
Vol.:(0123456789)1 3

Data Science and Engineering (2018) 3:379–397 

https://doi.org/10.1007/s41019-018-0074-4

Approximate Query Processing: What is New and Where to Go?

A Survey on Approximate Query Processing

Kaiyu Li1 · Guoliang Li1 

Received: 16 May 2018 / Accepted: 3 September 2018 / Published online: 14 September 2018 

© The Author(s) 2018

Abstract

Online analytical processing (OLAP) is a core functionality in database systems. The performance of OLAP is crucial to 

make online decisions in many applications. However, it is rather costly to support OLAP on large datasets, especially big 

data, and the methods that compute exact answers cannot meet the high-performance requirement. To alleviate this problem, 

approximate query processing (AQP) has been proposed, which aims to find an approximate answer as close as to the exact 

answer efficiently. Existing AQP techniques can be broadly categorized into two categories. (1) Online aggregation: select 

samples online and use these samples to answer OLAP queries. (2) Offline synopses generation: generate synopses offline 

based on a-priori knowledge (e.g., data statistics or query workload) and use these synopses to answer OLAP queries. We 

discuss the research challenges in AQP and summarize existing techniques to address these challenges. In addition, we 

review how to use AQP to support other complex data types, e.g., spatial data and trajectory data, and support other applica-

tions, e.g., data visualization and data cleaning. We also introduce existing AQP systems and summarize their advantages 

and limitations. Lastly, we provide research challenges and opportunities of AQP. We believe that the survey can help the 

partitioners to understand existing AQP techniques and select appropriate methods in their applications.
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1 Introduction

Online analytical processing (OLAP) is a core function-

ality in data management and analytics systems [33]. The 

performance of OLAP is crucial for many applications that 

need to use OLAP to make online decisions, e.g., business 

intelligence. However, it is rather costly to support OLAP 

for large datasets, especially big data. Many systems have 

been proposed to support OLAP on big data, e.g., Pig, Hive, 

Spark SQL, and they usually take tens of minutes or even 

hours to answer an OLAP query. However, many applica-

tions have online requirement of OLAP that want to get 

results in seconds.

To alleviate this problem, approximate query processing 

(AQP) has been proposed, which computes approximate 

answers (with some quality guarantee) very efficiently to 

meet the high-performance requirement. Next, we use sev-

eral examples to show how AQP works. Note that AQP only 

performs well for aggregate functions such as SUM, AVG, 

COUNT, MAX and MIN due to it should use statistical tools 

to give approximate results for numerical types of answers.

AQP Use Cases We consider a database with multiple 

tables in Fig. 1. For simplicity, we only show three tables, 

orders O, customers C, states ST, and the rela-

tions among the tables. We consider the following three use 

cases of AQP.

Case 1 (Online Aggregation) An analyst wants to know the 

average profit of the orders from customer c
1
 within one 

second, and she can pose a query:

������ ���(������) ���� �
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A straightforward method uses random sampling to select 

some samples, e.g., o1, o9, o12 , and uses the samples to 

answer the query. The sample size can be determined based 

on the user-provided time constraint. For example, assume 

the system can process 3 samples in each second, then the 

sample size is 3. Here are two samples o
1
 and o

12
 from 

customer c
1
 , which are used to answer the query. Then the 

system uses closed-form estimation (see Sect. 2.2.2) and 

gives an approximate result with confidence interval, e.g., 

[1530.0 − 360.0, 1530.0 + 360.0] with a confidence of 90% 

based on central-limit theorem (CLT) [6].

Case 2 (Online Interactive Aggregation) An analyst wants 

to continuously monitor the results in an interactive manner, 

and she poses the following interactive query:

Then, the system incrementally selects samples in every sec-

ond and iteratively updates the answer using more examples. 

For example, after the fourth iteration, the system totally gets 

12 samples from o
1
 to o

12
 and the answer is [1392.4 − 329.4, 

1392.4 + 329.4] with a confidence of 90%. If the analyst 

is satisfied with current answer, she can stop the query 

processing.

However, online sampling without pre-computing may 

lead to large errors and the quality is uncontrollable. For 

example, consider a rare group with few tuples (e.g., c
4
 ), 

and the online methods may not get any sample from the 

group. Thus, the online sampling method fails to provide 

a high-quality result. To address this problem, we can use 

offline synopses.

Case 3 (Error-Bounded AQP) Given a database and a query 

workload, AQP aims to generate a synopsis and uses the 

������ ���(������) ���� �

����� ���������� =}c
�
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synopsis to answer an online query. For example, suppose 

the queries w.r.t column CustomerID and Profit are fre-

quently used in a query workload, the system builds syn-

opses offline for the two columns and uses them to answer 

a query. The system uses the error bound and confidence 

to determine the synopsis size, generates the synopsis, and 

utilizes the synopsis to answer the query. For example, given 

a query

The system can use a pre-computed stratified sampling 

method [7] (i.e., selecting more samples from big groups 

and enough samples from rare groups) to select samples, 

e.g., tuples o2, o6, o7, o8, o10, o12 , to answer the query. Then 

the query can be effectively answered, because the tuples in 

rare groups will be considered.

Existing AQP techniques can be broadly categorized into 

two categories:

1. Online aggregation. It selects samples online and uses 

these samples to answer OLAP queries.

2. Offline synopses generation. It generates synopses 

offline based on a-priori knowledge on the data statistics 

or query workload, and uses these synopses to answer 

OLAP queries.

The goal of AQP is to find an approximate answer as close 

as to the exact answer very efficiently. There are three main 

challenges. The first is to select high-quality samples (or 

generate the synopses) to have an error-bound guarantee. 

The second is to support queries with join predicates. The 

������ ���(������) ���� �

����� ���������� =}c
�
4

����� ≤ 5% and �������� ≥ 95%

Fig. 1  Part of Relation R
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third is to support distributed computing, e.g., how to collect 

samples from different nodes in a cluster.

Online AQP Methods To address these challenges, 

online aggregation focuses on computing representative 

statistical summaries and devising effective algorithms 

to support online aggregation with no assumption on 

future queries. As conventional naive random sampling 

(see Case 1) only produces good results when the data 

distribution is uniform, many sampling methods [22] and 

error estimation algorithms [6] have been proposed to get 

more accurate results during query processing. For online 

interactive queries, the system iteratively selects more 

examples and uses the current examples to answer queries. 

Note that the system can incrementally use the samples 

to compute the results and does not need to compute the 

results from scratch. When the analysts are satisfied with 

the result, they can stop the query processing. We will 

discuss more details in Sect. 2.

Offline AQP Methods Offline synopsis generation method 

generates synopses offline and uses these synopses to answer 

online queries. These methods need a-priori knowledge 

about the dataset and future queries. Offline synopsis meth-

ods include workload-free synopsis and workload-aware 

synopsis. The former selects uniform samples or stratified 

samples by analyzing the data [2, 21]. The latter selects 

query-driven samples [7], which generates a synopsis based 

on the previous queries. Given a query workload, the query-

based-method generates a synopsis for each query and uses 

the synopsis to answer the future queries. This method has 

limited ability because it only answers the queries falling 

in the query workload. To address this problem, a query 

column set (QCS)-based method is proposed, which gen-

erates a synopsis for each QCS and uses the synopsis to 

answer the future queries whose columns are contained in 

the QCS. There are several query-driven methods, including 

pre-computed sampling-based approximate query (PSAQ) 

which needs to make assumption on QCS or queries, His-

togram  [88], Wavelet [46], and Sketch [14]. The 

advantages of these techniques are that the results are more 

accurate on skewed data, and the query processing is fast (as 

they do not need to on-the-fly select samples), but they have 

some limitations. First, they cannot support general queries, 

especially the complex nested queries. Second, they involve 

too much storage to store the synopses. We will discuss more 

details in Sect. 3.

Comparison of AQP Methods We compare existing AQP 

methods in Table 1. Online aggregation method (OLA) does 

not need a-priori knowledge of the data and queries, and it 

on-the-fly selects samples but may fail to provide quality 

guarantee for skewed data. Offline methods PSAQ, Histo-

gram, Wavelet and Sketch need to know the queries 

or data in advance, and generate synopses offline. They can 

support skewed data well but involve large space to store 

the synopses.

AQP on Complex Data Besides relational data, AQP tech-

niques [106] can also be used to support other complex data, 

e.g., spatial data and trajectory data. We discuss how to use 

AQP to support these complex data in Sect. 4.

New Applications on AQP Besides OLAP on relational 

data, AQP can also be used to enhance other applications, 

e.g., data visualization [86] and data cleaning [105]. For 

example, in data visualization, users would like to see the 

approximate result of the ratio of population in each of the 

state in the USA as a pie chart very efficiently, rather than 

waiting for minutes for an exact answer. We will discuss how 

to use AQP to support new applications in Sect. 5.

AQP Systems Many commercial business-critical systems 

support AQP, e.g., Oracle [102] and Windows Azure [19]. 

The challenge of building AQP system is to design effec-

tive offline indexes or summaries (by analyzing data on dis-

tributed systems), devising effective query plan during the 

query-time and finding effective algorithms. We will discuss 

well-known AQP systems in Sect. 6.

Contribution In this paper, we survey a wide spectrum of 

work on approximate query processing as shown in Fig. 2. 

We review both online aggregation and offline synopses 

techniques, summarize the challenges and provide the tech-

niques to address these challenges. We also review existing 

AQP systems and AQP techniques on complex data types 

and new applications. We provide emerging challenges and 

opportunities in AQP.

Paper Structure The structure of this paper is organized 

as follows: We first introduce cutting-edge online AQP 

methods in Sect. 2 and offline AQP methods in Sect. 3. We 

study how to extend AQP to support complex data in Sect. 4 

and support new AQP applications in Sect. 5. Besides, we 

review well-known AQP systems in Sect. 6 and provide 

emerging challenges of AQP in Sect. 7. Finally we conclude 

the paper in Sect. 8.

Difference with Existing Surveys Although there are some 

surveys [29, 78], they only focused on some aspects of AQP, 

but did not give a complete survey and did not cover most 

recent works. Cormode et al. [29] surveyed offline synopses 

of AQP including Sample, Histogram, Wavelet and 

Sketch [29]. However, it only surveyed the offline synop-

ses but did not cover online AQP techniques. Besides, all 

the new techniques after 2012 were not surveyed and ana-

lyzed. There were three keynotes on AQP at SIGMOD 2017. 

Surajit focused on online aggregation [22]. Mozafari [78] 

emphasized on new challenges and opportunities, includ-

ing interface, effective query planning and the theories of 

database learning. Tim Krastra focused on their newly built 

interactive data exploration system IDEA [66].
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2  Online Aggregation Methods

In this section, we survey the online AQP methods. The 

basic idea is to first select a sample S and then use S to esti-

mate the results. We introduce how to select S in Sect. 2.1 

and then discuss how to use S to estimate the error bound 

in Sect. 2.2. We present how to support multiple tables in 

Sect. 2.3 and how to work in distributed setting in Sect. 2.4. 

Finally, we discuss other online AQP techniques in Sect. 2.5.

2.1  Online Aggregation

Online Query Sampling techniques are widely used to sup-

port approximate query processing [84, 101]. Given a time 

constraint in an AQP query, a sample size can be computed 

by estimating how many samples the system can process 

within the time constraint. Then, the sampling techniques 

can be used to get a set of samples and the selected samples 

are used to answer the future queries. As the distribution 

of many real-world datasets are proved to be uniform-like 

distribution and Gaussian-like distribution, early online sam-

pling methods use random sampling to select samples [83, 

84, 88, 101]. Note that given the data-distribution assump-

tion and random sampling can provide users with a confi-

dence interval in most cases. For example, Case 2 selects 

more tuples than Case 1 and thus has a tighter confidence 

interval than Case 1. As many datasets satisfy the assump-

tion, most existing systems support the sampling operator, 

such as Oracle and Spark SQL (see [22] for details).

The limitation of uniform sampling is that it has poor 

quality on skewed data. For example, it may not select sam-

ples for rare groups that have few tuples. In Case 1, if we 

want to know the average profit of the orders from c
4
 instead 

of c
1
 , as there are only 3 tuples for customer c

4
 in the dataset, 

randomly sampling 4 tuples may fail to select any tuple of c
4
.

Online Interactive Query Online aggregation (OLA) was 

proposed in [52], which interactively refines the approximate 

results during the query processing. OLA provides users 

with an interface to stop the query execution when users are 

satisfied with the current answers. The accuracy becomes 

higher as OLA accesses more tuples in the database system. 

The system randomly selects tuples with or without replace-

ment and computes an approximation based on the tuples 

seen so far. Then, it incrementally selects more tuples in 

every iteration. If the sample is bigger, the system can get a 

Fig. 2  AQP overview

Table 1  Comparison of existing 

AQP methods.

× Not support, 
√

 support such case

Query Pre-computed information Skewed data

��� No Index or data distribu-

tion

×

���� Queries or QCS Synopses
√

������� Queries Synopses
√

��������� Queries Synopses
√

������ Queries Synopses
√
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more accurate answer and tighter confidence interval. When 

users are satisfied with the current answer or impatient to 

wait, they stop the query processing. For example, consid-

ering Case 2, the system selects o1, o9, o12 in the first sec-

ond and computes an approximation, say [1530.0 − 360.0, 

1530.0 + 360.0] with a confidence of 90%. Then it samples 

three more tuples in every second and in the fourth second, 

the system totally selects 12 tuples from o
1
 to o

12
 and the 

answer is [1392.4 − 329.4, 1392.4 + 329.4] with a confi-

dence of 90%. If the analyst is satisfied with the current 

answer, she can stop the query processing.

Many techniques are proposed to accelerate the online 

query processing. For example, Pf-ola [93] aims to make 

online aggregation in parallel where the estimated results 

and corresponding confidence bounds are continuously 

refined based on the selected samples during the query 

processing. These parallel techniques will avoid wasting 

extra time for error estimation during the query processing. 

G-OLA [111] is an online aggregation architecture which 

can deal with arbitrarily nested aggregates using efficient 

delta maintenance techniques. G-OLA randomly partitions 

the dataset into smaller uniform batches, by computing a 

“delta update” [111] on each mini-batch of data. Then by 

carefully partitioning the intermediate results of nested que-

ries, it can iteratively refine the query results.

2.2  Error Estimation

The confidence interval is widely used to estimate the result 

quality in most of the random-sampling methods [2], where 

each confidence interval gives users a numerical interval 

and a corresponding confidence based on the statistical 

theory. Initially, a set S of samples is computed based on 

sampling techniques in Sect. 2.1. Then if the data distribu-

tion is known in advance, S can be utilized to estimate the 

distribution and then the error can be estimated based on the 

distribution (Sect. 2.2.1). If the data distribution is unknown, 

it needs to first estimate the distribution of sampling data and 

then estimate the error (Sect. 2.2.2).

2.2.1  Error Estimation with Known Distribution

For real-world datasets, many datasets follow the normal 

distribution and many existing studies also assume that the 

data follows normal distribution. If we have a-priori knowl-

edge about the data distribution or have a big enough sam-

ple to get the distribution, then this is a classical statistical 

problem—parameter estimation. We take computing the 

aggregation AVG(S) on a normal distribution as an example 

(see Figure 3).

Known Variance If we know the variance of the distribu-

tion, we can easily use the Gaussian distribution model N(� , 

�
2 ) to compute the confidence interval easily as shown in the 

left hand of Fig. 3.

Unknown Variance If we do not know the variance, we 

can formalize it as a t-distribution, then we can compute the 

confidence interval as shown in the right hand of Fig. 3. In 

such case, the bigger the sample size, the more information 

we will maintain about the population, then we can compute 

a smaller interval or higher confidence, i.e., when the sample 

size n is bigger, the length of confidence interval 2 ∗ �
S

n
√

n
 

will be smaller where S
n
 is the standard deviation and � is a 

predefined statistical parameter, and thus, the answer will be 

more accurate.

2.2.2  Error Estimation without Known Distribution

To estimate the distribution of AGG (S), there are mainly 

three methods, Bootstrap, closed-form estimate, and exam-

ple, when computing SUM.

Bootstrap It aims to get multiple samples. For each sam-

ple S, the estimated values of AGG (S) can be computed and 

these values compose a distribution which can be used to 

estimate the aggregation result. Then a confidence interval 

Fig. 3  Example of confidence 

interval
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is computed by Pr([���(�) − l, ���(�) + l])=c to estimate 

the aggregation answer where 2l is the length of confidence 

interval, Pr is an estimation function (e.g., probability den-

sity function) of the distribution of AGG (S), and c is the 

confidence. Then the challenge is how to estimate AGG (S) 

and the distribution of AGG (S).

To know the distribution of AGG (S), we can arbitrarily 

sample many times (e.g., 10,000) from the population D, 

and the inferential statistics of the sample can be used to 

estimate the sampling distribution of AGG (S), e.g., standard 

error is an estimate of the standard deviation of that distri-

bution. However, it is too expensive to sample many times 

from the whole population D, or even infeasible because 

the population is unknown and there is only one sample S. 

To address this problem, resampling such as Bootstrap is 

proposed to estimate the result error [82]. The concept of 

Bootstrap is well known in statistics for more than half a 

century, which has been used to estimate error in relational 

databases [90]. Recently Bootstrap is borrowed to estimate 

errors of AQP [113].

The key idea of Bootstrap is that, in order to use S to 

replace D, one can also draw samples from S instead of D 

to compose the distribution of AGG (S). However, if it draws 

samples from S for too many times, it is still expensive. In 

practice, it aims to draw reasonable number of resamples, 

e.g., 100. For example, in Fig. 4a, we draw the samples from 

S for k times and compute a distribution, then we can com-

pute a confidence interval based on the bootstrap distribu-

tion. Interested readers are referred to [53] for more details 

on Bootstrap.

Bootstrap has no assumption on the data distribution and 

is suitable for most of the queries. However, Bootstrap has 

two limitations. First, most Bootstrap methods need thou-

sands of resampling, and it is time consuming for resampling 

too many times. Second, Bootstrap may fail to estimate the 

sampling distribution when the aggregation function is sen-

sitive to rare group (e.g., MAX) or the size of S is too small.

Closed-form Estimation In probability theory, the cen-

tral-limit theorem (CLT) establishes that, for independ-

ent random variables, the normalized sum tends toward a 

normal distribution (informally a “bell curve”) even if the 

original variables themselves are not normally distributed.1 

Thus, the distribution of AGG (S) can be approximated 

as N(���(�), �2) , where � can be computed by the mean 

squared error Var(S) [20]. This method is known as closed-

form estimation [6] as shown in Fig. 4b. Computing Var(S) 

for a small dataset S will be faster than the brute-force resa-

mpling. However, this method can only work for COUNT, 

SUM, AVG, VARIANCE but fail to deal with the queries 

whose variance is hard to compute such as MAX, MIN or 

user-defined functions.

Large Deviation Bounds A large deviation bound [75] 

wants to know the worst case of the confidence interval by 

estimating a value w.r.t. the “sensitivity to outliers.” This 

value mainly depends on the aggregation function AGG . For 

example, when computing SUM, the bound will be MAX and 

MIN as shown Fig. 4. In practice, it computes a bound much 

bigger than the real width of the sampling distribution.

2.3  Online Aggreagtion on Multiple Tables

Many OLAP queries contain join predicates. For example, 

if an analyst wants to know the average profit of the orders 

from the MA state in Fig. 1, she should join the tables O, 

C and ST.

One major challenge of approximate online aggrega-

tion of multiple tables is that the join process is complex 

and time consuming, and if the dataset is too big, then the 

join operation takes millions of computation in real-world 

applications.

(a) (b) (c)

Fig. 4  Example of Error Estimations

1 https ://en.wikip edia.org/wiki/.

https://en.wikipedia.org/wiki/
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OLA can be extended to support multiple tables on rela-

tional databases [49, 72]. Especially, the join queries are 

hard to predict in advance, and OLA is a typical method 

to solve such problem [23]. A naive method is to first join 

all of the tables and then using OLA on the joined tables to 

estimate the result. Obviously this method is too expensive 

since it is costly to join the tables. To address this prob-

lem, “ripple join” [32, 47, 57] selects a sample on each of 

tables and blindly join them; however, many tuples cannot 

be joined and some groups will be missed. Another idea is 

to generate a sample of the first table in a join pipeline and 

then select samples for other tables following join opera-

tions [3]. But it is not only time consuming but also performs 

bad if generating a bad sample for the first table. A most 

recent study proposes “Wander Join” [70–72] using online 

aggregation via random walk which is effective for the join 

operator. In a random walk process, it blindly takes tuples in 

different tables in the input dataset and aims to make them 

easily joined and get the join output. “Wander Join” designs 

algorithms to select the tuples which would be joined in 

every next step rather than blind “ripple join” [32, 47, 57]. 

For example, if it randomly selects samples from O, C and 

ST, it may miss the tuple st
1
 in ST and fail to meet the query 

condition mentioned above. Instead, Wander Join first finds 

st
1
 in ST and randomly selects tuples that can be joined in 

C, e.g., c
1
 , and randomly selects tuples in O, then it can join 

these tuples and compute an approximation of the profit of 

the orders from the MA state. However, the generation of 

such joined output is very expensive. To find more effective 

OLA methods to support join operator in distributed setting 

is still an open problem.

Note that if the join size is known in advance, we can 

get a better join plan. However, it is too expensive to com-

pute the exact join size and we should estimate the join size. 

Existing techniques aim to join the synopses of each of the 

tables to estimate the join size and reduce the time of scan-

ning the whole dataset [104]. A most recent study proposes 

a novel two-level sampling [104] by combining “independ-

ent Bernoulli sampling”, “Correlated sampling” and End-

biased sampling. One can use two-level sampling to estimate 

join size more accurately which outperforms other existing 

studies.

2.4  Online AQP in Distributed Setting

In many applications, the data is so large and have to be 

stored in a distributed cluster. For complex queries with 

join conditions and nested subqueries, we need to scan the 

dataset multiple times. Especially for join, it may need to 

transmit the data across cluster nodes, leading to high com-

munication cost. For example, a user would like to know the 

origin place of the brands of the top-5 most popular smart 

phones in Amazon. To answer the query, the system should 

scan the tables of orders, brands and origins which are stored 

in distributed servers. It needs to scan the tables many times 

to join the tables. Moreover, it may also need to join the 

tables across different nodes.

There are two challenges of AQP in distributed setting. 

The first is to avoid scanning the data multiple times to 

reduce the I/O cost. The second is to reduce the communica-

tion cost among distributed nodes. Early sampling work [48] 

focuses on finding efficient sampling methods in distributed 

setting. However, it is proved to be inefficient when the 

predicates in a query are complex. Then, EARL[69](Early 

Accurate Result Library) generates online uniform samples 

from HDFS and uses Bootstrap to incrementally evalu-

ate the accuracy computed so far. It can support complex 

queries well; however, it does not consider the skewness 

of dataset distribution. ApproxHadoop [44] assumes that 

the datasets are uniformly distributed in clusters but if the 

sub-datasets are not uniformly distributed, it cannot work 

well because random sampling on the cluster will generate 

a biased sample. To overcome these limitations, Sapprox 

[114] constructs probabilistic SegMap (i.e., collect the 

distribution of subsets) of segments offline and uses these 

results to generate online sampling plan.

Quickr is proposed to get samples in a cluster [60, 61], 

which can select a good sampling plan. It combines three 

sample operators together, uniform sampler, distinct sam-

pler (selecting samples for each distinct group) and universal 

sampler (selecting samples for join results among multiple 

tables). By lazily sampling in the first pass, ‘Quickr” scans 

the dataset spreading over clusters efficiently. To estimate 

the error, it handles different aggregate types using different 

strategies. (1) If a sampler immediately precedes the aggre-

gation and group by operator, it extends the well-known 

Horvitz–Thompson (HT) to estimate the exact answer and 

uses central-limit theorem to compute the confidence inter-

val. (2) otherwise, it uses the theory of “dominance transitiv-

ity” to transfer to case (1).

2.5  Other Online AQP Methods

2.5.1  Database Learning

In traditional database systems, previous query answers are 

not used to process future queries. If we can use previous 

query results to answer future queries, we can efficiently 

estimate an answer. Motivated by such assumption, a new 

AQP method called “Database Learning” (DBL) has been 

proposed [87].

DBL uses statistical features (e.g., computing the corre-

lation parameters and covariances between all pairs of past 

queries snippets) of the dataset to train a model to repre-

sent underlying data distribution. When a sample is used 

to answer the queries, it is hard to know the distribution of 
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the whole data. However, with the help of previous query 

answers, one can know more about the distribution and then 

infer answers of new queries based on trained statistical 

model. The more precise the model, the less need for actual 

data, the smaller the sample, and consequently, the faster 

the response time. By increasing previous queries, one can 

use smaller sample and the system will become smarter and 

faster to process queries.

Note that DBL is different from using pre-computed 

views to answer new queries or QCS-based offline synopses 

which generate summaries for visited query columns. Views 

aim to use pre-computed results to exactly or approximately 

answer new queries. For example, if we know the query 

result of the average profit of orders from the MA state in 

Fig. 1, we can exactly answer the average profit of orders 

from c
1
 and c

4
 and approximately answer the average profit 

of orders from males in MA. A QCS-based offline synopses 

shown in Case 3 is based on the assumption on query col-

umn sets. However, during the query process, DBL learns 

model from past observations of past queries results (i.e., 

training sets) and trains a model, and when a query comes, 

it uses the trained model to infer the query result. For exam-

ple, if we know the results of past queries of the profit of 

orders from c1, c2, c3, c4 in the MA state and NY state, we 

can use the results as training set to train a model of rela-

tion R. When we need to know the profit of orders from the 

WA state, we can sample tuples from O and use the trained 

model to compute the approximation result.

The limitation of DBL is that if the past query result is not 

accurate, then the quality of a training set of an online learn-

ing become worse. Thus, it will become worse and worse 

and finally it may mislead the approximate result.

2.5.2  Approximate Hardware

As the computation of a database system is supported by 

hardwares, some work aims to design new types of hard-

wares to trade-off the efficiency and accuracy of queries on 

database, reduce the energy usage and increase energy effi-

ciency. Comparing with conventional AQP techniques, this 

type of technique does not need any pre-computed synopses 

or online approximate query scheme. In this subsection, we 

introduce database engines using “Approximate hardware” 

which mainly consists of “Approximate CPU”, “Approxi-

mate Memory” and “Hybrid Hardware” and new applica-

tions of such techniques as well.

Approximate CPU “Approximate CPU” uses just part of 

the resources of CPU to accelerate the processing of cal-

culation and saving a lot of electric energy, e.g., float com-

puting. For example, a floating-point arithmetic-reduced 

method  [103] explores ways of reducing floating-point 

computing power consumption by minimizing the bitwidth 

representation of floating-point data. Analyses of several 

programs that manipulate low-resolution human sensory 

data show that these programs achieve a significant reduc-

tion in bitwidth while not sacrificing accuracy. Enerj [96] 

is developed as an extension of Java that adds approximate 

data types. Enerj also proposes a hardware architecture 

that offers explicit approximate storage and computation. 

When using Enerj to program, one can use approximate 

data types for the computations that only need approxima-

tion instead of exact answers. Several applications to Enerj 

show that these extensions are expressive and effective 

because Enerj uses just a small number of annotations 

but leads to significant potential energy savings at expense 

of very little accuracy.

Approximate Storage Sampson et al. [97] propose two 

mechanisms to do approximation on solid-state storage. (1) 

The first allows errors in multi-level cells by reducing the 

number of programming pulses used to write them. (2) The 

second mechanism mitigates wear-out failures and extends 

memory endurance by mapping approximate data onto 

blocks that have exhausted the hardware error correction 

resources. It is claimed that [97] can improve the perfor-

mance, lifetime, or density of solid-state memories by con-

ducting some simulation experiments.

Hybrid Hardware ApproxiDB [51] is the first hybrid 

data management system based on a hybrid hardware includ-

ing approximate hardware and precise hardware, and thus, 

it not only supports approximate query processing but also 

can return an exact answer. When the system can answer the 

query with an exact answer within the time constraints, it 

uses the precise hardware; otherwise, it uses the approximate 

hardware. ApproxiDB [51] is the first work that proposes 

the concept of “Approximate Hardware” which summarizes 

existing “Approximate Hardware” works and concludes the 

challenge and opportunity of “Approximate Hardware” well.

Applications of Approximate Hardware There have been 

many applications using “Approximate hardware”. For 

example, Chen et al. [25] conduct a study of three common 

sorting algorithms on approximate storage. They propose 

an approximate-refine execution mechanism to improve the 

performance of sorting algorithms on the hybrid storage sys-

tem to produce precise results. Moreover, a green database 

framework is proposed in [13] which helps the query opti-

mizer select plans that meet the high-performance require-

ments with lower energy during query processing based on 

the resource consumption patterns.

2.5.3  Other Works

DAQ DAQ [92] is a variant of OLA which borrows ideas 

from probabilistic database and iteratively uses the high-

order bits of numerical data to compute the approximation. 

For example, a DAQ scheme stores numbers in column 

PROFIT in Fig. 1 using “Bitsliced-Index” [92]. If we query 
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MAX on the column PROFIT, DAQ checks the first bit of 

the numbers in the 16 tuples of O, if there is only one tuple 

whose first bit is ‘1’, we get the exact answer rather than 

travel all the bits (e.g., 32 bits); otherwise, we check the 

next bit until finding the maximum one. Unfortunately, such 

technique can only support simple queries over numerical 

columns (such as SUM and AVG) but cannot support general 

SQL queries.

Sample+Seek As most of previous OLA algorithms can-

not work well for the rare groups during online sampling, 

“sample+seek” [31] proposes to design different plans 

for big groups and rare groups, i.e., “sample” (uniformly or 

measure-biased sampling) for big group and “seek” (build-

ing index) for rare groups. This work introduces a new pre-

cision metric, called distribution precision to provide error 

guarantee for queries. This work also provides a measure-

biased sampling method to support any aggregation that can 

be estimated from random samples within a user-given error 

bound.

Incremental AQP Galakatos et al. [42] propose an AQP 

formulation that treats aggregate query answers as random 

variables to enable reusing of approximate results with 

reasoning about error propagation across overlapping que-

ries. When a new query is coming, it finds previous queries 

which have common attributes and query conditions with the 

query, thus uses these results to refine the approximation. To 

support rare groups, this work presents a low-overhead par-

tial index and corresponding rewriting rules based on prob-

ability model to response the queries in an interactive speed.

3  O�ine Methods

If the query workload will not dynamically change, we can 

build offline synopses based on previous query workload 

and use these synopses to answer future queries efficiently. 

In this section, we survey four main synopses, pre-computed 

samples (PSAQ), Histogram, Wavelets and Sketch. 

Then, we introduce other recent offline methods with 

bounded guarantees.

3.1  Pre-computed Samples

Using offline samples as synopses for AQP has a history 

of 30 years in the database research community [84]. A 

well-known method is pre-computed sampling-based AQP, 

denoted as PSAQ, which generates samples offline and uses 

these samples to answer online queries. Note that PSAQ has 

an assumption that the query workload is relatively stable, 

i.e., the queries will not be dynamically changed.

Query-Based PSAQ A naive method builds a synopsis for 

each query in the workload and uses the synopsis to answer 

the future queries. For example, given the query in Case 1 

which computes the aggregation result for customer c
1
 , we 

can build a synopsis using the samples of this query, e.g., 

o1, o3 . Then, we can use the synopsis to answer the future 

queries which contain the same column but may use differ-

ent aggregation functions. A challenge here is given a space 

budget, how to select the queries to build offline synopsis. 

One can also merge synopses of different queries to reduce 

the synopsis size. This method has two limitations. First, if 

the query workload is large, this method will generate many 

synopses. Second, the synopsis of a query can only be used 

to answer this query but cannot answer other queries. For 

example, it can only answer queries for customer c
1
 but can-

not answer queries for other customers.

QCS-Based PSAQ To address the above problems, query 

column set (QCS)-based PSAQ is proposed [7]. The column 

set of a query is the set of all columns in the query (includ-

ing select, where and group clauses). This method groups 

the queries based on the column sets in the queries, and 

the queries with the same column set will be in the same 

group. Then for each group, the method selects samples for 

the columns in the group. Next it can use the synopsis to 

answer queries with the same QCS (or the queries whose 

columns are contained in the QCS). For example, suppose 

many queries contain columns CustomerID and Profit in 

the query workload, it does not need to build samples for 

each of the queries. Instead this method builds a sample 

for column (CustomerID, Profit), and thus can save a lot 

of space. BlinkDB [7] studies how to select samples for 

each QCS and uses the samples to answer online queries in 

distributed file system. BlinkDB also tries to share samples 

among different QCSs. For example, a sample for column 

(CustomerID, Profit) can be used to answer the queries for 

column CustomerID.

Sample Selection Comparing with online sampling, 

offline sampling can spend more time to select high-

quality samples. Besides, offline methods can use a-priori 

knowledge of the whole dataset and they also need to store 

pre-computed samples. Note that the size of groups and 

the values in each group may be highly skewed, making 

many traditional uniform-sampling-based methods unre-

liable. Some stratified sampling(AQUA [2], START  [21], 

BlinkDB [7], Babcock [11]) are proposed to deal with 

sparse data. The common idea of these work is to select more 

tuples for big groups meanwhile selecting enough tuples in 

rare groups (which may be lost in a random sample).

Error Analysis To provide high confidence, PSAQ also 

uses closed-form estimation and Bootstrap [6, 90, 113] 

to diagnose the results by using multiple samples via resa-

mpling. The method for error analysis is similar to online 

sampling, but they can spend more time to analyze the errors 

by thousands of resampling offline.
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Multiple Tables Supporting queries with join predicates is 

also widely studied [3]. The techniques are similar to those 

in online sampling.

3.2  Histograms

Histogram summarizes a dataset and divides it into multi-

ple buckets based on values in a numerical column [88]. For 

each bucket, it computes the most representative statistics 

which can be used to reconstruct the value of the whole 

dataset in this bucket, e.g., store the lower and upper bound 

of this bucket and count the numbers in this bucket. Histo-

gram has been widely studied and incorporated into com-

mercial relational databases which can be easily constructed 

and used for estimation [28, 91]. Histograms include equi-

depth and equi-width histograms. The former has the same 

bucket size and the latter has the same bucket width (i.e., 

the difference of the maximal value and minimal value in 

each bucket). For example, the numbers of column Profit 

in O is {1120, 1170, 1230, 1250, 1290, 1350, 1417, 1460, 

1470, 1560, 1630, 1673, 1732, 1890, 1983, 2000}, an equi-

width Histogram [29] will split the numbers into buckets 

with the same length (e.g., 200). Then it can be divided 

into {(1100, 1300], 5}, {(1300, 1500], 4}, {(1500, 1700], 

3}, {(1700, 1900], 2} and {(1900, 2100], 2}. For a query 

with the SUM function on the attribute, one can compute 
1100∗5+1300∗4+1500∗3+1700∗2+1900∗2

16
= 1400.0 to approximate the 

answer. An equi-depth histogram selects bucket boundaries 

so that each bucket contains the same number of data points. 

For example, if the bucket depth is 4, the column Profit in O 

will be divided into {(1100, 1250]}, {(1250, 1460]}, {(1460, 

1700]} and {(1700, 2000]}.

The major challenge of a Histogram method is to find 

appropriate algorithms to decide the buckets. The bucket-

ing strategy should consider both the number of buckets 

(the less the better) and accuracy (the higher the better). 

Besides equi-width and equi-depth [29], many other types of 

Histograms such as Singleton-Bucket Histogram [54, 

55] and Maxdiff Histogram [91] are also widely studied. 

More complex methods have been designed to find bucket-

ing scheme to trade-off efficiency and accuracy. A recent 

work proposed a near-optimal algorithms based on His-

togram for describing the distribution of dataset [1]. In 

addition, multi-dimensional Histograms are proposed 

to support different applications. For example, Digith-

ist [100] combines multi-dimensional, one-dimensional 

Histograms and grids to provide a tightly error-bounded 

Histogram for multi-dimensional data.

The drawback of Histogram that it only supports 

numerical columns and cannot support complex SQL que-

ries accurately, e.g., multiple attributes range query. Moreo-

ver, it will cost too much space to store a synopsis for each 

column. The advantage is that Histogram can process 

queries instantly and has quality guarantees.

3.3  Wavelets

Wavelet is conceptually close to the Histogram. 

Wavelet transforms the data and aims to compress the 

most expressive features in a Wavelet domain but His-

togram simply produces buckets that are subset of the orig-

inal data. For example, if the numbers in column C in T are 

{1, 3, 4, 4}, a Haar-wavelet transform (HWT) decomposes it 

as {2, 4} with the loss − 1, 0, then HWT compresses it again 

as {3} with the loss − 1. By storing 3, {− 1}, {− 1, 0}, we 

can decompress it to get the original data set. By storing 3, 

{− 1}, we can approximately represent the original dataset 

as {2, 2, 4, 4} with loss 1, − 1, 0, 0. Then, if we query SUM 

of this numerical column, we can decompress it to get {2, 2, 

4, 4} and use it to compute the value instead of {1, 3, 4, 4}. 

There are many variants of Wavelet that have been widely 

studied in recent years. HWT is the most widely studied 

Wavelet, which selects the largest HWT statistics in a syn-

opsis that provides the L
2
 error for data decompression [99]. 

Recent work focuses more on Non-Euclidean Wavelet [46, 

63–65]. Mytilinis et al. [80] developed parallel algorithms 

to generate Wavelets within an error bound.

3.4  Sketches

Sketch [43] models a numerical column as a vector or 

matrix and transforms the data by a fixed matrix to con-

struct the synopsis. For example, the well-known bloom 

filter can be seen as a special case of Sketch which maps 

data into a vector of bits. Sketch is not suitable for gen-

eral relational database but performs well when dealing with 

streaming data where the sketch summary must continually 

be updated quickly and compactly. Sketch is not only 

fast but also easy to parallelize and can provide the high 

approximation accuracy. Sketch has two main categories. 

The first is “Frequency-based sketch” [14] which focuses 

on the frequency distribution of the original dataset. The 

second is “Distinct-value-based sketch” [41] which counts 

the distinct values in a given multi-set. Different from other 

synopsis,Sketch has also been used successfully to esti-

mate the answers of COUNT and DISTINCT queries [29].

For example, for COUNT queries, a sketch may initial-

ize a matrix C with d × w(d and w should be tuned to proper 

values) zeros, for each item t in the data stream, for each inte-

ger number j from 1 to d, it increases �[j, hj(t)] by 1 where hj 

is a hash function. Then, when a COUNT query comes and it 

wants to count the number of t in a data stream, it first sets 

the current answer a as the biggest number in matrix C, and 

then it iteratively checks whether �[j, hj(t)] ≤ a from 1 to d. 
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If so, a = �[j, hj(t)] . After d iterations, it can find the exact 

answer a.

To support distributed and streaming data, a most recent 

Sketch technique [24] formulates a bias-aware linear 

sketching and recovery problem, and proposes algorithms 

to generalize the widely used Count-Sketch and Count-

Median algorithms. Due to its linearity, it can be easily 

implemented in the streaming and distributed computation 

models. [89] proposes a Count-Min-Log Sketch method 

to improve the average relative error of Count-Min-Sketch 

within bounded storage via logarithm-based, approximate 

counters instead of linear counters. CQF [85] proposes the 

counting quotient filter (CQF) to support general comput-

ing operators of approximate membership query. These 

techniques can be easily extended into database systems.

Sketch  can be used in many other fields, e.g., 

NLP [45], since Sketch can be used to count the fre-

quency of words, conduct Pseudo-Words evaluation, find 

semantic orientation of a word, and compute distributional 

similarity in NLP domain. Sketch is also good at dealing 

with real-time system such as financial data streams where 

the data dynamically changes. More details of different 

types of Sketch can be found in [27, 29].

3.5  Materialized Views

Materialized views are also related to AQP, which gener-

ates views of some given queries and utilizes the views to 

answer future queries. The difference is that materialized 

views maintain all the data but not some samples. The 

materialized views are lossless, but the synopses usually 

have errors.

Materialized Views A materialized view [50, 67] is a pre-

computed query result for some important query. When the 

query is stable over time, we can simply store the results 

of frequently used queries and use them to support future 

queries. The pre-computed views can be used to answer 

future queries (as exact answers of the queries or a subset 

of the answers) which have been widely used in previous 

query workload [8]. The most important problem here is 

how to use views to rewrite new queries [81]. The technique 

of materialized views still needs to be studied. For exam-

ple, pre-computing views too much will waste resources a 

lot. Armbrust et al. [10] describe a scale-independent view 

selection and maintenance system, which uses novel static 

analysis techniques that ensure the created views will not 

become scaling bottlenecks. Moreover, a “materialized sam-

ple view” [58] is a materialized sample from the query result 

for some important queries which are also widely studied.

Data Cubes A data cube stores statistics for specific 

queries which pre-compute a list of values in the form 

g(1), g(2),… , g(M) where g is a function. For example, 

values in a numerical column are {12, 13 ,20, 18, 10} and 

values in ID column are {1, 2, 2, 3, 1}. If the query is SUM, 

g is the function of computing frequency. Then a data cube 

for SUM on table T is {1:22, 2:33, 3:18}. It can support many 

complex queries, e.g., WHERE clause. Many studies on dif-

ferent types of data cubes have been studied for supporting 

OLAP. A recent work [108] provides a complete set of tech-

niques for probabilistic data cubes. Cube can also be used on 

ad-hoc interactive analytics over large datasets in distributed 

clusters [56, 59] and exploring machine learning results [9].

3.6  Other O�ine Methods

As many systems require high accuracy, high speed and lim-

ited resource, existing work aims to find effective AQP tech-

niques for providing an approximate answer within bounded 

error, bounded resource, or bounded response time.

3.6.1  Bounded Resources

Approximate query processing with bounded resources 

mean that the storage or memory is limited so that only a 

limited number of records can be used to approximately 

answer the query. Using offline computing to help decide 

the query plan and accelerate query processing are much 

practical for resource-bounded processing. For example, 

Cule et al. [30] studied the space-bounded query approxi-

mation. Fan et al. [16–18, 35, 36, 38] proposed a series of 

work based on the newly proposed concept “bounded eval-

uability,” which can answer a specific class of queries by 

accessing only a subset of the whole dataset with bounded 

number of tuples with the help of indices built on applica-

tion-induced cardinality constraints.

[35–37] make theoretical analyses on how to utilize a 

small subset to support queries over the whole set. [37] is a 

step toward understanding the tractability of queries in the 

context of big data by providing a formal foundation in terms 

of computational complexity. In [35], authors aim to study 

the bounded evaluability which can help decide the query 

plan, i.e., compute the exact answers or compute approxi-

mate answer using envelopes and bounded query specializa-

tion. [36] is the first work to formalize the notion of scale 

independence and study its properties. When a query Q is 

proved to be scale independent, the performance of process-

ing query Q will not decrease when the scale of dataset D 

becomes bigger. [38] mainly focuses on how to implement 

these works on big graphs, which mainly provides approxi-

mate query processing algorithms for resource-bounded 

strong simulation, resource-bounded subgraph queries and 

resource-bounded reachability on big graph within bounded 

resources under access constraints. The authors evaluate the 

accuracy of approximate query processing on big graph data 

and use a small subgraph to answer graph queries within a 
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given bound which is a given ratio of the scale of subgraph 

and the whole graph.

[16, 18, 36] propose some effective algorithms to imple-

ment the techniques in [35] in real applications. [16] pro-

vides effective syntax for answering whether it is still pos-

sible to make practical use of bounded evaluability for 

answering relational algebra queries which is remained 

to be an open question, and it shows how to integrate the 

concept of “bounded evaluable” into real-world DBMS 

systems. [18] investigates effectively bounded conjunc-

tive queries under an access schema, studies complexity 

of such problem and designs heuristic algorithms, which 

refine the concept of “scale independence” in [36].

Based on previous works, Fan et al. build resource-

bounded scheme BEAS (Boundedly Evaluable Sql) [17] 

for querying relations within a given sampling ratio by 

either computing the exact answer if doable or giving an 

approximation by accessing no more than bounded num-

bers of tuples using “bounded evaluable” theories dis-

cussed above. Its novelty consists of access templates, a 

new accuracy measure, a resource-bounded approximation 

scheme and resource-bounded algorithms for answering 

most general queries with a deterministic accuracy lower 

bound. BEAS has been implemented on many industry 

systems.

3.6.2  Bounded Error and Bounded Time

Many systems need high precision which calls for bounded 

error and bounded time.  [112] combines the strengths of 

closed-form analytic error and analytical Bootstrap method 

to provide bounded error for AQP systems. For sparse data, 

Yan et al. [109] use error-bounded stratified sampling to 

reduce the sample size. This technique relies on the insight 

that we can reduce the sampling rate with the knowledge of 

data distributions.

4  AQP on Complex Data

Besides relational data, many other complex data also 

become very large, and AQP techniques  [106] can be 

extended to deal with these data. In this section, we take 

spatial data and trajectory data as examples to show how to 

enable AQP on these data.

4.1  AQP on Spatial Data

Smartphones and other mobile devices have generated huge 

amount of spatial and spatio-temporal data. There are many 

applications that require to support OLAP queries on spatial 

data, e.g., analyzing the number of cars in a business zone to 

predict traffic jam. The importance of spatial data analysis 

and aggregations is increasing and interactive exploration 

over these data has become a challenge. However, the cost 

of spatial data analysis and aggregation using the entire data 

is too expensive, especially on large data sets, which cannot 

meet the requirement of interactive spatial data exploration. 

Even traditional techniques such as R-tree and Grid index 

cannot support such big data either. Therefore, it calls for 

effective AQP techniques on spatial data.

4.1.1  Online Spatial AQP

An online AQP method on spatial data exploration is pro-

posed in [98], which provides efficient spatial sampling for 

large spatial datasets. It models the problem of spatial sam-

pling of large geographical tables as an integer programming 

formula and proposes a more efficient solution based on the 

spatial tree traversal of depth first search. First, it splits the 

geographical tables into subsets and builds a spatial tree to 

retrieve these data. When a query is coming, it travels the 

tree using depth first search and selects some samples to 

process the query.

Then, online aggregation on spatial data is proposed 

in [106]. It proposes novel indexing techniques, LS-Tree and 

RS-Tree which can retrieve the spatial data more efficiently. 

In [106], the algorithm travels the index tree from the root 

node, as getting more and more samples, various spatial 

analytics and aggregations with estimators can be applied 

in an online, interactive manner. In this way, it becomes 

more accurate and more reliable over time. Different from 

previous work, it considers the difference between “query-

first-then sample” (which first finds the results satisfying 

the query condition and then get some samples to answer 

the query) and “sample-first-then-query.” (Which first gets 

some samples and uses the samples satisfying the query con-

dition to answer the query.) These algorithms are also suit-

able for both memory-based and disk-resident data sets and 

scales well toward different query and sample sizes. More 

importantly, the structure in [106] is dynamic, so that it can 

effectively handle insertions and deletions of the dataset.

4.1.2  O�ine Spatial AQP

Queries on spatial data can also be quickly and approxi-

mately answered using offline techniques such as data sum-

maries, sketches, and signatures. However, the drawback of 

these methods is that the accuracy is predetermined and will 

not improve over time. For some spatial applications, most 

queries are stable and we can compute results of these que-

ries in advance. Thus, summary indexing techniques [110] 

can be used to answer queries on spatial databases and these 
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spatial indexing techniques only require linear space and 

extract summaries with an optimal or near-optimal query 

cost.

Most methods of spatial query approximation rely on 

quantitative usage, i.e., metric (distance based) informa-

tion. And only a few methods consider qualitative infor-

mation, such as topological relations and cardinal spatial 

relations. As Sketch is proved to be effective on geo-

graphic information systems, it is further investigated in 

the background of spatial AQP. Based on these consid-

erations, [12] provides new types of queries that rely on 

qualitative relationships and discusses how to define query 

processing algorithms in metric space to handle qualitative 

information. More recent discussions of spatial databases 

can be found in [34].

4.2  AQP on Trajectory Data

The rapid development of location and acquisition technol-

ogy promotes the generation of trajectory data that track 

the trajectory of a moving object, where each trajectory is 

a sequence of geo-located points. A wide range of appli-

cations can benefit from trajectory data mining, which 

brings unprecedented opportunities. In modern systems, 

there are various applications of trajectory data mining, 

e.g., frequent route discovery, location prediction, and 

mobile behavior analysis. The two key operations of tra-

jectory data management are range query (e.g., finding 

all the trajectories which pass some given spatial ranges) 

and KNN trajectory matching (e.g., finding all the top-k 

nearest neighborhood trajectories of a given trajectory). 

Note that it is rather costly to support the two queries for 

large-scale trajectory data, and traditional R-tree or Grid 

index fails to deal with such big data, and moreover, they 

cannot meet the high-performance requirement of online 

trajectory aggregation.

An inverted index for spatiotemporal and trajectory data 

[73] is proposed which uses random exponential sampling 

(RIS) algorithms to estimate the answers with the guaranteed 

error bounds. It simply splits the trajectory into 3-degree 

grids and randomly samples some trajectories to answer the 

COUNT query. In order to further improve the scalability of 

the system, [73] extended the parallel random index sam-

pling (CRIS) algorithm of the RIS algorithm to deal with 

multiple track aggregation queries to reduce time and space 

queries at the same time. These techniques are applied to 

the actual large-scale user trajectory database from “China 

Mobile” service providers to verify the effectiveness of the 

proposed sampling and estimation methods. However, this 

method cannot support complex queries in the trajectory 

database system. Designing schemas for AQP on trajectory 

indexing and retrieving is still an open problem. More details 

about trajectory query and trajectory mining can be found 

in [39] and [115].

5  AQP Applications

AQP can be used in many scenarios if the traditional exact 

methods cannot meet the high-performance requirement. In 

this section, we discuss two scenarios that can be enhanced 

by AQP, including data cleaning (Sect. 5.1) and interactive 

data visualization (Sect. 5.2).

5.1  AQP on Data Cleaning

Data is rather dirty, especially in big data era, and data 

cleaning and integration are rather important in many appli-

cations [26]. For example, in Google Scholar, we want to 

compute the average citations of database researchers. Since 

some researchers’ Google Scholar pages contain publica-

tions that do not belong to them, it is incorrect to directly 

compute the average citations on the dirty data. A straight-

forward method first cleans the Google Scholar pages for 

every researchers and then applies the OLAP queries. Obvi-

ously this brute-force method is rather expensive. A smarter 

way is to utilize AQP techniques, which first cleans a sample 

data and then uses the sample data to compute the results.

The challenge is how to design an estimator for dirty sam-

ples. For a cleaned sample, we can use methods in Section 2 

(e.g., confidence interval) to estimate the result. But for a 

dirty sample, the estimator has not been well studied. Sam-

pleClean [68, 105] aims to address this problem which 

only requires users to clean a sample of data, and utilizes 

the cleaned sample to process aggregation queries. Sam-

pleClean also proposes a statistical method which can 

use a cleaned sample to correct the bias of the query results 

over the dirty data. Furthermore, it uses a cleaned sample to 

directly estimate the query results of the cleaned data. Along 

the same idea, a recent work [67] efficiently cleans a sample 

of rows from stale materialized views and uses the cleaned 

samples to estimate the query results.

5.2  AQP on Data Visualization

In recent years, the performance of data visualization has 

became more and more crucial in commercial system (e.g., 

ad-hoc query). Data scientists rely on interactive data visu-

alization to analyze the data. As the data size becomes large, 

traditional systems fail to provide fast interactive query 

result on large data. Some studies try to use AQP techniques 

on data visualization [62, 76, 94]. The motivation of data 

visualization is converting a query (e.g., SQL-like query) to 

a visualization result (e.g., bar chart) and AQP can generate 
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approximate answer over big data, and thus, using AQP on 

data visualization is meaningful and reasonable.

There are many AQP-based visualization methods 

recently [40, 62, 74, 76, 94, 107]. These methods mainly 

emphasize on how to provide users with online interactive 

visualization results and incrementally update the results 

using representative charts. We will discuss cutting-edge 

techniques in this subsection. Existing works on AQP-

based visualization can be broadly classified into two cat-

egories, scatter plot approximate visualization and statistical 

visualization.

Scatter Plots In many data exploration tasks, the analyst 

needs an instant result of the spatial data distribution like 

scatter plots. This result can be useful for further decisions 

or the data pretreatment pipeline. For example, an analyst of 

a real estate company wants to train a model for predicting 

which domain in USA is worth investing. Then she needs to 

determine which features are used for an logistic regression. 

Thus, she may want to draw a heatmap of the house price of 

all the block with different colors (cheaper is lighter, more 

expensive is deeper). However, in some interactive tasks, 

dealing with such volume of data is challenging.

A recent visualization-aware sampling (VAS) [86] guar-

antees high-quality visualizations with a small subset of 

the entire dataset. VAS divides the whole map into small 

blocks, and uses stratified sampling to choose a set of tuples 

that minimizes a visualization-inspired loss function in each 

block. While existing sampling approaches minimize the 

error of aggregation queries, VAS focuses on using a loss 

function that maximizes the visual fidelity of scatter plots. 

It consequently selects more samples in each block and pro-

vides the users with a clearer visualization.

This sampling-based technique can also be used to 

solve special kinds of data exploration query. For example, 

ExploreSample [107] approximates scatter plots to solve 

an “object-centric” exploration query. In an object-centric 

exploration query, one may predict the performance of an 

NBA basketball player using the whole dataset of all the 

NBA basketball players, i.e., drawing a heatmap and judging 

whether it is an outlier. However, drawing such heatmap may 

consist of many potentially expensive aggregation queries 

over the entire database. Thus, ExploreSample selects 

a sample of the whole dataset and draws a heatmap to help 

predict the claims which is verified to be helpful.

When exploring on big data, one may pose many queries 

with aggregation functions. For example, an user wants to 

see a pie chart of the ratio of the amount of incomes of males 

and females in America. However, computing such amount 

of data is rather expensive to draw the pie chart. Thus, it is 

feasible to use stratified sampling to sample 5000 people in 

each state and use this result to draw a pie chart, because the 

analyst just wants to see an approximate ratio rather than an 

exact answer, i.e., 56 versus 44% makes no much difference 

with 55 versus 45% in a pie chart. Furthermore, building a 

visualization system with an interactive pattern will be better 

for data exploration. Statistical visualization mainly includes 

bar chart, pie chart and line chart, for better interactive vis-

ualization processing, existing works have made effort to 

using AQP techniques on these Statistical visualization [9, 

40, 62, 74, 76, 94].

Bar chart A bar chart can simply make comparison 

among different groups of data. To interactively give an 

approximate bar chart, there are three state-of-the-art works. 

SampleAction [40] allows a user to formulate a query, 

and the system responds with a partial result, displaying a 

bar chart with confidence bounds. As the analyst waits, the 

system increases its sample size, narrows the confidence 

intervals and produces more precise results. By using dif-

ferent sampling strategy, Pangloss [76] uses an idea of 

Sample + Seek [31] which “sample” (uniformly or measure-

biased sampling) for big groups and “seek” (building index) 

for rare groups. It incrementally loads more records into the 

sample to update the bar chart until either the confidence 

is higher than a predefined threshold or until a timeout. 

Pangloss can also be used for heatmap. Different from 

Pangloss, IFocus [62] mainly focuses on whether the 

comparison between different bars is correct, e.g., if bar A 

is higher than bar B on the entire data, then bar A should 

be higher than bar B on the sample. IFocus calculates the 

aggregation answer to draw a bar chart and computes the 

probability that bar A will be higher than bar B. When the 

bar A is higher than bar B and the probability of A > B is 

higher than a threshold, it stops. Besides, FastMatch [74] 

is an end-to-end approach for interactively retrieving the 

bar chart visualizations which are most similar to a user-

specified target, from a large collection of bar chart. The 

primary technical contribution underlying FastMatch is 

a probabilistic algorithm, HistSim, a theoretical sampling-

based approach to sample a lot of bar charts and identify the 

top-k closest bar charts under “ L
1
 ” distance.

Line Chart A line chart is used to show the trend of a 

statistical parameter. Thus, the key idea of approximate line 

chart is the trend should be correct (up or down). Thus, the 

above-mentioned methods SampleAction [40] and IFo-

cus can be also used for line chart. Different from these 

two methods, in each sampling iteration, INCVISAGE [94] 

proposes the concept of “improvement potential” to select 

better samples which can improve the line chart visualization 

most. Thus, INCVISAGE can generate approximations that 

use as few samples as possible for trend-line visualizations.



393Approximate Query Processing: What is New and Where to Go?  

1 3

6  AQP Systems

In big data era, most IT companies have large volume of 

data, and thus building AQP system is important to make 

online decisions. We will first discuss systems built on dis-

tributed clusters in Sect. 6.1 and then introduce other sys-

tems in Sect. 6.2. We compare the well-known AQP systems 

in Table 2.

6.1  Distributed AQP Systems

The big data is usually stored in distributed environment, 

many researchers and commercial companies would like to 

develop AQP systems on top of distributed system (e.g., 

Hadoop or Spark).

BlinkDB is a well-known AQP system which is built 

on top of Hadoop and devises effective strategies to select 

proper samples (offline generated) in distributed clusters to 

answer newly coming queries. BlinkDB is open sourced and 

public available.2 As BlinkDB generates too many offline 

samples based on the assumption that the QCS is stable over 

time, it does not perform good for queries whose QCS is 

not covered by the query workload. Sapprox[114] and 

Approxhadoop[44] add online sampling generation dur-

ing running time to overcome the shortages of BlinkDB. 

Besides, Sapprox is more flexible than BlinkDB and more 

efficient than Approxhadoop.

Most recently, Quickr [60, 61] is designed for execut-

ing ad-hoc queries on big-data clusters which perform even 

much better than BlinkDB, Approxhadoop and Sap-

prox. It does not need any pre-computing of the whole 

dataset spread over the clusters. In fact, in modern distrib-

uted database systems, constructing synopses for the whole 

dataset spreading over all the clusters is very hard. Although 

the ad-hoc queries are complex, Quickr does not need to 

scan the whole data for many times. It is verified to be prac-

tical in Microsoft’s search engine, i.e., Bing. What’s more, 

Microsoft also develops Now! [19], a progressive data-par-

allel computation framework, for Windows Azure. It can 

provide progressive SQL support over big data in Azure.

Many other “Spark”-based systems are built on real-

world settings. SnappyData [79, 95] is a system built on 

spark which uses in-memory solution for delivering truly 

interactive analytics (i.e., a couple of seconds), when faced 

with large data volumes or high velocity streams. Snap-

pyData can exploit state-of-the-art approximate query-pro-

cessing techniques and a variety of data synopses. Besides, 

FluoDB [111] generalizes OLA to support general OLAP 

queries with arbitrarily nested aggregates which is also built 

on top of spark.

6.2  Other AQP Database Engines

For complex queries on multiple tables, XDB [72] is a sys-

tem which supports online aggregation for complex queries 

including join operator by integrating “Wander Join” based 

on the latest version of PostgreSQL. It is the most recent 

AQP work supporting complex queries. XDB outperforms 

Table 2  Comparison of the AQP systems

√

 means that the systems return approximation results within bounded guarantee or can deal with skewed data, × means the methods that have 

no bound guarantee or cannot deal with skewed data. N/A means that the systems are not built on any existing platforms

Online/offline Distributed/standalone Bounded Platform Algorithm Skewed data

BlinkDB Offline Distributed × Hive/Hadoop (Shark) Stratified sampling
√

Sapprox Online Distributed × Hadoop Distribution-aware [44] Online 

sampling

×

Approxhadoop Online Distributed × Hadoop Approximation-enabled MapRe-

duce [44]

×

Quickr Online Distributed × N/A ASALQA algorithm [61] ×

SnappyData Online Distributed × Spark and GemFire Spark, as a computational engine; 

GemFire, as transactional store

×

FluoDB Online Distributed × Spark Mini-batch execution [111] OLA 

Model

×

XDB Online Standalone × PostgreSQL Wander join [72] ×

Verdict Online Standalone × Spark SQL Database learning ×

IDEA Online Standalone × N/A Reuse answers of past overlapping 

queries for new query

×

BEAS Online Standalone
√

Commercial DBMS Approximability theorem [17] ×

ABS Online Standalone × N/A Bootstrap ×

2 https ://devhu b.io/zh/repos /samee ragar wal-blink db.

https://devhub.io/zh/repos/sameeragarwal-blinkdb
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the earlier online engine DBO [32, 57]. Verdict [77] uses 

the Database Learning [87] method to benefit the 

query processing in database (see details of Database 

Learning in Section 2.5). IDEA [66] is an interactive data 

exploration accelerator. It allows data scientists to immedi-

ately explore the data source without pre-computation and 

knowledge about the data distribution and support interac-

tive query during the data exploration process. IDEA reuses 

the observations seen so far and reformulates the AQP model 

based on probability theory. IDEA proposes a new type of 

index to help getting answers within low error even in the 

rare subgroup of a dataset without upfront known workload.

Many other systems also rely on offline synopses gen-

eration and online estimation. BEAS (Boundedly Evaluable 

Sql) [17] is a system which can evaluate the feasibility of 

each of the query plans and select a better one. Given a 

sampling ratio, it can either compute the exact answer or 

give an approximation by accessing no more than bounded 

numbers of tuples using bounded evaluable theory [37]. ABS 

(Analytical Bootstrap) [112, 113] is a system which models 

bootstrap by a probabilistic relational model to predict the 

distributions of the AQP results. It entails a very fast com-

putation of bootstrap-based quality measures for a general 

class of SQL queries.

7  Emerging Challenges and Opportunities

In this section, we summarize some research challenges and 

opportunities in approximate query processing.

7.1  AQP Model

Most existing AQP techniques are studied cases by cases, 

aiming to solve different problems by designing different 

techniques. In other words, AQP is not well formulated and 

it calls for a standard and well-formulated AQP framework 

that can be used in many cases. To this end, one can survey 

each category of AQP methods, extract the common feature 

of AQP, and design a common framework for AQP. Further-

more, it requires to formulate a standard SQL-like query 

language for AQP to make AQP easy to use.

7.2  Approximate Data Visualization

There are still many problems in approximate data visuali-

zation. First, how to quantify the accuracy of visualization 

is an open problem. Second, selecting proper chart type to 

fit different AQP methods is difficult. It requires to investi-

gate effective techniques for rapidly generating visualiza-

tions for other optimization goals (including outlier detec-

tion, trend detection) and other data types (such as large 

networks). Finding new data visualization applications such 

as ExploreSample [107] is also promising.

7.3  Smarter Query Plan

A general query can be divided into three components, (1) 

generate query plan, (2) find tuples satisfying the query con-

ditions, (3) aggregate the results according to (1). Traditional 

AQP methods focus on (2) but fail to find approximation-

aware scheduler. Thus, many recent studies focus on finding 

smarter query planning [87]. Smart query planning can be 

implemented into online aggregation process, offline synop-

ses generation or both. Online aggregation focuses on differ-

ent online ideas and offline synopses aim to find a reasonable 

type of synopses while optimizing query planning focuses 

on better query strategies.

First, if the query needs to be answered with a user-given 

time bound, the system should be able to predict the query’s 

latency for different sample sizes accurately, e.g., if the user 

needs a query processing within one second, then the sam-

ple size should be small enough to be computed within 1 

second. Second, as many queries are nested and complex, a 

smart scheduler is crucial in query systems, e.g., the AQP 

engine of verdict mentioned in Sect. 2.5, and more 

details of such technique can be found in [87]. Third, as a 

single SQL query often corresponds to multiple query plans, 

a smart data engine needs a query optimizer to select the 

best plan. Traditionally, a query optimizer can estimate the 

computation cost of each query plan and choose the one with 

the minimum estimated cost. Future work could concentrate 

on above three aspects to generate smart query plan so as to 

benefit the accuracy and speed of AQP systems.

7.4  Synopse Generation in Distributed Setting

It is easy to compute a synopsis on a single computer. How-

ever, the big data are always stored in a distributed cluster. 

Thus, how to generate synopses on each node and merge 

them together is important. Although the union of synopses 

from different nodes can be taken as a synopsis of the whole 

dataset, it will involve duplicate samples and lead to low 

quality. Moreover, Histogram, Wavelet and Sketch 

cannot be easily merged. So it calls for effective algorithms 

to merge or approximately merge them. In addition, it is 

important to devise new types of mergeable synopses [4, 

5, 15].

7.5  AQP on Data Cleaning

There are still many challenges of using AQP to enhance 

data cleaning. First, existing studies assume that the data 

follow the uniform distribution, but it is challenging to clean 

sample or synopses for skewed data and use the summaries 
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to estimate the aggregation results. Second, the error esti-

mation of approximate answers from cleaned data is not 

accurate and it requires to devise effective techniques, e.g., 

Bootstrap to estimate error on dirty data. Third, existing 

techniques can be combined to support AQP on data clean-

ing. For example, motivated by database learning techniques 

in Sect. 2.5.1, as the results of previous queries can be used 

to make smarter query processing, implementing database 

learning techniques on dirty data may be interesting.

7.6  Online Algorithms for Non-Gaussian 
Distribution

Modern data analysis needs an interactive pattern for explor-

ing data with little a-priori knowledge of dataset and newly 

coming queries. If the dataset is so big that one cannot com-

pute the data distribution online, existing online aggregation 

studies will not work well. Thus, it requires to design new 

OLA algorithms to deal with non-Gaussian distribution data.

8  Conclusion

In this paper, we review extensive studies on approxi-

mate query processing. We first summarize the AQP use 

cases and then categorize existing techniques into online 

aggregation and offline synopsis generation. We survey 

all of existing techniques of AQP in the fields of data-

base and data mining. We summarize the challenges and 

provide the techniques to address these challenges. We 

also discuss how to support complex data types and new 

applications that can be enhanced by AQP. We survey 

existing AQP systems and discuss their advantages and 

limitations. Finally, we provide emerging challenges and 

opportunities.
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