on the randomization protocol. It is valid under

compromised randomization and there is no need for a full specification of the distribution

D or the assignment mechanism M .

Let GX be the set of all permutations that permute elements only within each stratum

of X.25 Formally,

GX =
{
g; πg : I → I is a bijection and Xi = Xπg(i), ∀ i ∈ I

}
.

A corollary of Lemma L-2 is

D
d
= gD ∀ g ∈ GX . (1)

We now state and prove the following theorem.

Theorem 4.1. Let treatment assignment be characterized by assumptions A-1–A-3. Under

hypothesis H-1, the joint distribution of outcomes Y and treatment assignments D is invari-

ant under permutations g ∈ GX of treatment assignments within strata formed by values of

covariates X, that is, (Y,D)
d
= (Y, gD) ∀ g ∈ GX .

25See Web Appendix C.3 for a formal description of restricted permutation groups.
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Proof. By Lemma L-2, D
d
= gD ∀ g ∈ GX . But Y ⊥⊥ D | X by hypothesis H-1. Thus

(Y,D)
d
= (Y, gD) ∀ g ∈ GX .

Theorem 4.1 is called the randomization hypothesis.26 We use it to test whether Y ⊥⊥

D | X. Intuitively, Theorem 4.1 states that if the randomization protocol is such that (Y,D)

is invariant over the strata of X, then the absence of a treatment effect implies that the joint

distribution of (Y,D) is invariant with respect to permutations ofD that are restricted within

strata ofX.27 Theorem 4.1 is a useful tool for inference about treatment effects. For example,

suppose that, conditional on X (which we keep implicit), we have a test statistic T (Y,D)

with the property that larger values of the statistic provide evidence against hypothesis H-

1 and an associated critical value c, such that whenever T (Y,D) > c, we reject the null

hypothesis. The goal of our test is to control for a Type-I error at significance level α, that

is,

Pr(reject hypothesis H-1 | hypothesis H-1 is true)

= Pr(T (Y,D) > c| hypothesis H-1 is true) ≤ α.

A critical value can be computed by using the fact that as g varies in GX under the null

hypothesis of no treatment effect, conditional on the sample, T (Y, gD) is uniformly dis-

tributed.28 Thus, under the null, a critical value can be computed by taking the α quantile

of the set {T (Y, gD) : g ∈ GX}. In practice, permutation tests compare a test statistic

computed on the original (unpermuted) data with a distribution of test statistics computed

on resamplings of that data. The measure of evidence against the randomization hypothe-

sis, the p-value, is computed as the fraction of resampled data which yields a test statistic

greater than that yielded by the original data. In the case of the Perry study, these re-

sampled data sets consist of the original data with treatment and control labels permuted

26See Lehmann and Romano (2005, Chapter 9).
27Web Appendix C discusses our permutation methodology.
28See Lehmann and Romano (2005, Theorem 15.2.2).
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across observations. As discussed below in Section 4.5, we use permutations that account for

the compromised randomization, and our test statistic is the coefficient on treatment status

estimated using a regression procedure due to Freedman and Lane (1983), which controls

for covariate imbalances and is designed for application to permutation inference.

We use this procedure and report one-sided mid-p-values, which are averages between the

one-sided p-values defined using strict and non-strict inequalities. As a concrete example of

this procedure, suppose that we use a permutation test with J + 1 permutations gj, where

the first J are drawn at random from the permutation group GX and gJ+1 is the identity

permutation (corresponding to using the original sample).

Our source statistic ∆ is a function of an outcome Y and permuted treatment labels gjD.

For each permutation, we compute a set of source statistics ∆j = ∆(Y, gjD). From these,

we compute the rank statistic T j associated with each source statistic ∆j:29

T j ≡
1

J + 1

J+1∑

l=1

1[∆j
> ∆l]. (2)

Without loss of generality, we assume that higher values of the source statistics are evidence

against the null hypothesis. Working with ranks of the source statistic effectively standarizes

the scale of the statistic and is an alternative to studentization (i.e., standardizing by the

standard error). This procedure is called prepivoting in the literature.30 The mid-p-value is

29Although this step can be skipped without affecting any results for single-hypothesis testing (i.e., ∆j

may be used directly in calculating p-value), the use of rank statistics T j is recommended by Romano and
Wolf (2005) for the comparison of statistics in multiple-hypothesis testing.

30See Beran (1988a,b). Prepivoting is defined by the transformation of a test statistic into its cumulative
distribution function (cdf). The distribution is summarized by the relative ranking of the source statistics.
Therefore, it is invariant to any monotonic transformation of the source statistic. Romano and Wolf (2005)
note that prepivoting is useful in constructing multiple-hypothesis tests. The procedure generates a distri-
bution of test statistics that is balanced in the sense that each prepivoting statistic has roughly the same
power against alternatives. More specifically, suppose that there are no ties. After prepivoting, the marginal
distribution of each rank statistic in this vector is a discrete distribution that is uniform [0, 1]. The power
of the joint test of hypotheses depends only on the correlation among the prepivoting statistics, and not on
their original scale (i.e., the scale of the source). The question of optimality in the choice of test statistics is
only relevant to the extent that different choices change the relative ranking of the statistics. An example
relevant to this paper is that the choice between tests based on difference in means across control and treat-
ment groups or the t-statistic associated with the difference in means is irrelevant for permutation tests in
randomized trials as both statistics produce the same rank statistics across permutations. (See Good, 2000,
for a discussion.)
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computed as the average of the fraction of permutation test statistics strictly greater than

the unpermuted test statistic and the fraction greater than or equal to the unpermuted test

statistic:

p ≡
1

2(J + 1)

(
J+1∑

j=1

1[T j
> T J+1] +

J+1∑

j=1

1[T j > T J+1]

)
.31 (3)

Web Appendix C.5 shows how to use mid-p-values to control for Type-I error.

4.5 Accounting for Compromised Randomization

This paper solves the problem of compromised randomization under the assumption of con-

ditional exchangeability of assignments given X. A by-product of this approach is that we

correct for imbalance in covariates between treatments and controls.

Conditional inference is implemented using a permutation-based test that relies on re-

stricted classes of permutations, denoted by GX . We partition the sample into subsets, where

each subset consists of participants with common background measures. Such subsets are

termed orbits or blocks. Under the null hypothesis of no treatment effect, treatment and

control outcomes have the same distributions within an orbit.32 Equivalently, treatment

assignments D are exchangeable (therefore permutable) with respect to the outcome Y for

participants who share common pre-program values X. Thus, the valid permutations g ∈ GX

swap labels within conditioning orbits.

We modify standard permutation methods to account for the explicit Perry randomiza-

tion protocol. Features of the randomization protocol, such as identical treatment assign-

ments for siblings, generate a distribution of treatment assignments that cannot be described

(or replicated) by simple random assignment.33

31Mid-p-values recognize the discrete nature of the test statistics.
32The baseline variables can affect outcomes, but may (or may not) affect the distribution of assignments

produced by the compromised randomization.
33Web Appendix C provides relevant theoretical background, as well as operational details, about imple-

menting the permutation framework.
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Conditional Inference in Small Samples Invoking conditional exchangeability de-

creases the number of valid permutations within X strata. The small Perry sample size

prohibits very fine partitions of the available conditioning variables. In general, nonpara-

metric conditioning in small samples introduces the serious practical problem of small or

even empty permutation orbits. To circumvent this problem and obtain restricted permuta-

tion orbits of reasonable size, we assume a linear relationship between some of the baseline

measures in X and the outcomes Y . We partition the data into orbits on the basis of

variables that are not assumed to have a linear relationship with outcome measures. Remov-

ing the effects of some conditioning variables, we are left with larger subsets within which

permutation-based inference is feasible.

More precisely, we divide the vector X into two parts: those variables X [L] which are

assumed to have a linear relationship with Y , and variables X [N ], whose relationship with Y

is allowed to be nonparametric, X = [X [L], X [N ]].34 Linearity enters into our framework by

replacing assumption A-3 with the following assumption:

Assumption A-4. Yi,d ≡ δdX
[L]
i + f(d,X

[N ]
i , Vi); d ∈ {0, 1}, i ∈ I.

Under hypothesis H-1, δ1 = δ0 = δ and Ỹ ≡ Y − δX [L] = f(X [N ], V ). Using assump-

tion A-4, we can rework the arguments of Section 4.4 to prove that, under the null,

Ỹ ⊥⊥ D | X [N ]. Under hypothesis A-4 and the knowledge of δ, our randomization hypothesis

becomes (Ỹ , D)
d
= (Ỹ , gD) such that g ∈ GX[N ] , where GX[N ] is the set of permutations that

swap the participants who share the same values of covariates X [N ]. We purge the influence

of X [L] on Y by subtracting δX [L] and can construct valid permutation tests of the null

hypothesis of no treatment effect by conditioning on X [N ]. Conditioning nonparametrically

on X [N ], a smaller set of variables than X, we are able to create restricted permutation or-

bits that contain substantially larger numbers of observations than when we condition more

finely on all of the X. In an extreme case, one could assume that all conditioning variables

34Linearity is not strictly required, but we use it in our empirical work. In place of linearity, we could use
a more general parametric functional form.
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enter linearly, eliminate their effect on the outcome, and conduct permutations using the

resulting residuals without any need to form orbits based on X.

If δ were known, we could control for the effect of X [L] by permuting Ỹ = Y − δX [L]

within the groups of participants that share the same pre-program variables X [N ]. However,

δ is rarely known. We address this problem by using a regression procedure due to Freed-

man and Lane (1983). Under the null hypothesis, D is not an argument in the function

determining Y . Our permutation approach addresses the problem raised by estimating δ by

permuting the residuals from a regression of Y on X [L] in orbits that share the same values

of X [N ], leaving D fixed. The method regresses Y on X [L], then permutes the residuals from

this regression according to GX[N ] . D is adjusted to remove the influence of X [L]. The method

then regresses the permuted residuals on adjusted D.

More precisely, define Bg as a permutation matrix associated with the permutation g ∈

GX[N ] .35 The Freedman and Lane regression coefficient for permutation g is

∆g
k ≡ (D′QXD)−1D′QXB

′

gQXY
k; g ∈ GX[N ] , (4)

where k is the outcome index, the matrix QX is defined as QX ≡ (I − PX), I is the identity

matrix, and

PX ≡ X [L]((X [L])′X [L])−1(X [L])′.

PX is a linear projection in the space generated by the columns of X [L], and QX is the

projection into the orthogonal space generated by X [L]. We use this regression coefficient

as the input source statistic (∆j) to form the rank statistic (2) and to compute p-values via

(3).

Expression (4) corrects for the effect of X [L] on both D and Y . (For notational simplicity,

we henceforth suppress the k superscript.) The term QXY estimates Ỹ . If δ were known, Ỹ

35A permutation matrix B of dimension L is a square matrix B = (bi,j) : i, j = 1, . . . , L, where each row
and each column has a single element equal to 1 and all other elements equal to 0 within the same row or
column, so

∑L

i=1 bi,j = 1,
∑L

j=1 bi,j = 1 for all i, j.
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could be computed exactly. The term D′QX corrects for the imbalance of X [L] across treat-

ment and control groups. Without loss of generality, we can arrange the rows of (Y,D,X)

so that participants that share the same values of covariates X [N ] are adjacent. Writing

the data in this fashion, Bg is a block-diagonal matrix, whose elements are themselves per-

mutation matrices that swap elements within each stratum defined by values of X [N ]. For

notational clarity, suppose that there are S of these strata indexed by s ∈ S ≡ {1, . . . S}.

Let the participant index set I be partitioned according to these strata into S disjoint set

{Is ; s ∈ S} so that each participant in Is has the same value of pre-program variables X [N ].

Permutations are applied within each stratum s associated with a value of X [N ]. The per-

mutations within each stratum are conducted independently of the permutations for other

strata. All within-strata permutations are generated by Bg to form Equation (4). That

equation aggregates data across the strata to form ∆g
k. The same permutation structure is

applied to all outcomes in order to construct valid joint tests of multiple hypotheses. ∆g
k

plays the role of ∆j in (2) to create our test statistic.

In a series of Monte Carlo studies, Anderson and Legendre (1999) show that the Freedman-

Lane procedure generally gives the best results in terms of Type-I error and power among

a number of similar permutation-based approximation methods. In another paper, Ander-

son and Robinson (2001) compare an exact permutation method (where δ is known) with

a variety of permutation-based methods. They find that in samples of the size of Perry,

the Freedman-Lane procedure generates test statistics that are distributed most like those

generated by the exact method, and are in close agreement with the p-values from the true

distribution when regression coefficients are known. Thus, for the Freedman-Lane approach,

estimation error appears to create negligible problems for inference.

Interpreting Our Test Statistic To recapitulate, permutations are conducted within

each stratum defined by X [N ] for the S strata indexed by s ∈ S ≡ {1, . . . , S}. Let D(s)

be the treatment assignment vector for the subset Is defined by D(s) ≡ (Di ; i ∈ Is). Let
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Ỹ (s) ≡ (Ỹi ; i ∈ Is) be the adjusted outcome vector for the subset Is. Finally, let G s
X[N ] be

the collection of all permutations that act on the |Is| elements of the set Is of stratum s.

Note that one consequence of the conditional exchangeability property (Ỹ , D)
d
= (Ỹ , gD)

for g ∈ GX[N ] is that the distribution of a statistic within each stratum, T (s) : (supp(Ỹ (s))×

supp(D(s))) → R, is the same under permutations g ∈ G s
X[N ] of the treatment assignment

D(s). Formally, within each stratum s ∈ S,

T (Ỹ (s), D(s))
d
= T (Ỹ (s), gD(s)) ∀g ∈ G

s
X[N ] . (5)

The distribution of any statistic T (s) = T (Ỹ (s), D(s)) (conditional on the sample) is uniform

across all the values T g(s) = T (Ỹ (s), gD(s)), where g varies in G s
X[N ] .
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The Freedman-Lane statistic aggregates tests across the strata. To understand how it

does this, consider an approach that combines the independent statistics across strata to

form an aggregate statistic,

T =
S∑

s=1

T (s)w(s), (6)

where the weight w(s) could be, for example, (1/σ(s)) where σ(s) is the standard error of

T (s). Tests of the null hypothesis could be based on T .

To relate this statistic to the one based on Equation (4), consider the special case where

there are no X [L] variables besides the constant term so there is no need to estimate δ. Define

Di(s) as the value of D for person i in stratum s, i = 1, . . . , |Is|. Likewise, Ỹi(s) is the value

of Ỹ for person i in stratum s. Define

T (s) =

∑
i∈Is Ỹi(s)Di(s)∑

i∈Is Di(s)
−

∑
i∈Is Ỹi(s)(1−Di(s))∑

i∈Is(1−Di(s))
.

We can define corresponding statistics for the permuted data.

In this special case where, in addition, the variance of Ỹ (s) is the same within each

36See Lehmann and Romano (2005, Chapter 15) for a formal proof.
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stratum (σ(s) = σ) and w(s) = |Is| /σ |I| (i.e., w(s) is the proportion of sample observations

in stratum s), test statistic (6) generates the same inference as the Freedman-Lane regression

coefficient (4) used as the source statistic for our testing procedure.

In the more general case analyzed in this paper, the Freedman-Lane procedure (4) adjusts

the Y andD to remove the influence ofX [L]. Test statistic (6) would be invalid, even if we use

Ỹ instead of Y because it does not control for the effect of X [L] on D.37 The Freedman-Lane

procedure adjusts for the effect of the X [L], which may differ across strata.38

4.6 Multiple-Hypothesis Testing: The Stepdown Algorithm

Thus far, we have considered testing a single null hypothesis. Yet there are more than 715

outcomes measured in the Perry data. We now consider the null hypothesis of no treatment

effect for a set of K outcomes jointly. The complement of the joint null hypothesis is the

hypothesis that there exists at least one hypothesis out of K that we reject.

Formally, let P be the distribution of the observed data, (Y,D)|X ∼ P . We test the |K|

set of single null hypotheses indexed by K = {1, . . . , K} and defined by the rule

P ∈ Pk ⇐⇒ Y k ⊥⊥ D|X.

The hypothesis we test is defined as follows:

Hypothesis H-2. HK : P ∈
⋂

k∈K Pk.

37Anderson and Robinson (2001) discuss the poor performance of permutation tests that do not control
for the influence of X [L].

38The Freedman-Lane statistic is based on an OLS estimator. In the case of heteroscedasticity arising
from differences in the variances of Y (s) across strata, OLS is unbiased and consistent for the treatment
effect, but the conventional standard errors for OLS are biased. Asymptotic p-values generated using normal
approximations may be misleading. Our permutation test generates valid inference by permuting data within

strata and pooling the permuted data across strata via (4). Under the null hypothesis of no treatment effect
we obtain the exact distribution of the OLS parameter conditional on the data. Thus we compute tests with
the correct size. If we permuted across strata, we would lose this property. Whether other statistics, such
as a GLS version of the Freedman-Lane statistic, would improve statistical power is still an open question.
The Freedman-Lane Equation (4) is an example of a combining function in permutation statistics (Pesarin
and Salmaso, 2010) applied to combine tests across strata.
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The alternative hypothesis is the complement of hypothesisH-2. Let the unknown subset

of true null hypotheses be denoted by KP ⊂ K, such that k ∈ KP ⇐⇒ P ∈ Pk. Likewise we

define HKP
: P ∈

⋂
k∈KP

Pk. Our goal is to test the family of null hypotheses H-2 in a way

that controls the Family-Wise Error Rate (FWER) at level α. FWER is the probability of

rejecting any true null hypothesis contained in HKP
out of the set of hypotheses HK. FWER

at level α is

Pr(reject Hk : k ∈ KP |HKP
is true) ≤ α . (7)

A multiple-hypothesis testing method is said to have strong control for FWER when Equa-

tion (7) holds for any configuration of the set of true null hypotheses KP .

To generate inference using evidence from the Perry study in a robust and defensible

way, we use a stepdown algorithm for multiple-hypothesis testing. The procedure begins

with the null hypothesis associated with the most statistically significant statistic and then

“steps down” to the null hypotheses associated with less significant statistics. The validity

of this procedure follows from the analysis of Romano and Wolf (2005), who provide general

results on the use of stepdown multiple-hypothesis testing procedures.

The Stepdown Algorithm Stepdown begins by considering a set of K null hypotheses,

where K ≡ {1, . . . , K}. Each hypothesis postulates no treatment effect of a specific outcome,

that is, Hk : Y k ⊥⊥ D|X ; k ∈ K. The set K of null hypotheses is associated with a block of

outcomes. We adopt the mid-p-value pk as the test statistic associated with each hypothesis

Hk. Smaller values of the test statistic provide evidence against each null hypothesis. The

first step of the stepdown procedure is a joint test of all null hypotheses in K. To this end,

the method uses the maximum of the set of statistics associated with hypotheses Hk, k ∈ K.

The next step of the stepdown procedure compares the computed test statistic with the

α-quantile of its distribution and determines whether the joint hypothesis is rejected or not.

If we fail to reject the joint null hypothesis, then the algorithm stops. If we reject the null
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hypothesis, then we iterate and consider the joint null hypothesis that excludes the most

individually statistically significant outcome — the one that is most likely to contribute

to rejection of the joint null. The method steps down and is applied to a set of K − 1

null hypotheses that excludes the set of hypotheses previously rejected. In each successive

step, the most individually significant hypothesis — the one most likely to contribute to the

significance of the joint null hypothesis — is dropped from the joint hull hypothesis, and the

joint test is performed on the reduced set of hypotheses. The process iterates until only one

hypothesis remains.39

Summarizing, we first construct single-hypothesis p-values for each outcome in each block.

We then jointly test the null hypothesis of no treatment effect for all K outcomes. After

testing for this joint hypothesis, a stepdown algorithm is performed for a smaller set of

K − 1 hypotheses, which excludes the most significant hypothesis among the K outcomes.

The process continues for K steps. The stepdown method provides K adjusted p-values that

correct each single-hypothesis p-value for the effect of multiple-hypothesis testing.

Benefits of the Stepdown Procedure Similar to traditional multiple-hypothesis testing

procedures, such as the Bonferroni or Holm procedures (see, e.g., Lehmann and Romano,

2005, for a discussion of these procedures), the stepdown algorithm of Romano and Wolf

(2005) exhibits strong FWER control, in contrast with the classical tests like the F or χ2.40

The procedure generates as many p-values as there are hypotheses. Thus it provides a way

to determine which hypotheses are rejected. In contrast with traditional multiple-hypothesis

testing procedures, the stepdown procedure is less conservative. The gain in power comes

from accounting for statistical dependencies among the test statistics associated with each

individual hypothesis. Lehmann and Romano (2005) and Romano and Wolf (2005) discuss

the stepdown procedure in depth. Web Appendix D summarizes the literature on multiple-

39See Web Appendix D for details on how we implement stepdown as well as a more general and formal
description of the procedure.

40For further discussion of stepdown and its alternatives, see Westfall and Young (1993), Benjamini and
Hochberg (1995), Romano and Shaikh (2004, 2006), Romano and Wolf (2005), and Benjamini, Krieger, and
Yekutieli (2006).

31



hypothesis testing and provides a detailed description of the stepdown procedure.

4.7 The Selection of the Set of Joint Hypotheses

There is some arbitrariness in defining the blocks of hypotheses that are jointly tested in

a multiple-hypothesis testing procedure. The Perry study collects information on a variety

of diverse outcomes. Associated with each outcome is a single null hypothesis. A potential

weakness of the multiple-hypothesis testing approach is that certain blocks of outcomes may

lack interpretability. For example, one could test all hypotheses in the Perry program in

a single block.41 However, it is not clear if the hypothesis “did the experiment affect any

outcome, no matter how minor” is interesting. To avoid arbitrariness in selecting blocks of

hypotheses, we group hypotheses into economically and substantively meaningful categories

by age of participants. Income by age, education by age, health by age, test scores by age,

and behavioral indices by age are treated as separate blocks. Each block is of independent

interest and would be selected by economists on a priori grounds, drawing on information

from previous studies on the aspect of participant behavior represented by that block. We

test outcomes by age and detect pronounced life cycle effects by gender.42

5 Empirical Results

We now apply our machinery to analyze the Perry data. We find large gender differences

in treatment effects for different outcomes at different ages (Heckman, 2005; Schweinhart

et al., 2005). We find statistically significant treatment effects for both males and females

on many outcomes. These effects persist after controlling for compromised randomization

and multiple-hypothesis testing.

41In addition, using large categories of closely related variables, which are statistically insignificant, in-
creases the probability of not rejecting the null.

42An alternative to multiple-hypothesis testing is to assign a monetary metric to gauge the success or
failure of the program. This is done in the rate of return analysis of Heckman, Moon, Pinto, Savelyev, and
Yavitz (2010).
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Tables 3–6 summarize the estimated effects of the Perry program on outcomes grouped

by type and age of measurement.43 Tables 3 and 4 report results for females, while Tables 5

and 6 are for males. The third column of each table shows the control group means for the in-

dicated outcomes. The next three columns are the treatment effect sizes. The unconditional

effect (“uncond.”) is the difference in means between the treatment group and the control

group. The conditional (full) effect is the coefficient on the treatment assignment variable

in linear regressions. Specifically, we regress outcomes on a treatment assignment indicator

and four other covariates: maternal employment, paternal presence, socio-economic status

(SES) index, and Stanford-Binet IQ, all measured at the age of study entry. The conditional

(partial) effect is the estimated treatment effect from a procedure using nonparametric con-

ditioning on a variable indicating whether SES is above or below the sample median and

linear conditioning for the other three covariates. This specification is used to generate the

stepdown p-values reported in this paper. The next four columns are p-values, based on dif-

ferent procedures explained below, for testing the null hypothesis of no treatment effect for

the indicated outcome. The second-to-last column, “Gender Difference-in-Difference”, tests

the null hypothesis of no difference in mean treatment effects between males and females.

The final column gives the available observations for the indicated outcome. Small p-values

associated with rejections of the null are bolded.

Outcomes in each block are placed in ascending order of the partially linear Freedman-

Lane p-value, which is described below. This is the order in which the outcomes would be

discarded from the joint null hypothesis in the stepdown multiple-hypothesis testing algo-

rithm.44 The ordering of outcomes differs in the tables for males and females. Additionally,

some outcomes are reported for only one gender when insufficient observations were available

for reliable testing of the hypothesis for the other gender.

43Perry follow-ups were conducted at ages 19, 27, and 40. We group the outcomes by age whenever they
have strong age patterns, for example, in the case of employment or income.

44For more on the stepdown algorithm, see Section 4.6 and Web Appendix D.
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Single p-values Tables 3–6 show four varieties of p-values for testing the null hypothesis of

no treatment effect. The first such value, labeled “Näıve”, is based on a simple permutation

test of the hypothesis of no difference in means between treatment and control groups. This

test uses no conditioning, imposes no restrictions on the permutation group, and does not

account for imbalances or the compromised Perry randomization. These näıve p-values are

very close to their asymptotic versions. For evidence on this point, see Web Appendix E.

The next three p-values are based on variants of a procedure due to Freedman and

Lane (1983) for combining regression with permutation testing for admissible permutation

groups. The first Freedman-Lane p-value, labeled “Full Linearity”, tests the significance of

the treatment effect, adjusting outcomes using linear regression with four covariates: ma-

ternal employment, paternal presence, SES, and Stanford-Binet IQ, all measured at study

entry.45 The second Freedman-Lane p-value, labeled “Partial Linearity”, allows for a non-

parametric relationship between the SES index and outcomes while continuing to assume a

linear relationship for the other three covariates. This nonparametric conditioning on SES

is achieved by restricting the orbits of the permutations used in the test. Exchangeability of

treatment assignments between observations is assumed only on subsamples with similar val-

ues of the SES index (specifically, whether subjects fall above or below the sample median).

In addition, the permutation distribution for the partially linear p-values permute siblings

as a block. Admissible permutations do not assign different siblings to different treatment

and control statuses. These two modifications account for the compromised randomization

of the Perry study.46 The third p-value for the Freedman-Lane procedure incorporates an

adjustment for multiple-hypothesis testing using the stepdown algorithm described below.

Stepdown p-values and Multiple-Hypothesis Testing We divide outcomes into blocks

for multiple-hypothesis testing by type of outcome, similarities on the type of measure, and

45Note that these are the same four used to produce the conditional effect size previously described.
46Partial linearity is a valid assumption if full linearity is a valid assumption, although the converse need

not necessarily hold since a nonparametric approach is less restrictive than a linear parametric approach.
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age if there is an obvious age pattern.47 In Tables 3–6, these blocks are delineated by horizon-

tal lines. Within each block, the “Partially Linear (Adjusted)” p-value is the set of p-values

obtained from the partially linear model adjusted for multiple-hypothesis testing using the

stepdown algorithm. The adjusted p-value in each row corresponds to a joint hypothesis test

of the indicated outcome and the outcomes within each block.

The first row of each block constitutes a joint test of the null hypothesis of no treatment

effect for any of the outcomes in that block. Each successive row eliminates one outcome

from the joint null hypothesis. This stepwise ordering is the reason why we report outcomes

placed in ascending order of their p-values. The stepdown-adjusted p-values are based on

these values, and the most individually significant remaining outcome is removed from the

joint null hypothesis at each successive step.

Statistics We use the mid-p-value statistics based on the Freedman-Lane coefficient ∆g
k

for treatment status D. All p-values are computed using 30,000 draws under the relevant

permutation procedure. All inference is based on one-sided p-values under the assumption

that treatment is not harmful. An exception is the test for differences in treatment effects

by gender, which are based on two-sided p-values.

Main Results Tables 3–6 show many statistically significant treatment effects and gender

differences that survive multiple-hypothesis testing. In summary, females show strong effects

for educational outcomes, early employment, and other early economic outcomes, as well as

reduced numbers of arrests. Males show strong effects on a number of outcomes, demon-

strating a substantially reduced number of arrests and lower probability of imprisonment,

as well as strong effects on earnings at age 27, employment at age 40, and other economic

outcomes recorded at age 40.

A principal contribution of this paper is to simultaneously tackle the statistical challenges

47Education, health, family composition, criminal behavior, employment status, earnings, and general
economic activities are the categories of variables on which blocks are selected on a priori grounds.
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posed by the problems of small sample size, imbalance in the covariates, and compromised

randomization. In doing so, we find substantial differences in inference between the testing

procedures that use näıve p-values versus the Freedman-Lane p-values which correct for the

compromised nature of the randomization protocol. The rejection rate when correcting for

these problems is often higher compared with what is obtained from procedures that do not

make such corrections, sharpening the evidence for treatment effects from the Perry program.

This pattern is largely found in the p-values for males. This is evidenced by increasing

statistical significance of treatment effects moving from “Näıve” to “Full Linearity” and

from “Full Linearity” to “Partial Linearity”. In several cases, outcomes that are statistically

insignificant at a 10% level using näıve p-values are shown to be statistically significant using

p-values derived from the partially linear Freedman-Lane model. For example, consider the

p-values for “Current Employment” at age 40 for males or “Non-juvenile Arrests” at age 27

for females.

Schooling Within the group of hypotheses for education, the only statistically significant

treatment effect for males is the effect associated with being classified as mentally impaired

through age 19 (Table 5). We fail to reject the overall joint null hypotheses for both school

achievement and for lifetime educational outcomes. However, as Table 3 shows, there are

strong treatment effects for females on high school GPA, graduation, highest grade com-

pleted, mental impairment, learning disabilities, and so on. The hypothesis of no difference

between sexes in schooling outcomes is rejected for the outcomes of highest grade completed,

GPA, high school graduation, and the presence of a learning disability. The unimpressive

education results for males, however, do not necessarily mean that the pattern would be

reproduced if the program were replicated today. We discuss this point in Section 6.48 We

discuss the effects of the intervention on cognitive test scores in Web Appendix G. Heckman,

Malofeeva, Pinto, and Savelyev (2010) discuss the impact of the Perry program on noncogni-

tive skills. They decompose treatments effects into effects due to cognitive and noncognitive

48We present a more extensive discussion of this point in Web Appendix I.
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enhancements of the program.

Employment and Earnings Results for employment and earnings are displayed in Ta-

ble 4 for females and Table 6 for males. The treatment effects in these outcomes exhibit

gender differences and a distinctive age pattern. For females, we observe statistically sig-

nificant employment effects in the overall joint null hypotheses at ages 19 and 27. Only

one outcome does not survive stepdown adjustment: “Jobless Months in Past 2 Years” at

age 27. At age 40, however, there are no statistically significant earnings effects for females

considered as individual outcomes or in sets of joint null hypotheses by age. For males,

we observe no significant employment effects at age 19. We reject the overall joint null hy-

potheses of no difference in employment outcomes at ages 27 and 40. We also reject the null

hypotheses of no treatment effect on age-40 employment outcomes individually. When male

earnings outcomes alone are considered, we reject only the overall joint null hypothesis at

age 27. However, when earnings are considered together with employment, we reject both

the overall age-27 and age-40 joint null hypotheses.

Economic Activity Tests for other economic outcomes, shown in Tables 4 and 6, reinforce

the conclusions drawn from the analysis of employment outcomes above. Both treated males

and females are generally more likely to have savings accounts and own cars at the same

ages that they are more likely to be employed. The effects on welfare dependence are strong

for males when considered through age 40, but weak when considered only through age 27;

the converse is true for females.

Criminal Activity Tables 3 and 5 show strong treatment effects on criminal activities for

both genders. Males are arrested far more frequently than females, and, on average, male

crimes tend to be more serious. There are no statistically significant gender differences in

treatment effects for comparable crime outcomes. By age 27, control females were arrested

1.88 times on average during adulthood, including 0.27 felony arrests, while the correspond-
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ing figures for control males are 5.36 and 2.33.49 In addition, treated males are significantly

less likely to be in prison at age 40 than their control counterparts.50 Figure 4 shows cu-

mulative distribution functions for charges cited at all arrests through age 40 for the male

subsample. Figure 4a includes all types of charges, while Figure 4b includes only charges

with nonzero victim costs. The latter category of charges is relevant because the costs of

criminal victimization resulting from crimes committed by the Perry subjects play a key

role in determining the economic return to the Perry Preschool Program. This is reflected

in the statistical significance of estimated differences in total crime costs between treated

and untreated groups at the 10% level based on the Freedman-Lane procedure using the

partially linear model for both males and females. Total crime costs include victimization,

police, justice, and incarceration costs. Victimizations are estimated from arrest records for

each type of crime using data from urban areas of the Midwest. Police and court costs are

based on historical Michigan unit costs, and the victimization cost of fatal crime takes into

account the statistical value of life.51 We reject the overall joint null hypotheses for the

number of arrests for both males and females at age 27 and 40.

Sensitivity Analysis Our calculations, which are based on the Freedman-Lane procedure

under the assumption of partial linearity, rely on linear parametric approximations and on a

particular choice of SES quantiles to define permutation orbits. Other choices are possible.

Any or all of the four covariates that we use in the Freedman-Lane procedure under full lin-

earity could have been used as conditioning variables to define restricted permutation orbits

under a partial linearity assumption. We choose the SES index for nonparametric condition-

ing, since family background is known to be a powerful determinant of adult outcomes (see

Cunha, Heckman, Lochner, and Masterov, 2006). Specifically, we use a dummy variable for

49Statistics for female felony arrests are not shown in the table due to their low reliability: the small
sample size and the low incidence of felony arrests.

50The set of crime hypotheses is different for males and females due to small sample sizes: we cannot
reliably measure the probability of incarceration for females for Perry sample.

51Heckman, Moon, Pinto, Savelyev, and Yavitz (2010) present a detailed analysis of total crime cost and
its contributions to the economic return to the Perry program.
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whether the SES index is above or below the sample median.

It is informative to conduct a sensitivity analysis on the effects of the choice of condi-

tioning strata, which correspond to the covariates whose relationship with the outcome is

assumed to be nonlinear rather than linear. To test the sensitivity of our results to the

choice of stratum, we run a series of partially linear Freedman-Lane procedures with varying

assumptions regarding the set of which covariates enter linearly.

The four pre-program covariates in question can be used either as Freedman-Lane re-

gressors, which assume a linear relationship with outcomes, or as conditioning variables that

limit the orbits of permutations to their selected quantiles, which allows for a nonlinear rela-

tionship. In Web Appendix F, we perform two types of sensitivity analyses. The first shows

that the results reported in Tables 3–6 are robust to variations in the choice of SES index

quantiles used to generate the strata on which permutations are restricted: median, tercile,

or quartile. The second shows that our results are robust to the choice of which covariates

enter the outcome model linearly.

Additional Evidence on the Effectiveness of the Perry Program In related work

(Heckman, Moon, Pinto, Savelyev, and Yavitz, 2010), we calculate rates of return to deter-

mine the private and public returns to the Perry Preschool Program. We avoid the multiple

hypothesis-testing problem by focusing on a single economically significant summary of the

program. We use the conditioning approach adopted in this paper to control for compromised

randomization. We find statistically significant rates of return for both males and females in

the range of 6–10% per annum. This supports the evidence of substantial treatment effects

presented in the current paper.

Understanding Treatment Effects While this paper tests for the existence of treatment

effects due to the Perry Preschool Program, other recent work examines channels through

which these beneficial effects are produced. Heckman, Malofeeva, Pinto, and Savelyev (2010)

estimate a model of latent cognitive and noncognitive traits. In the early years during and
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after the program, the IQ scores of treatment group participants surged, but by almost age

8, the treatment effect on IQ becomes nonexistent for males and relatively small for females.

Their research shows that the effects of the Perry program arise primarily from boosts in

noncognitive traits.

6 The Representativeness of the Perry Study

We next examine the representativeness of the Perry sample and characterize the target pop-

ulation within the overall African-American population. We construct a comparison group

using the 1979 National Longitudinal Survey of Youth (NLSY79), a widely used, nationally

representative longitudinal data set. The NLSY79 has panel data on wages, schooling, and

employment for a cohort of young adults who were 14-22 at their first interview in 1979.

This cohort has been followed ever since. For our purposes, an important feature is that the

NLSY79 contains information on cognitive test scores as well as on noncognitive measures.

It also contains rich information on family background. This survey is a particularly good

choice for such a comparison as the birth years of its subjects (1957–1964) include those of

the Perry sample (1957–1962). The NLSY79 also oversamples African Americans.

The Matching Procedure We use a matching procedure to create NLSY79 comparison

groups for Perry control groups by simulating the application of the Perry eligibility criteria

to the full NLSY79 sample. Specifically, we use the Perry eligibility criteria to construct

samples in the NLSY79. Thus, the comparison group corresponds to the subset of NLSY79

participants who would likely be eligible for the Perry program if it were a nationwide

intervention.

We do not have identical information on the NLSY79 respondents and the Perry entry

cohorts, so we approximate a Perry-eligible NLSY79 comparison sample. In the absence

of IQ scores in the NLSY79, we use Armed Forces Qualification Test (AFQT) scores as a

proxy for IQ. We also construct a pseudo-SES index for each NLSY79 respondent using the
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available information.52

We use two different subsets of the NLSY79 sample to draw inferences about the repre-

sentativeness of the Perry sample. For an initial comparison group, we use the full African-

American subsample in NLSY79. We then apply the approximate Perry eligibility criteria

to create a second comparison group based on a restricted sub-sample of the NLSY79 data.

The U.S. population in 1960 was 180 million people, of which 10.6% (19 million) were

African-American.53 According to the NLSY79, the black cohort born in 1957–1964 is com-

posed of 2.2 million males and 2.3 million females. We estimate that 17% of the male cohort

and 15% of the female cohort would be eligible for the Perry program if it were applied

nationwide. This translates into a population estimate of 712,000 persons out of the 4.5

million black cohort, who resemble the Perry population in terms of our measures of dis-

advantage.54 For further information on the comparison groups and their construction, see

Web Appendix H and Tables H.1 and H.2 for details.

How Representative is the Perry Sample of the Overall African-American Popu-

lation of the United States? Compared to the unrestricted African-American NLSY79

subsample, Perry program participants are more disadvantaged in their family backgrounds.

This is not surprising, given that the Perry program targeted disadvantaged children. Fur-

ther, Perry participants experience less favorable outcomes later in life, including lower high

school graduation rates, employment rates, and earnings. However, if we impose restrictions

on the NLSY79 subsample that mimic the sample selection criteria of the Perry program, we

obtain a roughly comparable group. Figure 5 demonstrates this comparability for parental

highest grade completed at the time children are enrolled in the program. Web Appendix

Figures H.1–H.5 report similar plots for other outcomes, including mother’s age at birth,

52For details, see the Web Appendix http://jenni.uchicago.edu/Perry/cost-benefit/reanalysis
53See http://www.census.gov/population/www/documentation/twps0056/twps0056.html for more

details.
54When a subsample of the NLSY79 is formed using three criteria that characterize the Perry sample

— low values of a proxy for the Perry socio-economic status (SES) index, low achievement test (AFQT)
score, and non-firstborn status — this subsample represents 713,725 people in the United States. See Web
Appendix H and Tables H.1 and H.2 for details.
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earnings at age 27, and earnings at 40.55 Tables H.1 and H.2 present additional details. The

Perry sample is representative of disadvantaged African-American populations.

In Web Appendix I, we consider another aspect of the representativeness of the Perry

experiment. Perry participants were caught up in the boom and bust of the Michigan auto

industry and its effects on related industries. In the 1970s, as Perry participants entered the

workforce, the male-friendly manufacturing sector was booming. Employees did not need

high school diplomas to get good entry-level jobs in manufacturing, and men were much

more likely to be employed in the manufacturing sector than women. The industry began

to decline as Perry participants entered their late 20s.

This pattern may explain the gender patterns for treatment effects found in the Perry

experiment. Neither treatments nor controls needed high school diplomas to get good jobs.

As the manufacturing sector collapsed, neither group fared well. However, as noted in Web

Appendix I, male treatment group members were somewhat more likely to adjust to economic

adversity by migrating than were male controls, which may account for their greater economic

success at age 40. The history of the Michigan economy helps to explain the age pattern of

observed treatment effects for males, thereby diminishing the external validity of the study.

7 Relationship of This Study to Previous Research

Schweinhart et al. (2005) analyze the Perry data through age 40 using large sample statistical

tests. They show substantial effects of the program for both males and females. They do

not account for the compromised randomization of the experiment or the multiplicity of

hypotheses tested. Heckman (2005) discusses the problems of the small sample size, the

need to use small sample inference to analyze the Perry data, and the appropriate way to

combine inference across hypotheses.

Anderson (2008) addresses the problem of multiple-hypothesis testing in the Perry data.

55One exception to this pattern is that Perry treatment and control earnings are worse off than their
matched sample counterparts.
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Figure 5: Perry vs. NLSY79: Mean Parental Highest Grade Completed

(a) Unrestricted, Males

Student’s t Test (Two−Sided):  p = 0.025
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(b) Restricted, Males

Student’s t Test (Two−Sided):  p = 0.330
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(c) Unrestricted, Females

Student’s t Test (Two−Sided):  p = 0.018
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(d) Restricted, Females

Student’s t Test (Two−Sided):  p = 0.500
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Notes: Unrestricted NLSY79 is the full African-American subsample. Restricted NLSY79
is the African-American subsample limited to those satisfying the approximate Perry eligi-
bility criteria: at least one elder sibling, Socio-economic status (SES) index at most 11, and
1979 AFQT score less than the African-American median. The reported “t” test is for the
difference in means between the two populations.
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He reanalyzes the Perry data (and data on other early childhood programs) using a stepdown

multiple-hypothesis testing procedure due to Westfall and Young (1993). That procedure

requires “subset pivotality,” that is, that the multivariate distribution of any subvector of

p-values is unaffected by the truth or falsity of hypotheses corresponding to p-values not

included in the subvector. This is a strong condition.56 Our method for testing multiple

hypotheses is based on the stepdown procedure of Romano and Wolf (2005), which uses an

assumption about monotonicity of the test statistics. Romano and Wolf (2005) show that

their monotonicity assumption is weaker than the subset pivotality assumption.

Anderson applies permutation inference to avoid relying on asymptotically justified test

statistics. We confirm his finding that even in the small Perry sample, asymptotic statistics

are valid, so concerns about the use of large-sample inference to analyze the Perry sam-

ples are misplaced. However, in constructing his tests, Anderson assumes that a simple

randomization was conducted in the Perry experiment. He does not address the problem

of compromised randomization, neither does he correct for covariate imbalances between

treatments and controls.

Anderson reports no statistically significant effects of the Perry program for males. We

find that the Perry program improved the status of both genders on a variety of measures.

One explanation for the difference between Anderson’s conclusions and ours about the effec-

tiveness of the program for males is that we adjust for covariate imbalances and compromised

randomization while Anderson does not. As displayed in Tables 5 and 6, these adjustments

sharpen the inference for males and lead to more rejections of the null hypothesis.

Another explanation for the contrast between our conclusions is differences in the blocks

of variables used as the basis for the stepdown multiple-hypothesis testing procedures. To

reduce the dimensionality of the testing problem, Anderson creates linear indices of outcomes

at three stages of the life cycle. The outcomes used to create each index are quite diverse

56In Web Appendix D.3, we present an example, due to Westfall and Young (1993), where the subset
pivotality condition is satisfied for testing hypotheses about means of a normal model but not for testing
hypotheses about correlations.

49



and group a variety of very different outcomes (e.g., crime, employment, education). It is

difficult to interpret his indices. Moreover, the components of his indices change with age.

We conduct inference for interpretable blocks of hypotheses defined at different stages of

the life cycle that are based on comparable outcomes (crime as one block, employment as

another block, etc.).

8 Summary and Conclusions

Most social experiments are compromised by practical difficulties in implementing the in-

tended randomization protocol. They also have a variety of outcome measures. This paper

develops and applies a methodology for analyzing experiments as implemented and for gen-

erating valid tests of multiple hypotheses.

We apply our methods to analyze data from the Perry Preschool experiment. Evidence

from the HighScope Perry Preschool Program is widely cited to support early childhood

interventions. The consequences of imperfect randomization for inference are neglected by

previous analysts of these data. This paper shows how to account for compromised random-

ization to produce valid test statistics.

Proper analysis of the Perry experiment also requires application of methods for small-

sample inference and accounting for the large numbers of outcomes of the study. It is

important to avoid the danger of artificially lowering p-values by selecting statistically sig-

nificant outcomes that are “cherry picked” from a larger set of unreported hypothesis tests

that do not reject the null.

We propose and implement a combination of methods to simultaneously address these

problems. We account for compromises in the randomization protocol by conditioning on

background variables to control for the violations of the initial randomization protocol and

imbalanced background variables. We use small-sample permutation methods and estimate

family-wise error rates that account for the multiplicity of experimental outcomes. The
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methods developed and applied here have applications to social experiments with small

samples when there is imbalance in covariates between treatments and controls, reassignment

after randomization, and multiple hypotheses.

The pattern of treatment response by gender varies with age. Males exhibit statistically

significant treatment effects for criminal activity, later life income, and employment (ages 27

and 40), whereas female treatment effects are strongest for education and early employment

(ages 19 and 27). There is, however, a strong effect of the program on female crime at age

40. The general pattern is one of strong early results for females, with males catching up

later in life.

Our analysis of the representativeness of this program shows that Perry study families are

disadvantaged compared to the general African-American population. However, application

of the Perry eligibility rules to the NLSY79 yields a substantial population of comparable

individuals. Based on the NLSY79 data, we estimate that the program targetted about 16%

of the African-American population born during 1957–1964, which includes the birth years

of the Perry participants.

We present some suggestive evidence that the limited effect of the Perry program on the

education of males was due to the peculiarities of the Michigan economy. High school degrees

were not required to work in well-paying manufacturing jobs. Perry treatment males appear

to have adjusted to the decline in manufacturing that occurred in Michigan better than the

controls. This accounts for the statistically significant treatment effects in employment and

earnings found for males at age 40.

Few social experiments perfectly implement planned treatment assignment protocols. A

proper analysis of such experiments requires recognizing the sampling plan as implemented.

Our analysis shows that properly accounting for experiments as implemented can produce
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sharper results than analyses that proceed as if an ideal experiment was implemented.57
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