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Microsatellites are the most popular and versatile genetic marker with myriads of applications in population genetics, conservation
biology, and evolutionary biology. �ese are the arrays of DNA sequences, consisting of tandemly repeating mono-, di-, tri-, and
tetranucleotide units, which are distributed throughout the genomes of most eukaryotic species. Microsatellites are codominant
in nature, highly polymorphic, easily typed, and Mendelian inherited, all properties which make them very suitable for the
study of population structure and pedigree analysis and capable of detecting di	erences among closely related species. PCR
for microsatellites can be automated for identifying simple sequence repeat polymorphism. Small amount of blood samples or
alcohol preserved tissue is adequate for analyzing them. Most of the microsatellites are noncoding, and therefore variations are
independent of natural selection.�ese propertiesmakemicrosatellites ideal geneticmarkers for conservation genetics and 
sheries
management. �is review addresses the applications of microsatellite markers in conservation genetics and recent advances in
population structure analysis in the context of 
sheries management.

1. Introduction

Organisms are incessantly undergoingmicro- andmacroevo-
lutionary processes both at molecular and organismal levels.
In fact, the process of evolution starts at the molecular level,
more precisely from a single base of the DNA molecule, and
ends up in variations at the organismal level. Genes are the
factors, which determine the phenotypic characters of any
organism. �us, the variations that happen to the genes in
turn produce individuals, which are di	erent either at the
molecular level or at the organismal level. �ese individuals
may form separate groups within the species itself and such
groups are the fundamental genetic units of evolution. �ese
intraspeci
c groups were called as “stocks” and 
shery
biologists started using these stocks as a basis to manage
commercially important marine organisms. Shaklee et al.
[1] de
ned a stock as “a panmictic population of related

individuals within a single species that is genetically distinct
from other such populations.”�erefore, in any management
regime, identi
cation of discrete stocks becomes a critical
element [2, 3].

Genetic variation in populations became a subject of
scienti
c enquiry in the late nineteenth century prior even to
the rediscovery of Mendel’s paper in 1900. Genetic variation,
in the form of multiple alleles of many genes, exists in most
natural populations. In most sexually reproducing popula-
tions, no two organisms (barring identical twins or other
multiple identical births) can be expected to have the same
genotype for all genes [4]. In 1990s, genetic markers became
more popularized for the identi
cation of stock structure and
genetic variation in a population. �e detection of genetic
variation among individuals is a requirement in all applica-
tions of genetic markers in 
sheries biology. A genetically
inherited variant in which the genotype can be inferred from
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the phenotype during genetic screening is known as a genetic
marker.�emost common use of geneticmarkers in 
sheries
biology is to determine if samples from culture facilities or
natural populations are genetically di	erentiated from each
other. �ey are also used to identify di	erent species in the
event of taxonomic disputes and to detect genetic introgres-
sion in a species. �e detection of genetic di	erentiation
would imply that the source groups comprise di	erent stocks
[5] and should be treated as separate management units or
stocks [6]. A common objective ofmolecular genetic analyses
is to 
nd diagnostic di	erences among presumed stocks
in either nuclear allelic types or mtDNA haplotypes [7].
Polymorphic DNAmarkers can provide 
sheries researchers
with new insights into the behavior, ecology and genetic
structure of 
sh populations, levels of inbreeding, disassor-
tative mating success of alternative reproductive strategies
and life histories, and the intensity of natural and sexual
selection [8]. Microsatellites are one of the best suitable
genetic markers for analyzing pedigree, population structure,
genome variation, evolutionary process, and 
ngerprinting
purposes.

Genetic markers are basically two types—protein and
DNA (molecular). In the beginning of 1960s, the proteins
such as haemoglobin and transferrin were involved in all
studies. In protein markers, allozyme markers are very pop-
ular and most of the genetic variation studies have been con-
ducted based on this marker [9–14]. Molecular markers can
be categorized into two classes, nuclear DNA and mitochon-
drial DNA (mtDNA) markers, based on their transmission
and evolutionary dynamics [15]. Nuclear DNA markers such
as random ampli
ed polymorphic DNA (RAPDs), ampli
ed
fragment length polymorphisms (AFLPs), variable number of
tandem repeats loci (VNTRs: minisatellites, microsatellites),
and single nucleotide polymorphisms (SNPs) are bipar-
ently inherited. Mitochondrial DNA markers are maternally
inherited, exhibit high rates of mutation, and are non-
recombining such that they have one-quarter the genetic
e	ective population size (Ne) of nuclear markers [8]. Using
restriction enzymes mtDNA sequence can be cut at speci
c
sites to generate restriction fragment length polymorphisms
(RFLPs) or sequence analysis of di	erent genes of mtDNA
can be used to detect phylogenetic relationships, undertake
pedigree analysis, and assess population di	erentiation in
many species.

Detection of polymorphisms at the nucleotide sequence
level represents a new area for genetic studies, especially as
technologies become available, which allow routine appli-
cation with relative ease and low cost. From the 1990s an
increasing number of studies have been publishedmaking use
of random parts of a genome. With the advent of thermo-
cyclers, the ampli
cation of small fragment of DNA through
polymerase chain reaction (PCR) gained popularity.�ePCR
technique was discovered in 1985 and the development of
DNA ampli
cation using the PCR technique has opened the
possibility of examining genetic changes in 
sh populations
over the past 100 years or more using archive materials such
as scales [8]. �e advent of PCR coupled with automated
DNA sequencers made feasible major technological innova-
tions such as minisatellite variant repeat mapping [16] and

assessment of the variations at microsatellite loci [17]. �e
PCR based techniques have the added attraction of requiring
only extremely small amounts of DNA that has led to wide
usage of this technique in aquaculture and 
sheries. In this
review, we discuss the application of the most prevalent
genetic marker, microsatellites, in population genetic struc-
ture and its usefulness in conservation of 
sh fauna.

2. Microsatellites Markers

Recently, attention has turned to another type of genetic vari-
ation that of di	erences in the number of repeated copies
of a segment of DNA. �ese sequences can be classi
ed
based on decreasing sizes into satellites, minisatellites, and
microsatellites [13]. Satellites consist of units of several
thousand base pairs, repeated thousands or millions of times.
Minisatellites consist of DNA sequences of some 9–100 bp in
length that are repeated from 2 to several 100 times at a locus.
Minisatellites discovered in human insulin gene loci with
repeat unit lengths between 10 and 64 bp were also referred
to as “variable number of tandem repeats” (VNTRs) DNA
[18]. Microsatellites have a unique length of 1–6 bp repeated
up to about 100 times at each locus [19]. �ey are also called
as “simple sequence repeat” (SSR) by Tautz [13] or “short
tandem repeat” (STR) DNA by Edwards et al. [20]. Je	reys
et al. [21] and Weber [22] opined that length variations in
tandemly arrayed repetitiveDNA inmini- andmicrosatellites
are usually due to an increase or decrease in repeat unit copy
numbers. Di	erences in repeat numbers represent the base
for most DNA pro
ling techniques used today. Later, only
microsatellites became very common in population genetics
studies.

Microsatellites are short tandemly arrayed di-, tri-, or
tetranucleotide repeat sequences with repeat size of 1–6 bp
repeated several times �anked by regions of nonrepetitive
unique DNA sequences [13]. Polymorphism at microsatellite
loci was 
rst demonstrated by Tautz [13] and Weber and
May [17]. Alleles at microsatellite loci can be ampli
ed by
the polymerase chain reaction [23] from small samples of
genomic DNA and the alleles separated and accurately sized
on a polyacrylamide gel as one or two bands and they are
used for quantifying genetic variations within and between
populations of species [24].�e very high levels of variability
associated with microsatellites, the speed of processing, and
the potential to isolate large number of loci provide a marker
system capable of detecting di	erences among closely related
populations. Microsatellites that have been largely utilized
for population studies are single locus ones in which both
the alleles in a heterozygote show codominant expression
[25]. Individual alleles at a locus di	er in the number of
tandem repeats and as such can be accurately di	erentiated
on the basis of electrophoresis (usually PAGE) according to
their size. Di	erent alleles at a locus are characterized by
di	erent number of repeat units. �ey give the same kind of
information as allozymes: distinguishable loci with codomi-
nant alleles, but they are generally neutral and more variable
than allozymes [26]. Like allozymes,microsatellites alleles are
inherited in a Mendelian fashion [27]. Moreover, the alleles
can be scored consistently and compared unambiguously,
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Figure 1: Schematic representation of traditional method of devel-
opment of species speci
c microsatellite markers.

even across di	erent gels. An additional advantage is that they
allow the use of minute or degraded DNA [26].

Generally, microsatellite loci are abundant and dis-
tributed throughout the eukaryotic genome [28] and each
locus is characterized by known DNA sequence. �ese
sequences consist of both unique DNA (which de
nes the
locus) and repetitive DNA motifs (which may be shared
among loci). �e repetitive elements consist of tandem
reiterations of simple sequence repeats (SSRs) and are typ-
ically composed of two to four nucleotides such as (AC)n
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Figure 2: Schematic representation of development ofmicrosatellite
markers by cross-species ampli
cation.

or (GATA)n where n lies between 5 and 50 [29]. Within
vertebrates, the dinucleotide repeats -GT and CA- are
believed to be themost commonmicrosatellites [30]. Study of
single locus microsatellites requires speci
c primers �anking
the repeat units, whose sequences can be derived from (i)
genomic DNA libraries or (ii) from available sequences in
the gene banks (Figures 1 and 2). �ese two methods are
generally used for the development of microsatellite markers.
�e second method is extensively described in the coming
section. In a review, Zane et al. [31] showed several methods
of development of microsatellite markers.
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3. Advantages of Microsatellite Markers

�e major advantages of microsatellite markers are codom-
inant transmission (the heterozygotes can be distinguished
from homozygotes), locus-speci
c in nature, highly poly-
morphic and hypervariable, high information content and
providing considerable pattern, relative abundance with uni-
form genome coverage, higher mutation rate than standard,
and easy to sample preparation. Advantages ofmicrosatellites
such as short size range, uninterrupted stretches of identical
repeat units, high proportion of polymorphisms, insights
gained in understanding the mutational process which helps
in developing statistical procedures for interpopulation com-
parisons, their abundance in 
sh genomes, the availability of
methodologies for cloning of microsatellites have all resulted
in their abundant use in 
sheries research. Tetranucleotide
microsatellites are also very useful for paternity and forensic
investigations in humans. �e advantageous properties of
microsatellites have led to modern developments such as
digital storage and automated detection and scoring systems
such as automated DNA sequences and �uorescent-imaging
devices [27]. Disadvantages of microsatellites include the
appearance of shadow or stutter bands, presence of null
alleles (existing alleles that are not observed using stan-
dard assays), homoplasy, and too many alleles at certain
loci that would demand very high sample size for analysis
[32]. Also, microsatellite �anking regions (MFRs) sometimes
contain lengthmutationswhichmay produce identical length
variants that could compromise microsatellite population
level studies (and comparisons of levels of variation across
species for homologous loci) and phylogenetic inferences as

these length variants in the �anking regions can potentially
minimize allele length variation in the repeat region [30].

4. Application of Microsatellites in
Population Structure Analysis in Fisheries
and Aquaculture

�e high variability, ease, and accuracy of assaying microsat-
ellites make them the marker of choice for high-resolution
population analysis [33]. Microsatellites with only a few
alleles are well suited for population genetic studies, while the
more variable loci are ideal for genomemapping and pedigree
analysis and the 
xed or less polymorphic microsatellite loci
are used to resolve taxonomic ambiguity in di	erent taxa
[5]. Highly polymorphic microsatellite markers have great
potential utility as genetic tags for use in aquaculture and

sheries biology. �ey are powerful DNA markers for quan-
tifying genetic variations within and between populations
of species [25]. �ey may prove particularly valuable for
stock discrimination and population genetics due to the high
level of polymorphism comparedwith conventional allozyme
markers [34, 35]. Microsatellite DNAmarkers are among the
most likely to conform to the assumption of neutrality and
have proven to be powerful in di	erentiating geographically
isolated populations and sibling species and subspecies [30].
�e qualities of microsatellites make them very useful as
genetic markers for studies of population di	erentiation and
stock identi
cation [35, 36], in kinship and parentage exclu-
sion [37, 38] and in genome mapping [39]. Microsatellites
are also being used as genetic markers for identi
cation of
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population structure, genome mapping, pedigree analysis,
and to resolve taxonomic ambiguities in many other animals
besides 
shes [40–49]. �e broad areas of applications of
microsatellite markers are depicted in Figure 3.

Various authors have reported microsatellite polymor-
phisms and sequences in some marine and freshwater 
sh
species for population genetic analysis [25, 34, 50–55].
�e development of polymorphic microsatellite markers
to determine the population structure of the Patagonian
tooth
sh, Dissostichus eleginoides, has been reported by
[56, 57]. Similarly, Appleyard et al. [58] examined seven
microsatellite loci in the same species of Patagonian tooth
sh
from three locations in the Southern Ocean. Microsatellite
polymorphisms have been used to provide evidence that
the cod in the northwestern Atlantic belongs to genetically
distinguishable populations and that genetic di	erences exist
between the northwestern and southeastern cod populations
[59]. Recently, Larsen et al. [60] showed di	erences in salinity
tolerance and its gene expression in two populations of
Atlantic cod (Gadus morhua). Drinan et al. [61] reported
20 microsatellites for determining the patterns of population
genetic variation in westlope cutthroat trout, Oncorhynchus
clarkia lewisii in 25 populations from four rivers. Davies et al.
[62] identi
ed 12 microsatellite loci in tuna species of genus
�unnus and investigated genetic polymorphism at these loci
in North Atlantic and Mediterranean Sea populations. In a
cichlid, Eretmodus cyanostictus, Taylor et al. [63] determined
four polymorphic microsatellite loci for studying nine popu-
lations in Lake Tanganyika. In another study, recently, 7 poly-
morphic microsatellite markers were identi
ed in snakehead
murrel,Channa striata, fromMalaysia [64]. Similarly, several
authors reported population genetic structure of di	erent
species of cat
sh; few of them are in the farmed cat
sh from
Tamaulipas, Mexico [65]; in neotropical cat
sh [66]; in Pseu-
doplatystoma reticulatum [67]. O’Connell et al. [24] reported
the investigation of 
ve highly variable microsatellite loci
for population structure in Paci
c herring, Clupea pallasi,
collected from6 sites in Kodiak Island. Similarly,many others
have reported studies of polymorphic microsatellite loci to
evaluate population structure of di	erent 
sh species. �us
microsatellite markers have wide range of applications in
population genetics and 
sheries management.

Salzburger et al. [68] reported a case of introgressive
hybridization between an ancient and genetically distinct
cichlid species in Lake Tanganyika that led to the recognition
of a new species. �is is evidenced by the analysis of �anking
regions of the single copy nuclear DNA locus (TmoM27) and
by studying the parental lineages in six other microsatellite
loci. Leclerc et al. [69] had cloned and characterized a highly
repetitive DNA sequence from the genome of the North
American Morone saxatilis that was used to distinguish the
four other species. Ne	 et al. [70] described 10 microsatellite
loci from blue gill (Lepomis macrochirus) and discussed
their evolution within the family Centrarchidae. Kellogg
et al.[71] applied microsatellite-
ngerprinting approach to
address questions about paternity in cichlids. �e usefulness
of microsatellite markers for genetic mapping was deter-
mined inOreochromis niloticus by Lee and Kocher [72], while
Brooker et al. [73] reported the di	erence in organization

of microsatellite between mammals and cold water teleost

shes. DeWoody and Avise [29] reported microsatellite
variation in marine, fresh water, and anadromous 
shes
compared with other animals. Microsatellite DNA variation
was used for population structure in Oncorhynchus kisutch
[74], Atlantic salmon [75], and in Brown Trout, Salmo trutta
[76]. Microsatellite markers have been studied in a few
cyprinids also. Naish and Skibinski [77] studied tetranu-
cleotide (TCTA) repeat sequences in Indianmajor carp,Catla
catla, as potential DNA markers for stock identi
cation.
Gopalakrishnan et al. [51] and Das et al. [78] carried out
characterization of dinucleotide microsatellite repeats in
Labeo rohita.

5. Development of Microsatellite Markers by
Cross-Species Amplification

Although microsatellite DNA analysis via PCR is an ideal
technique for answering many population genetic questions,
the development of species-speci
c primers for PCR ampli-

cation of alleles can be expensive and time-consuming,
as it involves construction of genomic libraries, screen-
ing of clones with microsatellite sequences, and designing
microsatellite primers. However, there are reports which
point to the fact that �anking sequences of some microsatel-
lite loci are conserved among related taxa so that primers
developed for one species can be used to amplify homologous
loci in related species. �e method of microsatellite markers
development by cross-species ampli
cation is shown in
Figure 2. �e conservation of �anking regions of microsatel-
lite sequences among closely related species has been
reported by a number of groups [79–82]. Such an approach
can circumvent extensive preliminary work necessary to
develop PCR primers for individual loci that continues to
stand in theway of quick andwidespread application of single
locus microsatellite markers. �us, by using heterologous
PCR primers the cost of developing similarmarkers in related
species can be signi
cantly reduced.

Schlotterer et al. [83] found that homologous loci can be
ampli
ed from a diverse range of toothed (Odontoceti) and
baleen (Mysticeti) whales with estimated divergence times of
35–40 million years. Moore et al. [84] found that microsatel-
lites �anking regions were conserved across species as diverse
as primates, artiodactyls, and rodents. Microsatellite primers
developed from foxtail millet (Setaria italica L) were used in
studies of other millets and nonmillets species [85]. Similarly,
primers developed for passerine birds were used in studies of
a variety a of other bird species [86].

A number of attempts have beenmade to study the cross-
species ampli
cation of microsatellite loci in 
shes. Recently,
Gupta et al. [87] developed polymorphicmicrosatellitemark-
ers in featherback, Notopterus notopterus, by cross-species
ampli
cation of primers developed in 3 
sh species of families
notopteridae and osteoglossidae. Polymerase chain reaction
(PCR) microsatellite multiplex assays were established for
genetic studies of the population structure, hybridization and
conservation status of European white
sh, Coregonus lavare-
tus L., and cross-species ampli
cation and rearrangement
of the same loci analyzed in C. albula L [88]. Dubut et al.
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Figure 4: Cross-species ampli
cation of microsatellite markers for
the population genetic structure from three river systems inHoraba-
grus brachysoma (yellow cat
sh) from the primer (Cga06) developed
in Clarias gariepinus (African cat
sh). �e data of this 
gure has
been published by Abdul Muneer et al. [25]. M molecular weight
marker (pBR322 with MspI cut).

[89] have developed 
ve multiplex PCR sets optimized to
analyze 41 cyprinid-speci
c polymorphic microsatellite loci
(including 10 novel loci isolated from Chondrostoma nasus,
Chondrostoma toxostoma, and Leuciscus leuciscus) for the
individuals from other di	erent European cyprinid species.

We have developed several microsatellite markers in
di	erent fresh water species by cross-species ampli
cation.
In Horabagrus brachysoma, an endangered yellow cat
sh,
we have developed eight microsatellite markers from other
cat
sh of order Siluriformes [25, 52]. Figure 4 shows the
cross-species ampli
cation microsatellites in Horabagrus
brachysoma from the primer developed in African cat
sh,
Clarias gariepinus [25]. In addition, we developedmicrosatel-
lite markers for di	erentiating two species of endangered
cat
sh,Horabagrus, by using the primers of Siluriformes and
Osteoglossiformes [79]. May et al. [90] reported microsatel-
lite genetic variation through cross-species ampli
cation in
sturgeons Acipenser and Scaphirhynchus. Takagi et al. [91]
reported that microsatellite primers isolated from one tuna
might be used to amplify microsatellite loci in other tuna
species especially those of the genus�unnus. Microsatellites
from rainbow trout Oncorhynchus mykiss have been used for
the genetic study of salmonids [75, 92]. Heterologous primers
have been used to characterize bull trout by using three sets of
primers from sockeye salmon, rainbow trout, and brook trout
[93], for several Salvelinus species using primers of Salvelinus
fontinalis, for Brook charr [94] and Oreochromis shiranus
and O. shiranus chilwae by using primers of Nile tilapia
[95].�e cross-species ampli
cation of 32Oreochromis niloti-
cus microsatellite markers from 15 di	erent African cichlid
species was successfully tested and analyzed [96]. �ere are
some reports in which the �anking sequences are conserved
between families of the same order. Primers of stickleback
and cod have been used in Merlangius merlangus (Gadidae)
[97], that of rainbow trout (Family: Salmonidae) in white
sh,
Coregonus nasus [98], and primers of gold
sh, Carassius
auratus, in nine species of cyprinids [99]. Yue et al. [100]
developed 15 polymorphicmicrosatellite loci in silver crucian
carp Carassius auratus gibelio and reported eleven out of 15

primer pairs cross-ampli
ed in the genome of common carp
(Cyprinus carpio). Zardoya et al. [30] through a classical study
demonstrated that microsatellite �anking regions (MFRs)
contain reliable phylogenic information and they were able
to recover with considerable con
dence the phylogenetic
relationship within family Cichlidae and other families of
the suborder Labroidei from di	erent parts of the world.
Mohindra et al. [32] have carried out cross-species ampli
ca-
tion of C. catla G1 primer in Catla catla from Gobind Sagar,
Labeo dero, L. dyocheilus, L. rohita, and Morulius calbasu,
and sequenced the loci in these species. Das et al. [78] also
carried out characterization of dinucleotide microsatellite
repeats in Labeo rohita. Recently, we successfully developed
polymorphic microsatellite markers for Gonoproktopterus
curmuca through cross-species ampli
cation of primers from
other cyprinid 
shes [101, 102]. �e development of 59
polymorphic microsatellite markers in silver crucian carp
(Carassius auratus gibelio) and its successful cross-species
ampli
cation have been reported in crucian carp (Carassius
auratus) [103].

Microsatellites have become the geneticmarkers of choice
for studies of population di	erentiation and parentage deter-
mination. However, several microsatellite loci are required
for such studies in order to obtain an appropriate amount of
genetic polymorphism [9, 104]. Fortunately, genotypic data
collection has become e�cient through the development of
automated DNA sizing technology using �uorescent-labelled
DNA and coampli
cation of multiple loci in a single PCR
[24, 105].

6. Importance of Microsatellite Markers in
Conservation and Fisheries Management

�e microsatellite markers study generate important infor-
mation on the genetic variation and stock structure of 
sh
species and it is a signi
cant step towards realizing the goal
of management of 
shery and conservation of the species
in their natural populations. �e di	erentiation of a species
into genetically distinct populations is a fundamental part
of the process of evolution and it depends upon physical
and biological forces such as migration, selection, genetic
dri�, and geographic barriers. Endangered species will have
small and/or declining populations, so inbreeding and loss of
genetic diversity are unavoidable in them. Since inbreeding
reduces reproduction and survival rates and loss of genetic
diversity reduces the ability of populations to evolve to cope
with environmental changes, Frankham [106] suggested that
these genetic factors would contribute to extinction risk
especially in small populations of threatened species. With
the loss of a population/genetic stock, a species also loses its
members adapted and evolved to survive in particular habitat.
Hence, conservation and 
shery management strategy need
to be stock-speci
c.

In population genetic analysis, low genetic variabil-
ity (heterozygote de
ciency and deviation from Hardy-
Weinberg equilibrium) coupled with inbreeding (positive
value of �IS) show consequence of genetic bottleneck, result-
ing from overexploitation and habitat [107]. As these factors
would lead to a reduction in reproductive 
tness [108], e	orts
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to increase the genetic diversity of the 
sh species should be
given high priority for conservation of the species, based on
genetic principles as mentioned below.

(i) �e e	ective population size (Ne) should be main-
tained as large as possible to maximize the contribu-
tion of a large number of adults for reproduction so
as to maintain natural genetic variability.

(ii) �e causative factors that reduce the e	ective popula-
tion size such as overexploitation should be controlled
at the earliest.

(iii) No arti
cial gene �ow between distinct stocks should
be created by means of haphazard stocking and
rehabilitation programs.

(iv) �e rehabilitation strategy should also include means
(screening the population, using genetic markers) to
monitor impact of such program.

To attain these objectives, it is essential (i) to protect the
populations and habitat against anthropogenic stress and (ii)
enhance the population through propagation assisted stock-
speci
c rehabilitation programs:

(i) regulation of human activities either self-imposed
(public understanding and awareness through educa-
tion) or state imposed (formulation and implementa-
tion of suitable laws),

(ii) imposing ban on 
shing practices particularly during
breeding seasons,

(iii) stock assessment of di	erent rivers and imposing
quota systems for maintaining the population size,

(iv) banning the sale of undersized specimens,

(v) restricting the 
shing gear for not catching small
and immature 
sh species and preventing the use of
explosives and chemicals for 
shing,

(vi) maintaining minimum water level in the rivers (in
case there are dams and weirs) and declaring certain
stretches of rivers as sanctuaries.

�e natural populations of the endangered species can
be enhanced by “supportive breeding.” In this program, a
fraction of the wild parents are bred in captivity and the
progeny are released in natural waters.

(1) Brood stock of 
sh species collected from di	erent
rivers must be tagged and maintained in separate
ponds in the holding facility.

(2) E	ective breeding population size and sex ratio
should not be restricted. To achieve this, collection of
di	erent size/year classes at di	erent time intervals is
to be preferred over the same size/year class.

(3) Use of cryopreserved milt, collected from di	erent
males and pooled, would be useful for increasing the
e	ective population size and recovery of endangered
populations of 
sh species. In comparison to the
captive breeding program, the gene banking through
sperm cryopreservation is relatively cheaper, easy to

maintain, and less prone to risk due to system failure
ormortality due to diseases.�erefore, it should serve
as a useful adjunct to the captive breeding program.

(4) Di	erent genetic stocks should be bred separately
and ranched in the same rivers from where they are
collected.

(5) Stretches of rivers harbouring resident population or
that can serve as a potential sanctuary,may be selected
for ranching of 
sh populations.

(6) Assessing the impact of ranching throughmonitoring
the parameters like catch per unit e	ort/area through
experimental 
shing should be done.

(7) Changes in genetic variation, that is, allele frequen-
cies, especially the occurrence of rare alleles over a
course of time [19, 24] should be done. It will be useful
to keep base genetic pro
le of representative samples
of 
sh stocked in the holding facility and those used
for ranching. Microsatellite markers and the baseline
data generated in this study can be helpful in further
assessing the impact of genetic variation.

7. Conclusion

Microsatellites are very powerful genetic markers for identi-
fying 
sh stock structure and pedigree analysis and to study
the genetic variation of closely related species. Microsatellite
markers analysis provides essential information for formulat-
ingmeaningful conservation strategies for 
sheries and aqua-
culture management. �is along with the other technologies
like captive breeding and sperm cryopreservation can be
integrated into a package for conserving genetic diversity and
rehabilitation of the natural populations of 
sh species.
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