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Abstract Spatial (two-dimensional) distributions in

ecology are often influenced by spatial autocorrelation. In

standard regression models, however, observations are

assumed to be statistically independent. In this paper we

present an alternative to other methods that allow for

autocorrelation. We show that the theory of wavelets pro-

vides an efficient method to remove autocorrelations in

regression models using data sampled on a regular grid.

Wavelets are particularly suitable for data analysis without

any prior knowledge of the underlying correlation structure.

We illustrate our new method, called wavelet-revised

model, by applying it to multiple regression for both normal

linear models and logistic regression. Results are presented

for computationally simulated data and real ecological data

(distribution of species richness and distribution of the plant

species Dianthus carthusianorum throughout Germany).

These results are compared to those of generalized linear

models and models based on generalized estimating equa-

tions. We recommend wavelet-revised models, in particu-

lar, as a method for logistic regression using large datasets.

Keywords Binary data � Distribution data � Multiple

regression � Normal data � Spatial autocorrelation

1 Introduction

Many ecological studies are based on a statistical analysis

of data sampled in a spatial, i.e., two-dimensional context.

Such spatial data are a challenge in ecology because they

often display so-called spatial autocorrelation (Cressie

1993; Legendre 1993; Lichstein et al. 2002), i.e., adjacent

data points are more likely to be similar than distant ones.

Unfortunately, standard methods like generalized linear

models (GLM) may yield wrong results, if spatial auto-

correlation is ignored. Simulation studies (e.g., Anselin and

Bera 1998; Lennon 2000) have demonstrated that model

parameter estimates may be wrong due to this spatial

autocorrelation. Therefore, spatial data often require the

application of ‘‘new’’ methods.

Wavelets seem to be a relatively unemployed tool in

ecological application (Dale et al. 2002). However, wave-

let analysis has been proved to be a suitable mean to

quantify spatial structure as a function of both scale and

position (Bradshaw and Spies 1992; Dale 1999; Xiangch-

eng et al. 2005). These authors used one-dimensional

wavelets to describe spatial pattern in plant communities,

though not to remove spatial autocorrelation. Keitt and

Urban (2005) applied wavelet transforms to multiple linear

regressions. They found that different environmental vari-

ables show up as good predictors at different scales.

However, they applied wavelets in one dimension only.

Moreover, only linear models with normally distributed

response variables were studied. Concerning logistic

regression, the authors posed the inspiring question

‘‘whether binary wavelet-like transforms can be defined for

presence-absence data’’.

Since wavelets can split up signals into smooth and

noisy components at different scales there is evidence to

suggest that a wavelet approach will be able to provide
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insights in properties of observations like autocorrelation.

The aim of this paper is to present a wavelet analysis to

account for spatial non-independence in multiple regres-

sions for both normal linear models and logistic regression,

i.e., the distribution of response variables can be normal or

binomial (which is typical for the distribution of species,

e.g., habitat modelling).

To our knowledge, wavelets have never been used to

remove spatial autocorrelation in logistic regressions.

Fadili and Bullmore (2001) provided a wavelet-based

method for linear regressions in the context of correlated

errors, but only for normal linear models. They applied

their method to neurophysiological time series. Meyer

(2003) showed for such kind of data that a systematic

baseline drift belongs to a subspace spanned by specific

wavelets. In time series analysis local differencing has

become a standard tool to remove autocorrelation (Box and

Jenkins 1976). The wavelet transform can provide an

alternative to such traditional techniques. The main statis-

tical use of wavelets, however, has been in nonparametric

regression (Nason and Silverman 1995) which is a quite

different task.

In real vegetation and large-scale analysis correlations

are performed across spatially (i.e., two-dimensionally)

organized data. Therefore, we perform wavelet analysis for

two dimensions. The technique is illustrated by its appli-

cation to both simulated datasets and real large-scale spa-

tial datasets of plant species distributions in Germany. To

demonstrate the effectiveness of our method we compare

our results to those of generalized estimating equations

(GEE; Liang and Zeger 1986).

2 Methods

2.1 Wavelet decomposition

The advantage of wavelets is clearly to find in the sepa-

ration of the original signal into several scales. Different

properties of the signal are visible at different scales (Louis

et al. 1994). We want to use this property of wavelets to

remove the effect of autocorrelation in signals or spatial

ecological data. To better comprehend our approach, we

will give the following succinct review on wavelets.

Wavelets come in families. First we consider mother

wavelet w and father wavelet /. The mother wavelet

integrates to zero, and the father wavelet integrates to one,

i.e.
R

wðxÞdx ¼ 0 and
R

/ðxÞdx ¼ 1:

The mother wavelets are used to describe the detail and

high-frequency parts of given data, whereas the father

wavelets are used to describe the smooth and low-fre-

quency parts. The oldest and simplest example of a func-

tion w is the Haar function

wðxÞ ¼

1 0 � x\1=2

�1 1=2 � x\1

0 otherwise:

8

>

<

>

:

ð1Þ

However, wavelets do not need to have an analytic form in

general.

The orthogonal wavelet series approximation (Bruce

and Gao 1996, p. 14; Shumway and Stoffer 2000) for a

function f(x) is given by

f ðxÞ ¼
X

J

j¼1

X

k

dj;kwj;kðxÞ þ
X

k

sJ;k/J;kðxÞ; ð2Þ

where the functions wj,k(x) and /J,k(x) are given orthogonal

wavelet functions and the coefficients d1,k, ...,dJ,k, sJ,k are

the corresponding wavelet transform coefficients. The

functions wj,k(x) and /J,k(x) are wavelets generated from

mother and father wavelets w and /, respectively, by

scaling and translation:

wj:kðxÞ ¼ 2�j=2w
x� 2jk

2j

� �

;

/j;kðxÞ ¼ 2�j=2/
x� 2jk

2j

� �

:

ð3Þ

The wavelet transform calculates the wavelet transform

coefficients d1,k, ..., dJ,k, sJ,k of the wavelet expansion (2).

High magnitude of a wavelet transform coefficient means

high similarity between the function f(x) and the corre-

sponding wavelet. Scaling and translation (3) produce

wavelets to different levels j and shifts k, i.e., dilations and

locations. The information of function f(x) is completely

codable by a minimal set of wavelets if the used wavelet

family is an orthogonal one. Several orthogonal wavelet

families are known. One of them is the ‘‘haar’’ family. The

families are available, e.g., in the R package waveslim

(Whitcher 2005).

Due to the character of wavelets, the coefficients dj,k
(coefficients d for short) of Eq. (2) are able to represent the

detail parts of the shape of function f(x), while the coeffi-

cients sJ,k (coefficients s for short) are able to represent its

smooth part. In general, detail coefficients d have to be

calculated at different levels j in contrast to smooth coef-

ficients s . Thus, changes in magnitude of f are captured in

detail coefficients for different levels j = 1, ..., J. Parts of f

which are not included so far are mapped in smooth

coefficients s of last level J. Note that higher dilation levels

mean lower resolution. The level of lowest resolution J can

arbitrarily be chosen. Since the full information of f is

captured in the coefficients d and s, it is possible to

reconstruct the original function f by application of the

inverse wavelet transform.
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This inverse transform can also be performed for the

following single sums

f jðxÞ ¼
X

k

dj;kwj;kðxÞ for j ¼ 1; . . . ; J

f Jþ1ðxÞ ¼
X

k

sJ;k/J;kðxÞ

In this way one can obtain the J + 1 orthogonal

components fi which add up to f in good approximation:

f ðxÞ ¼
X

Jþ1

i¼1

f iðxÞ: ð4Þ

This approach is called multiresolution analysis because

different resolutions of the function are described by the

terms at different levels. The last term of the series of J + 1

orthogonal components corresponds to the smooth part of

the function. For a more detailed treatment of the theory,

we refer to Daubechies (1992).

One of the fields where wavelets are applied is the so-

called noise removal of signals. In principle, this is done by

taking the wavelet transform of the signal, keeping only

coefficients which represent the smooth part of the func-

tion, and performing the inverse transform. In contrast the

aim of this paper is to remove such coefficients which

cause autocorrelation in the original data. Here we deal

with datasets as they appear in statistical samples, espe-

cially in linear regressions. To this end we use the wavelet

transform in a special form, the so-called discrete wavelet

transform, which calculates the coefficients for a finite set

of discrete data.

2.2 Normal linear models

Now we concentrate on multiple regression of the fol-

lowing normal linear model (LM)

y ¼ Xbþ e ð5Þ

where y is the vector of response variables, X is the design

matrix of predictors, b is the vector of regression

parameters, and e is the vector of errors. The ordinary

least squares estimator of b is given by

b ¼ ðX0XÞ�1
X0y; ð6Þ

where X¢ is the transposed matrix of X.

If we consider the case that a wavelet transform is

applied to the normal linear model, we can expect that the

regression parameters will remain unchanged. This is due

to the fact that the wavelet transform T which maps a

vector of data to a vector of wavelet transform coefficients

is a linear operator. Its application to Eq. (5) yields

TðyÞ ¼ TðXbÞ þ TðeÞ ¼ ðTðXÞÞbþ TðeÞ: ð7Þ

The transform T(X) of the design matrix X is given by

TðXÞ ¼ ðTð1Þ; Tðx1Þ; . . . ; TðxpÞÞ;

where X = (1,x1, ..., xp).

Here x1, ..., xp are the predictors and 1 means a vector of

equal length filled by ones. Then we can use ordinary least

squares on the transformed data as well. The solution is

b ¼ ððTðXÞÞ0TðXÞÞ�1ðTðXÞÞ0TðyÞ: ð8Þ

The covariance matrix of b is r2TððTðXÞÞ
0
TðXÞÞ�1

where

r2T is the variance of the transformed errors TðeÞ:

If the errors e in Eq. (5) are correlated standard regression

is no longer applicable. Then standard regression also fails in

the wavelet domain even though the variance-covariance

matrix of TðeÞ in (7) is approximately diagonalized. Its

diagonal elements, however, are no longer constant.

2.3 Logistic regression model

We are going to specify the Eqs. (5, 6) for application in

logistic regression (Hosmer and Lemeshow 2000; Collett

2003). In particular, we want to describe a model with

binary responses, i.e., the number of trials equals one. The

logit link is given by

logitðpiÞ ¼ logððpi=ð1� piÞÞ ¼ x0ib ¼ gi i ¼ 1; 2; . . . ; n

with the expected value of response E(yi) = pi, the

variance var(yi) = pi (1 – pi), and the sample size n. The

solution form for generalized linear models (GLM) is

bðmÞ ¼ ðX0WXÞ�1
X0Wz ð9Þ

where b(m) is the vector of estimates at the mth iteration. In

case of binary responses z has elements

zi ¼ gi þ ðyi � piÞ
@gi
@pi

¼ gi þ
yi � pi

pið1� piÞ
ð10Þ

and the weights are functions of the fitted values W =

diag{pi (1 – pi)} (Dobson 2002, p. 64; Myers et al. 2002, p.

330). Equation (9) is the least squares estimator of the

following linear regression

W1=2z ¼ W1=2XbðmÞ þ e:

It can be transformed by wavelets in a similar way as

Eq. (5), which yields
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TðW1=2zÞ ¼ TðW1=2XÞbðmÞ þ TðeÞ; ð11Þ

where bðmÞ remains unchanged. Therefore, another least

squares estimator of bðmÞ is given by

bðmÞ ¼ ððTðW1=2XÞÞ0TðW1=2XÞÞ�1ðTðW1=2XÞÞ0TðW1=2zÞ:

ð12Þ

Moreover, Eq. (10) can be transformed as follows

TðW1=2zÞ ¼ TðW1=2Xbðm�1Þ þW�1=2ðy� pÞÞ: ð13Þ

The Eqs. (12, 13) solved iteratively yield the same re-

sults as Eqs. (9, 10). The asymptotic variance-covariance

matrix of b is given by var (b) = ((T(W1/2 X))¢T(W1/2

X))–1.

Recall that W is assumed to be diagonal. Only if W

would contain off-diagonal elements, then correlations

between responses could be described. But this is not the

case here. Therefore, it is desirable to revise data and to

remove autocorrelations. We are going to prove that one

can achieve this goal by using the concept of wavelet

decomposition. Our new method, called wavelet-revised

model and introduced in Sect. 2.6, will provide this revi-

sion of data.

2.4 Autocorrelation

As we have pointed out above, multiresolution analysis

provides an additive decomposition (4) of a given function

f. A given vector f can accordingly be decomposed using

discrete wavelet transforms. In this chapter we are going to

clarify whether this property of additivity holds for the

autocorrelation of these data.

For this purpose we consider the autocovariance for a

lag distance that equals one, i.e., the influence of nearest

neighbours. This covariance for a vector f with components

f1, f2, ... and for neighbourhood as neighbourhood of

components is defined by

covð1Þ ¼
X

n

fnfnþ1:

Here each component of the vector f can be decomposed

according to the multiresolution analysis (4). This yields a

product of sums which can be reordered in the following

way

fnfnþ1 ¼
X

Jþ1

j

f jn

 !

X

Jþ1

k

f knþ1

 !

¼
X

Jþ1

j

c
j
n;nþ1

with components

c
j
n;nþ1 ¼ f jnf

j
nþ1 þ

X

j�1

k¼1

ðf jnf
j�k
nþ1 þ f j�k

n f
j
nþ1Þ

which include all across-the-level parts of former

resolution levels. By using the components cn,n+1
j the

autocovariance for lag distance of one can be rewritten in

the following form

covð1Þ ¼
X

Jþ1

j

X

n

c
j
n;nþ1 ¼

X

Jþ1

j

covjð1Þ: ð14Þ

Equation (14) shows that cov (1) is additive with respect to

the level parts. Autocovariances for other lags can

accordingly be calculated. Moreover, we obtain the level

parts of autocorrelation from the level parts of autoco-

variance standardized by the total variance.

2.5 The two dimensional approach

The aim of this chapter is to analyze data points which are

spatially distributed. For this purpose we use the two-

dimensional (2D) wavelet approximation of a function

F(x,y) as follows (Bruce and Gao 1996, p. 44):

Fðx; yÞ ¼
X

3

m¼1

X

J

j¼1

X

kx;ky

dmj;kx;kyW
m
j;kx;ky

ðx; yÞ

þ
X

kx;ky

sJ;kx;kyUJ;kx;kyðx; yÞ: ð15Þ

Equation (15) represents an extension of Eq. (2), where m

corresponds to different spatial directions (see below). The

discrete wavelet transform calculates the coefficients for a

finite set of discrete data points in the same way as above.

Thus the 2D discrete wavelet transform enables us to

transform discrete image data Fp,q into a p · q matrix of

wavelet coefficients. This allows us to analyze 2D data

such as a matrix or a geographical pattern of an ecological

or an environmental variable. In what follows we are going

to describe the different meanings of the wavelet coeffi-

cients. The coefficients d represent the detail part, while the

coefficients s represent the smooth part of F. The detail

coefficients d depend on both level j and spatial direction

m, in contrast to smooth coefficients s. Thus changes in

magnitude of F are captured in detail coefficients for dif-

ferent levels j = 1, ..., J and for different directions m = 1,

2, 3. These three directions correspond to wavelets which

work horizontally, vertically or diagonally as mother

wavelets. Remaining parts of F are mapped to smooth

coefficients s of the last level J. For some related remarks,

see Müller et al. (2003).
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A 2D approach can be applied to both the response

variables y and individual predictors x1, ..., xp of multiple

regression models, if the components of these variables

occur in a spatial context, e.g., if these components were

sampled in a plane. Thus we have to convert these vectors

into matrices which reflect the special spatial form. Then

the 2D transform can be applied to each matrix built in this

way. Finally, we can go back to vectors which allow us to

continue as it is usual in linear regression models.

2.6 Wavelet-revised models

In the following transform T will denote the wavelet pro-

cedure for decorrelation in the broader sense. This removal

of autocorrelation is done by taking the wavelet transform

of a vector f, and keeping only coefficients which represent

the detail parts of the vector. The regression problem can

be solved either in the wavelet domain or after back

transform.

For instance, consider a vector f whose smooth part was

removed by multiresolution analysis (4). This can be done

at different resolution levels J. For 2D wavelet transforms

one has to sum, in addition, over three spatial directions m.

Thus, the reduced vector fpart can be written as

fpart ¼
X

3J

i

f i;

whereas the total vector is

f total ¼
X

3Jþ1

i

f i:

Thus the wavelet procedure used here is defined by T:

ftotal fi fpart. To a good approximation, transform T

provides a method to remove autocorrelation. It enables us

to calculate regression parameters under the assumptions

pointed out above. This can be done by Eq. (8) for normal

responses or iteratively by Eqs. (12, 13) for binary re-

sponses. Therefore, if observations are originally autocor-

related, these equations could improve parameter estimates

compared to LM (6) and GLM (9, 10), respectively. The

Eqs. (8, 12, 13) combined with T: ftotal fi fpart form our

new method, called wavelet-revised model (WRM) be-

cause transform T provides a revision of data with regard to

autocorrelation.

To see if our procedure effectively removed spatial

autocorrelation at a certain level, it is necessary to test

residual autocorrelation in the original domain. For this

we used Moran’s I coefficient (see e.g., Dale et al. 2002;

Lichstein et al. 2002) which describes a radial autocor-

relation for 2D data. The autocorrelation of vector fpart

with elements f1
part, f2

part, ... can be written in the fol-

lowing form:

corpartðdÞ ¼

1
s

P

k

P

l

wklðf
part
k � f partmeanÞðf

part
l � f partmeanÞ

1
n

P

k

ðf totalk � f totalmeanÞ
2

ð16Þ

Here one has to introduce ‘‘lag distance‘‘ intervals d for the

spatial structure under consideration. The factor wkl is a

weight that equals one if the distance of the variables fk
part

and fl
part belongs to this interval d and which equals zero

otherwise. The factor s is the sum of weights for a given

interval d and n is the length of the vectors.

3 Application

3.1 Implementing WRM

Our computations are based on software packages in the

computer language R (R Development Core Team 2004).

The tools for calculating wavelet transforms are available

in package waveslim (Whitcher 2005). We used either the

functions dwt.2d and idwt.2d for discrete wavelet transform

and inverse discrete wavelet transform, respectively, or the

function mra.2d for multiresoluion analysis. These func-

tions offer various wavelets. We used the ‘‘haar’’ family

(1) not only because it is the simplest kind of wavelets but

also for reasons that we shall see later. Furthermore, the

autocorrelation (16) of vector fpart has to be calculated. For

this purpose we wrote an R-code using fast Fourier trans-

form and convolutions.

Because of the truncation to finite sets in discrete

wavelet transforms it is necessary to give boundary treat-

ment rules. In the 2D discrete wavelet transform type

periodic is implemented for boundary conditions. This

causes a restriction on the sample size. The number of rows

and columns must be divisible by 2j in order to perform

dilation and location of wavelets as described in Eq. (3). In

general, one wishes to analyze samples of arbitrary size

though. For this reason we decided to pad data with zeros

until a quadratic matrix of required size is reached.

Generally, data padded with zeros and decomposed by

multiresolution analysis have the inconvenient property

slightly to lose the contour. This phenomenon occurs, in

particular, if smooth parts of data are analyzed by means of

wavelets of wide and smooth shape. For this reason we use

‘‘haar’’ wavelets which have a compact and square-edged

shape. ‘‘Haar’’ wavelets are useful in the detection of

edges and gradients (Bradshaw and Spies 1992) in contrast

to smooth ones. Moreover, our data processing task is

different. To find uncorrelated data we need to choose
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detail parts and to remove smooth ones. If we perform this

task, then autocorrelations calculated via fully mapped

residuals will hardly to be distinguished from those cal-

culated via residuals truncated at the accurate original

contour of the dataset. Therefore, we provide residuals and

autocorrelations of the last kind.

To show the effectiveness, we compare several wavelet-

revised models (WRM) to generalized linear models

(GLM) and generalized estimating equations (GEE) for

both binary data and normal data. The tools for calculating

GEE are available in package gee (Carey et al. 2002) with

function gee (Zeger and Liang 1986; Diggle et al. 1995)

and in package geepack (Yan 2004) with function geese

(Yan 2002; Yan and Fine 2004). These functions offer

various correlation structures. We know as a result of tests

and previous analyses that fixed and user defined correla-

tion structures work best in the cases considered here.

3.2 Simulation

Simulations were performed to check the models regarding

autocorrelation effects. For this purpose regular grids were

generated. The number of grid cells is 34 · 34 and the cells

were assumed to be square. Values for two normally dis-

tributed predictors were randomly generated, and linearly

combined using specified parameters (intercept and two

slopes). In addition, normally distributed errors were ran-

domly generated. Both the vector of errors and the vectors

of the predictors were multiplied by the Cholesky decom-

position of a variance–covariance matrix. This procedure

creates correlated normal random errors and predictors.

Finally, we are able to calculate correlated responses. On

one hand normal responses are given as the sum of linear

component and correlated errors. On the other hand the

following steps transform these correlated normal variables

into correlated binary outcomes: (1) scale to get the stan-

dard normal distribution, (2) transform by their cumulative

distribution function to get a uniform distribution, and (3)

use the inverse transform method to get binomial out-

comes.

The correlation matrix includes specified spatial auto-

correlation depending on the distances between the points

of measurements (e.g., centre points of grid cells). In our

case this correlation is assumed to be equal for each pair of

equal distance. In this way we have introduced an isotropic

spatial autocorrelation structure by an exponential function.

Note that two scale parameters are necessary for binary

response data. The first one ensures the correct fitting in

case of uncorrelated errors. In order to check the fit GLM

regressions for 1,000 simulated datasets are performed. The

second scale parameter has to preserve the specified error

variance when the correlation is incorporated.

3.3 Application to a simulated grid

Figure 1 shows the remaining parts of residual autocorre-

lation (16) for an average of 50 generated datasets of both

normal and binomial (binary) distribution. Autocorrelation

is reduced by removing of smooth wavelet coefficients at

different levels. As it can be seen in Fig. 1 the degree of

correlation removal depends on the resolution level. The

level ranges from six (coarsest resolution) to one (finest

resolution). If the level is large, then smooth wavelet

coefficients are reduced only at a coarse scale and auto-

correlation is hardly reduced compared to the full model

(GLM). By contrast, if the level is small, then smooth

wavelet coefficients are reduced up to the finer scales and

autocorrelation disappears. Our approach obtained by vi-

sual inspection of these trials is to select level 1 for normal

data. For binary data level 2 corrects correlation well, while

level 1 slightly overestimates the nearest neighbour corre-

lation. Thus we use level 2 in further applications for

binary data. Note that in case of binomial distribution the

iterations related to Eqs. (12, 13) will destroy, in general,

the additivity of the level parts. However, our calculations

have shown that the differences are negligible.
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Fig. 1 Residual autocorrelation

for an average of 50 randomly

generated 34 · 34 datasets of

a normal distribution and

b binary distribution.

Autocorrelation is reduced by

removing of smooth wavelet

coefficients at different levels
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Next we will discuss the accuracy and efficiency of

parameter estimates. In Table 1 we present results for

1,000 randomly simulated datasets of sample size 34 · 34

for both normal and binomial distribution. The means and

variances for regression parameters are given for different

methods: (1) GLM, (2) GEE as above-mentioned method

for comparison, (3) wavelet-revised models (WRM) using

‘‘haar’’ wavelets and smooth coefficients removal. All

simulated datasets were created with equal regression

parameters. The real parameters are b0 = – 1, b1 = 3, and

b2 = – 2. As it can be seen all means fit very well. How-

ever, we recognize differences in the variances. The max-

imum values for variances and, therefore, the lowest

efficiency for parameter estimates can clearly be found for

GLM. Variances decrease for GEE and WRM. Thus these

models provide an efficiency gain compared to GLM. It is

of course expected that WRM variances should be some-

what greater than GEE variances. This is due to the prior

knowledge about the form of the error covariance matrix. It

is completely involved in GEE. Note that there is no need

for such specifications in WRM.

Figure 2 gives the type 1 error calibration curves of the

methods (Fadili and Bullmore 2001). For this purpose we

generated 500 datasets for both distributions. Their auto-

correlated responses are independent on a certain auto-

correlated predictor. The test results for the null hypothesis

H0: b = 0 for probabilities of type 1 error a are summa-

rized. All plots in Fig. 2 show the observed number of

positive tests per 500 realizations versus the expected

number per 500 realizations in the full range of a. Methods

work best when the observed number equals the predicted

one, i.e. when the calibration curve coincides with the line

of identity given as straight line in all plots. It is shown that

GLM overestimates the true type 1 error, whereas both

Table 1 Means and variances

for estimated regression

parameters (Intercept = b0,

slope of first predictor = b1,

slope of second predictor = b2)

calculated from 1000 randomly

simulated 34 · 34 datasets for

different distributions and

compared for different methods

mean(b0) mean(b1) mean(b2) var(b0) var(b1) var(b2)

b –1 3 –2

Normal response

GLM –0.9925 2.9994 –2.0032 0.0591 0.0366 0.0339

GEE –0.9940 2.9993 –2.0015 0.0246 0.0111 0.0108

WRM –0.9920 2.9977 –2.0016 0.0351 0.0127 0.0131

Binary response

GLM –1.0028 3.0363 –2.0320 0.2090 0.1524 0.1286

GEE –0.9983 3.0203 –2.0216 0.1208 0.0940 0.0761

WRM –0.9964 3.0114 –2.0228 0.1674 0.1098 0.0879
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Fig. 2 Type 1 error calibration

curves for simulated datasets of

a–c normal distribution and

d–f binary distribution. The

compared methods are

a, d GLM, b, e GEE, c, f WRM
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GEE and WRM yield very good error calibration curves for

normal and binomial distributions.

3.4 Application to the flora of Germany

In this section we apply the wavelet-revised methods to real

macroecological datasets. We relate environmental

variables to plant species distribution in Germany.

Information on species distribution is available from

FLORKART (see http://www.floraweb.de) which contains

species location in a grid of 2,995 grid cells. The cells of this

lattice are 10¢ longitude · 6¢ latitude, i.e., about

11 · 11 km2, and therefore almost square cells. We

selected species data for two regression models. They differ

in the response variable.

1. A dataset has been built with the normally distributed

number of all plant species found per grid cell.

Figure 3a shows the distribution of species richness in

Germany with green for species poor cells and red for

species rich cells.

2. A dataset for logistic regression has been chosen with

binary distributed responses for presence/absence of

the plant species Dianthus carthusianorum whose

ecological behaviour is well known. D. carthusiano-

rum is a species typical for nutrient poor dry and semi-

dry grasslands on calcareous as well as siliceous soils

mostly in mountainous areas but occasionally on sandy

grasslands in the lowlands. The distribution of

D. carthusianorum is given in Fig. 3e (green: pres-

ence, red: absence).

Both datasets have the same predictors. We only choose

two environmental variables: (1) mean annual temperature

based on a 1 km2 grid scale was provided by the ‘‘Deut-

scher Wetterdienst, Department Klima und Umwelt’’.

Recording period for temperature data was 1951–1980. (2)

Averages altitude (in 100 m units) per grid cell was cal-

culated after the ARCDeutschland500 dataset, scale

1:500,000, provided by ESRI.

Figure 4 shows the parts of autocorrelation for residuals

as described for Fig. 1. Figure 4a presents the results for

normally distributed numbers of all plant species in

Germany. Here level 1 provides the best reduction of

correlation. Figure 4b presents the results for binary dis-

tributed responses for presence/absence of the special plant

species Dianthus carthusianorum. According to our expe-

rience with simulated data level 2 is chosen for decorre-

lation since level 1 leads to an overestimation of nearest

neighbour correlation.

Hence, wavelet-revised regression was carried out as

described above using ‘‘haar’’ wavelets, and smooth

coefficients removal at the contemplated levels. Results for

regression parameters for normal data of plant species

richness in Germany and for binary data for presence/ab-

sence of Dianthus carthusianorum are given in Table 2.

Here WRM can be compared to GEE and GLM. In fact,

WRM and GEE provide more or less similar values for

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Distribution of data and

residuals across Germany for

a normal data for plant species

richness with b corresponding

GLM residuals c corresponding

GEE residuals d corresponding

WRM residuals, and e binary

data for presence/absence of

Dianthus carthusianorum with

f corresponding GLM residuals,

g corresponding GEE residuals,

h corresponding WRM residuals
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slopes in normal distribution. For binary data of this sample

size it is difficult to find a proper GEE approach. Here we

present the results of an approximation that partly neglects

correlations. However, we are able to discuss the results on

the basis of our geographical and biological knowledge.

For binary data for presence/absence of D. carthusianorum,

see Fig. 3e. This plant species can only rarely be found in

the western lowlands or on high mountains in the south of

Germany. Hence, its presence/absence data should not be

positive correlated with predictor Altitude. In fact, the

GLM results are corrected by WRM in this way. The

corresponding parameter is reduced from 0.26 to –0.06.

Moreover, it is no longer significant as seen by its p-value.

Furthermore, the spatial distribution of residuals is given

in Fig. 3. Here pixel sizes indicate sizes of residuals, the

two colours red and blue represent the signs of residuals,

and areas of equal colour indicate autocorrelation. For

WRM residuals (see Fig. 3d, h) areas of equal colour are

essentially reduced compared to GLM residuals (Fig. 3b,

f). Note that the white areas in Fig. 3h correspond to

residuals that equals zero. They do not contribute to

autocorrelation.

4 Conclusion

We presented a strategy for correcting data with respect to

autocorrelation and demonstrated its application to normal

and logistic regression models. This strategy was based on

discrete wavelet transforms and was carried out as 2D

analysis. We used ‘‘haar’’ wavelets which are useful in the

detection of edges and gradients (Bradshaw and Spies

1992). All datasets exhibited a considerable amount of

spatial autocorrelation. Thus, ordinary least square regres-

sions or logistic regressions could result in wrong param-

eter estimates (Anselin and Bera 1998; Lennon 2000) as

the basic assumption of independence of residuals is vio-

lated. We compared the results of generalized linear

models (GLM) with those of generalized estimating

equations (GEE), which are known to successfully correct

autocorrelation effects, and the newly developed method of

wavelet-revised regression. Both latter methods yielded

comparable results and when applying real data, they dif-

fered markedly from non-spatial regression models.

Wavelets thus provide a powerful method for removing

autocorrelation in spatial (e.g. 2D) datasets. Wavelets still

seem to be a relatively unemployed tool in ecological

application. In particular, this is the first study that we are

aware of which corrects spatial autocorrelation in logistic

regression models.

To examine the behaviour of our wavelet-revised model

(WRM) in detail we calculated regression parameters and

their p-values for randomly simulated datasets with corre-

lated residuals and predictors. WRM is shown to be more

efficient and to give perfect type 1 error calibration curves

compared to GLM. Furthermore, we applied WRM to real

macroecological datasets. WRM and GEE reduced the

slopes compared to GLM. For the example of binary dis-

tribution the values of slopes are quite different for GLM

and WRM. Basing the findings not only on statistics but

also on prior knowledge in ecology and geography, we

showed that the WRM results are more plausible than the

GLM results.
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Fig. 4 Residual autocorrelation

a for normal data of plant

species richness in Germany

and b for binary data for

presence/absence of Dianthus

carthusianorum in Germany.

Autocorrelation is reduced by

removing of smooth wavelet

coefficients at different levels

Table 2 Results for estimated regression parameters b and their p-

values comparing different methods having normal data of plant

species richness in Germany and binary data for presence/absence of

Dianthus carthusianorum in Germany

Predictor GLM GEE WRM

b p b p b p

Plant species richness (normal)

(Intercept) –57.2 0.057 203.3 <0.001 57.9 0.059

Altitude 31.2 <0.001 11.0 <0.001 14.1 <0.001

Temperature 78.7 <0.001 50.5 <0.001 47.4 <0.001

Dianthus carthusia-norum (binary)

(Intercept) –7.62 <0.001 –5.84 <0.001 –5.13 <0.001

Altitude 0.26 <0.001 0.11 0.002 –0.06 0.434

Temperature 0.80 <0.001 0.63 <0.001 0.49 <0.001
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Using wavelets one is able stepwise to reduce the

autocorrelation of regression residuals as measured by a

modified Moran’s I equation. The autocorrelation can be

reduced to nearly zero. This can be done for variables in

linear multiple regression for both normally and binary

distributed responses. We therefore recommend wavelet-

revised models in this sense, in particular, as one alterna-

tive method for the study of binary data and large datasets,

because: (1) WRM effectively removes spatial autocorre-

lation, (2) it is a computationally very fast and efficient

procedure, and (3) it is often easier applied than analogous

proper GEE methods. Our recommendation is justified due

to our experience with tests of numerous other datasets.
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