
Vol.:(0123456789)1 3

Data Science and Engineering (2018) 3:379–397

https://doi.org/10.1007/s41019-018-0074-4

Approximate Query Processing: What is New and Where to Go?

A Survey on Approximate Query Processing

Kaiyu Li1 · Guoliang Li1

Received: 16 May 2018 / Accepted: 3 September 2018 / Published online: 14 September 2018

© The Author(s) 2018

Abstract

Online analytical processing (OLAP) is a core functionality in database systems. The performance of OLAP is crucial to

make online decisions in many applications. However, it is rather costly to support OLAP on large datasets, especially big

data, and the methods that compute exact answers cannot meet the high-performance requirement. To alleviate this problem,

approximate query processing (AQP) has been proposed, which aims to find an approximate answer as close as to the exact

answer efficiently. Existing AQP techniques can be broadly categorized into two categories. (1) Online aggregation: select

samples online and use these samples to answer OLAP queries. (2) Offline synopses generation: generate synopses offline

based on a-priori knowledge (e.g., data statistics or query workload) and use these synopses to answer OLAP queries. We

discuss the research challenges in AQP and summarize existing techniques to address these challenges. In addition, we

review how to use AQP to support other complex data types, e.g., spatial data and trajectory data, and support other applica-

tions, e.g., data visualization and data cleaning. We also introduce existing AQP systems and summarize their advantages

and limitations. Lastly, we provide research challenges and opportunities of AQP. We believe that the survey can help the

partitioners to understand existing AQP techniques and select appropriate methods in their applications.

Keywords OLAP · Approximate query processing · Online aggregation · Offline synopses

1 Introduction

Online analytical processing (OLAP) is a core function-

ality in data management and analytics systems [33]. The

performance of OLAP is crucial for many applications that

need to use OLAP to make online decisions, e.g., business

intelligence. However, it is rather costly to support OLAP

for large datasets, especially big data. Many systems have

been proposed to support OLAP on big data, e.g., Pig, Hive,

Spark SQL, and they usually take tens of minutes or even

hours to answer an OLAP query. However, many applica-

tions have online requirement of OLAP that want to get

results in seconds.

To alleviate this problem, approximate query processing

(AQP) has been proposed, which computes approximate

answers (with some quality guarantee) very efficiently to

meet the high-performance requirement. Next, we use sev-

eral examples to show how AQP works. Note that AQP only

performs well for aggregate functions such as SUM, AVG,

COUNT, MAX and MIN due to it should use statistical tools

to give approximate results for numerical types of answers.

AQP Use Cases We consider a database with multiple

tables in Fig. 1. For simplicity, we only show three tables,

orders O, customers C, states ST, and the rela-

tions among the tables. We consider the following three use

cases of AQP.

Case 1 (Online Aggregation) An analyst wants to know the

average profit of the orders from customer c
1
 within one

second, and she can pose a query:

������ ���(������) ���� �

����� ���������� =}c
�
1
����� 1 second

 * Guoliang Li

 liguoliang@tsinghua.edu.cn

 Kaiyu Li

 liky15@mails.tsinghua.edu.cn

1 Department of Computer Science, Tsinghua University,

Beijing, China

http://orcid.org/0000-0002-1398-0621
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-018-0074-4&domain=pdf

380 K. Li, G. Li

1 3

A straightforward method uses random sampling to select

some samples, e.g., o1, o9, o12 , and uses the samples to

answer the query. The sample size can be determined based

on the user-provided time constraint. For example, assume

the system can process 3 samples in each second, then the

sample size is 3. Here are two samples o
1
 and o

12
 from

customer c
1
 , which are used to answer the query. Then the

system uses closed-form estimation (see Sect. 2.2.2) and

gives an approximate result with confidence interval, e.g.,

[1530.0 − 360.0, 1530.0 + 360.0] with a confidence of 90%

based on central-limit theorem (CLT) [6].

Case 2 (Online Interactive Aggregation) An analyst wants

to continuously monitor the results in an interactive manner,

and she poses the following interactive query:

Then, the system incrementally selects samples in every sec-

ond and iteratively updates the answer using more examples.

For example, after the fourth iteration, the system totally gets

12 samples from o
1
 to o

12
 and the answer is [1392.4 − 329.4,

1392.4 + 329.4] with a confidence of 90%. If the analyst

is satisfied with current answer, she can stop the query

processing.

However, online sampling without pre-computing may

lead to large errors and the quality is uncontrollable. For

example, consider a rare group with few tuples (e.g., c
4
),

and the online methods may not get any sample from the

group. Thus, the online sampling method fails to provide

a high-quality result. To address this problem, we can use

offline synopses.

Case 3 (Error-Bounded AQP) Given a database and a query

workload, AQP aims to generate a synopsis and uses the

������ ���(������) ���� �

����� ���������� =}c
�
1
����� 8s ������� =1s

synopsis to answer an online query. For example, suppose

the queries w.r.t column CustomerID and Profit are fre-

quently used in a query workload, the system builds syn-

opses offline for the two columns and uses them to answer

a query. The system uses the error bound and confidence

to determine the synopsis size, generates the synopsis, and

utilizes the synopsis to answer the query. For example, given

a query

The system can use a pre-computed stratified sampling

method [7] (i.e., selecting more samples from big groups

and enough samples from rare groups) to select samples,

e.g., tuples o2, o6, o7, o8, o10, o12 , to answer the query. Then

the query can be effectively answered, because the tuples in

rare groups will be considered.

Existing AQP techniques can be broadly categorized into

two categories:

1. Online aggregation. It selects samples online and uses

these samples to answer OLAP queries.

2. Offline synopses generation. It generates synopses

offline based on a-priori knowledge on the data statistics

or query workload, and uses these synopses to answer

OLAP queries.

The goal of AQP is to find an approximate answer as close

as to the exact answer very efficiently. There are three main

challenges. The first is to select high-quality samples (or

generate the synopses) to have an error-bound guarantee.

The second is to support queries with join predicates. The

������ ���(������) ���� �

����� ���������� =}c
�
4

����� ≤ 5% and �������� ≥ 95%

Fig. 1 Part of Relation R

381Approximate Query Processing: What is New and Where to Go?

1 3

third is to support distributed computing, e.g., how to collect

samples from different nodes in a cluster.

Online AQP Methods To address these challenges,

online aggregation focuses on computing representative

statistical summaries and devising effective algorithms

to support online aggregation with no assumption on

future queries. As conventional naive random sampling

(see Case 1) only produces good results when the data

distribution is uniform, many sampling methods [22] and

error estimation algorithms [6] have been proposed to get

more accurate results during query processing. For online

interactive queries, the system iteratively selects more

examples and uses the current examples to answer queries.

Note that the system can incrementally use the samples

to compute the results and does not need to compute the

results from scratch. When the analysts are satisfied with

the result, they can stop the query processing. We will

discuss more details in Sect. 2.

Offline AQP Methods Offline synopsis generation method

generates synopses offline and uses these synopses to answer

online queries. These methods need a-priori knowledge

about the dataset and future queries. Offline synopsis meth-

ods include workload-free synopsis and workload-aware

synopsis. The former selects uniform samples or stratified

samples by analyzing the data [2, 21]. The latter selects

query-driven samples [7], which generates a synopsis based

on the previous queries. Given a query workload, the query-

based-method generates a synopsis for each query and uses

the synopsis to answer the future queries. This method has

limited ability because it only answers the queries falling

in the query workload. To address this problem, a query

column set (QCS)-based method is proposed, which gen-

erates a synopsis for each QCS and uses the synopsis to

answer the future queries whose columns are contained in

the QCS. There are several query-driven methods, including

pre-computed sampling-based approximate query (PSAQ)

which needs to make assumption on QCS or queries, His-

togram [88], Wavelet [46], and Sketch [14]. The

advantages of these techniques are that the results are more

accurate on skewed data, and the query processing is fast (as

they do not need to on-the-fly select samples), but they have

some limitations. First, they cannot support general queries,

especially the complex nested queries. Second, they involve

too much storage to store the synopses. We will discuss more

details in Sect. 3.

Comparison of AQP Methods We compare existing AQP

methods in Table 1. Online aggregation method (OLA) does

not need a-priori knowledge of the data and queries, and it

on-the-fly selects samples but may fail to provide quality

guarantee for skewed data. Offline methods PSAQ, Histo-

gram, Wavelet and Sketch need to know the queries

or data in advance, and generate synopses offline. They can

support skewed data well but involve large space to store

the synopses.

AQP on Complex Data Besides relational data, AQP tech-

niques [106] can also be used to support other complex data,

e.g., spatial data and trajectory data. We discuss how to use

AQP to support these complex data in Sect. 4.

New Applications on AQP Besides OLAP on relational

data, AQP can also be used to enhance other applications,

e.g., data visualization [86] and data cleaning [105]. For

example, in data visualization, users would like to see the

approximate result of the ratio of population in each of the

state in the USA as a pie chart very efficiently, rather than

waiting for minutes for an exact answer. We will discuss how

to use AQP to support new applications in Sect. 5.

AQP Systems Many commercial business-critical systems

support AQP, e.g., Oracle [102] and Windows Azure [19].

The challenge of building AQP system is to design effec-

tive offline indexes or summaries (by analyzing data on dis-

tributed systems), devising effective query plan during the

query-time and finding effective algorithms. We will discuss

well-known AQP systems in Sect. 6.

Contribution In this paper, we survey a wide spectrum of

work on approximate query processing as shown in Fig. 2.

We review both online aggregation and offline synopses

techniques, summarize the challenges and provide the tech-

niques to address these challenges. We also review existing

AQP systems and AQP techniques on complex data types

and new applications. We provide emerging challenges and

opportunities in AQP.

Paper Structure The structure of this paper is organized

as follows: We first introduce cutting-edge online AQP

methods in Sect. 2 and offline AQP methods in Sect. 3. We

study how to extend AQP to support complex data in Sect. 4

and support new AQP applications in Sect. 5. Besides, we

review well-known AQP systems in Sect. 6 and provide

emerging challenges of AQP in Sect. 7. Finally we conclude

the paper in Sect. 8.

Difference with Existing Surveys Although there are some

surveys [29, 78], they only focused on some aspects of AQP,

but did not give a complete survey and did not cover most

recent works. Cormode et al. [29] surveyed offline synopses

of AQP including Sample, Histogram, Wavelet and

Sketch [29]. However, it only surveyed the offline synop-

ses but did not cover online AQP techniques. Besides, all

the new techniques after 2012 were not surveyed and ana-

lyzed. There were three keynotes on AQP at SIGMOD 2017.

Surajit focused on online aggregation [22]. Mozafari [78]

emphasized on new challenges and opportunities, includ-

ing interface, effective query planning and the theories of

database learning. Tim Krastra focused on their newly built

interactive data exploration system IDEA [66].

382 K. Li, G. Li

1 3

2 Online Aggregation Methods

In this section, we survey the online AQP methods. The

basic idea is to first select a sample S and then use S to esti-

mate the results. We introduce how to select S in Sect. 2.1

and then discuss how to use S to estimate the error bound

in Sect. 2.2. We present how to support multiple tables in

Sect. 2.3 and how to work in distributed setting in Sect. 2.4.

Finally, we discuss other online AQP techniques in Sect. 2.5.

2.1 Online Aggregation

Online Query Sampling techniques are widely used to sup-

port approximate query processing [84, 101]. Given a time

constraint in an AQP query, a sample size can be computed

by estimating how many samples the system can process

within the time constraint. Then, the sampling techniques

can be used to get a set of samples and the selected samples

are used to answer the future queries. As the distribution

of many real-world datasets are proved to be uniform-like

distribution and Gaussian-like distribution, early online sam-

pling methods use random sampling to select samples [83,

84, 88, 101]. Note that given the data-distribution assump-

tion and random sampling can provide users with a confi-

dence interval in most cases. For example, Case 2 selects

more tuples than Case 1 and thus has a tighter confidence

interval than Case 1. As many datasets satisfy the assump-

tion, most existing systems support the sampling operator,

such as Oracle and Spark SQL (see [22] for details).

The limitation of uniform sampling is that it has poor

quality on skewed data. For example, it may not select sam-

ples for rare groups that have few tuples. In Case 1, if we

want to know the average profit of the orders from c
4
 instead

of c
1
 , as there are only 3 tuples for customer c

4
 in the dataset,

randomly sampling 4 tuples may fail to select any tuple of c
4
.

Online Interactive Query Online aggregation (OLA) was

proposed in [52], which interactively refines the approximate

results during the query processing. OLA provides users

with an interface to stop the query execution when users are

satisfied with the current answers. The accuracy becomes

higher as OLA accesses more tuples in the database system.

The system randomly selects tuples with or without replace-

ment and computes an approximation based on the tuples

seen so far. Then, it incrementally selects more tuples in

every iteration. If the sample is bigger, the system can get a

Fig. 2 AQP overview

Table 1 Comparison of existing

AQP methods.

× Not support,
√

 support such case

Query Pre-computed information Skewed data

��� No Index or data distribu-

tion

×

���� Queries or QCS Synopses
√

������� Queries Synopses
√

��������� Queries Synopses
√

������ Queries Synopses
√

383Approximate Query Processing: What is New and Where to Go?

1 3

more accurate answer and tighter confidence interval. When

users are satisfied with the current answer or impatient to

wait, they stop the query processing. For example, consid-

ering Case 2, the system selects o1, o9, o12 in the first sec-

ond and computes an approximation, say [1530.0 − 360.0,

1530.0 + 360.0] with a confidence of 90%. Then it samples

three more tuples in every second and in the fourth second,

the system totally selects 12 tuples from o
1
 to o

12
 and the

answer is [1392.4 − 329.4, 1392.4 + 329.4] with a confi-

dence of 90%. If the analyst is satisfied with the current

answer, she can stop the query processing.

Many techniques are proposed to accelerate the online

query processing. For example, Pf-ola [93] aims to make

online aggregation in parallel where the estimated results

and corresponding confidence bounds are continuously

refined based on the selected samples during the query

processing. These parallel techniques will avoid wasting

extra time for error estimation during the query processing.

G-OLA [111] is an online aggregation architecture which

can deal with arbitrarily nested aggregates using efficient

delta maintenance techniques. G-OLA randomly partitions

the dataset into smaller uniform batches, by computing a

“delta update” [111] on each mini-batch of data. Then by

carefully partitioning the intermediate results of nested que-

ries, it can iteratively refine the query results.

2.2 Error Estimation

The confidence interval is widely used to estimate the result

quality in most of the random-sampling methods [2], where

each confidence interval gives users a numerical interval

and a corresponding confidence based on the statistical

theory. Initially, a set S of samples is computed based on

sampling techniques in Sect. 2.1. Then if the data distribu-

tion is known in advance, S can be utilized to estimate the

distribution and then the error can be estimated based on the

distribution (Sect. 2.2.1). If the data distribution is unknown,

it needs to first estimate the distribution of sampling data and

then estimate the error (Sect. 2.2.2).

2.2.1 Error Estimation with Known Distribution

For real-world datasets, many datasets follow the normal

distribution and many existing studies also assume that the

data follows normal distribution. If we have a-priori knowl-

edge about the data distribution or have a big enough sam-

ple to get the distribution, then this is a classical statistical

problem—parameter estimation. We take computing the

aggregation AVG(S) on a normal distribution as an example

(see Figure 3).

Known Variance If we know the variance of the distribu-

tion, we can easily use the Gaussian distribution model N(� ,

�
2) to compute the confidence interval easily as shown in the

left hand of Fig. 3.

Unknown Variance If we do not know the variance, we

can formalize it as a t-distribution, then we can compute the

confidence interval as shown in the right hand of Fig. 3. In

such case, the bigger the sample size, the more information

we will maintain about the population, then we can compute

a smaller interval or higher confidence, i.e., when the sample

size n is bigger, the length of confidence interval 2 ∗ �
S

n
√

n

will be smaller where S
n
 is the standard deviation and � is a

predefined statistical parameter, and thus, the answer will be

more accurate.

2.2.2 Error Estimation without Known Distribution

To estimate the distribution of AGG (S), there are mainly

three methods, Bootstrap, closed-form estimate, and exam-

ple, when computing SUM.

Bootstrap It aims to get multiple samples. For each sam-

ple S, the estimated values of AGG (S) can be computed and

these values compose a distribution which can be used to

estimate the aggregation result. Then a confidence interval

Fig. 3 Example of confidence

interval

384 K. Li, G. Li

1 3

is computed by Pr([���(�) − l, ���(�) + l])=c to estimate

the aggregation answer where 2l is the length of confidence

interval, Pr is an estimation function (e.g., probability den-

sity function) of the distribution of AGG (S), and c is the

confidence. Then the challenge is how to estimate AGG (S)

and the distribution of AGG (S).

To know the distribution of AGG (S), we can arbitrarily

sample many times (e.g., 10,000) from the population D,

and the inferential statistics of the sample can be used to

estimate the sampling distribution of AGG (S), e.g., standard

error is an estimate of the standard deviation of that distri-

bution. However, it is too expensive to sample many times

from the whole population D, or even infeasible because

the population is unknown and there is only one sample S.

To address this problem, resampling such as Bootstrap is

proposed to estimate the result error [82]. The concept of

Bootstrap is well known in statistics for more than half a

century, which has been used to estimate error in relational

databases [90]. Recently Bootstrap is borrowed to estimate

errors of AQP [113].

The key idea of Bootstrap is that, in order to use S to

replace D, one can also draw samples from S instead of D

to compose the distribution of AGG (S). However, if it draws

samples from S for too many times, it is still expensive. In

practice, it aims to draw reasonable number of resamples,

e.g., 100. For example, in Fig. 4a, we draw the samples from

S for k times and compute a distribution, then we can com-

pute a confidence interval based on the bootstrap distribu-

tion. Interested readers are referred to [53] for more details

on Bootstrap.

Bootstrap has no assumption on the data distribution and

is suitable for most of the queries. However, Bootstrap has

two limitations. First, most Bootstrap methods need thou-

sands of resampling, and it is time consuming for resampling

too many times. Second, Bootstrap may fail to estimate the

sampling distribution when the aggregation function is sen-

sitive to rare group (e.g., MAX) or the size of S is too small.

Closed-form Estimation In probability theory, the cen-

tral-limit theorem (CLT) establishes that, for independ-

ent random variables, the normalized sum tends toward a

normal distribution (informally a “bell curve”) even if the

original variables themselves are not normally distributed.1

Thus, the distribution of AGG (S) can be approximated

as N(���(�), �2) , where � can be computed by the mean

squared error Var(S) [20]. This method is known as closed-

form estimation [6] as shown in Fig. 4b. Computing Var(S)

for a small dataset S will be faster than the brute-force resa-

mpling. However, this method can only work for COUNT,

SUM, AVG, VARIANCE but fail to deal with the queries

whose variance is hard to compute such as MAX, MIN or

user-defined functions.

Large Deviation Bounds A large deviation bound [75]

wants to know the worst case of the confidence interval by

estimating a value w.r.t. the “sensitivity to outliers.” This

value mainly depends on the aggregation function AGG . For

example, when computing SUM, the bound will be MAX and

MIN as shown Fig. 4. In practice, it computes a bound much

bigger than the real width of the sampling distribution.

2.3 Online Aggreagtion on Multiple Tables

Many OLAP queries contain join predicates. For example,

if an analyst wants to know the average profit of the orders

from the MA state in Fig. 1, she should join the tables O,

C and ST.

One major challenge of approximate online aggrega-

tion of multiple tables is that the join process is complex

and time consuming, and if the dataset is too big, then the

join operation takes millions of computation in real-world

applications.

(a) (b) (c)

Fig. 4 Example of Error Estimations

1 https ://en.wikip edia.org/wiki/.

https://en.wikipedia.org/wiki/

385Approximate Query Processing: What is New and Where to Go?

1 3

OLA can be extended to support multiple tables on rela-

tional databases [49, 72]. Especially, the join queries are

hard to predict in advance, and OLA is a typical method

to solve such problem [23]. A naive method is to first join

all of the tables and then using OLA on the joined tables to

estimate the result. Obviously this method is too expensive

since it is costly to join the tables. To address this prob-

lem, “ripple join” [32, 47, 57] selects a sample on each of

tables and blindly join them; however, many tuples cannot

be joined and some groups will be missed. Another idea is

to generate a sample of the first table in a join pipeline and

then select samples for other tables following join opera-

tions [3]. But it is not only time consuming but also performs

bad if generating a bad sample for the first table. A most

recent study proposes “Wander Join” [70–72] using online

aggregation via random walk which is effective for the join

operator. In a random walk process, it blindly takes tuples in

different tables in the input dataset and aims to make them

easily joined and get the join output. “Wander Join” designs

algorithms to select the tuples which would be joined in

every next step rather than blind “ripple join” [32, 47, 57].

For example, if it randomly selects samples from O, C and

ST, it may miss the tuple st
1
 in ST and fail to meet the query

condition mentioned above. Instead, Wander Join first finds

st
1
 in ST and randomly selects tuples that can be joined in

C, e.g., c
1
 , and randomly selects tuples in O, then it can join

these tuples and compute an approximation of the profit of

the orders from the MA state. However, the generation of

such joined output is very expensive. To find more effective

OLA methods to support join operator in distributed setting

is still an open problem.

Note that if the join size is known in advance, we can

get a better join plan. However, it is too expensive to com-

pute the exact join size and we should estimate the join size.

Existing techniques aim to join the synopses of each of the

tables to estimate the join size and reduce the time of scan-

ning the whole dataset [104]. A most recent study proposes

a novel two-level sampling [104] by combining “independ-

ent Bernoulli sampling”, “Correlated sampling” and End-

biased sampling. One can use two-level sampling to estimate

join size more accurately which outperforms other existing

studies.

2.4 Online AQP in Distributed Setting

In many applications, the data is so large and have to be

stored in a distributed cluster. For complex queries with

join conditions and nested subqueries, we need to scan the

dataset multiple times. Especially for join, it may need to

transmit the data across cluster nodes, leading to high com-

munication cost. For example, a user would like to know the

origin place of the brands of the top-5 most popular smart

phones in Amazon. To answer the query, the system should

scan the tables of orders, brands and origins which are stored

in distributed servers. It needs to scan the tables many times

to join the tables. Moreover, it may also need to join the

tables across different nodes.

There are two challenges of AQP in distributed setting.

The first is to avoid scanning the data multiple times to

reduce the I/O cost. The second is to reduce the communica-

tion cost among distributed nodes. Early sampling work [48]

focuses on finding efficient sampling methods in distributed

setting. However, it is proved to be inefficient when the

predicates in a query are complex. Then, EARL[69](Early

Accurate Result Library) generates online uniform samples

from HDFS and uses Bootstrap to incrementally evalu-

ate the accuracy computed so far. It can support complex

queries well; however, it does not consider the skewness

of dataset distribution. ApproxHadoop [44] assumes that

the datasets are uniformly distributed in clusters but if the

sub-datasets are not uniformly distributed, it cannot work

well because random sampling on the cluster will generate

a biased sample. To overcome these limitations, Sapprox

[114] constructs probabilistic SegMap (i.e., collect the

distribution of subsets) of segments offline and uses these

results to generate online sampling plan.

Quickr is proposed to get samples in a cluster [60, 61],

which can select a good sampling plan. It combines three

sample operators together, uniform sampler, distinct sam-

pler (selecting samples for each distinct group) and universal

sampler (selecting samples for join results among multiple

tables). By lazily sampling in the first pass, ‘Quickr” scans

the dataset spreading over clusters efficiently. To estimate

the error, it handles different aggregate types using different

strategies. (1) If a sampler immediately precedes the aggre-

gation and group by operator, it extends the well-known

Horvitz–Thompson (HT) to estimate the exact answer and

uses central-limit theorem to compute the confidence inter-

val. (2) otherwise, it uses the theory of “dominance transitiv-

ity” to transfer to case (1).

2.5 Other Online AQP Methods

2.5.1 Database Learning

In traditional database systems, previous query answers are

not used to process future queries. If we can use previous

query results to answer future queries, we can efficiently

estimate an answer. Motivated by such assumption, a new

AQP method called “Database Learning” (DBL) has been

proposed [87].

DBL uses statistical features (e.g., computing the corre-

lation parameters and covariances between all pairs of past

queries snippets) of the dataset to train a model to repre-

sent underlying data distribution. When a sample is used

to answer the queries, it is hard to know the distribution of

386 K. Li, G. Li

1 3

the whole data. However, with the help of previous query

answers, one can know more about the distribution and then

infer answers of new queries based on trained statistical

model. The more precise the model, the less need for actual

data, the smaller the sample, and consequently, the faster

the response time. By increasing previous queries, one can

use smaller sample and the system will become smarter and

faster to process queries.

Note that DBL is different from using pre-computed

views to answer new queries or QCS-based offline synopses

which generate summaries for visited query columns. Views

aim to use pre-computed results to exactly or approximately

answer new queries. For example, if we know the query

result of the average profit of orders from the MA state in

Fig. 1, we can exactly answer the average profit of orders

from c
1
 and c

4
 and approximately answer the average profit

of orders from males in MA. A QCS-based offline synopses

shown in Case 3 is based on the assumption on query col-

umn sets. However, during the query process, DBL learns

model from past observations of past queries results (i.e.,

training sets) and trains a model, and when a query comes,

it uses the trained model to infer the query result. For exam-

ple, if we know the results of past queries of the profit of

orders from c1, c2, c3, c4 in the MA state and NY state, we

can use the results as training set to train a model of rela-

tion R. When we need to know the profit of orders from the

WA state, we can sample tuples from O and use the trained

model to compute the approximation result.

The limitation of DBL is that if the past query result is not

accurate, then the quality of a training set of an online learn-

ing become worse. Thus, it will become worse and worse

and finally it may mislead the approximate result.

2.5.2 Approximate Hardware

As the computation of a database system is supported by

hardwares, some work aims to design new types of hard-

wares to trade-off the efficiency and accuracy of queries on

database, reduce the energy usage and increase energy effi-

ciency. Comparing with conventional AQP techniques, this

type of technique does not need any pre-computed synopses

or online approximate query scheme. In this subsection, we

introduce database engines using “Approximate hardware”

which mainly consists of “Approximate CPU”, “Approxi-

mate Memory” and “Hybrid Hardware” and new applica-

tions of such techniques as well.

Approximate CPU “Approximate CPU” uses just part of

the resources of CPU to accelerate the processing of cal-

culation and saving a lot of electric energy, e.g., float com-

puting. For example, a floating-point arithmetic-reduced

method [103] explores ways of reducing floating-point

computing power consumption by minimizing the bitwidth

representation of floating-point data. Analyses of several

programs that manipulate low-resolution human sensory

data show that these programs achieve a significant reduc-

tion in bitwidth while not sacrificing accuracy. Enerj [96]

is developed as an extension of Java that adds approximate

data types. Enerj also proposes a hardware architecture

that offers explicit approximate storage and computation.

When using Enerj to program, one can use approximate

data types for the computations that only need approxima-

tion instead of exact answers. Several applications to Enerj

show that these extensions are expressive and effective

because Enerj uses just a small number of annotations

but leads to significant potential energy savings at expense

of very little accuracy.

Approximate Storage Sampson et al. [97] propose two

mechanisms to do approximation on solid-state storage. (1)

The first allows errors in multi-level cells by reducing the

number of programming pulses used to write them. (2) The

second mechanism mitigates wear-out failures and extends

memory endurance by mapping approximate data onto

blocks that have exhausted the hardware error correction

resources. It is claimed that [97] can improve the perfor-

mance, lifetime, or density of solid-state memories by con-

ducting some simulation experiments.

Hybrid Hardware ApproxiDB [51] is the first hybrid

data management system based on a hybrid hardware includ-

ing approximate hardware and precise hardware, and thus,

it not only supports approximate query processing but also

can return an exact answer. When the system can answer the

query with an exact answer within the time constraints, it

uses the precise hardware; otherwise, it uses the approximate

hardware. ApproxiDB [51] is the first work that proposes

the concept of “Approximate Hardware” which summarizes

existing “Approximate Hardware” works and concludes the

challenge and opportunity of “Approximate Hardware” well.

Applications of Approximate Hardware There have been

many applications using “Approximate hardware”. For

example, Chen et al. [25] conduct a study of three common

sorting algorithms on approximate storage. They propose

an approximate-refine execution mechanism to improve the

performance of sorting algorithms on the hybrid storage sys-

tem to produce precise results. Moreover, a green database

framework is proposed in [13] which helps the query opti-

mizer select plans that meet the high-performance require-

ments with lower energy during query processing based on

the resource consumption patterns.

2.5.3 Other Works

DAQ DAQ [92] is a variant of OLA which borrows ideas

from probabilistic database and iteratively uses the high-

order bits of numerical data to compute the approximation.

For example, a DAQ scheme stores numbers in column

PROFIT in Fig. 1 using “Bitsliced-Index” [92]. If we query

387Approximate Query Processing: What is New and Where to Go?

1 3

MAX on the column PROFIT, DAQ checks the first bit of

the numbers in the 16 tuples of O, if there is only one tuple

whose first bit is ‘1’, we get the exact answer rather than

travel all the bits (e.g., 32 bits); otherwise, we check the

next bit until finding the maximum one. Unfortunately, such

technique can only support simple queries over numerical

columns (such as SUM and AVG) but cannot support general

SQL queries.

Sample+Seek As most of previous OLA algorithms can-

not work well for the rare groups during online sampling,

“sample+seek” [31] proposes to design different plans

for big groups and rare groups, i.e., “sample” (uniformly or

measure-biased sampling) for big group and “seek” (build-

ing index) for rare groups. This work introduces a new pre-

cision metric, called distribution precision to provide error

guarantee for queries. This work also provides a measure-

biased sampling method to support any aggregation that can

be estimated from random samples within a user-given error

bound.

Incremental AQP Galakatos et al. [42] propose an AQP

formulation that treats aggregate query answers as random

variables to enable reusing of approximate results with

reasoning about error propagation across overlapping que-

ries. When a new query is coming, it finds previous queries

which have common attributes and query conditions with the

query, thus uses these results to refine the approximation. To

support rare groups, this work presents a low-overhead par-

tial index and corresponding rewriting rules based on prob-

ability model to response the queries in an interactive speed.

3 O�ine Methods

If the query workload will not dynamically change, we can

build offline synopses based on previous query workload

and use these synopses to answer future queries efficiently.

In this section, we survey four main synopses, pre-computed

samples (PSAQ), Histogram, Wavelets and Sketch.

Then, we introduce other recent offline methods with

bounded guarantees.

3.1 Pre-computed Samples

Using offline samples as synopses for AQP has a history

of 30 years in the database research community [84]. A

well-known method is pre-computed sampling-based AQP,

denoted as PSAQ, which generates samples offline and uses

these samples to answer online queries. Note that PSAQ has

an assumption that the query workload is relatively stable,

i.e., the queries will not be dynamically changed.

Query-Based PSAQ A naive method builds a synopsis for

each query in the workload and uses the synopsis to answer

the future queries. For example, given the query in Case 1

which computes the aggregation result for customer c
1
 , we

can build a synopsis using the samples of this query, e.g.,

o1, o3 . Then, we can use the synopsis to answer the future

queries which contain the same column but may use differ-

ent aggregation functions. A challenge here is given a space

budget, how to select the queries to build offline synopsis.

One can also merge synopses of different queries to reduce

the synopsis size. This method has two limitations. First, if

the query workload is large, this method will generate many

synopses. Second, the synopsis of a query can only be used

to answer this query but cannot answer other queries. For

example, it can only answer queries for customer c
1
 but can-

not answer queries for other customers.

QCS-Based PSAQ To address the above problems, query

column set (QCS)-based PSAQ is proposed [7]. The column

set of a query is the set of all columns in the query (includ-

ing select, where and group clauses). This method groups

the queries based on the column sets in the queries, and

the queries with the same column set will be in the same

group. Then for each group, the method selects samples for

the columns in the group. Next it can use the synopsis to

answer queries with the same QCS (or the queries whose

columns are contained in the QCS). For example, suppose

many queries contain columns CustomerID and Profit in

the query workload, it does not need to build samples for

each of the queries. Instead this method builds a sample

for column (CustomerID, Profit), and thus can save a lot

of space. BlinkDB [7] studies how to select samples for

each QCS and uses the samples to answer online queries in

distributed file system. BlinkDB also tries to share samples

among different QCSs. For example, a sample for column

(CustomerID, Profit) can be used to answer the queries for

column CustomerID.

Sample Selection Comparing with online sampling,

offline sampling can spend more time to select high-

quality samples. Besides, offline methods can use a-priori

knowledge of the whole dataset and they also need to store

pre-computed samples. Note that the size of groups and

the values in each group may be highly skewed, making

many traditional uniform-sampling-based methods unre-

liable. Some stratified sampling(AQUA [2], START [21],

BlinkDB [7], Babcock [11]) are proposed to deal with

sparse data. The common idea of these work is to select more

tuples for big groups meanwhile selecting enough tuples in

rare groups (which may be lost in a random sample).

Error Analysis To provide high confidence, PSAQ also

uses closed-form estimation and Bootstrap [6, 90, 113]

to diagnose the results by using multiple samples via resa-

mpling. The method for error analysis is similar to online

sampling, but they can spend more time to analyze the errors

by thousands of resampling offline.

388 K. Li, G. Li

1 3

Multiple Tables Supporting queries with join predicates is

also widely studied [3]. The techniques are similar to those

in online sampling.

3.2 Histograms

Histogram summarizes a dataset and divides it into multi-

ple buckets based on values in a numerical column [88]. For

each bucket, it computes the most representative statistics

which can be used to reconstruct the value of the whole

dataset in this bucket, e.g., store the lower and upper bound

of this bucket and count the numbers in this bucket. Histo-

gram has been widely studied and incorporated into com-

mercial relational databases which can be easily constructed

and used for estimation [28, 91]. Histograms include equi-

depth and equi-width histograms. The former has the same

bucket size and the latter has the same bucket width (i.e.,

the difference of the maximal value and minimal value in

each bucket). For example, the numbers of column Profit

in O is {1120, 1170, 1230, 1250, 1290, 1350, 1417, 1460,

1470, 1560, 1630, 1673, 1732, 1890, 1983, 2000}, an equi-

width Histogram [29] will split the numbers into buckets

with the same length (e.g., 200). Then it can be divided

into {(1100, 1300], 5}, {(1300, 1500], 4}, {(1500, 1700],

3}, {(1700, 1900], 2} and {(1900, 2100], 2}. For a query

with the SUM function on the attribute, one can compute
1100∗5+1300∗4+1500∗3+1700∗2+1900∗2

16
= 1400.0 to approximate the

answer. An equi-depth histogram selects bucket boundaries

so that each bucket contains the same number of data points.

For example, if the bucket depth is 4, the column Profit in O

will be divided into {(1100, 1250]}, {(1250, 1460]}, {(1460,

1700]} and {(1700, 2000]}.

The major challenge of a Histogram method is to find

appropriate algorithms to decide the buckets. The bucket-

ing strategy should consider both the number of buckets

(the less the better) and accuracy (the higher the better).

Besides equi-width and equi-depth [29], many other types of

Histograms such as Singleton-Bucket Histogram [54,

55] and Maxdiff Histogram [91] are also widely studied.

More complex methods have been designed to find bucket-

ing scheme to trade-off efficiency and accuracy. A recent

work proposed a near-optimal algorithms based on His-

togram for describing the distribution of dataset [1]. In

addition, multi-dimensional Histograms are proposed

to support different applications. For example, Digith-

ist [100] combines multi-dimensional, one-dimensional

Histograms and grids to provide a tightly error-bounded

Histogram for multi-dimensional data.

The drawback of Histogram that it only supports

numerical columns and cannot support complex SQL que-

ries accurately, e.g., multiple attributes range query. Moreo-

ver, it will cost too much space to store a synopsis for each

column. The advantage is that Histogram can process

queries instantly and has quality guarantees.

3.3 Wavelets

Wavelet is conceptually close to the Histogram.

Wavelet transforms the data and aims to compress the

most expressive features in a Wavelet domain but His-

togram simply produces buckets that are subset of the orig-

inal data. For example, if the numbers in column C in T are

{1, 3, 4, 4}, a Haar-wavelet transform (HWT) decomposes it

as {2, 4} with the loss − 1, 0, then HWT compresses it again

as {3} with the loss − 1. By storing 3, {− 1}, {− 1, 0}, we

can decompress it to get the original data set. By storing 3,

{− 1}, we can approximately represent the original dataset

as {2, 2, 4, 4} with loss 1, − 1, 0, 0. Then, if we query SUM

of this numerical column, we can decompress it to get {2, 2,

4, 4} and use it to compute the value instead of {1, 3, 4, 4}.

There are many variants of Wavelet that have been widely

studied in recent years. HWT is the most widely studied

Wavelet, which selects the largest HWT statistics in a syn-

opsis that provides the L
2
 error for data decompression [99].

Recent work focuses more on Non-Euclidean Wavelet [46,

63–65]. Mytilinis et al. [80] developed parallel algorithms

to generate Wavelets within an error bound.

3.4 Sketches

Sketch [43] models a numerical column as a vector or

matrix and transforms the data by a fixed matrix to con-

struct the synopsis. For example, the well-known bloom

filter can be seen as a special case of Sketch which maps

data into a vector of bits. Sketch is not suitable for gen-

eral relational database but performs well when dealing with

streaming data where the sketch summary must continually

be updated quickly and compactly. Sketch is not only

fast but also easy to parallelize and can provide the high

approximation accuracy. Sketch has two main categories.

The first is “Frequency-based sketch” [14] which focuses

on the frequency distribution of the original dataset. The

second is “Distinct-value-based sketch” [41] which counts

the distinct values in a given multi-set. Different from other

synopsis,Sketch has also been used successfully to esti-

mate the answers of COUNT and DISTINCT queries [29].

For example, for COUNT queries, a sketch may initial-

ize a matrix C with d × w(d and w should be tuned to proper

values) zeros, for each item t in the data stream, for each inte-

ger number j from 1 to d, it increases �[j, hj(t)] by 1 where hj

is a hash function. Then, when a COUNT query comes and it

wants to count the number of t in a data stream, it first sets

the current answer a as the biggest number in matrix C, and

then it iteratively checks whether �[j, hj(t)] ≤ a from 1 to d.

389Approximate Query Processing: What is New and Where to Go?

1 3

If so, a = �[j, hj(t)] . After d iterations, it can find the exact

answer a.

To support distributed and streaming data, a most recent

Sketch technique [24] formulates a bias-aware linear

sketching and recovery problem, and proposes algorithms

to generalize the widely used Count-Sketch and Count-

Median algorithms. Due to its linearity, it can be easily

implemented in the streaming and distributed computation

models. [89] proposes a Count-Min-Log Sketch method

to improve the average relative error of Count-Min-Sketch

within bounded storage via logarithm-based, approximate

counters instead of linear counters. CQF [85] proposes the

counting quotient filter (CQF) to support general comput-

ing operators of approximate membership query. These

techniques can be easily extended into database systems.

Sketch can be used in many other fields, e.g.,

NLP [45], since Sketch can be used to count the fre-

quency of words, conduct Pseudo-Words evaluation, find

semantic orientation of a word, and compute distributional

similarity in NLP domain. Sketch is also good at dealing

with real-time system such as financial data streams where

the data dynamically changes. More details of different

types of Sketch can be found in [27, 29].

3.5 Materialized Views

Materialized views are also related to AQP, which gener-

ates views of some given queries and utilizes the views to

answer future queries. The difference is that materialized

views maintain all the data but not some samples. The

materialized views are lossless, but the synopses usually

have errors.

Materialized Views A materialized view [50, 67] is a pre-

computed query result for some important query. When the

query is stable over time, we can simply store the results

of frequently used queries and use them to support future

queries. The pre-computed views can be used to answer

future queries (as exact answers of the queries or a subset

of the answers) which have been widely used in previous

query workload [8]. The most important problem here is

how to use views to rewrite new queries [81]. The technique

of materialized views still needs to be studied. For exam-

ple, pre-computing views too much will waste resources a

lot. Armbrust et al. [10] describe a scale-independent view

selection and maintenance system, which uses novel static

analysis techniques that ensure the created views will not

become scaling bottlenecks. Moreover, a “materialized sam-

ple view” [58] is a materialized sample from the query result

for some important queries which are also widely studied.

Data Cubes A data cube stores statistics for specific

queries which pre-compute a list of values in the form

g(1), g(2),… , g(M) where g is a function. For example,

values in a numerical column are {12, 13 ,20, 18, 10} and

values in ID column are {1, 2, 2, 3, 1}. If the query is SUM,

g is the function of computing frequency. Then a data cube

for SUM on table T is {1:22, 2:33, 3:18}. It can support many

complex queries, e.g., WHERE clause. Many studies on dif-

ferent types of data cubes have been studied for supporting

OLAP. A recent work [108] provides a complete set of tech-

niques for probabilistic data cubes. Cube can also be used on

ad-hoc interactive analytics over large datasets in distributed

clusters [56, 59] and exploring machine learning results [9].

3.6 Other O�ine Methods

As many systems require high accuracy, high speed and lim-

ited resource, existing work aims to find effective AQP tech-

niques for providing an approximate answer within bounded

error, bounded resource, or bounded response time.

3.6.1 Bounded Resources

Approximate query processing with bounded resources

mean that the storage or memory is limited so that only a

limited number of records can be used to approximately

answer the query. Using offline computing to help decide

the query plan and accelerate query processing are much

practical for resource-bounded processing. For example,

Cule et al. [30] studied the space-bounded query approxi-

mation. Fan et al. [16–18, 35, 36, 38] proposed a series of

work based on the newly proposed concept “bounded eval-

uability,” which can answer a specific class of queries by

accessing only a subset of the whole dataset with bounded

number of tuples with the help of indices built on applica-

tion-induced cardinality constraints.

[35–37] make theoretical analyses on how to utilize a

small subset to support queries over the whole set. [37] is a

step toward understanding the tractability of queries in the

context of big data by providing a formal foundation in terms

of computational complexity. In [35], authors aim to study

the bounded evaluability which can help decide the query

plan, i.e., compute the exact answers or compute approxi-

mate answer using envelopes and bounded query specializa-

tion. [36] is the first work to formalize the notion of scale

independence and study its properties. When a query Q is

proved to be scale independent, the performance of process-

ing query Q will not decrease when the scale of dataset D

becomes bigger. [38] mainly focuses on how to implement

these works on big graphs, which mainly provides approxi-

mate query processing algorithms for resource-bounded

strong simulation, resource-bounded subgraph queries and

resource-bounded reachability on big graph within bounded

resources under access constraints. The authors evaluate the

accuracy of approximate query processing on big graph data

and use a small subgraph to answer graph queries within a

390 K. Li, G. Li

1 3

given bound which is a given ratio of the scale of subgraph

and the whole graph.

[16, 18, 36] propose some effective algorithms to imple-

ment the techniques in [35] in real applications. [16] pro-

vides effective syntax for answering whether it is still pos-

sible to make practical use of bounded evaluability for

answering relational algebra queries which is remained

to be an open question, and it shows how to integrate the

concept of “bounded evaluable” into real-world DBMS

systems. [18] investigates effectively bounded conjunc-

tive queries under an access schema, studies complexity

of such problem and designs heuristic algorithms, which

refine the concept of “scale independence” in [36].

Based on previous works, Fan et al. build resource-

bounded scheme BEAS (Boundedly Evaluable Sql) [17]

for querying relations within a given sampling ratio by

either computing the exact answer if doable or giving an

approximation by accessing no more than bounded num-

bers of tuples using “bounded evaluable” theories dis-

cussed above. Its novelty consists of access templates, a

new accuracy measure, a resource-bounded approximation

scheme and resource-bounded algorithms for answering

most general queries with a deterministic accuracy lower

bound. BEAS has been implemented on many industry

systems.

3.6.2 Bounded Error and Bounded Time

Many systems need high precision which calls for bounded

error and bounded time. [112] combines the strengths of

closed-form analytic error and analytical Bootstrap method

to provide bounded error for AQP systems. For sparse data,

Yan et al. [109] use error-bounded stratified sampling to

reduce the sample size. This technique relies on the insight

that we can reduce the sampling rate with the knowledge of

data distributions.

4 AQP on Complex Data

Besides relational data, many other complex data also

become very large, and AQP techniques [106] can be

extended to deal with these data. In this section, we take

spatial data and trajectory data as examples to show how to

enable AQP on these data.

4.1 AQP on Spatial Data

Smartphones and other mobile devices have generated huge

amount of spatial and spatio-temporal data. There are many

applications that require to support OLAP queries on spatial

data, e.g., analyzing the number of cars in a business zone to

predict traffic jam. The importance of spatial data analysis

and aggregations is increasing and interactive exploration

over these data has become a challenge. However, the cost

of spatial data analysis and aggregation using the entire data

is too expensive, especially on large data sets, which cannot

meet the requirement of interactive spatial data exploration.

Even traditional techniques such as R-tree and Grid index

cannot support such big data either. Therefore, it calls for

effective AQP techniques on spatial data.

4.1.1 Online Spatial AQP

An online AQP method on spatial data exploration is pro-

posed in [98], which provides efficient spatial sampling for

large spatial datasets. It models the problem of spatial sam-

pling of large geographical tables as an integer programming

formula and proposes a more efficient solution based on the

spatial tree traversal of depth first search. First, it splits the

geographical tables into subsets and builds a spatial tree to

retrieve these data. When a query is coming, it travels the

tree using depth first search and selects some samples to

process the query.

Then, online aggregation on spatial data is proposed

in [106]. It proposes novel indexing techniques, LS-Tree and

RS-Tree which can retrieve the spatial data more efficiently.

In [106], the algorithm travels the index tree from the root

node, as getting more and more samples, various spatial

analytics and aggregations with estimators can be applied

in an online, interactive manner. In this way, it becomes

more accurate and more reliable over time. Different from

previous work, it considers the difference between “query-

first-then sample” (which first finds the results satisfying

the query condition and then get some samples to answer

the query) and “sample-first-then-query.” (Which first gets

some samples and uses the samples satisfying the query con-

dition to answer the query.) These algorithms are also suit-

able for both memory-based and disk-resident data sets and

scales well toward different query and sample sizes. More

importantly, the structure in [106] is dynamic, so that it can

effectively handle insertions and deletions of the dataset.

4.1.2 O�ine Spatial AQP

Queries on spatial data can also be quickly and approxi-

mately answered using offline techniques such as data sum-

maries, sketches, and signatures. However, the drawback of

these methods is that the accuracy is predetermined and will

not improve over time. For some spatial applications, most

queries are stable and we can compute results of these que-

ries in advance. Thus, summary indexing techniques [110]

can be used to answer queries on spatial databases and these

391Approximate Query Processing: What is New and Where to Go?

1 3

spatial indexing techniques only require linear space and

extract summaries with an optimal or near-optimal query

cost.

Most methods of spatial query approximation rely on

quantitative usage, i.e., metric (distance based) informa-

tion. And only a few methods consider qualitative infor-

mation, such as topological relations and cardinal spatial

relations. As Sketch is proved to be effective on geo-

graphic information systems, it is further investigated in

the background of spatial AQP. Based on these consid-

erations, [12] provides new types of queries that rely on

qualitative relationships and discusses how to define query

processing algorithms in metric space to handle qualitative

information. More recent discussions of spatial databases

can be found in [34].

4.2 AQP on Trajectory Data

The rapid development of location and acquisition technol-

ogy promotes the generation of trajectory data that track

the trajectory of a moving object, where each trajectory is

a sequence of geo-located points. A wide range of appli-

cations can benefit from trajectory data mining, which

brings unprecedented opportunities. In modern systems,

there are various applications of trajectory data mining,

e.g., frequent route discovery, location prediction, and

mobile behavior analysis. The two key operations of tra-

jectory data management are range query (e.g., finding

all the trajectories which pass some given spatial ranges)

and KNN trajectory matching (e.g., finding all the top-k

nearest neighborhood trajectories of a given trajectory).

Note that it is rather costly to support the two queries for

large-scale trajectory data, and traditional R-tree or Grid

index fails to deal with such big data, and moreover, they

cannot meet the high-performance requirement of online

trajectory aggregation.

An inverted index for spatiotemporal and trajectory data

[73] is proposed which uses random exponential sampling

(RIS) algorithms to estimate the answers with the guaranteed

error bounds. It simply splits the trajectory into 3-degree

grids and randomly samples some trajectories to answer the

COUNT query. In order to further improve the scalability of

the system, [73] extended the parallel random index sam-

pling (CRIS) algorithm of the RIS algorithm to deal with

multiple track aggregation queries to reduce time and space

queries at the same time. These techniques are applied to

the actual large-scale user trajectory database from “China

Mobile” service providers to verify the effectiveness of the

proposed sampling and estimation methods. However, this

method cannot support complex queries in the trajectory

database system. Designing schemas for AQP on trajectory

indexing and retrieving is still an open problem. More details

about trajectory query and trajectory mining can be found

in [39] and [115].

5 AQP Applications

AQP can be used in many scenarios if the traditional exact

methods cannot meet the high-performance requirement. In

this section, we discuss two scenarios that can be enhanced

by AQP, including data cleaning (Sect. 5.1) and interactive

data visualization (Sect. 5.2).

5.1 AQP on Data Cleaning

Data is rather dirty, especially in big data era, and data

cleaning and integration are rather important in many appli-

cations [26]. For example, in Google Scholar, we want to

compute the average citations of database researchers. Since

some researchers’ Google Scholar pages contain publica-

tions that do not belong to them, it is incorrect to directly

compute the average citations on the dirty data. A straight-

forward method first cleans the Google Scholar pages for

every researchers and then applies the OLAP queries. Obvi-

ously this brute-force method is rather expensive. A smarter

way is to utilize AQP techniques, which first cleans a sample

data and then uses the sample data to compute the results.

The challenge is how to design an estimator for dirty sam-

ples. For a cleaned sample, we can use methods in Section 2

(e.g., confidence interval) to estimate the result. But for a

dirty sample, the estimator has not been well studied. Sam-

pleClean [68, 105] aims to address this problem which

only requires users to clean a sample of data, and utilizes

the cleaned sample to process aggregation queries. Sam-

pleClean also proposes a statistical method which can

use a cleaned sample to correct the bias of the query results

over the dirty data. Furthermore, it uses a cleaned sample to

directly estimate the query results of the cleaned data. Along

the same idea, a recent work [67] efficiently cleans a sample

of rows from stale materialized views and uses the cleaned

samples to estimate the query results.

5.2 AQP on Data Visualization

In recent years, the performance of data visualization has

became more and more crucial in commercial system (e.g.,

ad-hoc query). Data scientists rely on interactive data visu-

alization to analyze the data. As the data size becomes large,

traditional systems fail to provide fast interactive query

result on large data. Some studies try to use AQP techniques

on data visualization [62, 76, 94]. The motivation of data

visualization is converting a query (e.g., SQL-like query) to

a visualization result (e.g., bar chart) and AQP can generate

392 K. Li, G. Li

1 3

approximate answer over big data, and thus, using AQP on

data visualization is meaningful and reasonable.

There are many AQP-based visualization methods

recently [40, 62, 74, 76, 94, 107]. These methods mainly

emphasize on how to provide users with online interactive

visualization results and incrementally update the results

using representative charts. We will discuss cutting-edge

techniques in this subsection. Existing works on AQP-

based visualization can be broadly classified into two cat-

egories, scatter plot approximate visualization and statistical

visualization.

Scatter Plots In many data exploration tasks, the analyst

needs an instant result of the spatial data distribution like

scatter plots. This result can be useful for further decisions

or the data pretreatment pipeline. For example, an analyst of

a real estate company wants to train a model for predicting

which domain in USA is worth investing. Then she needs to

determine which features are used for an logistic regression.

Thus, she may want to draw a heatmap of the house price of

all the block with different colors (cheaper is lighter, more

expensive is deeper). However, in some interactive tasks,

dealing with such volume of data is challenging.

A recent visualization-aware sampling (VAS) [86] guar-

antees high-quality visualizations with a small subset of

the entire dataset. VAS divides the whole map into small

blocks, and uses stratified sampling to choose a set of tuples

that minimizes a visualization-inspired loss function in each

block. While existing sampling approaches minimize the

error of aggregation queries, VAS focuses on using a loss

function that maximizes the visual fidelity of scatter plots.

It consequently selects more samples in each block and pro-

vides the users with a clearer visualization.

This sampling-based technique can also be used to

solve special kinds of data exploration query. For example,

ExploreSample [107] approximates scatter plots to solve

an “object-centric” exploration query. In an object-centric

exploration query, one may predict the performance of an

NBA basketball player using the whole dataset of all the

NBA basketball players, i.e., drawing a heatmap and judging

whether it is an outlier. However, drawing such heatmap may

consist of many potentially expensive aggregation queries

over the entire database. Thus, ExploreSample selects

a sample of the whole dataset and draws a heatmap to help

predict the claims which is verified to be helpful.

When exploring on big data, one may pose many queries

with aggregation functions. For example, an user wants to

see a pie chart of the ratio of the amount of incomes of males

and females in America. However, computing such amount

of data is rather expensive to draw the pie chart. Thus, it is

feasible to use stratified sampling to sample 5000 people in

each state and use this result to draw a pie chart, because the

analyst just wants to see an approximate ratio rather than an

exact answer, i.e., 56 versus 44% makes no much difference

with 55 versus 45% in a pie chart. Furthermore, building a

visualization system with an interactive pattern will be better

for data exploration. Statistical visualization mainly includes

bar chart, pie chart and line chart, for better interactive vis-

ualization processing, existing works have made effort to

using AQP techniques on these Statistical visualization [9,

40, 62, 74, 76, 94].

Bar chart A bar chart can simply make comparison

among different groups of data. To interactively give an

approximate bar chart, there are three state-of-the-art works.

SampleAction [40] allows a user to formulate a query,

and the system responds with a partial result, displaying a

bar chart with confidence bounds. As the analyst waits, the

system increases its sample size, narrows the confidence

intervals and produces more precise results. By using dif-

ferent sampling strategy, Pangloss [76] uses an idea of

Sample + Seek [31] which “sample” (uniformly or measure-

biased sampling) for big groups and “seek” (building index)

for rare groups. It incrementally loads more records into the

sample to update the bar chart until either the confidence

is higher than a predefined threshold or until a timeout.

Pangloss can also be used for heatmap. Different from

Pangloss, IFocus [62] mainly focuses on whether the

comparison between different bars is correct, e.g., if bar A

is higher than bar B on the entire data, then bar A should

be higher than bar B on the sample. IFocus calculates the

aggregation answer to draw a bar chart and computes the

probability that bar A will be higher than bar B. When the

bar A is higher than bar B and the probability of A > B is

higher than a threshold, it stops. Besides, FastMatch [74]

is an end-to-end approach for interactively retrieving the

bar chart visualizations which are most similar to a user-

specified target, from a large collection of bar chart. The

primary technical contribution underlying FastMatch is

a probabilistic algorithm, HistSim, a theoretical sampling-

based approach to sample a lot of bar charts and identify the

top-k closest bar charts under “ L
1
 ” distance.

Line Chart A line chart is used to show the trend of a

statistical parameter. Thus, the key idea of approximate line

chart is the trend should be correct (up or down). Thus, the

above-mentioned methods SampleAction [40] and IFo-

cus can be also used for line chart. Different from these

two methods, in each sampling iteration, INCVISAGE [94]

proposes the concept of “improvement potential” to select

better samples which can improve the line chart visualization

most. Thus, INCVISAGE can generate approximations that

use as few samples as possible for trend-line visualizations.

393Approximate Query Processing: What is New and Where to Go?

1 3

6 AQP Systems

In big data era, most IT companies have large volume of

data, and thus building AQP system is important to make

online decisions. We will first discuss systems built on dis-

tributed clusters in Sect. 6.1 and then introduce other sys-

tems in Sect. 6.2. We compare the well-known AQP systems

in Table 2.

6.1 Distributed AQP Systems

The big data is usually stored in distributed environment,

many researchers and commercial companies would like to

develop AQP systems on top of distributed system (e.g.,

Hadoop or Spark).

BlinkDB is a well-known AQP system which is built

on top of Hadoop and devises effective strategies to select

proper samples (offline generated) in distributed clusters to

answer newly coming queries. BlinkDB is open sourced and

public available.2 As BlinkDB generates too many offline

samples based on the assumption that the QCS is stable over

time, it does not perform good for queries whose QCS is

not covered by the query workload. Sapprox[114] and

Approxhadoop[44] add online sampling generation dur-

ing running time to overcome the shortages of BlinkDB.

Besides, Sapprox is more flexible than BlinkDB and more

efficient than Approxhadoop.

Most recently, Quickr [60, 61] is designed for execut-

ing ad-hoc queries on big-data clusters which perform even

much better than BlinkDB, Approxhadoop and Sap-

prox. It does not need any pre-computing of the whole

dataset spread over the clusters. In fact, in modern distrib-

uted database systems, constructing synopses for the whole

dataset spreading over all the clusters is very hard. Although

the ad-hoc queries are complex, Quickr does not need to

scan the whole data for many times. It is verified to be prac-

tical in Microsoft’s search engine, i.e., Bing. What’s more,

Microsoft also develops Now! [19], a progressive data-par-

allel computation framework, for Windows Azure. It can

provide progressive SQL support over big data in Azure.

Many other “Spark”-based systems are built on real-

world settings. SnappyData [79, 95] is a system built on

spark which uses in-memory solution for delivering truly

interactive analytics (i.e., a couple of seconds), when faced

with large data volumes or high velocity streams. Snap-

pyData can exploit state-of-the-art approximate query-pro-

cessing techniques and a variety of data synopses. Besides,

FluoDB [111] generalizes OLA to support general OLAP

queries with arbitrarily nested aggregates which is also built

on top of spark.

6.2 Other AQP Database Engines

For complex queries on multiple tables, XDB [72] is a sys-

tem which supports online aggregation for complex queries

including join operator by integrating “Wander Join” based

on the latest version of PostgreSQL. It is the most recent

AQP work supporting complex queries. XDB outperforms

Table 2 Comparison of the AQP systems

√

 means that the systems return approximation results within bounded guarantee or can deal with skewed data, × means the methods that have

no bound guarantee or cannot deal with skewed data. N/A means that the systems are not built on any existing platforms

Online/offline Distributed/standalone Bounded Platform Algorithm Skewed data

BlinkDB Offline Distributed × Hive/Hadoop (Shark) Stratified sampling
√

Sapprox Online Distributed × Hadoop Distribution-aware [44] Online

sampling

×

Approxhadoop Online Distributed × Hadoop Approximation-enabled MapRe-

duce [44]

×

Quickr Online Distributed × N/A ASALQA algorithm [61] ×

SnappyData Online Distributed × Spark and GemFire Spark, as a computational engine;

GemFire, as transactional store

×

FluoDB Online Distributed × Spark Mini-batch execution [111] OLA

Model

×

XDB Online Standalone × PostgreSQL Wander join [72] ×

Verdict Online Standalone × Spark SQL Database learning ×

IDEA Online Standalone × N/A Reuse answers of past overlapping

queries for new query

×

BEAS Online Standalone
√

Commercial DBMS Approximability theorem [17] ×

ABS Online Standalone × N/A Bootstrap ×

2 https ://devhu b.io/zh/repos /samee ragar wal-blink db.

https://devhub.io/zh/repos/sameeragarwal-blinkdb

394 K. Li, G. Li

1 3

the earlier online engine DBO [32, 57]. Verdict [77] uses

the Database Learning [87] method to benefit the

query processing in database (see details of Database

Learning in Section 2.5). IDEA [66] is an interactive data

exploration accelerator. It allows data scientists to immedi-

ately explore the data source without pre-computation and

knowledge about the data distribution and support interac-

tive query during the data exploration process. IDEA reuses

the observations seen so far and reformulates the AQP model

based on probability theory. IDEA proposes a new type of

index to help getting answers within low error even in the

rare subgroup of a dataset without upfront known workload.

Many other systems also rely on offline synopses gen-

eration and online estimation. BEAS (Boundedly Evaluable

Sql) [17] is a system which can evaluate the feasibility of

each of the query plans and select a better one. Given a

sampling ratio, it can either compute the exact answer or

give an approximation by accessing no more than bounded

numbers of tuples using bounded evaluable theory [37]. ABS

(Analytical Bootstrap) [112, 113] is a system which models

bootstrap by a probabilistic relational model to predict the

distributions of the AQP results. It entails a very fast com-

putation of bootstrap-based quality measures for a general

class of SQL queries.

7 Emerging Challenges and Opportunities

In this section, we summarize some research challenges and

opportunities in approximate query processing.

7.1 AQP Model

Most existing AQP techniques are studied cases by cases,

aiming to solve different problems by designing different

techniques. In other words, AQP is not well formulated and

it calls for a standard and well-formulated AQP framework

that can be used in many cases. To this end, one can survey

each category of AQP methods, extract the common feature

of AQP, and design a common framework for AQP. Further-

more, it requires to formulate a standard SQL-like query

language for AQP to make AQP easy to use.

7.2 Approximate Data Visualization

There are still many problems in approximate data visuali-

zation. First, how to quantify the accuracy of visualization

is an open problem. Second, selecting proper chart type to

fit different AQP methods is difficult. It requires to investi-

gate effective techniques for rapidly generating visualiza-

tions for other optimization goals (including outlier detec-

tion, trend detection) and other data types (such as large

networks). Finding new data visualization applications such

as ExploreSample [107] is also promising.

7.3 Smarter Query Plan

A general query can be divided into three components, (1)

generate query plan, (2) find tuples satisfying the query con-

ditions, (3) aggregate the results according to (1). Traditional

AQP methods focus on (2) but fail to find approximation-

aware scheduler. Thus, many recent studies focus on finding

smarter query planning [87]. Smart query planning can be

implemented into online aggregation process, offline synop-

ses generation or both. Online aggregation focuses on differ-

ent online ideas and offline synopses aim to find a reasonable

type of synopses while optimizing query planning focuses

on better query strategies.

First, if the query needs to be answered with a user-given

time bound, the system should be able to predict the query’s

latency for different sample sizes accurately, e.g., if the user

needs a query processing within one second, then the sam-

ple size should be small enough to be computed within 1

second. Second, as many queries are nested and complex, a

smart scheduler is crucial in query systems, e.g., the AQP

engine of verdict mentioned in Sect. 2.5, and more

details of such technique can be found in [87]. Third, as a

single SQL query often corresponds to multiple query plans,

a smart data engine needs a query optimizer to select the

best plan. Traditionally, a query optimizer can estimate the

computation cost of each query plan and choose the one with

the minimum estimated cost. Future work could concentrate

on above three aspects to generate smart query plan so as to

benefit the accuracy and speed of AQP systems.

7.4 Synopse Generation in Distributed Setting

It is easy to compute a synopsis on a single computer. How-

ever, the big data are always stored in a distributed cluster.

Thus, how to generate synopses on each node and merge

them together is important. Although the union of synopses

from different nodes can be taken as a synopsis of the whole

dataset, it will involve duplicate samples and lead to low

quality. Moreover, Histogram, Wavelet and Sketch

cannot be easily merged. So it calls for effective algorithms

to merge or approximately merge them. In addition, it is

important to devise new types of mergeable synopses [4,

5, 15].

7.5 AQP on Data Cleaning

There are still many challenges of using AQP to enhance

data cleaning. First, existing studies assume that the data

follow the uniform distribution, but it is challenging to clean

sample or synopses for skewed data and use the summaries

395Approximate Query Processing: What is New and Where to Go?

1 3

to estimate the aggregation results. Second, the error esti-

mation of approximate answers from cleaned data is not

accurate and it requires to devise effective techniques, e.g.,

Bootstrap to estimate error on dirty data. Third, existing

techniques can be combined to support AQP on data clean-

ing. For example, motivated by database learning techniques

in Sect. 2.5.1, as the results of previous queries can be used

to make smarter query processing, implementing database

learning techniques on dirty data may be interesting.

7.6 Online Algorithms for Non-Gaussian
Distribution

Modern data analysis needs an interactive pattern for explor-

ing data with little a-priori knowledge of dataset and newly

coming queries. If the dataset is so big that one cannot com-

pute the data distribution online, existing online aggregation

studies will not work well. Thus, it requires to design new

OLA algorithms to deal with non-Gaussian distribution data.

8 Conclusion

In this paper, we review extensive studies on approxi-

mate query processing. We first summarize the AQP use

cases and then categorize existing techniques into online

aggregation and offline synopsis generation. We survey

all of existing techniques of AQP in the fields of data-

base and data mining. We summarize the challenges and

provide the techniques to address these challenges. We

also discuss how to support complex data types and new

applications that can be enhanced by AQP. We survey

existing AQP systems and discuss their advantages and

limitations. Finally, we provide emerging challenges and

opportunities.

Acknowledgements This paper was supported by 973 Program

of China (2015CB358700), NSF of China (61632016, 61521002,

61472198, 61661166012), and Huawei, TAL.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

 1. Acharya J, Diakonikolas I, Hegde C, Li JZ, Schmidt L (2015)

Fast and near-optimal algorithms for approximating distributions

by histograms. In: PODS, pp 249–263

 2. Acharya S, Gibbons PB, Poosala V, Ramaswamy S (1999) The

aqua approximate query answering system. In: SIGMOD, pp

574–576

 3. Acharya S, Gibbons PB, Poosala V, Ramaswamy S (1999) Join

synopses for approximate query answering. In: SIGMOD, pp

275–286

 4. Agarwal PK, Cormode G, Huang Z, Phillips JM, Wei Z, Yi K

(2012) Mergeable summaries. In: PODS, pp 23–34

 5. Agarwal PK, Cormode G, Huang Z, Phillips JM, Wei Z, Yi

K (2013) Mergeable summaries. ACM Trans Database Syst

38(4):26:1–26:28

 6. Agarwal S, Milner H, Kleiner A, Talwalkar A, Jordan MI, Mad-

den S, Mozafari B, Stoica I (2014) Knowing when you’re wrong:

building fast and reliable approximate query processing systems.

In: SIGMOD, pp 481–492

 7. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica

I (2013) Blinkdb: queries with bounded errors and bounded

response times on very large data. In: EuroSys, pp 29–42

 8. Agrawal S, Chaudhuri S, Narasayya VR (2000) Automated selec-

tion of materialized views and indexes in SQL databases. In:

VLDB, pp 496–505

 9. Alabi D, Wu E (2016) Pfunk-h: approximate query processing

using perceptual models. In: HILDA@SIGMOD, p 10

 10. Armbrust M, Liang E, Kraska T, Fox A, Franklin MJ, Patterson

DA (2013) Generalized scale independence through incremental

pre-computation. In: SIGMOD, pp 625–636

 11. Babcock B, Chaudhuri S, Das G (2003) Dynamic sample selec-

tion for approximate query processing. In: SIGMOD, pp 539–550

 12. Belussi A, Catania B, Migliorini S (2013) Approximate queries

for spatial data. In: Advanced query processing, vol 1, issues and

trends, pp 83–127

 13. Binglei G, Yu J, Liao B, Yang D, Lu L (2017) A green frame-

work for DBMS based on energy-aware query optimization

and energy-efficient query processing. J Netw Comput Appl

84:118–130

 14. Braverman V, Ostrovsky R (2013) Generalizing the layering

method of indyk and woodruff: recursive sketches for frequency-

based vectors on streams. In: APPROX, pp 58–70

 15. Cafaro M, Tempesta P, Pulimeno M (2014) Mergeable summa-

ries with low total error. CoRR, abs/1401.0702

 16. Cao Y, Fan W (2016) An effective syntax for bounded relational

queries. In: SIGMOD, pp 599–614

 17. Cao Y, Fan W (2017) Data driven approximation with bounded

resources. PVLDB 10(9):973–984

 18. Cao Y, Fan W, Wo T, Yu W (2014) Bounded conjunctive queries.

PVLDB 7(12):1231–1242

 19. Chandramouli B, Goldstein J, Quamar A (2013) Scal-

able progressive analytics on big data in the cloud. PVLDB

6(14):1726–1737

 20. Chaudhuri S, Das G, Narasayya VR (2001) A robust, optimi-

zation-based approach for approximate answering of aggregate

queries. In: SIGMOD, pp 295–306

 21. Chaudhuri S, Das G, Narasayya VR (2007) Optimized stratified

sampling for approximate query processing. ACM Trans Data-

base Syst 32(2):9

 22. Chaudhuri S, Ding B, Kandula S (2017) Approximate query pro-

cessing: no silver bullet. In: SIGMOD, pp 511–519

 23. Chaudhuri S, Motwani R, Narasayya VR (1999) On random sam-

pling over joins. In: SIGMOD, pp 263–274

 24. Chen J, Zhang Q (2017) Bias-aware sketches. PVLDB

10(9):961–972

 25. Chen S, Jiang S, He B, Tang X (2016) A study of sorting algo-

rithms on approximate memory. In: SIGMOD, pp 647–662

 26. Chu X, Ilyas IF, Krishnan S, Wang J (2016) Data cleaning: over-

view and emerging challenges. In: SIGMOD, pp 2201–2206

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

396 K. Li, G. Li

1 3

 27. Cormode G (2011) Sketch techniques for approximate query pro-

cessing. Foundations and trends in databases. NOW Publishers,

Breda

 28. Cormode G, Deligiannakis A, Garofalakis MN, McGregor A

(2009) Probabilistic histograms for probabilistic data. PVLDB

2(1):526–537

 29. Cormode G, Garofalakis MN, Haas PJ, Jermaine C (2012) Syn-

opses for massive data: samples, histograms, wavelets, sketches.

Found Trends Databases 4(1–3):1–294

 30. Cule B, Geerts F, Ndindi R (2015) Space-bounded query approx-

imation. In: ADBIS, pp 397–414

 31. Ding B, Huang S, Chaudhuri S, Chakrabarti K, Wang C (2016)

Sample + seek: Approximating aggregates with distribution pre-

cision guarantee. In: SIGMOD, pp 679–694

 32. Dobra A, Jermaine C, Rusu F, Xu F (2009) Turbo-charging esti-

mate convergence in DBO. PVLDB 2(1):419–430

 33. Duan L, Pang T, Nummenmaa J, Zuo J, Zhang P, Tang C (2018)

Bus-olap: A data management model for non-on-time events

query over bus journey data. Data Sci Eng 3(1):52–67

 34. Eldawy A, Mokbel MF (2017) The era of big spatial data.

PVLDB 10(12):1992–1995

 35. Fan W, Geerts F, Cao Y, Deng T, Lu P (2015) Querying big data

by accessing small data. In: PODS, pp 173–184

 36. Fan W, Geerts F, Libkin L (2014) On scale independence for

querying big data. In: PODS, pp 51–62

 37. Fan W, Geerts F, Neven F (2013) Making queries tractable on

big data with preprocessing. PVLDB 6(9):685–696

 38. Fan W, Wang X, Wu Y (2014) Querying big graphs within

bounded resources. In: SIGMOD, pp 301–312

 39. Feng Z, Zhu Y (2016) A survey on trajectory data mining: tech-

niques and applications. IEEE Access 4:2056–2067

 40. Fisher D, Popov IO, Drucker SM, schraefel mc (2012) Trust me,

i’m partially right: incremental visualization lets analysts explore

large datasets faster. In: CHI, pp 1673–1682

 41. Flajolet P, Martin GN (1985) Probabilistic counting algorithms

for data base applications. J Comput Syst Sci 31(2):182–209

 42. Galakatos A, Crotty A, Zgraggen E, Binnig C, Kraska T (2017)

Revisiting reuse for approximate query processing. PVLDB

10(10):1142–1153

 43. Garofalakis MN, Gehrke J, Rastogi R (2002) Querying and min-

ing data streams: you only get one look a tutorial. In: SIGMOD,

p 635

 44. Goiri I, Bianchini R, Nagarakatte S, Nguyen TD (2015) Approx-

hadoop: bringing approximations to mapreduce frameworks. In:

ASPLOS, pp 383–397

 45. Goyal A, III HD, Cormode G (2012) Sketch algorithms for esti-

mating point queries in NLP. In: EMNLP-CoNLL, pp 1093–1103

 46. Guha S, Harb B (2005) Wavelet synopsis for data streams: mini-

mizing non-euclidean error. In: SIGKDD, pp 88–97

 47. Haas PJ, Hellerstein JM (1999) Ripple joins for online aggrega-

tion. In: SIGMOD, pp 287–298

 48. Haas PJ, Koenig C (2004) A bi-level bernoulli scheme for data-

base sampling. In: SIGMOD, pp 275–286

 49. Haas PJ, Naughton JF, Seshadri S, Swami AN (1996) Selectiv-

ity and cost estimation for joins based on random sampling. J

Comput Syst Sci 52(3):550–569

 50. Halevy AY (2001) Answering queries using views: a survey.

VLDB J 10(4):270–294

 51. He B (2014) When data management systems meet approximate

hardware: challenges and opportunities. PVLDB 7(10):877–880

 52. Hellerstein JM, Haas PJ, Wang HJ (1997) Online aggregation.

In: SIGMOD, pp 171–182

 53. Hesterberg TC (2014) What teachers should know about the

bootstrap: resampling in the undergraduate statistics curriculum.

Am Stat 69(4):371–386

 54. Ioannidis YE (1993) Universality of serial histograms. In:

VLDB, pp 256–267

 55. Ioannidis YE, Christodoulakis S (1993) Optimal histograms for

limiting worst-case error propagation in the size of join results.

ACM Trans Database Syst 18(4):709–748

 56. Jayachandran P, Tunga K, Kamat N, Nandi A (2014) Combining

user interaction, speculative query execution and sampling in the

DICE system. PVLDB 7(13):1697–1700

 57. Jermaine C, Arumugam S, Pol A, Dobra A (2008) Scalable

approximate query processing with the DBO engine. ACM Trans

Database Syst 33(4):23:1–23:54

 58. Joshi S, Jermaine CM (2008) Materialized sample views for data-

base approximation. IEEE Trans Knowl Data Eng 20(3):337–351

 59. Kamat N, Jayachandran P, Tunga K, Nandi A (2014) Distributed

and interactive cube exploration. In: ICDE, pp 472–483

 60. Kandula S (2017) Errata and proofs for “quickr”. In: Technical

Report TR-2017-14, MSR

 61. Kandula S, Shanbhag A, Vitorovic A, Olma M, Grandl R, Chaud-

huri S, Ding B (2016) Quickr: lazily approximating complex

adhoc queries in bigdata clusters. In: SIGMOD, pp 631–646

 62. Kim A, Blais E, Parameswaran AG, Indyk P, Madden S, Rubin-

feld R (2015) Rapid sampling for visualizations with ordering

guarantees. PVLDB 8(5):521–532

 63. Kim WH, Adluru N, Chung MK, Charchut S, GadElkarim JJ,

Altshuler LL, Moody T, Kumar AR, Singh V, Leow AD (2013)

Multi-resolutional brain network filtering and analysis via wave-

lets on non-euclidean space. In: MICCAI, pp 643–651

 64. Kim WH, Chung MK, Singh V (2013) Multi-resolution shape

analysis via non-euclidean wavelets: applications to mesh

segmentation and surface alignment problems. In: CVPR, pp

2139–2146

 65. Kim WH, Singh V, Chung MK, Hinrichs C, Pachauri D,

Okonkwo OC, Johnson SC (2014) Multi-resolutional shape

features via non-euclidean wavelets: applications to statistical

analysis of cortical thickness. NeuroImage 93:107–123

 66. Kraska T (2017) Approximate query processing for interactive

data science. In: SIGMOD, p 525

 67. Krishnan S, Wang J, Franklin MJ, Goldberg K, Kraska T (2015)

Stale view cleaning: getting fresh answers from stale material-

ized views. PVLDB 8(12):1370–1381

 68. Krishnan S, Wang J, Franklin MJ, Goldberg K, Kraska T, Milo

T, Wu E (2015) Sampleclean: fast and reliable analytics on dirty

data. IEEE Data Eng Bull 38(3):59–75

 69. Laptev N, Zeng K, Zaniolo C (2012) Early accurate results for

advanced analytics on mapreduce. PVLDB 5(10):1028–1039

 70. Li F, Wu B, Yi K, Zhao Z (2016) Wander join: Online aggrega-

tion for joins. In: SIGMOD, pp 2121–2124

 71. Li F, Wu B, Yi K, Zhao Z (2016) Wander join: online aggregation

via random walks. In: SIGMOD, pp 615–629

 72. Li F, Wu B, Yi K, Zhao Z (2017) Wander join and XDB: online

aggregation via random walks. SIGMOD Rec 46(1):33–40

 73. Li Y, Chow C, Deng K, Yuan M, Zeng J, Zhang J, Yang Q, Zhang

Z (2015) Sampling big trajectory data. In: CIKM, pp 941–950

 74. Macke S, Zhang Y, Huang S, Parameswaran AG (2017)

Adaptive sampling for rapidly matching histograms. CoRR,

abs/1708.05918

 75. McDiarmid C (1998) Concentration. In: Probabilistic methods

for algorithmic discrete mathematics

 76. Moritz D, Fisher D, Ding B, Wang C (2017) Trust, but verify:

optimistic visualizations of approximate queries for exploring

big data. In: CHI, pp 2904–2915

 77. Mozafari B (2015) Verdict: a system for stochastic query plan-

ning. In: CIDR

 78. Mozafari B (2017) Approximate query engines: commercial chal-

lenges and research opportunities. In: SIGMOD, pp 521–524

397Approximate Query Processing: What is New and Where to Go?

1 3

 79. Mozafari B, Ramnarayan J, Menon S, Mahajan Y, Chakraborty

S, Bhanawat H, Bachhav K (2017) Snappydata: a unified cluster

for streaming, transactions and interactice analytics. In: CIDR

 80. Mytilinis I, Tsoumakos D, Koziris N (2016) Distributed wave-

let thresholding for maximum error metrics. In: SIGMOD, pp

663–677

 81. Nash A, Segoufin L, Vianu V (2010) Views and queries: determi-

nacy and rewriting. ACM Trans Database Syst 35(3):21:1–21:41

 82. Nirkhiwale S, Dobra A, Jermaine CM (2013) A sampling algebra

for aggregate estimation. PVLDB 6(14):1798–1809

 83. Olken F (1993) Random Sampling from Databases. Ph.D. thesis,

University of California at Berkeley

 84. Olken F, Rotem D (1986) Simple random sampling from rela-

tional databases. In: VLDB, pp 160–169

 85. Pandey P, Bender MA, Johnson R, Patro R (2017) A general-

purpose counting filter: making every bit count. In: SIGMOD,

pp 775–787

 86. Park Y, Cafarella MJ, Mozafari B (2016) Visualization-aware

sampling for very large databases. In: ICDE, pp 755–766

 87. Park Y, Tajik AS, Cafarella MJ, Mozafari B (2017) Database

learning: toward a database that becomes smarter every time. In:

SIGMOD, pp 587–602

 88. Piatetsky-Shapiro G, Connell C (1984) Accurate estimation of

the number of tuples satisfying a condition. In: SIGMOD, pp

256–276

 89. Pitel G, Fouquier G (2015) Count-min-log sketch: approximately

counting with approximate counters. CoRR, abs/1502.04885

 90. Pol A, Jermaine C (2005) Relational confidence bounds are easy

with the bootstrap. In: SIGMOD, pp 587–598

 91. Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved

histograms for selectivity estimation of range predicates. In: SIG-

MOD, pp 294–305

 92. Potti N, Patel JM (2015) DAQ: a new paradigm for approximate

query processing. PVLDB 8(9):898–909

 93. Qin C, Rusu F (2014) PF-OLA: a high-performance frame-

work for parallel online aggregation. Distrib Parallel Databases

32(3):337–375

 94. Rahman S, Aliakbarpour M, Kong H, Blais E, Karahalios K,

Parameswaran AG, Rubinfeld R (2017) I’ve seen ”enough”:

incrementally improving visualizations to support rapid deci-

sion making. PVLDB 10(11):1262–1273

 95. Ramnarayan J, Mozafari B, Wale S, Menon S, Kumar N,

Bhanawat H, Chakraborty S, Mahajan Y, Mishra R, Bachhav K

(2016) Snappydata: a hybrid transactional analytical store built

on spark. In: SIGMOD, pp 2153–2156

 96. Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L,

Grossman D (2011) Enerj: approximate data types for safe and

general low-power computation. In: PLDI, pp 164–174

 97. Sampson A, Nelson J, Strauss K, Ceze L (2014) Approximate

storage in solid-state memories. ACM Trans Comput Syst

32(3):9:1–9:23

 98. Sarma AD, Lee H, Gonzalez H, Madhavan J, Halevy AY (2012)

Efficient spatial sampling of large geographical tables. In: SIG-

MOD, pp 193–204

 99. Sazish AN, Amira A (2008) An efficient architecture for HWT

using sparse matrix factorisation and DA principles. In: APC-

CAS, pp 1308–1311

 100. Shekelyan M, Dignös A, Gamper J (2017) Digithist: a histo-

gram-based data summary with tight error bounds. PVLDB

10(11):1514–1525

 101. Song G, Qu W, Liu X, Wang X (2018) Approximate calculation

of window aggregate functions via global random sample. Data

Sci Eng 3(1):40–51

 102. Su H, Zait M, Barrire V, Torres J, Menck A (2016) Approximate

aggregates in oracle 12c. pp 1603–1612

 103. Tong JYF, Nagle D, Rutenbar RA (2000) Reducing power by

optimizing the necessary precision/range of floating-point arith-

metic. IEEE Trans VLSI Syst 8(3):273–286

 104. Vengerov D, Menck AC, Zaït M, Chakkappen S (2015) Join size

estimation subject to filter conditions. PVLDB 8(12):1530–1541

 105. Wang J, Krishnan S, Franklin MJ, Goldberg K, Kraska T, Milo

T (2014) A sample-and-clean framework for fast and accurate

query processing on dirty data. In: SIGMOD, pp 469–480

 106. Wang L, Christensen R, Li F, Yi K (2015) Spatial online sam-

pling and aggregation. PVLDB 9(3):84–95

 107. Wu Y, Harb B, Yang J, Yu C (2015) Efficient evaluation of

object-centric exploration queries for visualization. PVLDB

8(12):1752–1763

 108. Xie X, Hao X, Pedersen TB, Jin P, Chen J (2016) OLAP over

probabilistic data cubes I: aggregating, materializing, and query-

ing. In: ICDE, pp 799–810

 109. Yan Y, Chen LJ, Zhang Z (2014) Error-bounded sampling for

analytics on big sparse data. PVLDB 7(13):1508–1519

 110. Yi K, Wang L, Wei Z (2014) Indexing for summary queries:

theory and practice. ACM Trans Database Syst 39(1):2:1–2:39

 111. Zeng K, Agarwal S, Dave A, Armbrust M, Stoica I (2015)

G-OLA: generalized on-line aggregation for interactive analysis

on big data. In: SIGMOD, pp 913–918

 112. Zeng K, Gao S, Gu J, Mozafari B, Zaniolo C (2014) ABS: a sys-

tem for scalable approximate queries with accuracy guarantees.

In: SIGMOD, pp 1067–1070

 113. Zeng K, Gao S, Mozafari B, Zaniolo C (2014) The analytical

bootstrap: a new method for fast error estimation in approximate

query processing. In: SIGMOD, pp 277–288

 114. Zhang X, Wang J, Yin J, Ji S (2016) Sapprox: enabling efficient

and accurate approximations on sub-datasets with distribution-

aware online sampling. PVLDB 10(3):109–120

 115. Zheng Y (2015) Trajectory data mining: an overview. ACM TIST

6(3):29:1–29:41

	Approximate Query Processing: What is New and Where to Go?
	Abstract
	1 Introduction
	2 Online Aggregation Methods
	2.1 Online Aggregation
	2.2 Error Estimation
	2.2.1 Error Estimation with Known Distribution
	2.2.2 Error Estimation without Known Distribution

	2.3 Online Aggreagtion on Multiple Tables
	2.4 Online AQP in Distributed Setting
	2.5 Other Online AQP Methods
	2.5.1 Database Learning
	2.5.2 Approximate Hardware
	2.5.3 Other Works

	3 Offline Methods
	3.1 Pre-computed Samples
	3.2 Histograms
	3.3 Wavelets
	3.4 Sketches
	3.5 Materialized Views
	3.6 Other Offline Methods
	3.6.1 Bounded Resources
	3.6.2 Bounded Error and Bounded Time

	4 AQP on Complex Data
	4.1 AQP on Spatial Data
	4.1.1 Online Spatial AQP
	4.1.2 Offline Spatial AQP

	4.2 AQP on Trajectory Data

	5 AQP Applications
	5.1 AQP on Data Cleaning
	5.2 AQP on Data Visualization

	6 AQP Systems
	6.1 Distributed AQP Systems
	6.2 Other AQP Database Engines

	7 Emerging Challenges and Opportunities
	7.1 AQP Model
	7.2 Approximate Data Visualization
	7.3 Smarter Query Plan
	7.4 Synopse Generation in Distributed Setting
	7.5 AQP on Data Cleaning
	7.6 Online Algorithms for Non-Gaussian Distribution

	8 Conclusion
	Acknowledgements
	References

