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Abstract The main goal of this study was to investigate the
application of the weights-of-evidence and certainty factor
approaches for producing landslide susceptibility maps of a
landslide-prone area (Haraz) in Iran. For this purpose, the
input layers of the landslide conditioning factors were
prepared in the first stage. The landslide conditioning
factors considered for the study area were slope gradient,
slope aspect, altitude, lithology, land use, distance from
streams, distance from roads, distance from faults, topo-
graphic wetness index, stream power index, stream transport
index and plan curvature. For validation of the produced
landslide susceptibility maps, the results of the analyses
were compared with the field-verified landslide locations.
Additionally, the receiver operating characteristic curves for
all the landslide susceptibility models were constructed and

the areas under the curves were calculated. The landslide
locations were used to validate results of the landslide
susceptibility maps. The verification results showed that
the weights-of-evidence model (79.87%) performed better
than certainty factor (72.02%) model with a standard error
of 0.0663 and 0.0756, respectively. According to the results of
the area under curve evaluation, the map produced by
weights-of-evidence exhibits satisfactory properties.

Keywords Landslide susceptibility .Weights of evidence .

Certainty factor model . GIS . Remote sensing . Iran

Introduction

Landslides are one of the most catastrophic natural hazards
occurring in many areas of the world. Globally, they cause
hundreds of billions of dollars in damage and hundreds of
thousands of deaths and injuries each year (Aleotti and
Chowdhury 1999). Over the past 25 years, many govern-
ments and research institutions throughout the world have
invested considerable resources in assessing landslide
hazards and in attempting to produce maps portraying
their spatial distribution (Guzzetti et al. 1999). In spite of
improvements in recognition, mitigative measures, and
prediction and warning systems, landslide damage is still
increasing worldwide (Schuster 1996). Losses resulting
from mass movements in Iran until the end of September
2007 have been estimated at 126,893 billion Iranian
Rials (about USD 12,700 million) using the 4,900 land-
slide database.

Similar approaches have been proposed by several
investigators, including weights-of-evidence methods
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(Bonham-Carter 1991; Lee et al. 2002a; Wu et al. 2004;
Gokceoglu et al. 2005; Neuhäuser and Terhorst 2007;
Mathew et al. 2007; Bui et al. 2008; Zhu and Wang
2009; Regmi et al. 2010; Oh and Lee 2011), weighting
factors (Çevik and Topal 2003), weighted linear combinations
of instability factors (Ayalew et al. 2004), landside nominal
risk factors (Gupta and Joshi 1990; Saha et al. 2005),
probabilistic models (Chung and Fabbri 2003, 2005; Lee
2004; Lee and Pradhan 2006, 2007; Akgun et al. 2011;
Pradhan et al. 2012), certainty factors (Binaghi et al.
1998), information values (Lin and Tung 2004; Saha et
al. 2005), modified Bayesian estimation (Chung and Fabbri
1998) and data mining (Biswajeet and Saied 2010; Pradhan et
al. 2009, 2010a, b, c, d, e, 2011 Pradhan 2010a, b, c, 2011a, b
Pradhan and Lee 2010a, b; Pradhan and Buchroithner 2010;
Pradhan and Youssef 2010; Sezer et al. 2011; Oh and Pradhan
2011; Bui et al. 2011; Akgun et al. 2012). Understanding the
differences between the proposed approaches is not always

simple. The main differences are the rigour of the ap-
proach (Chung and Fabbri 1998) and the method used to
estimate the prior probability of landslide occurrence. The
aim of the present study was to produce landslide susceptibil-
ity maps of the Haraz watershed in Iran by employing a
weights-of-evidence and certainty factor models.

Study area

The study area is located in the northern part of Iran, which
is one of the most landslide-prone areas in the country
(Pourghasemi 2008). The watershed area lies between
longitudes 52° 06′ 02″ E and 52° 18′ 13″ E and between
latitudes 35° 49′ 05″ N and 35° 57′ 39″ N. It is mountainous
and is located in the Alborz Folded geological zone (Fig. 1).
It covers two adjacent 1:50,000 topographic sheets of the
Army Geographic Institute of Iran and has an extent of

Fig. 1 Location map of the study area in Mazandaran province, Iran
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about 114.5 km2. The main river in the study area is the
Haraz River. The temperature varies between 25°C in
winter and 36.5°C in summer. The mean annual rainfall
is around 500 mm, most of which falls between November
and January. The altitudes in the study area vary between
1,200 and 3,290 m. The slope angles of the area range
from 0° to as much as 70°. The majority of the area
(64.82%) is covered by moderate pasture. The other parts
of the study area are utilised for orchard and agricultural
(13.33%), residential (0.3%) and best pasture purposes
(21.55%).

Weights-of-evidence model

In recent years, many investigators (Bonham-Carter 1991;
Mathew et al. 2007; Neuhäuser and Terhorst 2007; Bui et al.
2008; Regmi et al. 2010; Pradhan et al. 2010c) have
experimented with methods that exploit, more or less
rigorously, Bayes’ conditional probability theorem. In
this framework, conditional probability is a measure of
the chance of a hypothesis being true or false given a
piece of evidence (Gorsevski et al. 2003). For example,
Bayesian probabilistic modelling is supplied for solving
problems of decision-making under uncertainties. This
method is suitable for landslide susceptibility mapping
because its uncertainty is connected with landslide events
and their associations with the complex landscape
(Chung and Fabbri 1998; Gorsevski et al. 2003). Bayes’
theorem can be written as (Guzzetti 2005):

P AjBð Þ ¼ P BjAð Þ � PðAÞ
PðBÞ ð1Þ

So, the probability of phenomena B occurring given that
phenomena A has occurred, P(B|A), multiplied by the prob-
ability of phenomena A occurring, P(A), and divided by the
probability of phenomena B occurring, P(B).

In Eq. 1, P(A) is the “prior probability” (i.e. a reasonable
hypothesis on the probability of phenomena A), P(B) is the
“posterior probability” (i.e. the probability of B under all
possible outcomes for A), and P(A|B) is the “probability”
(i.e. the conditional probability of A given B). In a best
Bayesian analysis, the prior probability has a minor effect
on the posterior probability, as most of the information
comes from the likelihood. When applied to landslide
susceptibility investigation, Bayes’ theorem is used to
select the probability that an area will improve slope
failures given the local environmental circumstances, as
indicated in Eq. 2 (Chung and Fabbri 1998):

P ALj V0ðrÞf ;V1ðrÞ . . . ;VmðrÞgð Þ

¼ P V0ðrÞf ;V1ðrÞ . . . ;VmðrÞgjALð Þ � P ALð Þ
P V0ðrÞ;V1ðrÞ; . . . ;VmðrÞð Þ ð2Þ

where, AL denotes area of landslide in a mapping unit r
for which V0ðrÞf ;V1ðrÞ . . . ;VmðrÞg is independent of
environmental conditions. Additionally, the mixture of
environmental conditions is special to the mapping unit
r. Equation 2 showed that the probability that a mapping

Fig. 2 The landslide inventory
map of the study area

Arab J Geosci (2013) 6:2351–2365 2353



unit r in the study area will be influenced by a landslide
which is equivalent to the probability of a landslide in
the study area, P(AL), multiplied by the probability of a
particular (unique) mixture of environmental factors given the
presence of a landslide, divided by the probability of the same
mixture of environmental factors in the whole study area. A
simple strategy is to acquire the three probabilities in the right-

hand side of Eq. 2 in a geographic information system (GIS)
from the related spatial densities. These probabilities can be
obtained as follows: (1) by dividing the entire AL in the study
area by the area of the mapping unit, for P(AL); (2) by dividing
the whole area of the unique condition unit by the extent of the
study area for P V0ðrÞ;V1ðrÞ; . . . ;VmðrÞð Þ; and (3) by consid-
ering the percentage of the landslide area in the study area

Fig. 3 Lithology map of the
study area

Table 1 Description of
geological units of
the study area

No. Symbol Formation Lithology Geological age

A Q
sc

– Scree Quaternary

Qt
2 – Young terraces Quaternary

Qt
1 – Old terraces Quaternary

B Q
ag

– Agglomerate Quaternary

Q
ta – Trachy andesitic lava flows Quaternary

Q
tu – Ash tuff, lapilli tuff Quaternary

Q
b

– Olivine basalt Quaternary

C K tv
k Karaj Green tuff, basaltic and limestone with gypsum and

conglomerate
Eocene

Egy
k Karaj Gypsum Eocene

D PEz Ziarat Limestone bearing nummulites and alveolina, conglomerate Paleocene

PEf Fajan Conglomerate, agglomerate, some marl and limestone Paleocene

E K2 – Biogenic and cherty limestone Late
Cretaceous

Kt Tizkuh Orbitoline bearing limestone Late
Cretaceous

J1 Lar Massive to well bedded, cherty limestone Late Jurassic

Jd Dalichai Well bedded, partly oolitic-detritic limestone, marly limestone Late Jurassic

JS Shemshak Dark shale and sandstone with plant remains, coal Late Jurassic

TReL Elika Thin bedded limestone Early Triassic

Pd Dorud Cross-bedded, quartzitic sandstone Early Permian
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characterised by the total area of the unique environmental
setting in Eq. 2, for P V0ðrÞf ;V1ðrÞ . . . ;VmðrÞgjALð Þ.

An advantage of Bayesian probabilistic modelling is the
possibility of incorporating uncertainty into the susceptibil-
ity model and considering expert knowledge explicitly
(Chung and Fabbri 1998).

Certainty factor model

Among the commonly used GIS analysis models for
landslide susceptibility, certainty factor (CF) model has
been widely considered and experimentally investigated
in the literature (Chung and Fabbri 1993; Binaghi et al.
1998; Luzi and Pergalani 1999; Lan et al. 2004;
Kanungo et al. 2011). The CF approach is one of the
possible proposed favourability functions to handle the
problem of combination of different data layers and the
heterogeneity and uncertainty of the input data. The main
difference is the bivariate model with other models of
how to combine the maps. Thus, the maps classifieds and
then weight of each pixel is obtained using Eq. 3:

CF ¼
PPa�PPs

PPa 1�PPsð Þ if PPa � PPs

PPa�PPs
PPs 1�PPað Þ if PPa < PPs

8<
: ð3Þ

where, PPa is the conditional probability of landslide
event occurring in class a and PPs is the prior probability
of total number of landslide events in the study area A.
With the use of the CF model, each class or area is
assigned a value that varies within the interval [−1, 1].
A positive value means a growth in the certainty of the
landslide occurrence, whereas a negative value coincides
with a decrease in the certainty of landslide occurrence.
A value close to 0 means that there is not enough

information about the variable and thus, it is difficult to
give information about the certainty of landslide occurrence.
The CF values are calculated for all condition factors by
overlaying and calculating the landslide frequency as given
then the CF values of all parameters in 12 landslide condi-
tioning factors are determined using Eq. 3. Next, the CF
values of the landslide conditioning factor are pairwise com-
bined using the CF combination rule. A combination of two
CF values, X and Y from two different layers of information is
a CF value Z obtained as follows (Chung and Fabbri 1993;
Binaghi et al. 1998; Luzi and Pergalani 1999):

Z ¼
X þ Y � XY X ; Y � 0

XþY
1�min Xj j; Yj jð Þ X ; Y opposite sign
X þ Y þ XY X ; Y < 0

8<
: ð4Þ

The pairwise combination by using the integration rule of
Eq. 4 is performed repeatedly until all the CF layers are
combined to obtain the landslide susceptibility.

Thematic data preparation

Various thematic data layers representing landslide condition-
ing factors, such as slope gradient, slope aspect, altitude, lithol-
ogy, land use, distance to faults, distance to streams, distance to
roads, topographic wetness index (TWI), stream power index
(SPI), stream transport index (STI) and plan curvature were
prepared. These factors fall under the category of preparatory
factors, which make the area susceptible to movement without
actually initiating a landslide; thus, these factors are considered
to be responsible for the occurrence of landslides in the regions
for which pertinent data can be collected from available resour-
ces and from the field. The triggering factors, such as rainfall
and earthquake, set the movement off by shifting the slope
from a marginally stable to an actively unstable area. Further-
more, the attributes of the ground in terms of landslide suscep-
tibility were considered in the present study. Since, past data on
triggering factors such as rainfall and earthquakes in relation to
landslide occurrences were not available. Consequently, these
factors were not considered in this study.

Landslide inventory map

The mapping of existing landslides is essential for
studying the relationship between the landslide distribu-
tion and the conditioning factors. To produce a detailed
and reliable landslide inventory map, extensive field
surveys and observations were performed in the study
area. A total of 78 landslides were identified and
mapped in the study area by evaluating aerial photos
in 1:25,000 scale and by field survey (Fig. 2). The
modes of failure for the landslides identified in the

Fig. 4 Land use map of the study area
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study area were recognised as rotational slides according to
the landslide classification system proposed by Varnes (1978).
Of the 78 landslides identified randomly, 55 (70%)

locations were chosen for the landslide susceptibility
maps, while the remaining 23 (30%) cases were used for
the model validation.

Fig. 5 Topographical parameter maps of the study area; a slope gradient, b slope aspect, c altitude, d plan curvature, e topographic wetness index, f
stream power index, g sediment transport capacity index
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Landslide conditioning factors

A geology map of the study area (1:100,000 series, sheet
number 6,461, prepared by Geological Survey of Iran) was
digitised in the ILWIS 3.3 software environment. The study
area is covered by various types of lithological formations,
such as Quaternary, Eocene, Paleocene, late Cretaceous, late
Jurassic, early Triassic and early Permian. The Quaternary
deposits cover about 40% of the study area. The general
geological setting of the area is shown in Fig. 3 and the
lithological properties are summarised in Table 1.

Four different types of land use were described for this
study using a supervised classification and field surveys of
ETM+ (2006) satellite images (Youssef et al. 2009, 2012).
These types of land use were moderate pasture, best pasture,
mixing orchard and agricultural and residential areas
(Fig. 4). Most part of the study area (64.82%) is covered
by moderate pasture. Consequently, best pasture, mixing
orchard and agriculture and residential areas are covered
by 21.55%, 13.33%, and 0.30% of the study area, respec-
tively. A digital elevation model (DEM) was created using
the topographic database. The slope gradient, slope aspect,
plan curvature and three common secondary geomorpho-
metric parameters that are relevant to the landslide analysis

were calculated from the DEM. The sediment transport
capacity index (LS) (Moore et al. 1988), SPI (Moore and
Grayson 1991) and TWI (Moore and Grayson 1991) were
derived from the DEM using the script written by Hengl
et al. (2003), which was executed using the ILWIS 3.3
software (Fig. 5). The distances of the rivers, roads and
faults were also digitised from the 1:50,000 and
1:100,000 topographic maps and the geological maps,
respectively (Fig. 6).

Landslide susceptibility maps and their validation

Due to their hazardous character, many government and
research institutions throughout the world have attempted
to assess landslide susceptibility, hazards, and risks and to
show their spatial pattern over the years. In this research,
both weights-of-evidence and CF models were used for
identifying the areas susceptible to landslides at the Haraz
Mountains of Iran. A total of 78 landslides were mapped
using aerial photographs and subsequent field survey. The
landslide conditioning factors considered included slope
gradient, slope aspect, altitude, lithology, land use, distance
to streams, distance to roads, distance to faults, TWI, SPI,

Fig. 6 a Distances from rivers, b distances from roads, c distances from faults
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STI and plan curvature. Both weights-of-evidence and
certainty factor approaches were applied to analyse the
landslide susceptibility using these 12 landslide condi-
tioning factors.

For each of the conditioning factors, the weights and
contrast were calculated using the weights-of-evidence
method. The magnitude of the contrast, C, was determined
from the difference, W+ and W− that provided a measure of
the spatial association between a set of points and a binary
pattern (Bonham-Carter 1991). C is positive for a positive
spatial association and negative for a negative spatial
association. The studentised value of C, the ratio of C
to standard deviation or C/S(C), serves as a guide to the
significance of the spatial association and acts as a mea-
sure of the relative certainty of the posterior probability
(Bonham-Carter 1991). The weights and contrasts for
each predictor pattern are summarized in Table 2. The
contrast was set to the rating of each factor, as the
contrast is related to the landslide probability. There were
1,144,281 total pixels in the study area. The ratio (W+) is
the percentage of landslides/percentage of the domain and
C is the contrast. S2(W+) and S2(W−) are the variances of W+

andW−. S(C) is the standard deviation of the contrast, and C/S
(C) is the studentised value of the contrast (Table 2). The
standard deviation of C is calculated by

SðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 Wþð Þ þ S2 W�ð Þ

p
ð5Þ

The relationships between the landslides and the
landslide-conditioning factors, contrast and studentised C
are presented in Table 2. The pixel values obtained are then
classified based on natural breaks in Arc GIS 9.3 software
into low, moderate, high and very high susceptibility groups
to determine the class intervals in the landslide susceptibility
map (Fig. 7). Similarly, landslide susceptibility index was
calculated using certainty factor model. The landslide
distribution for each class, expressed by the number of
occurring pixels, was used to calculate CF values. The
results of spatial relationship between landslide and con-
ditioning factors using certainty factor model is shown in
Table 3. In Table 3, slope angle classes showed that 0–5°
and 16–30° classes have higher CF weight. As the slope
angle increases, the shear stress in the soil or other
unconsolidated material generally increases. Gentle slopes
are expected to have a low frequency of landslides because
of the generally lower shear stresses are associated with low
gradients. Steep natural slopes resulting from outcropping
bedrock, however, may not be susceptible to shallow land-
slides. In the case of slope aspect, most of the landslides
occurred in south-east and west facing. This condition may
be consequence of humidity in the study area. This may be
due to Haraz watershed is affected by pluvial air mass from

west and north to north-west. In the case of altitude, both
1,500–1,800 and 1,800–2,100 m classes have 34.54% and
40% of landslide probability and CF values of 0.603 and
0.338, respectively. Results showed that the CF values de-
creased with the altitude addition in the study area (Table 3).
Investigation of lithological conditions showed that A group
consisting of scree, young terraces and old terraces has higher
value of CF (0.263). Similarly, group D (PEz and PEf) has
lower value of CF (−1). In the case of land use, higher CF
value were for residential area (0.834) and mixing orchard and
agriculture area (0.633) types of land use. This result referred
to anthropogenic (human caused) interferences such as land
use change. In the case distance to faults, distances between 0
and 100, 100–200 and 200–300 m have weight (CF) of 0.28,
0.482 and 0.654, respectively. This means that the landslide
probability is higher in these intervals. Assessment of distance
from streams and roads showed that distance of 0–100 m has
high correlation with landslide occurrence. From this obser-
vation, we can say that the general trend of the CF value
increases with the distance from the streams and roads. So,
road construction and bank erosion are most important factors
in slope imbalance causing frequent occurrence of landslides.
Relation between TWI, and SPI and landslide probability
showed that 0–4 and 0–20 classes have highest value of CF,
respectively. Similarly, for sediment transport index, class
between 40 and 50 has most CF value. The curvature values
represent the morphology of the topography. A positive cur-
vature is an upwardly convex cell, and a negative curvature is
upwardly concave cell. Concave areas generally have a higher
CF value than convex areas because slopes with a negative
curvature retain more water and for a longer period following
heavy rain than slopes with a positive curvature. The curva-
ture area, in turn, will increase the moisture content of the soil,

Fig. 7 Landslide susceptibility map produced by weights-of-evidence
model
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Table 3 Spatial relationship between each landslide conditioning factors and landslide by certainty factor model

Factor Class No. of pixels
in domain

Percentage
of domain

No. of
landslide

Percentage
of landslide

CF Value

Slope gradient (in degree) 0–5 13,851 1.21 1 1.82 0.334

6–15 64,268 5.62 2 3.64 −0.353

16–30 155,602 13.59 10 18.18 0.252

31–50 343,634 30.03 19 34.55 0.131

51–70 262,117 22.91 10 18.18 −0.206

>70 304,809 26.64 13 23.64 −0.113

Slope aspect North 149,997 13.12 5 9.09 −0.306

Northeast 195,301 17.07 9 16.36 −0.041

East 129,167 11.29 2 3.64 −0.678

Southeast 171,144 14.95 16 29.09 0.486

South 135,677 11.85 3 5.46 −0.54

Southwest 131,718 11.51 9 16.36 0.297

West 79,979 6.99 7 12.73 0.451

Northwest 151,298 13.22 4 7.27 −0.45

Altitude (m) 1,200–1,500 28,463 2.49 0 0 −1

1,500–1,800 157,018 13.72 19 34.54 0.603

1,800–2,100 303,058 26.48 22 40 0.338

2,100–2,400 305,844 26.73 7 12.73 −0.524

2,400–2,700 208,321 18.20 6 10.91 −0.401

2,700–3,000 125,384 10.96 1 1.82 −0.834

>3,000 16,193 1.42 0 0 −1

Lithology A 459,914 40.19 30 54.55 0.263

B 153,621 13.43 3 5.45 −0.594

C 147,386 12.88 2 3.64 −0.718

D 19,655 1.72 0 0 −1

E 363,705 31.78 20 36.36 0.126

Land use Best pasture 246,601 21.55 12 21.82 0.012

Mix orchard and agriculture 152,518 13.33 20 36.36 0.633

Residential 3,450 0.30 1 1.82 0.834

Moderate pasture 741,712 64.82 22 40 −0.383

Distance to faults (m) Buffer (100 m) 44,942 3.93 3 5.45 0.28

Buffer (200 m) 43,132 3.77 4 7.27 0.482

Buffer (300 m) 43,144 3.77 6 10.91 0.654

Buffer (400 m) 44,914 3.92 2 3.64 −0.074

Buffer (>400 m) 968,149 84.61 40 72.73 −0.14

Distance to streams (m) Buffer (100 m) 263,584 23.03 33 60 0.616

Buffer (200 m) 205,759 17.98 5 9.09 −0.494

Buffer (300 m) 159,801 13.97 7 12.73 −0.089

Buffer (400 m) 131,420 11.49 3 5.45 −0.525

Buffer (>400 m) 383,717 33.53 7 12.73 −0.62

Distance to roads (m) Buffer (100 m) 136,228 11.90 23 41.82 0.715

Buffer (200 m) 110,283 9.64 4 7.27 −0.245

Buffer (300 m) 93,440 8.17 5 9.10 0.102

Buffer (400 m) 83,876 7.33 3 5.45 −0.256

Buffer (500 m) 74,626 6.52 3 5.45 −0.164

Buffer (>500 m) 645,828 56.44 17 30.91 −0.452

CTI 0–4 144,529 12.63 50 90.91 0.861

4–8 983,621 85.96 4 7.27 −0.915
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which will remain saturated, increase erosion and decrease
soil stability (Fig. 8).

Landslide susceptibility maps without validation are of
little meaningful (Chung and Fabbri 1998). In the literature,
three methods of verification analyses have been presented.
In the first method, a map produced by GIS is compared to
another map prepared by experts using direct observations
of the studied area. In the second method, the map obtained
is compared with another parameter map that supports
the geomorphic process mapped (Lee 2004). In the third
method, the GIS-based map is matched with a part of the

data set used to produce the GIS-based map. This ap-
proach to landslide susceptibility studies has been used
by several authors (Remondo et al. 2003; Lee 2005;
Ayalew and Yamagishi 2005; Akgun and Bulut 2007;
Akgun et al. 2008; Akgun and Turk 2010). In this study,
the landslide locations which were not used during the
model building process were used to verify the landslide
susceptibility maps.

The receiver operating characteristics (ROC) curve is
a useful method for representing the quality of determin-
istic and probabilistic detection and forecasting systems
(Swets 1988). The ROC curve is a graphical representa-
tion of the trade off between the false-negative and false-
positive rates for every possible cutoff value (Table 4).
By tradition, the plot shows the false-positive rate (1
specificity) on the x-axis (Eq. 6) and the true-positive
rate (the sensitivity or 1—the false-negative rate) on the
y-axis (Eq. 7).

X ¼ 1� specifity ¼ 1� TN

TNþ FP

� �
ð6Þ

Y ¼ sensivity ¼ TP

TPþ FN

� �
ð7Þ

The area under the ROC curve (area under curve (AUC))
characterises the quality of a forecast system by describing
the system’s ability to anticipate the correct occurrence or
non-occurrence of pre-defined ‘events’. The best method

Table 3 (continued)

Factor Class No. of pixels
in domain

Percentage
of domain

No. of
landslide

Percentage
of landslide

CF Value

8–12 16,077 1.40 1 1.82 0.227

>12 54 0.005 0 0 −1

SPI 0–20 266,962 23.33 15 27.27 0.145

20–40 267,926 23.42 12 21.82 −0.068

40–60 191,325 16.72 8 14.55 −0.13

60–80 130,680 11.42 6 10.91 −0.045

80–100 87,780 7.67 4 7.27 −0.052

>100 199,608 17.44 10 18.18 0.041

STI 0–10 271,966 23.77 16 29.09 0.183

10–20 362,255 31.66 17 30.91 −0.024

20–30 267,619 23.39 12 21.82 −0.067

30–40 139,582 12.20 5 9.09 −0.255

40–50 58,732 5.13 4 7.27 0.294

>50 44,127 3.85 1 1.82 −0.529

Plan curvature Concave 553,227 48.35 21 38.18 −0.21

Convex 591,054 51.65 34 61.82 0.164

Fig. 8 Landslide susceptibility map produced by certainly factor
model
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has a curve with the largest AUC; the AUC varies from 0.5
to 1.0. If the model does not predict the occurrence of the
landslide any better than chance, the AUC would equal 0.5.
An ROC curve of 1 represents perfect prediction. The quan-
titative–qualitative relationship between AUC and pre-
diction accuracy can be classified as follows: 0.9–1,
excellent; 0.8–0.9, very good; 0.7–0.8, good; 0.6–0.7,
average; and 0.5–0.6, poor. The ROC curve for the
weights-of-evidence and certainty factor models were
produced based on the test data set, which was random-
ly collected from landslide inventory data (Yesilnacar
2005). The results of the ROC curve test are illustrated
in Fig. 9. These curves indicate that, weights-of-
evidence model (Fig. 9a) has relatively higher prediction
performance than the certainty factor model. ROC plot
assessment results showed that in the susceptibility map
using weights-of-evidence model, the AUC was 0.7987
and the prediction accuracy was 79.87%. In the suscep-
tibility map using CF model, the AUC was 0.7202 and
the prediction accuracy was 72.02% (Fig. 9b). Accord-
ing to the results of the AUC evaluation, the map
produced by weights-of-evidence exhibited satisfactory
result for landslide susceptibility mapping.

Conclusions

In this study, two statistical models such as weight-of-
evidence and certainty factor models were used for landslide
susceptibility mapping and their performances were com-
pared. In both these models, the data acquisition and analysis
were relatively easy and not very time consuming. The mod-
elling was applied to the Haraz catchments in Iran by consid-
ering 12 landslide conditioning factors. In the topographic
database, the factors were slope gradient, slope aspect, alti-
tude, plan curvature, distance from rivers, distance from roads,
TWI, SPI and STI. The lithology and distance from faults was
derived from the geological database. The land-use informa-
tion was extracted from Landsat ETM+ satellite imagery. An
extensive landslide inventory map was produced. For this
purpose, a landslide inventory database that is used to assess
the landslide susceptibility of the study area, with a total of 78
landslides, was mapped in the study area. The landslide data
was randomly spilt into training and testing dataset. Of the 78

landslides identified, randomly 55 (70%) locations were cho-
sen for the landslide susceptibility maps, while the remaining
23 (30%) cases were used for the model validation. The ROC
curve for the block entry weights-of-evidence was produced
based on the test dataset, which was randomly collected from
the landslide inventory map. The validation results showed
that the weights-of-evidence model has slightly higher predi-
cation accuracy, i.e. 7.85% (79.87–72.02%), which is better
than the CF model. Here, the authors can conclude that the
results of the weights-of-evidence model have shown the best
prediction accuracy in landslide susceptibility mapping in the
study area. Prepared landslide susceptibility maps could be the
basis for decisions making. The information provided by these
maps could help citizens, planners and engineers to reduce
losses caused by existing and future landslides by means of
prevention, mitigation and avoidance.

Fig. 9 ROC curve and area under the curve a for the weights-of-
evidence model, b certainty factor model

Table 4 Parameters for the calculation of ROC curve (modified from
Swets (1988))

Landslide
bodies

Landslide
free areas

Landslide occurrence based
on calculated function

True positive (TP) False positive (FP)

Safe areas based on
calculated function

False negative (FN) True negative (TN)
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