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Abstract: Alzheimer’s disease (AD), a neurodegenerative disease, is one of the most intractable
illnesses which affects the elderly. Clinically manifested as various impairments in memory, language,
cognition, visuospatial skills, executive function, etc., the symptoms gradually aggravated over time.
The drugs currently used clinically can slow down the deterioration of AD and relieve symptoms
but cannot completely cure them. The drugs are mainly acetylcholinesterase inhibitors (AChEI) and
non-competitive N-methyl-D-aspartate receptor (NDMAR) antagonists. The pathogenesis of AD is
inconclusive, but it is often associated with the expression of beta-amyloid. Abnormal deposition of
amyloid and hyperphosphorylation of tau protein in the brain have been key targets for past, current,
and future drug development for the disease. At present, researchers are paying more and more
attention to excavate natural compounds which can be effective against Alzheimer’s disease and other
neurodegenerative pathologies. Marine natural products have been demonstrated to be the most
prospective candidates of these compounds, and some have presented significant neuroprotection
functions. Consequently, we intend to describe the potential effect of bioactive compounds derived
from marine organisms, including polysaccharides, carotenoids, polyphenols, sterols and alkaloids
as drug candidates, to further discover novel and efficacious drug compounds which are effective
against AD.

Keywords: Alzheimer’s disease; neurodegenerative disease; therapeutic; pathogenesis; marine
natural products

1. Introduction

Dementia is an umbrella term for a particular group of symptoms. The characteristic
symptoms of dementia are difficulties with memory, language, problem-solving, and other
thinking skills that affect a person’s ability to perform everyday activities. Alzheimer’s
disease (AD) is the most common cause of dementia, accounting for an estimated 60%
to 80% of cases [1]. AD is associated with age and characterized by losing neuronal
structure and function gradually [2]. Also, with the population growing and life expectancy
increasing, the prevalence of AD continues to rise [3]. The symptoms of AD are mainly
associated with progressive memory impairment, aphasia, purposeful complex activity
ability. At the same time, Alzheimer’s sufferers have an inability to distinguish previously
familiar objects through specific senses, impaired visuospatial abilities, impaired abstract
thinking and numeracy, and changes in personality and behavior.

Over time, symptoms will worsen and can even be life-threatening. The pathological
sequence of AD starts in the center temporal lobe firstly, which is responsible for mem-
ory, and then progresses to the regions of the frontal, temporal, parietal, motor, sensory,
and subcortical areas. The neuropathology of AD is complex and not yet fully under-
stood [4]. The 2011 National Institute on Aging and Alzheimer’s Association (NIA-AA)
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guidelines defined three phases of AD: preclinical AD, MCI (symptomatic predementia)
and dementia [5]. Preclinical AD, the earliest phase from normal cognition to AD dementia
is characterized by the fact that daily life and work are basically not affected and one’s
ability to live independently is relatively complete (lasting about three years, accompanied
by mild cognitive difficulties). The most notable deficits are memory loss (e.g., it is hard
to recall newly learned knowledge, unable to communicate new messages or there are
difficulties in semantic memory). Certain difficulties with coordination and planning may
arise when doing some delicate motor tasks (for instance, difficulties in writing, painting
or dressing also occur at this stage) [6]. Even when people walk on familiar roads, they
can also lose their way [7]. In the middle stage of the disease (the MCI stage), patients
have the inability to live independently and will almost die from various accidents and
complications; this phase lasts about two years. Changes in behavior are more pronounced
at this stage, and the patient begins to no longer recognize their family and other close
people [8]. Approximately 30% of patients are at risk of urinary incontinence [9], along
with muscle mass decreases, inactivity, and becoming bedridden. However, the ability to
receive and send emotional signals is still there [10]. In the advanced stage of the disease,
patients totally lose the ability to take care of themselves and their behaviors deteriorate;
most of them pass away due to various complications within one to two years.

AD has become a serious public health issue with high medical costs and no cure.
Most cases appear in people over 65 years of age, and the global morbidity is about 6%,
with women having a higher morbidity rate than men. The Alzheimer’s Disease Society
International’s Association published a report entitled “The Global Impact of Dementia
2013−2050”, which showed that 44 million people are ill with dementia, a 17% raise from
2009, and that the number of people worldwide with dementia is almost doubling every
20 years. By 2030 and 2050, 76 million and 135 million cases of dementia will be found
around the world. China has the highest prevalence rate with about 10 million people of
dementia in the world and a yearly increase of 30 percent. In China, the prevalence rate is
5% for those over 65 years old and 30% for those over 85 years old. With the fast aging of
China’s population, the number of people with dementia in China will exceed 20 million
by 2050, 10% of the elderly over 75 years old will have cognitive impairment, and one third
of the elderly over 85 years old will have cognitive impairment [11].

In view of the increasing number of patients with AD, researchers have never stopped
exploring therapeutic drug development. In recent years, many researchers have found
that in the marine environment there are a large number of unique and different structures,
including polysaccharides, carotenoids, polyphenols, sterol and alkaloids, which have
biological and pharmacological activities [12]. Marine ecosystems cover more than 70%
of the earth’s surface, accounting for about half of the global biodiversity [13]. Marine
bioactive compounds have unique biological activities due to their chemical properties
that are not found in terrestrial products [14]. Therefore, people are increasingly studying
these resources to explore drugs that can treat human diseases [15,16]. This review briefly
introduces the related pathology of AD and comprehensively expounds the drug potential
of marine compounds which is found to have the potential to treat AD based on the
therapeutic targets of AD. The purpose of this review is exhibiting the great potential of
marine natural products, and also providing the direction for the development of new
therapeutic drugs for AD.

2. Pathogenesis of Alzheimer’s Disease

According to the age of onset, Alzheimer’s Disease (AD) can be divided into two types:
early onset (EOAD) and late onset (LOAD). EOAD has certain heritability, accounting for
a small number of all Alzheimer’s disease. The majority of patients have LOAD. Age is
the greatest risk factor for acquiring AD. In adults older than 85, the prevalence of AD is
more than one in three [17–19]. At present, there is no final conclusion on the pathogenesis
of Alzheimer’s disease. However, there is no doubt that neuroinflammation, extracellular
plaques, and intracellular neurofibrillary tangles (NFTs) are key pathological trademarks of
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this illness. Key factors in the pathogenesis of AD are shown in Figure 1 [15]. There are
several pathogenesis concerning AD as described below.
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ROS, reactive oxygen species; TBI, traumatic brain injury. (Re-produced with permission from [20],
Springer Nature, 2020.)

2.1. Amyloid Cascade Hypothesis

The first hypothesis is the amyloid cascade. This hypothesis concludes that Aβ ag-
gregation as an early event in neurodegeneration occurs independently prior to tangles
formation, followed by microglia and astrocyte activation, neuroinflammatory responses,
oxidative stress, and other cellular molecular events [21]. The pathogenesis of amyloid
protein starts from the change and cleavage of amyloid precursor protein (APP). β-secretase
(BACE1) and γ-secretase change and split APP to produce insoluble Aβ raw fiber. Then,
Aβ aggregation form the plaques. On the one hand, Aβ oligomerization spreads to the
synaptic gap that interferes with synaptic signal transmission. On the other hand, this
polymerization leads to the activation of kinases, which promotes hyperphosphorylation
of microtubule correlation tau protein. Then, hyperphosphorylated protein is polymerized
into insoluble NFT. After aggregation of plaque and NFT, microglia around the plaque
gathered. This promotes microglial activation and local inflammatory response and aggra-
vates neurotoxicity [22]. From the above process, it can be seen that Aβ is like a trigger
button in the process of the disease, and it has been proposed that Aβ is a trigger target
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for pathological processes. Therefore, Aβ is a major therapeutic target [23]. Perhaps this is
why many people regard it as the primary drug target.

2.2. Neuroinflammation Hypothesis

Another hypothesis is the neuroinflammation hypothesis, which is modified from
the above-mentioned amyloid hypothesis. Based on this theory, the pathogenesis of AD
is mainly related to a series of activities of microglia in the immune system of the central
nervous system (CNS) in which that microglia continuously activate pro-inflammatory cells
through the transduction of pro-inflammatory signals [24]. At this point, the microglia can’t
adjust the impairment of anti-inflammatory cytokine and lipid dielectric, causing damage
to the nerve degeneration and neuronal metabolites, which brings more inflammation
and excessive phosphorylated tau protein increased. Long term activation of the immune
response has been shown to worsen AD pathology, possibly as a result of persistent
activation of microglia in a feedforward loop (termed reactive microgliosis). This leads to
the accumulation of Aβ and the persistent single-shot of pro-inflammatory cytokines that
start to damage neurons [25]. Many elderly people have amyloid plaques in their brains that
never develop into Alzheimer’s disease. Amyloid protein accumulation itself is not enough
to cause dementia. The research results of Pascoal et al. show that it is the interaction
between neuroinflammation and amyloid pathology that releases the spread of tau protein,
which ultimately leads to extensive brain damage and cognitive impairment [26]. Now,
neuroinflammation is established as a feature of Alzheimer’s.

2.3. Ca2+ Hypothesis

The next hypothesis is the Ca2+ hypothesis. Ca2+ dysregulation is a common and
pervasive pathophysiological phenomenon in AD. Zhong et al. [27] hypothesized that
N-methyl-D-aspartate receptor subunit (GluN3A) is essential for sustained Ca2+ home-
ostasis and its deficiency is a causative factor in AD. By examining cellular, molecular and
functional changes in adult/senescent GluN3A knockout (KO) mice, they concluded that
chronic ‘degenerative excitotoxicity’ can lead to sporadic AD, and GluN3A is the main
pathogenic factor, a lifelong moderate but sustained Ca2+ overload is a causal pathogenic
mechanism of sporadic AD. Therefore, GluN3A may be an amyloid-independent therapeu-
tic target [27].

2.4. Tau Hypothesis

The tau hypothesis is based on the notion that tau protein’s hyperphosphorylation
leads to NFTs, which is one of the chief pathological conditions of AD [28]. Clinical studies
have found that the quantity of hyperphosphorylated tau protein and NFTs in the cerebrum
of AD patients is positively associated with the degree of clinical dementia. That is to
say the higher number of hyperphosphorylated tau proteins and NFTs, the more severe
clinical and stupid condition. The tau protein is encoded by the microtubule-associated
protein tau (MAPT) gene on chromosome 17. MAPT produces a monolithic hydrophilic
protein, which is enriched in large, naturally unexpanded regions of developing and
mature neuronal axons [28]. The tau protein exists in two isomers, namely the 3-repeat
sequence (3R) and 4-repeat sequence (4R), in which the 3R tau protein mainly occurs during
development and 4R tau protein is mainly produced in adulthood. These two isomers
maintain a balanced proportion (1:1) in the grow-up of the cerebrum. Disturbance of the
proportion between 3R and 4R may lead to AD and other diseases. It is also mentioned
in the amyloid hypothesis that Aβ polymerization activates kinases, which promotes
hyperphosphorylation of microtubule correlation tau protein [22]. So, inhibition of kinase
activity may an effective way to control tau hyperphosphorylation. Some related studies
have demonstrated that reducing tau phosphorylation by inhibiting tau kinases can restore
tau-dependent long-term potentiation (LTP) deficits and attenuates synaptic loss in tau
transgenic mice [29]. The novel role of pathological tau protein in disease progression



Mar. Drugs 2023, 21, 43 5 of 25

will provide more directions for the search of alternative disease mechanisms and related
treatment strategies in the field of Alzheimer’s disease.

2.5. Cholinergic Hypothesis

The pathogenesis of AD is usually related to the decrease of neurotransmitter levels,
such as serotonin, norepinephrine, dopamine, acetylcholine, etc. Acetylcholine (ACh),
which is closely associated with the formation and storage of human’s memory ability, is an
important neurotransmitter in the human cerebrum. Decreasing the level of Ah can directly
lead to cell damage in the basal nucleus, temporal lobe, and parietal lobe, thereby reducing
the level of serotonin and intensifying the development of NFT [30]. The theory states
that AD-related psychiatric symptoms arise are related to the impairment of cholinergic
neurons and dopaminergic transmission [31,32]. ACh regulates many key functions of
the CNS by activating cell-surface receptors known as muscarinic acetylcholine receptors
(M1-M5 mAChRs), which are co-expressed with D1 dopamine receptors in a specific subset
of striatal projection neurons. It has been proved clinically that selective M1 agonists
can improve the cognition of AD patients and reduce Aβ in cerebrospinal fluid level [33].
Besides, studies on M4 gene knockout mice showed that M4 gene deletion increased
dopamine efflux in the nucleus accumbens of mice, which confirmed the physiological
relevance of M4 mAChR subsets in regulating dopamine-dependent behavior and indirectly
verified this hypothesis [34]. Currently, some of the drugs are used to treat Alzheimer’s
disease and target acetylcholinesterase.

2.6. Glutamate Hypothesis

Finally, the glutamate hypothesis is based on the truth that cognitive disability in AD
is closely related to synaptic plasticity, and that N-methyl-D-aspartate receptor (NDMAR)
plays a key role [35]. Excitatory glutamatergic neurotransmission through the NMDAR
is crucial for neuronal synaptic plasticity and staying alive. However, it is a potential
mechanism of AD neurodegeneration that NMDAR overacts excitotoxicity and promotes
cell death [36]. As a kind of AD drug, it works by inhibiting NMDAR activation based on
this hypothesis exactly.

3. Currently Approved Drugs for Alzheimer’s Disease

Currently, it is reported that about 24 million people worldwide are living with AD.
Alzheimer’s disease has become a public health problem, but before June 2021, there
were only two types of medicines have been permitted to treat AD patients, including
cholinesterase enzyme inhibitors (naturally derived, synthetic and mixed analogs) and
NMDAR antagonists [37]. The pathway of acetylcholine-producing cells in AD patients is
disrupted, and the role of acetylcholine inhibitory enzymes is to prevent choline enzyme
from breaking down acetylcholine, thereby increasing the level of acetylcholine in the
synaptic [38]. NMDAR antagonists prevent excessive activation of NMDAR, thereby pre-
venting calcium influx and avoiding cell death and synaptic dysfunction cause by increased
calcium ion concentration [36]. Although these two types of drugs have therapeutic effects
on Alzheimer’s disease, they can only relieve symptoms and cannot achieve the effect
of cure and prevention. In June 2021, the US Food and Drug Administration officially
approved aducanumab for the treatment of Alzheimer’s disease. This is the first therapeutic
drug targeting the potential pathophysiology of disease since 2003. Besides, on November
2, 2019, Sodium Oligomanne Capsules (GV-971) was approved by the State Drug Adminis-
tration of China for marketing, which is the first new drug for Alzheimer’s disease that
targets brain gut axis in China and the world. On April 8, 2020, Shanghai Green Valley
Pharmaceuticals, China received the formal decision letter from the US Food and Drug
Administration (FDA) on the Investigational New Drug (IND) application for the GV-971
international multi-center Phase III clinical study [39]. However, the manufacturer, Green
Valley Pharmaceutical, announced the early termination of the international multicenter
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phase III clinical study of this drug on May 13, 2022, due to insufficient research funds.
Table 1 presents several related information about drugs currently used for AD treatment.

Table 1. Several related information about drugs currently used for AD treatment.

Drug’s Name Chemical Structures Pharmacological Mechanism Ref.
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3.1. Acetylcholinesterase in-jibtor (AChEI)
3.1.1. Tacrine

A common kind of drugs for curing of mild to moderate AD and related dementias is
cholinesterase inhibitors (ChEIs) [40]. Tacrine was the first cholinesterase inhibitor medicine
to be used, which was first synthesized in the 1930s. Tacrine has been used in patients with
AD since the 1980s, having been approved by the FDA in 1993 and discontinued in 2013 [38].
Tacrine has inhibitory effects on both acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE), but was stopped due to its side effects such as gastrointestinal side effects and
hepatotoxicity in patients.

3.1.2. Donepezil

Donepezil is a second-generation reversible AChEI drug that is also used to treat
patients with mild to moderate AD [41]. Its mechanism of action is that donepezil is
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reversibly combined with acetylcholinesterase so that it has inhibitory effect to hydrolysis
of acetylcholine. To do that, it achieved the effect of increasing the concentration of
acetylcholine at the synapse in the end. However, it should be noted that donepezil is
only used to treat AD symptoms, such as improving cognition and behavior, but does not
change AD progression [44].

3.1.3. Rivastigmine

Rivastigmine is a reversible dual inhibitor of AChE and BChE in a slow treatment
speed. There are two ways of administration: oral and transdermal. It is approved by
FDA that oral dosage form of rivastigmine is used for treating mild to moderate AD. The
optimum therapeutic dose is 6–12 mg/day [42]. Gastrointestinal side effects can also occur
with this drug (for better tolerance it is recommended to take it with food, twice a day) [45].
Transdermal patch, another mode of administration, is a paper-thin, waterproof matrix
patch, which has the advantages of easy administration and reduced tablet burden for
patients taking combination drugs and patients with dysphagia. Appears to have adverse
skin reactions, most commonly irritant contact dermatitis, which is usually mild, transient,
and can be controlled with topical treatments (such as topical corticosteroids) [46].

3.1.4. Galantamine (GAL)

Galantamine, as a standard first-line drug, is used for treating mild to moderate AD.
GAL is a selective tertiary isoquinoline alkaloid with a dual mechanism of competing with
acetylcholine receptor α-subunit to prevent it combine with acetylcholine inhibitors and to
activate acetylcholine [38]. Adverse reactions that may occur with this drug include weight
loss, diarrhea, loss of appetite, nausea, vomiting, dizziness, headache, gastrointestinal
bleeding, etc. [46].

3.2. NMDAR Antagonists

Memantine, which is an antagonist of the NMDAR, is an FDA-approved prescription
drug for the treatment of moderate-to-severe Alzheimer’s disease [37]. The drug reportedly
targets extrasynaptic NMDARs preferentially [47]. Adverse reactions that may occur while
taking this drug include constipation, diarrhea, confusion, dizziness, and headache [46].

3.3. Aducanumab

Aducanumab, with the structural formula shown in Figure 2 [48], is one kind of
monoclonal antibody of human immunoglobulin γ (Ig G)1. By recognizing Aβ epitopes,
Aducanumab acts on soluble and insoluble Aβ, reduces its content, and has low affinity for
Aβmonomers [48]. The most common adverse reaction of the drug in clinical trials is brain
edema or hydrocephalus. The launch of aducanumab was also controversial, with only the
EMERGE (NCT02484547) [49] Phase III global trial showing a significant reduction in Aβ
in AD patients and a significant improvement in the CDR-SB score, a measure of cognitive
function. Therefore, the FDA accelerated the approval of aducanumab but also required
phase IV trials to further verify the efficacy and safety of aducanumab.

3.4. Sodium Oligomanne Capsules (GV-971)

Sodium Oligomanne Capsules (GV-971) is a low molecular acid oligosaccharide com-
pound prepared from the extract of marine brown algae [50]. In non-clinical studies, the
mechanism of action of GV-971 is to decrease peripheral inflammation that may aggravate
neuroinflammation by regulating the gut microbiota, thereby reducing the neuroinflam-
mation in the brain. GV-971 combines with Aβ in direct to decreases Aβ deposition in the
brain [51–53]. This drug is mainly used to treat patients with mild to moderate AD and
may cause skin rash, abdominal pain, and other adverse reactions in patients.
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3.5. Combination Drug Therapy

Alzheimer’s disease is a chronic disease, and patients usually require long-term
medication. For patients on long-term medication, therapeutic effects may be limited (in
a fixed dose regimen) due to neurobiological adaptation and drug tolerance, promoting
the need increase the dose further. Therefore, lowering the drug dose as much as possible
while still achieving the therapeutic effect can reduce the possibility of induced toxicity.
Combination drug therapy may be a good method [54]. Hafsa Amat-ur-Rasool et al.
performed in vitro experiments on the inhibitory effect of anticholinesterase combined
drugs on AChE protein, the inhibitory effect of AChE in differentiated neurons, and the
cytotoxicity of neuronal cells. Two-drug combinations of berberine and tacrine (BerTac),
berberine and galantamine (BerGal), and tacrine and donepezil (TacDon) all produce
synergistic AChE inhibition results. Donepezil and galantamine (DonGal) have a synergistic
effect on human AChE, but have an antagonistic effect on tcAChE. After the combination
of the two drugs was applied to neuronal cells, BerTac, BerGal, DonGal and donepezil and
berberine (DonBer) all showed synergistic inhibition of AChE. BerGal produced the most
potent synergy, reducing the total drug dose by 72% [55]. In China, there are also a few
reports on the use of sodium oligomannate or memantine combined with donepezil in the
treatment of mild Alzheimer’s disease cases.

Currently, there is no specific drug that can treat AD. Therefore, the development
of new specific drugs is an urgent problem to be solved. The huge number of marine
organisms can produce a large number of natural products with unique structures, some of
which have neuroprotective effects and may be used for AD treatment. At the same time,
the successful marketing of GV-197, which was made from marine brown algae extracts in
China, shows us the bright prospect of marine biological ingredients as the treating drugs
of AD.

4. Anti-AD Marine Natural Products

Marine natural products have increasingly allured great scientific interest since they
can show significant biological activity 10 times higher than terrestrial organisms [14].
Through the study of the biological functions of marine natural products, it has contin-
uously proved its potential in the biomedical neighborhood, including anti-thrombotic,
anti-coagulant, anti-inflammatory, anti-hypertension, anti- diabetes, heart protection, and
neuroprotection effects [56]. A large and growing literature has investigated that marine
natural products have great potential against AD due to their chemical compounds, in-
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cluding polysaccharide, polyphenols, sterol, carotenoids, diterpenoids, alkaloids, amino
sulfonate, marine toxins and macrolide-type compounds [14], as summarized in Table 2.
In the process of extracting marine compounds and developing new drug molecules, sev-
eral key parameters help to determine the overall safety of precursor drugs, including
absorption, distribution, metabolism, excretion, and toxicology (ADMET). We have listed
the information related to trans-blood brain screen, skin permeability, and drug toxicity of
some marine compounds in Table 3.

Table 2. Main marine natural products with pharmacological activity to potentially treat AD.

Family Compound Origin Pharmacological Activity Ref.

Polysaccharide

Fucoidan Brown seaweeds Block caspase-9 and
caspase-3 enzymes. [57]

Chitosan Crustaceans Inhibition of the
enzyme acetylcholinesterase. [58]

Mannan Codium fragile Inhibition of the enzyme
β-secretase (Bace1) [59]

Polyphenol Dieckol
Brown seaweeds

(Ecklonia cava,
Ecklonia stolonifera)

Inhibition of the
enzymes acetylcholinesterase

and Butyrylcholinesterase
[60]

Sterol Fucosterol brown alarge
(Panida australis)

Anti-inflammatory and
anti-BACE1 [61,62]

Carotenoid

Fucoxanthin brown algae
(Sargassum siliquastrum)

Anti-inflammatory and
antioxidant [63]

Astaxanthin green algae
(Haematococcus pluvialis)

Decrease the production of
NF-κB transcription factors and

inflammatory cytokines
[64]

Lycopene Red seaweeds Anti-inflammatory and
antioxidant [65]

Diterpenoid Gracilins Marine sponges
(Spongionella gracilis)

Inhibition of the enzyme
β-secretase or

BACE-1.Anti-inflammatory and
antioxidant properties

Reduction in
hyperphosphorylation of

tau protein

[66]

Alkaloid

Manzamine Marine sponges
(Acanthostrongylophora)

GSK-3 inhibition and reduction
in hyperphosphorylation of

tau protein
[67]

Indole Streptomyces sp.
Inhibition Aβ plaque production

by activating the nuclear
factor Nrf2

[68]

Amino sulfonate Homotaurine Red seaweeds
Aβ lowering and prevention of
the formation of a toxic soluble

amyloid oligomer
[69,70]

Marine Toxin Spirolides Alexandrium ostenfeldii
Acetylcholinesterase inhibition,

and restraint the formation
of amyloid-β

[71]

Macrolide Caniferolide A Phylum Actinobacteria
Anti-inflammatory and

antioxidant action
Blockade of the BACE-1 enzyme.

[72]
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Table 3. ADMET profiling of nine marine natural products.

Parameters 1 Fucoidan Mannan Fucosterol Astaxanthin Lycopene Manzamine A Indole Homotaurin 13-desMeC

MW
(130~725) 242.05 666.22 412.37 596.39 536.44 548.35 117.06 139.03 691.44

LogS
(−4~0.5) −0.042 0.762 −6.887 −7.226 −7.642 −3.86 −2.151 −0.14 −5.162

LogP (0~3) −2.003 −4.868 7.447 8.045 11.072 5.459 2.292 −2.745 5.652
Pgp-inh 0 0 0.679 1 0.998 0.999 0.001 0.001 0.998
Pgp-sub 0.006 0.894 0.001 0.011 0.758 0.056 0.012 0.002 0.724

HIA 0.927 1 0.004 0.019 0.02 0.034 0.005 0.925 0.027
F (30%) 0.85 1 0.224 0.001 0.113 0.003 0.468 0.835 0.534
Caco-2 −5.53 −6.294 −4.624 −5.196 −5.708 −5.131 −4.259 −5.902 −4.813

BBB 0.678 0.45 0.818 0.001 0.001 0.99 0.737 0.936 0.25
PPB 18.86% 5.85% 98.64% 101.00% 99.44% 96.16% 86.32% 10.54% 97.60%
Fu 72.18% 54.83% 1.78% 2.56% 5.42% 3.27% 16.50% 87.62% 1.54%

CYP1A2-inh 0.003 0 0.058 0.015 0.266 0.28 0.975 0.005 0.005
CYP1A2-sub 0.171 0.002 0.436 0.156 0.521 0.786 0.805 0.237 0.817

CL 3.024 0.28 13.304 0.719 −0.286 7.851 11.189 3.782 18.565
T1/2 0.302 0.543 0.016 0.067 0.137 0.008 0.794 0.525 0.015

hERG 0.029 0.025 0.011 0.235 0.852 0.863 0.029 0.035 0.679
Ames 0.16 0.072 0.023 0.369 0.393 0.154 0.311 0.056 0.02
ROA 0.943 0.089 0.022 0.111 0.218 0.891 0.844 0.346 0.993

FDAMDD 0.027 0 0.638 0.974 0.948 0.932 0.219 0.014 0.942
BCF 0.444 0.105 3.317 1.465 2.187 1.081 0.934 0.212 1.755

1 MW: Molecular weight. LogS: The logarithm of aqueous solubility value. LogP: The logarithm of the n-
octanol/water distribution coefficient. Pgp-inh: The inhibitor of P-glycoprotein. Pgp-sub: The substrates of
P-glycoprotein. HIA: Human intestinal absorption. F (30%): The human oral bioavailability 30%. Caco-2: The
permeability of human colon adenocarcinoma cell lines (Caco-2). BBB: the penetration of blood–brain barrier
(BBB). PPB: Plasma protein binding. Fu: The fraction unbound in plasms. CL: The clearance of a drug. T1/2: The
half-life of a drug. hERG: The human ether-a-go-go related gene. Ames: The Ames test for mutagenicity. ROA:
The toxicity of rat oral acute. FDAMDD: The maximum recommended daily dose. BCF: The bioconcentration
factor. The data acquired from ADMETLab 2.0 database.

4.1. Polysaccharides

Polysaccharides are polymeric carbohydrates formed by the combination of sugar
chains and glycosidic bonds with at least ten or more monosaccharides with high molecular
weight [73]. So far, more than 300 natural polysaccharide compounds have been founded
in the literature, such as fucoidan, chitosan, mannan, and seaweed polysaccharide, among
which the fucoidan and chitosan have the potential to treat AD.

Fucoidan (Figure 3A) is a sort of complicated polysaccharide compound, which sepa-
rated from brown seaweed and some marine invertebrates [74]. It mainly contains L-fucoses
and sulfate groups [75], which has extensive pharmacological actions, such as anti-virus,
oxidation resistance, anti-inflammatory, and anticoagulant, improving Aβ1-40 induced
memory impairment, etc. [75,76]. Fucoidan consists of two chain structures, one with α-
(1→3) connected L-fucose residues as the chain and the other with alternating α- (1→3)
and α- (1→4) connected L-fucoses that may be sulfate substituted on C-4 [3]. It can block
the activation of the enzymes caspase-9 and caspase-3 by β-amyloid protein (Aβ), which
plays an important role in apoptosis processes. It is precisely due to the fact that it can
inhibit apoptosis that the compound also has a significant effect in terms of neuronal death
suppression. A fucoidan treatment has been found capable of suppressing the intracellular
Ca2+ responses of neurons [77]. The superfluous accumulation of intracellular Ca2+ may
go in front of the wound and put the neurons to death. Studies have indicated that high
attention of fucoidan can cause and prevent the dying of dopaminergic neurons in vivo and
in vitro models [57,78]. Fucoidan can reduce the neurotoxicity of β-amyloid protein, since
it can reduce toxicity by reducing the inhibition of β-amyloid protein on protein kinase
C (PKC) phosphorylation [57,79]. So, it can produce neuroprotective effect. In addition,
it was found that fucoidan could reduce neuronal damage in AD mouse model [80]. The
compound can raise mitochondrial activity and reduce the release of lactate dehydrogenase
(LDH) and reactive oxygen species (ROS) for enhancing the neuroprotection. It can enhance
the expression of anti-apoptotic-protein Bcl-2 and lessen the expression of Pro apoptotic
protein Bax for dramatically inhibiting neuronal apoptosis [81].
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A (M) and bryostatin 1 (N).
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Chitosan (Figure 3B), called deacylated chitin, is a natural polysaccharide that can be
obtained from marine crustaceans or in the cell walls of some fungi. Chitosan is a polymer of
β- (1→4)-D-glucosamine or a copolymer with N-acetyl-D-glucosamine, which is formed by
enzymatic N-deacetylation of chitin on fungal cell wall by chitin deacetylase [82]. Chitosan
is difficult to be used in food and biomedical fields due to its poor solubility [83]. Therefore,
researchers mostly convert chitosan to chitosan oligosaccharides (COS) that are easily
soluble in water [84]. Chitosan and COS have been proven to plays a significant part
in oxidation resistance and antibacterial, anti-apoptosis, and immune regulation [58,85].
Khodagholi et al. [86] studied the effect of chitosan on NT2 neuron cells induced by H2O2
and FeSO4, and found that chitosan treatment could inhibit the death of NT2 neuron cells
induced by oxidative stress. Moreover, the formation of Aβ in NT2 neurons pretreated
with chitosan was significantly lower than that in control cells. The results showed that
the Aβ level could controlled by treatment with this chitosan, suggesting that chitosan had
a certain protective effect on AD. Yoon et al. synthesized COS derivatives with different
substituents. Among the three COS derivatives, Diethylamino-ethyl COS (DEAE-COS) has
the strongest AChEIs activity [87]. The results showed that DEAE-COS was identified as
a competitive AChEIs and that chitosan and its derivatives could inhibit the activity of
acetylcholinesterase and had a potential neuroprotective effect on neuronal disorders [58].
Numerous studies have shown that it can restrain the formation of amyloid-β and the
activities of acetylcholinesterase. Also, it has the peculiarity of anti-neuroinflammation
and anti-apoptosis properties [58,88]. So far, the neuroprotective effects of chitosan and
its derivatives have mostly been observed in vitro [89]. Therefore, further studies are
needed to investigate their activity in mouse model systems and/or human subjects. Taken
together, these results revealed the potential of chitosan and its derivatives as potential
therapeutic candidates for neurodegenerative diseases, and they hold great promise in
future drug development.

Mannan (Figure 3C) is a polysaccharide widely existing in nature, which exists in
plants, marine bacteria, yeast, etc. It has the characteristics of high water solubility, stability,
and viscosity [90]. Mannan is composed of monosaccharide D-mannose linked by β-1,4-
mannoside linkage [91]. Liu et al. [59] investigated the effect of the hydrolytic product
of mannan, mannan oligosaccharides (MOS) on 5xFAD-Tg mice, a classic transgenic AD
mouse model. It was found that after eight weeks of MOS (0.12%, w/v in the drinking
water) oral administration, cognitive function and spatial memory were significantly im-
proved and behavioral disorders were reduced in mice. In addition, immunofluorescence
staining showed that MOS treatment improved the neuronal morphology of AD-affected
mice brains, and greatly reduced the accumulation of Aβ in the cerebral cortex and hip-
pocampus. Importantly, MOS treatment reduced the overexpression of tumor necrosis
factor-α (TNF-α) and interleukin 6 (IL-6) in the brains of AD mice, effectively alleviated
neuroinflammation and oxidative damage in the brains of AD mice [59]. Therefore, further
clinical trials are needed for evaluation to explore the therapeutic effect of chitosan on
AD patients.

4.2. Polyphenols

Polyphenols are a sort of neuroprotective compound that consist of aromatic ring
and one or more phenolic rings in natural plants [92,93]. Algae are rich in polyphenols
(especially phloroglucinol, a kind of phlorotannins which has been proved to have many
biological activities) [94]. An experiment was conducted to investigate the effect of brown
algae polyphenols on scopolamine-induced memory impairment in mice. The results
showed that phlorotannins (50 or 100 mg/kg) orally supplemented for six weeks im-
proved scopolamine-induced memory impairment in behavioral tests [93]. Phlorotannins
decreased acetylcholinesterase activity in the brain, and significantly reduce lipid peroxi-
dation levels but increased glutathione levels and superoxide dismutase activity [93]. In
addition, phlorotannins upregulate the expression levels of brain-derived neurotrophic
factor (BDNF), phosphorylated extracellular signal-regulated kinase (ERK), and cyclic
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AMP-response element-binding protein (CREB), which influence cholinergic dysfunction
and memory deficit [95,96]. It has been found that phlorotannins including dieckol, eckol,
and 8,8′-bieckol can inhibit the BACE-1 enzyme.

Currently, drugs used to treat AD work mainly by inhibiting acetylcholinesterase,
so the discovery that phlorotannins including dieckol, eckol, and 8,8′-bieckol have an
inhibitory effect on BACE-1 enzyme may improve medication and treatment for AD
patients [60,97]. Liu et al. evaluated the neuroprotective effects of three polyphenols,
including 8,8’-bieckol, dieckol, and eckol, on Aβ25-35-mediated cytotoxicity in PC12 cells.
Of these, dieckol (Figure 3D) showed the greatest protective effect, although both had
been shown to inhibit inflammatory responses by inactivating the NF-κB pathway [98].
Dieckol has been found to have a powerful inhibitory effect on amyloid-β peptide (Aβ)
accumulation in and out of the cell. Yoon et al. [60] demonstrated for the first time that
dieckol regulates APP proteolysis and Aβ production by regulating the phosphoinositide
3-kinase (PI3K)/protein kinase B (Akt)/Glycogen synthase kinase 3β (GSK-3β) signaling
pathway. In addition, the addition of PI3K inhibitor LY294002 counteracted all of the effects
of dieckol, suggesting that Akt/GSK-3β is the main pathway mediating Aβ production by
Swedish mutant APP over-expressed Neuro-2a (SweAPP N2a) cells. The current findings
support a better understanding of the important role of dieckol in the prevention of AD
and its potential as a promising source of anti-AD drugs [60,99].

4.3. Sterols

Marine sterols are sterol compounds produced by organisms in ocean. They are the
commonest natural organic compounds in the ocean (and are mostly from marine algae).
Marine sterols such as fucosterol (Figure 3E) have the capability to lessen the content of
cholesterol in the blood, leading to the tubular formation of cholesterol in the body [100].
However, the out of balance of cholesterol homeostasis will lead to inflammation, which is
related to the pathobiology of neurological diseases [61]. Furthermore, fucosterol exhibited
moderate anti-AChE activity by Ellman’s method [101]. So, it may have an improve-
ment effect on the symptoms of AD. In addition, sterols have anti-inflammatory effects in
macrophages and can prevent LPS- or Aβ-mediated neuroinflammation [102]. It is found
that sterols have anti-BACE1, and Aβ aggregation inhibitory activities [62]. Castro-Silva
et al. evaluated the AchE inhibitory activity of sterols isolated from Sargassum seagrass
extracts in vitro and in silicon. The sterol not only has a higher affinity for AchE compared
to the positive control, but is also a non-competitive human acetylcholinesterase (hAChE)
inhibitor, which differs from the stabilizing effect of galantamine (competitive hAChE
inhibitor) [103]. Marine sterols can reduce cell apoptosis and inhibit neuroinflammation by
regulating brain-derived neurotrophic factor (BDNF, synaptic growth factors associated
with memory and learning), nuclear factor erythroid 2-2-related factor 2 (Nrf2), and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling systems [98,104].

4.4. Carotenoids

Carotenoids are a kind of significant pigments in natural world, which extensively exist
in animals, plants, fungus, and algae (the vast majority of which come from algae) [64,105].
They are formed by linking isoprenoids units and exist in various colors, including fucoxan-
thin, lycopene, lutein, astaxanthin (Figure 3G), etc. In fact, fucoxanthin (Figure 3F), which
was abundant in brown seaweed, was isolated from S. horneri and evaluated for its effect
on cognitive impairment in vivo and its ability to inhibit some key enzymes in vitro by
Lin et al. [106]. It was concluded that fucoxanthin could effectively reverse scopolamine-
induced cognitive impairment in mice, significantly increased choline acetyltransferase
(ChAT) activity and BDNF expression, and decreased AChE activity in scopolamine treated
mice, suggesting that fucoxanthine has the potential to enhance cognition [12,106]. Another
study explored the direct effect of fucoxanthine on Aβ assembly and evaluated the effect
of fucoxanthine on the cognitive performance of Aβ oligomer-treated mice [107,108]. The
results demonstrated that fucosanthin may effectively reverse cognitive impairment by
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inhibiting oxidative stress and upregulating the expression of BDNF and ChAT in Aβ1-42
oligomeric-treated mice, suggesting that fucosanthin reduces Aβ neurotoxicity in vivo,
which may be useful for prevention of AD [107]. In addition, fucoxanthin also showed
anti-inflammatory and antioxidant effects [63]. Lycopene (LYC,Figure 3G), a fat-soluble
carotenoid, was found to have inhibitory effects on LPS-induced memory loss, to inhibit
the phosphorylation of lipopolysaccharide (LPS)-treated BV2 microglia MAPKs and NF-κB,
and activate the Nrf2 signaling pathway in the Morris water maze test of mice, suggesting
that LYC may be a preventive strategy for neuroinflammatory related diseases such as
AD [65]. In vitro and in vivo studies were conducted in rat models to investigate the effects
of astaxanthin on lipopolysaccharide LPS-induced inflammatory responses [109]. The
results showed that the anti-inflammatory effect of astaxanthin (100 mg/kg) was higher
than that of commonly used anti-inflammatory drugs (10 mg/kg), and that LPS-fed mice
treated with astaxanthin showed a dose-dependent anti-inflammatory effect. Astaxan-
thin plays an anti-inflammatory role by inhibiting the production of (nitric oxide) NO,
prostaglandin E2 (PGE2), TNF-α and interleukin-1β (IL-1β) [64]. There are currently clini-
cal trials (NCT05015374) of astaxanthin in patients with AD taking astaxanthin or a placebo.
The trials are expected to end in 2024, after which the possible benefits of astaxanthin
on Alzheimer’s disease will be examined by studying patients’ mental status, cognitive
ability, and clinical dementia scores. Overall, the results of the neuroprotective effects of
carotenoids in vitro and in vivo are encouraging, but further clinical studies in humans are
needed to draw conclusions about the full potential for treating neurodegenerative diseases
such as AD.

4.5. Diterpenoids

Diterpenes are terpenoids with four isoprene units which broadly exist in terrestrial
and marine organisms [110]. Researchers have found that the compounds of the gracilins,
structural analogue gracilin A (Figure 3H) in sponges can inhibit BACE-1, a kinase regulated
by extracellular signals, and reduce hyperphosphorylation of tau protein [111], which has
a neuroprotective effect on primary neurons [112]. In addition, they can also express
strongly Nrf 2 involved in the activation of antioxidant pathway, produce important
anti-inflammatory effects, and reduce the production of ROS induced by amyloid-β [88].
It can also induce targeting mitochondria to inhibit mitochondrial oxidation and play
a neuroprotective role [113]. A study showed that Gracilin A could protect SH-SY5Y
cells from hydrogen peroxidation-induced damage by reducing reactive oxygen species
(ROS) levels, restoring glutathione (GSH) content, improving mitochondrial membrane
potential (MMP) and increasing cell survival rate [114]. In a different study, the activity of
Gracilin A derivatives was evaluated, including their ability to regulate antioxidant gene
expression in SH-SY5Y cells and their anti-neuroinflammatory potential in LPS-activated
BV2 microglia [115]. The results showed that Gracilin A can regulate the translocation
of Nrf2 and NF-κB and reduce the activation of p38 mitogen-activated protein kinase
(p38 MAPK) in SH-SY5Y and BV2 cells [115,116].In addition, it was also found that the
abietane diterpenoids also have neuroprotective effects from Phlegmariurus carinatus [117].
Harziane Diterpenes from Deep-Sea Sediment Fungus Trichoderma sp. has a potential
anti-inflammatory effect [117].

4.6. Alkaloids

Alkaloids are a kind of alkaline compounds containing nitrogen that exist in nature,
mainly in plants, animals and algae. In the ocean, marine macrocyclic alkaloids mainly
manzamines (Figure 3I), 3-alkylpiperidines, 3-alkyl pyridinium salts and so on [118]. Man-
zamine alkaloids are a class of complex β -carbonyl alkaloids isolated from spongy bodies
with unique nitrogenous polycyclic systems [119]. It was found that the manzamine alka-
loid is an inhibitor of glycogen synthetase kinase-3 beta (GSK3β) and reduces the activity
of GSK3β through the hydrogenation of C-32/C-33 double bond and the oxidation of C-31
to ketone [67,120]. In cell experiments, manzamine A showed strong inhibition of tau phos-
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phorylation in cells [67]. When the manzamines were evaluated in trials related to nervous
system function and pathology, it did not show any effect on AChE or β-secretase, nor did
it show significant ability to protect human neurocytoma SH-SY5Y cells against oxidative
stress-induced cell death [121]. It is thus known that this alkaloid can be used to restrain
the formation of NFTs by the hyperphosphorylation of tau protein, but has no effect on
other clinical features of AD [122] Indole alkaloids (Figure 3J) are a kind of macromolecular
compounds isolated from Streptomyces sp. In vivo, it has high activity for transcription of
Nrf2 and has a neuroprotective effect [68]. Indoles have been confirmed to reduce tert-butyl
hydroperoxide (TBHP)-induced cell death, demonstrating their neuroprotective potential
and having little cytotoxic effect on human neuroblastoma SH-SY5Y and microglial BV2
cells [123]. It can be seen that this alkaloid can be considered to inhibit the occurrence of
intracellular NFTs caused by tau hyperphosphorylation, but has no effect on other clinical
features of AD, and is a potential drug for the treatment of AD. Alkaloids have been proven
to inhibit Aβ plaque production and the hyperphosphorylation of tau protein, inhibit
neuroinflammation and reduce apoptosis, activate autophagy, and reduce potential risk
factors for AD, so they can have the potential to become a lead in AD treatment [124].

4.7. Amino Sulfonates

Amino sulfonate compound is a kind of compound matter that takes the place of
hydroxyl group in sulfuric acid and belongs to the sulfur containing protein. For example,
homotaurine (Figure 3K), obtained from various marine red algae, which is a kind of
natural amino sulfonate compound. It has been confirmed that it has a protective effect
on neurons in vitro and in vivo models in clinical studies [125]. The homotaurine reduces
the toxic effects on neurons by encapsulating amyloid peptide to reduce misfolding and
aggregation of amyloid to prevent the formation of amyloid-β oligomers and neurotoxic
compounds [69]. The amyloid -β oligomer is a key pathogenic factor in neurological
diseases and can form Aβ-fibrils and protofibrils that ultimately lead to the formation
of amyloid plaques [70]. On the other hand, homotaurine has a similar structure to the
neurotransmitter γ-aminobutyric acid (GABA), so it can specifically act on GABA receptors
to reduce neurotoxic damage induced by glutamate delivery [126–128]. In a Phase II
clinical trial, homotaurine has been shown to safely reduce the concentration of Aβ42 in
cerebrospinal fluid (CSF) in patients with mild to moderate AD, contributing to the potential
for improvement in the disease [116]. However, homotaurine was evaluated in phase III
trials (ALPHASE trial) of mild-moderate AD and showed insufficient clinical efficacy [69].
The results showed a positive trend of Clinical Dementia Rating-Sum-of-boxes (CDR-SB),
and the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) results
showed a statistically significant difference, but the planned analysis of the psychometric
data showed no statistically significant difference [69]. Nevertheless, only the secondary
endpoints of the study showed neuroprotective effect inhibiting Aβ activity of homotaurine.
Therefore, further evidence is needed to determine the effectiveness of homotaurine in the
improvement of AD, providing new possibilities for the treatment of AD.

4.8. Marine Toxins

Marine toxins are naturally toxic chemicals from the ocean environment [129]. Nereis-
toxin (NFX) was found to have a strong binding affinity with nicotinic acetylcholine receptor
(nAChR) in mouse brain [130], as was Spirolides. Spirolides (SPX) are cycloimine lipophilic
marine toxins, mainly produced by Alexandrium ostenfeldii (A. ostenfeldii) [71]. The toxicity
of these compounds was detected for the first time in bivalve mollusks when mice that
were intraperitoneally injected with scallop and mussel lipophilic extracts died unusually
quickly, indicating a strong toxic reaction in the mice [131]. The mechanism of action of
SPXs was not fully understood, but it had been proposed that cholinergic receptors are the
main sites of action of these toxins [132]. It was non-toxic to humans and is an antagonist
of nicotinic choline receptors, enhanceing the expression of the choline acetyltransferase
enzyme (ChAT) [133]. The main representative substance was 13-desmethyl spirolide C (13-
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desMeC) (Figure 3L) which had been shown to reduce β-amyloid accumulation and reduce
tau hyperphosphorylation through its action on cholinergic receptors in a three-transgenic
mice (3xTg) neuron model [134]. This was due to the fact that the treatment of 3xTg cortical
neurons with the toxin can observably decrease the levels of the hyperphosphorylated
isoforms of tau recognized by AT8 and AT100 antibodies and the levels of intracellular
β-amyloid [135]. It could also eliminate the glutamate-mediated neurotoxic effects, decreas-
ing intracellular accumulation of Aβ and phosphorylated tau levels in neurons in vitro.
Thus, it could be used for new treatment of AD in the body from the view of barrier
of blood-brain [55]. Anatoxin a(s), a marine toxin originally extracted from filamentous
cyanobacterium Anabaena flos-aquae, had been extensively studied for its AChE inhibition
potential [136]. In vitro, the activity of AChE was determined by colorimetric assay. The
results showed that anatoxin a(s) had a non-competitive inhibitory effect on AChE. These
results were confirmed in vivo, where rats treated with anatoxin a(s) showed similar signs
of anticholinesterase poisoning [137]. Therefore, marine toxins have the potential to treat
AD by targeting certain targets, which requires further animal trails and clinical trials.

4.9. Macrolide-Type Compound

The macrolide caniferolide A (Figure 3M) is a kind of macrolide-type compound ex-
tracted from Streptomyces caniferus, a actinomycete in the ocean, with potential biological
activity [138]. Caniferolide A have been confirmed to have neuroprotective effects [139].
Caniferolide A can reduce the content of neuroinflammatory markers in lipopolysaccharide-
activated BV2 glial cells, block the transfer of FFKB-P65 to the nucleus and activate the Nrf2
pathway [138]. Rebeca Alvariño et al. [139] examined tau phosphorylation in SH-SY5Y
tau441 cells and found that caniferolide A can reduce Thr212 and Ser214 phosphorylation
by targeting p38 and c-Jun N-terminal kinase (JNK) mitogen activated kinases (MAPK).
In addition, the antioxidant activity of macrolides was determined in the oxidative stress
model of SH-SY5Y cells treated with H2O2. It was found that the compound could de-
crease the release levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), ROS and
NO, and increase the cell viability and GSH content. Finally, in order to confirm the anti-
inflammatory effect of caniferolide A, BV2 microglia and SH-SY5Y neuroblastoma cell lines
were trans-well co-cultured. The results showed that caniferolide A significantly increased
the survival rate of neuroblastoma cells, confirming its neuroprotective properties [139].
All of these indicated that the compound could be effective and possibly used for novel
AD treatment for AD.

Bryostatin 1 is a macrolide compound with high oxygen structure, isolated from
the marine invertebrate Bugula neritina, which can be used as an effective regulator
of protein kinase C (PKC) [72]. It can bind to PKC, cause quick short activation and
autophosphorylation of PKCs, and induce continuous translocation of PKC membrane
and continuous downregulation of PKC, leading to increased production and release
of BDNF in the central nervous system [140]. Intraperitoneal injection of bryostatin 1
activates PKCε in the brain and prevents Aβ elevation, synaptic loss, and memory deficits
in AD mouse model [141]. Preliminary safety and tolerability data for Bryostatin-1 in AD
have been evaluated in phase IIa clinical trials (ClinicalTrials.gov identifier NCT02221947)
with no serious adverse events and positive results [142]. Bryostatin concentration in
the blood peaked one hour after the patient was infused. However, long-term treatment
with bryostatin can induce downregulation of PKCε, depending on the duration and dose
level of treatment. In another Phase II clinical study, bryostatin showed better efficacy,
tolerability and safety when used to improve cognitive loss in 150 patients with advanced
AD. However, the initial improvement was not significant in the full analysis set (FAS),
and in the completer analysis set (CAS), primary and secondary analyses showed positive
results in the bryostatin (20 µg) treatment group compared to the placebo group [143].
Therefore, these analyses collectively suggest that further trials are needed to evaluate the
role of bryostatin in cognitive function in patients with AD. Therefore, in past few years,
these compounds have been identified as promising drugs with potential.

ClinicalTrials.gov
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5. Challenges and Opportunities in Developing Marine Natural Products for
Alzheimer’s Disease

In 2018, the Alzheimer’s Disease International estimated that around 50 million people
worldwide have dementia, a figure expected to triple by 2050, with two-thirds living in
low-and middle-income countries [144]. Alzheimer’s disease has become a huge challenge
the world is facing. However, unlike the rapidly growing number of Alzheimer’s patients,
the types of drugs used to treat Alzheimer’s have not increased significantly. One of the
reasons for the slow renewal of therapeutic drugs is the long clinical cycle of drugs. For
instance, the phase 3 trial of Aducanumab (NCT05310071) lasted three years, and the
phase III trial of GV-971 lasted five years (NCT04520412). The second reason is the high
failure rate of clinical trials. However, AD drugs have a high clinical failure rate, including
several pharmaceutical giants (such as Pfizer, Roche, etc) [145]. Most clinical drug trials
target at Aβ and tau, but the clinical failures of the recent decades indicate that there
are further pathological mechanisms [146]. This prompted researchers to focus on the
development of multi-targeted drugs [122,146,147]. Multi-target targeted ligands (MTDLs)
strategy has been proposed and developed many times. The MTDLs design strategy
involves the incorporation of distinct pharmacophores of different drugs in the same
structure to get hybrid molecules [148]. The most widely used method is combining the
structure of the FDA approved cholinesterase inhibitor with another drug with biological
characteristics that is useful for treatment or combined using of several drugs. A new tacrine
derivative with acetylcholinesterase inhibition (AChE) and brain-derived neurotrophic
factor (BDNF) activation was obtained by linking tacrine with a fragment of huperzine A,
and it has been shown to have a cognitive enhancement effect in two kinds of AD mice
(APP/PS1transgenic mice and β-amyloid (Aβ) oligomers-treated mice) without inducing
significant hepatotoxicity [149]. However, no relevant clinical trial information was found.
A clinical trial (NCT01362686) involving a combination of three commonly drugs (donepezil,
galantamine, rivastigmine) for AD was terminated due to a low study accrual.

The development of MTDLs also provides opportunities for the development of drugs
with marine compounds as the main components. It can be seen from Table 2 that the
targets for AD of most marine compounds are multidirectional rather than single. A single
compound can act on multiple targets, which means that compared with synthetic drugs,
the cumbersome drug synthesis process is eliminated. Secondly, marine compounds them-
selves are derived from edible natural organisms, many of which are edible compounds
and have been widely used in food, cosmetics and other industries, indicating that their use
safety is guaranteed [91,150,151]. At present, the biggest limitation of marine compounds to
become clinical drugs is the lack of clinical trials. Most of the reported marine compounds
with potential to treat Alzheimer’s disease remain in the animal experiment stage. As
for the clinical progress of marine compounds mentioned in Section 4, only bryostatin
(NCT02221947) and astaxanthin (NCT05015374) were found to have related clinical trials.
Many marine compounds have not been put into clinical trials. This situation may be
related to a lack of collaboration between different disciplines, especially within medical sci-
ence. Analyzing the references, it was found that most of the authors who proposed marine
compounds with potential to treat AD were involved in the chemical, biological, or marine
sciences, and there was generally a lack of authors with medical backgrounds. The lack of
support from medical professionals has greatly slowed the progress of marine compounds
to the clinical platform. At present, the biggest limitation of marine compounds to become
clinical drugs is the lack of clinical trials. Most of the reported marine compounds with
potential to treat Alzheimer’s disease remain in the animal experiment stage. The Center
for Disease Control and Prevention (CDC) could take the lead in drafting a protocol and re-
cruiting medical researchers as well as chemical, biological, and marine researchers, which
would accelerate clinical research of marine drugs. Another challenge for marine drugs is
the stability and extraction of marine compounds. For example, marine indole alkaloids
have many biological activities and their neuroprotective properties can be used in the
treatment of AD. However, the determination of bioactivity has become a difficult problem
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due to the insufficient amount of isolated and purified compounds [68]. In another case, the
yield of phlorotannins extracted from Sargassum fusiforme can only reach 6.36% [152]. Trans-
lating chemical diversity into pharmacological diversity is big problem, so the isolation and
extraction of compounds in the drug application development process is big challenge [68].
It is gratifying that there is a lot of research focused on the green extraction of natural
compounds [137,153–155]. In addition, food level nanocapsules, encapsulation technology
and drug target delivery technology have gradually matured [156–159], which provide a
strong technical guarantee for achieving transformation from marine compounds to marine
drugs. So, there is no need to worry too much about this issue. With in-depth study, these
problems can be solved. Furthermore, over the past decade, several efforts have been
made to discover new biomarkers that could enable more accurate and rapid diagnosis
of neurodegenerative diseases. These biomarkers include magnetic resonance imaging
(MRI), which targets the cerebral cortex, white matter, etc., positron emission tomography
(PET), which analyzes tau lesions and beta-amyloid accumulation, and cerebrospinal fluid
(CSF) targeting β-amyloid polypeptides, β-amyloid oligomers, and tau peptides as well as
blood biomarkers [160,161]. Biomarkers contribute to more rapid and accurate diagnosis,
provide an indication of disease progression, and identify the best drug for a particular
individual. Integrating these biomarkers into drug development or clinical trials for neu-
rodegenerative diseases is an important step to help develop and demonstrate drug efficacy
and target involvement [162]. The discovery of more drug targets will certainly encourage
more research teams to explore new drugs, which also provides opportunities for marine
compounds.

Therefore, it can be seen that marine resources offer us a huge library of potential
research drugs. Marine natural molecules can be used as lead compounds for the devel-
opment of drug candidates against AD. In order to ensure that drug development has a
promising research progress and provide good opportunities and application prospects in
the biomedical field, it is necessary to further exploration of molecular mechanisms, toxicity
and side reaction of active ingredients, along with the development of in vivo and in vitro
researches, are vital to the development of novel drugs for the treatment of AD, and we
need describe their health implications [163]. In conclusion, using marine compounds for
treating neurodegenerative diseases is both an opportunity and a challenge.

6. Remarks and Future Perspectives

This review examines the pathogenesis of Alzheimer’s disease in brief and emphati-
cally introduced various marine compounds with the potential to treat Alzheimer’s disease.
The literature shows that marine compounds are a cost-effective and environmentally
friendly resource with high biomedical potential. Sodium oligomanne capsules (GV-971),
an acidic oligosaccharide compound prepared from the extract of marine brown algae,
was successfully applied in clinical practice, which also indicates the drug value of marine
natural compounds. Nevertheless, the development of potential drugs is mostly under-
taken by academics or small biotechnology laboratories. So, it requires the joint efforts
and cooperation of researchers from all disciplines, the active advocacy of government
departments, and the trust and cooperation between doctors and patients to accelerate the
progress of marine compounds from laboratory to clinical trials. In addition, in order to
search for anti-AD compounds of marine origin with significant neuroprotective activity
and better understand the potential advantages of the characteristics of various marine
organisms and their compounds for the healthy of people, it is necessary to encourage
and stimulate more investment in biotechnology to contribute to the more sustainable
development and use of these marine resources in the future.
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