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ABSTRACT

APPROXIMATION ALGORITHMS FOR VARIANTS OF THE
TRAVELING SALESMAN PROBLEM

by
Ankur Gupta

The traveling salesman problem, hereafter abbreviated and referred to as ASP, is a

very well known NP-optimization problem and is one of the most widely researched

problems in computer science. Classical ASP is one of the original NP — hard

problems [1]. It is also known to be NP — hard to approximate within any factor

and thus there is no approximation algorithm for ASP for general graphs, unless

P = NP. However, given the added constraint that edges of the graph observe

triangle inequality, it has been shown that it is possible achieve a good approximation

to the optimal solution [2] . TSP has a number of variants that have been deeply

researched over the years. Approximations of varying degrees have been achieved

depending on the complexity presented by the problem setup. An obvious variant

is that of finding a maximum weight hamiltonian tour, also informally known as the

"taxicab ripoff problem". The problem is not equivalent to the minimization problem

when the edge weights are non-negative and does allow good approximations. Also

important is the problem when the graph is not symmetric. The problem in this

case, as should be expected, is slightly tougher to approximate. Another very well

researched problem is when weights of edges are drawn from the set {1, 2}. This study

was focused on gaining an understanding of these algorithms keeping in mind the

primary endeavor of improving them. This thesis presents approximation algorithms

for the aforementioned and other variants of the ASP, and is focused on the techniques

and methods used for developing these algorithms.
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CHAPTER 1

THE TRAVELING SALESMAN PROBLEM

Given a graph G = (V, E, w), such that w is a weight function that associates a

weight with each edge in E. Classical ASP is the problem of finding the minimum

weight hamiltonian tour in the graph. The problem has applications in such diverse

areas as logistics, telecommunication networks, circuit board designing, VLSI, gnome

sequencing, genetic engineering etc. ASP is very well known to be NP — hard and

is also NP — hard to approximate and thus there is no approximation for it unless

P = NP. However given the added constraint that edge weights in the graph observe

there exists a

3/2-approximation for the problem as shown by Christofldes [2] in his celebrated

paper. This result however has withstood all improvement attempts in the last three

decades. There are however a number of other variants of this problem that have

received quite some attention in the last couple of years and this has resulted in

improved approximations for these problems. This thesis presents the best known

approximations for some of these variants. The results are are organized in chapters

with each chapter presenting problems that have similar basic constraints with some

variations.

Roadmap : Chapter 2 presents the important concept of cycle cover. Finding a

cycle cover in a graph is an important basic step in a number of algorithms presented in

this thesis. A maximum or minimum weight cycle cover gives an upper or lower bound

on the weight of an optimal maximum or minimum weight ASP tour respectively.

This is an important property, since if starting with a cycle cover, a TSP tour can

be obtained with some restriction on the weight added or lost by addition or deletion

of edges, then this could give interesting approximation results. As is shown later, a

1
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number of algorithms are doing exactly this and are achieving good approximations

by clever additions and deletions of edges. The chapter also presents an important

procedure for finding a pair of cycle covers in a graph. The pair of cycle covers has

weight guarantee at least or at most twice the optimal maximum or minimum weight

TSP tour. This has then been used to achieve some interesting results for a number

of ASP variants.

Chapter 3 deals with the problem of finding a maximum weight hamiltonian tour

(MIN-TSP) in an undirected graph. Two approximation algorithms are presented

for MIN-ATSP. The first of these is a 3/4-approximation algorithm and the next

is an improved randomized algorithm that gives an approximation guarantee of r

where r < 25/33. Next the same problem is considered for graphs in which the edge

weights obey triangle inequality (metric-MAX-TSP). The added restriction allows for

improved approximations for the problem as is borne out by the 3/4-approximation

algorithm.

Chapter 8 deals with the same problem in a directed graph (MIN-TSP). First

a 2/3-approximation algorithm is presented for this problem. The algorithm uses the

pair of cycle covers presented in Chapter 2. Next an approximation algorithm for

the metric version of the same problem is presented. Here a 3/4-approximation is

achieved, again using the pair of cycle covers.

Chapter 5 looks at the minimization problem in undirected graphs. The added

constraint is that the edge weights are drawn from the set {1, 2}. A 7/6-approximation

algorithm is presented for MAX- TSP-1, 2. In Chapter 6, a 0.881 • log approximation

is presented for the minimization problem is directed graphs with triangle inequality

(metric-MAX-TSP).

Chapter 7 presents the relationship between TSP and connectivity problems.

Specifically, it is shown in undirected graphs with edge weights from the set {1, 2},
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Table 1.1 Summary of Approximation Results.

the minimum weight ASP tour has the same weight as the minimum weight 3-edge-

connected subgraph.

The table presents a summary of some of the approximation results presented

in this thesis.



CHAPTER 2

CYCLE COVER

2.1 Introduction

Given a graph G = (V, E, w), such that w is a weight function that associates a

weight with each edge in E. A cycle cover of G is a collection of vertex disjoint

cycles covering all vertices of G. A cycle cover is also sometimes referred to as a

binary 2-matching or a 2-factor as the degree of every vertex in a cycle cover is 2.

A maximum cycle cover (minimum cycle cover is similarly defined) is a cycle cover

with maximum weight over all cycle covers of G.

A maximum (or minimum) cycle cover can be obtained in polynomial time (see

for eg. Hartvigsen [7] for a 0(n3 ) algorithm) . Finding a maximum weight cycle cover

is an important basic step in a number of approximation algorithms presented in this

thesis. It is easy to see that a maximum cycle cover is an upper bound on the optimal

solution for any Maximizing ASP problem. This fact can be used to obtain a trivial

1/2-approximation algorithm for MAX-TSP. First, find a maximum cycle cover in

the graph and then delete the cheapest edge from each cycle. Then, arbitrarily patch

the resulting paths and it is easy to see that this gives a 1/2 . OPT weight bound in

the resulting graph.

Presented here is a procedure due to Kaplan et al. [5] for finding a pair of

cycle covers in a graph with very useful properties. The procedure is presented for

weight maximization properties but the same technique can be used for obtaining the

minimization properties.

4
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Figure 2.1 LP for cycle-cover without two cycles.

2.2 Finding a Pair of Cycle Covers

In [5], Kaplan, Lewenstien, Sharer, and Sviridenko give an important procedure for

find a pair of cycle covers C' and C" in a complete weighted graph G with the following

properties.

1. C' and C" do not share a 3-cycle, ie. if a 2-cycle is a part of C' then C" does

not contain at least one of the edges from that 3-cycle.

2. The total weight of the two cycle covers is at least twice the weight of optimal

The procedure is presented.

The Algorithm

Let G = (V, E, w) be a complete directed graph without self loops. Let n = (V 1,

and w is a weight function

assigning non-negative weights to edges; Wu,,u > 0 V(tt, v) Ε E .

The first goal in the algorithm is to obtain a cycle-cover of the graph without

any 2-cycle. The problem does not have a polynomial time solution and the LP

given in the figure is used to obtain a fractional solution. The LP was first used in

[4]
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Let {χ „}„νΕκ(ν) be the optimal solution to the LP. The next step is to round

off the fractional solution to an integral one by multiplying all variables by their least

common denominator D 1 2• The solution so obtained represents a multigraph, let

and total weight

of this multigraph is at most D times the optimal solution. Also G 0 is D-regular

and has at most D/2j copies of any 2-cycle, since xuv + χvu < D in G0 . Denote by

mho (e) the number of copies of an edge e E G o . The next step is to decompose G o

and obtain two cycle covers C' and C" in G such that

1. C' and C" do not share a 3-cycle, ie. if a 2-cycle is a part of C' then C" does

not contain at least one of the edges from that 3-cycle.

2. The total weight of the two cycle covers is at least twice the weight of optimal

To obtain the cycle covers C' and C" from G0 , assume that D is even, as

otherwise all edges can be multiplied by 2 to make it so. Now there are two cases

depending on the value of D. If D mod 4 = 0, then divide G o into 2 D-regular

multigraphs G' and G" using the following procedure and then pick the heavier of the

two subgraphs and iterate the decomposition process.

First, obtain a D-regular undirected bipartite multigraph Β from G0 . This can

be achieved by having two nodes vs and A2' in Β for each node Ai Ε Co and then for

each edge (Ai , Ad ) Ε G0 , add (v2 , A') to Β.

Next use the technique first introduced by Alone [9] to partition Β into two

D-regular multigraphs Β 1 and Β2. For each edge e E Β with ma  (e) > 2 divide

evenly it's copies among Β 1 and B2 and delete them from Β (If mac (e) is odd then

one copy is saved in B). Next find a Puler cycle in all connected components of Β

1 D may be exponential in the graph size but log(D) is polynomial
2Α11 logarithms are to the base 2 unless specified otherwise
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and divide the edges alternately among Β 1 and Β2. Next obtain graphs G' and G"

from Β 1 and Β2 by reversing the above procedure.

Lemma 1 G 1 and 02 are D-regular and contain at most D/4 copies of any recycle

Proof. The first step is to divide all edges with multiplicity greater than 2 in B,

evenly among Β 1 and Β2. Then from the bipartite graph B, the edges are divided

alternately from the EEuler tour and this implies that the indegree and outdegree of

each vertex is evenly divided among Β 1 and Β2 and so both are D-regular. It is

also easy to see that there would not be more that D/4 copies of any two cycle in

any of these graphs. Any recycle has at most D/2 copies in the original graph and

this means that there are at most D/2 copies of at least one of the edges from the

recycled. This edge will have at most D/4 copies in either of the two graphs. ❑

Let G 1 be the heavier among the two graphs G' and G". It is easy to see that

(Note that if D originally was a power of 2 then this process

could be iterated log(D) times to obtain the required cycle covers.)

Now consider the case when D mod 4 = 2. Then extract, two cycle covers A l

and 02 from G0 such that.

1. Alb and 02 don't share a recycled.

2. If an edge has multiplicity D/2 in G o , then it appears in exactly one of the two

cycle covers.

To get the required cycle covers, obtain a D-regular bipartite multigraph Β

from Go as described above. A pair of perfect matchings in Μ 1 and Μ2 in Β will

correspond to the required cycle covers. Here's how to obtain the required perfect

matchings.

The technique described by Alone [9] is used to find a perfect matching in a

D-regular bipartite graph. Let m = Dn be the number of edges in Β. Let t be the
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minimum integer such that m < D • Next, obtain a D1 1- regular bipartite graph Β 1

from Β as follows. Replace each edge in Β by [2t+Ι/DJ copies of itself and obtain a

2t • [2t+Ι /DB -regular graph Β 1 = (VB1, EaB . Let y = 2 t + 1 — 2t • ι2t+Ι /2t.]. Since 2t is

even, therefore 2t. 2t+1/D  is even and so y is also even. To make Β1 D-regular,

find two perfect matchings M and M' in Β and add y/2 copies of each to Β 1 .

M and M' are obtained as follows. Define B' = (Vac, E') to be the subgraphs of

Β where E' = { (a, b) Ε B mac (a, b) = 2t/2} . Since Β is 2t-regular, the degree of each

node of B' is at most two. Complete B' into a regular multigraph A, (if required,

use the edges not contained in B), and obtain M and M' by partitioning A into two

perfect hatchings. Define the edges in M — B' and M' — B' as bad edges. There are

at most 2tn bad edges in Β 1 since y < 2t.

Lemma 2 If the number of copies of an edge e are < 2t/2 in B, then there are < 2 t 

good copies of e in Β 1 .

Proof. There are two cases to be considered

1. If the number of copies of e in Β are exactly 2t/2, then by construction e appears

in exactly one of the hatchings M and M'. So the number of instances of (a, b)

and none of these

are bad edges

2. If the number of copies of e in Β are less than 2t/2, then it can be similarly

shown that there are less than D± good edges.

σ

Next, divide Β 1 into two D-regular graphs B' and B" and try to balance the

number of good copies of each edge between the two graphs. Denote by Β2 the

graph among B' and B" containing at most half of the bad edges of Β 1 and so it has

at most 2tn/2B bad edges. Now apply the same algorithm to this graph to obtain a
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2t-l-regular graph 133 that contains at most Dn/4 j bad edges. Repeat this process

t times to obtain a reregular graph Βt±1 containing no bad edges. Next the graph

Βt+ι is a cycle-cover and so pick the alternate edges to obtain the required matchings

Μ1 and Μ2.

Lemma 3 The cycle covers C1 and A2 corresponding to the two matchings Μ 1 and

Μ2 have the following properties.

1. Ad and A2 don't share a recycled.

2. If an edge has multiplicity D/2 in Go , then it appears in exactly one of the two

cycle covers.

Proof. A recycled appears at most D/2 times in G 0 and therefore there are at most

D/2 copies of one of the edges in the recycled in Β and at most 2 t  copies in Β1 by

the lemma above. Since the good copies are divided as evenly as possible, therefore

after t iterations of the algorithm, there shall be at most one copy of this edge in the

graph Bt+1

If there are exactly D/2 copies of an edge in G o , then by similar argument it

can be proved that there will be exactly one copy left in Βt±1.	 0

Now if w(A0  +w(C2 ) > 2. OPT, then A1 and A2 give the required cycle covers

A' and A" and the process is terminated.

Otherwise, let G 1 = Go — C1 — 02. G 1 is obviously a (D — reregular graph, and

Also notice that D — 2 mod 4 = Ο. Next proof is presented that

there are at most D2 2 copies of any recycled in G 1 .

Lemma 4 There are at most D2 copies of any recycle in G 1 .

Proof. This is so because if there are exactly D/2 copies of a recycled in G 0 , then at

least one copy of the edge that appears exactly D/2 times in G 0 is present in either

C1 or C2. O
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Now, if 2t mod 4 = 0 then the graph is decomposed into two subgraphs and

0 1 is the heavier of the two. If 2t mod 4 = 2, then a (2t — reregular graph G 1 is

obtained (assuming cycle covers Alb and 02 had weight less that 2 • OPT) and the

decomposition is performed again. It is now easy to see that the process needs to be

repeated O(log(2tt)) times to obtain the required cycle covers A' and A".



CHAPTER 3

SYMMETRIC MIN-TSP

3.1 Introduction

Given an undirected graph G = (V, E, w), such that w is a weight function that

associates a non-negativity weight with each edge in E; MIN-TSP is the problem

of finding a maximum weight hamiltonian tour. It should be pointed out that

non-negativity of edge weights is required as otherwise the problem is equivalent

to MIN-TSP(To observe this; negate all the edge weights and find MIN-TSP and this

gives MAX-TSP in the original graph) . The problem is known to be MAX SNP —

hard and thus there exists a constant ε > 0 for which there is no €-approximation

for the problem. Serdyukov [3] gave the best known deterministic approximation

algorithm for this problem with a performance guarantee of 7/4 and no further

improvements have been made in two decades. Bassein and Rubinstien [3] gave a

randomized algorithm with a performance guarantee of p for any fixed p < 23/33.

When the edge weights in the graph observe the triangle inequality ie. w(v, v) +

w(v, w) > w(u, w) V (v, 'u, w) Ε E, then metric-MAX-TSP is the problem of

finding a maximum weight hamiltonian tour in a graph. The problem still remains

MAX SNP — hard. Bassein and Rubinstein [4] gave the best known approximation

guarantee of 7/4 using a randomized algorithm. The algorithm is based on the

3/4-approximation for the general case developed by Serdyukov [3] and a 3/6-

approximations for metric-MAX-TSP by Serdyukov and Kostochka [11] .

3.2 Approximation Algorithms for MAX-TSP

Presented here are approximation algorithms for MIN-TSP. The first algorithm

is a approximations by Anatomy Serdyukov and is the best know deterministic

algorithm for the problem. The next algorithm is a randomized algorithm achieving

11
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slight improvement on this result by Bassin and Rubinstien. This algorithm is based

on ideas developed in [3] and an earlier paper that achieved a 3/4-approximation by

Bassin and Rubinstien [12].

3.2.1 3/4-approximation for MAX-TSP

Let G = (V, E, w) be a complete undirected graph without self loops. Let w is a

weight function assigning non-negative weights to edges. The algorithm is presented

in the figure. It is a simple and elegant algorithm with a simple analysis.

The important step in the algorithm is step 3. All the cycles in the cycle cover A

need to be broken by transferring edges from the cycle cover to the matching M also

taking care that no cycles are formed in the matching as a result of the transfer. It is

not to hard to see that it is always possible to do this. The weight of the cycle cover

is an upper bound on OPT and the weight of the matching is an upper bound on

1/2. OPT (Observe that an optimal ASP tour can be divided into two hatchings and

so a maximum matching is at least the weight of the heavier of the two hatchings).

Therefore the heavier of the two tours will have weight at least 3/4 . OPT.
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Compute a Maximum weight hamiltonian path Η in the subgraph

induced be vertices of A.

Plse

Obtain H% by deleting the least weight edge in  A.

3. Patch all Η to obtain tour Τd .

Figure 3.2 (Procedure 1) Approximations for MAX-TSP, where r < 23/33.

This algorithm uses two different procedures. The first procedure produces a tour  Τd

and the second procedure produces two tours T2 and Τ3. The best of the three tours

gives the desired approximation.

The fdrst procedure is presented in the figure. The procedure uses a parameter €

to distinguish between short cycles and long cycles. For the short cycles, a hamiltonian

path is computed in the subgraph induced by the vertices of the cycle and for long

cycles a path is obtained by deleting the cheapest edge from the cycle. The tour  Τd

is obtained by patching the paths arbitrarily.

The second procedure is a little more involved. The first step as in procedure 1

is to compute a cycle cover A on G, C = {C1 , 02 ...C,}. Let E' C E be the set of all

edges e = (v, v) E E such that u and v belong to different cycles in A. Next compute

a maximum matching M' using the edges in E' and a matching Μ using edges in E.

For each cycle A2 E A, construct two disjoint nonempty hatchings  Μ and Μ( using

edges from A such that Μ  U Μ and Μ U Μ don't have any cycles and all vertices

in C2 are covered by Μ  U M,'.
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Lemma 5 It is always possible to find the hatchings A  and M with the above

required properties.

Proof. Suppose the matchings have to be constructed from cycle i . Let the edges

in this cycle be e l , e2 ... ek . Start with any edge and assign edges alternately to the

matchings A  and A'. If the addition of an edge (Say e to Ai) creates a cycle in

A  U M, then skip this edge and add the next edge in the cycle to  A. It is easy to

see that this edge would never create a cycle in Ai U A. Therefore two consecutive

edges from a cycle are never skipped in this procedure and so all the vertices from the

cycle will be covered by the two matchings and also note that each of these matchings

would have at least one edge.

There are a couple of cases which need to be handled differently by this procedure.

The first is if both edges e l and ek are assigned to the same matching (Say A). In

this case if edge e 2 was assigned to A , then just skip edge e l . Else if e2 could not be

assigned to A , then assign e l to ' . Another case is if both edges e l and e k were

skipped because they could not be assigned to, say  A  and M respectively. Then if

Aicould not be assigned toA,then elis assigned toA'.❑

Transfer all the edges from either Ai or A' from Ci to A with probability 1/2.

Observe that since A  and A' are non-empty therefore all the cycle in the cycle cover

A will be broken. Patch A arbitrarily to obtain the second tour T2.

Let P be the set of paths obtained after transferring edges from the cycles in

A. Let M" C M' be the set of edges e = (u, v) Ε M' such that u and v have degree

1 in P.

Lemma 6 For every edge e Ε M', the probability that it is in M" is at least 1/4.

Proof. It is easy to see now that with probability at least 1/2, one of the edges

incident to a vertex in a cycle Ci will be transferee to M, therefore the probability
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that a vertex has degree 1 in P is at least 1/2. For any edge e = (u, v) Ε M', it is

added to M" if both u and v have degree 1 in P which has probability at least 1/4 ❑

Let P* be the set of paths and C* be the set of cycles obtained by M" U P. For

each cycle Cif Ε C* , randomly select an edge e from C2 fl M" and delete it from Cif

and then add CZ to P*. Next, arbitrarily patch P* to obtain the third tour D3.

Return the tour with the heaviest weight among {D1 , D2 , D3}

Lemma 7 For each edge e E M", the probability that it is deleted by the deletion

step is at host 1/2.

Proof. Pach cycle CZ Ε C* has at least two edges from M". At most one of these

edges will be deleted.	 ❑

Theorem 8 The heaviest of the three tours ie. max

and the algorithh runs in polynohial tihe.

Proof. Let Τ be the optimal ASP tour. Denote by Dint, the subgraph containing

edges of D whose end vertices are in the same cycle in C. Similarly denote by

Text, the subgraph containing edges with end vertices in different cycles in C. Let

w (Dint) = • w(T1) = αΟΠΤ.

In procedure 1, consider the tour D1 and a short cycle CZ Ε C. Since a maximum

weight hamiltonian tour is computed on the subgraph induced by the vertices of  C,

therefore the contribution of CZ to D1 is at least the weight of Tint in the graph induced

by it's vertices. For each long cycle, the cheapest edge is deleted and so the total loss

of weight is at most a factor of e. Therefore w(T1 ) > (1 — ε)w(Tint) > (1 — oiOPT

In the second procedure, consider the process to obtain tour D2. The weight of

the maximum matching M is at least 1/2.ΟΠD. Let δ•ΟΠD be the weight of the edges

transferee from C to M. Therefore weight of the tour D2 is at least (1/2+δ)ΟΠD. Now

consider the construction of the tour D3. The weight of the set of paths P obtained
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after breaking the cycles in C is (1 — δ) ΟΠΕ. Now to calculate the weight added to

this, observe that the weight of the matching M' is at least 1/2 • Text) (since M'

is maximum matching over edges connecting different cycles of C) . For each edge in

M', the probability that it is in M" is at least 1/4, therefore w(M") > 1/4 • w(Text )•

Now the edges from M" are deleted with probability at most 1/2, therefore the Wight

of the remaining edges is at least 1/16.  w (Text) = 1/16.  (1 — c) OPT . So weight of

α)) } • OPT. The left hand side of the equation minimizes when α = 
33

a
 32E • 

The

minimum value of the left hand side then obtained is

For any given r < 23/33, a value of ε > 0 can be obtained to get an r-

approximation.

A maximum matching on a graph can be obtained in time 0(n 3 ).  The other

time consuming part in the algorithm is the process of obtaining a maximum weight

Bamiltonian path in the subgraphs induces by short cycles. Using dynamic programming

this can be done in time 0(n 2 2 1/).  The total complexity then is 0 (n2 (n -{- 2 1 )). For

a fixed € > 0, this is 0(n3).

σ

3.3 7/8-approximation for metric-MAX-TSP

Let G = (17, E, w) be a complete undirected graph without self loops. Let w is

a weight function assigning non-negative weights to edges. Additionally, the edge

weights observe triangle inequality. As mentioned earlier, the 7/8-approximation

for metric-MAX-TSP is a randomized algorithm based on the ideas developed in

[3] and [11]. The algorithm in [3] is presented in Section; 3.2.1. As was the

case in these two algorithms, the first step is to find a maximum weight cycle cover
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1. For each cycle i in C.

are suitors.

Randomly pick one edge between e and f with probability 1/2. Call it g.

2. Let Ai and A2 be the ends of the path Ρ .

3. Give each path Π2 a random orientation.

4. Form a tour Τ by adding connecting edges between head of P% and tail of Πi+d

Figure 3.3 (Procedure 1) 7/8-approximation for metric-MIN-TSP.

1. Let S := set of end nodes of paths in A.

2. Compute a random perfect matching Ash over S.

3. Let C' be the cycle cover obtained from A U A8 .

4. Delete an edge from each cycle in C'.

3. Arbitrarily complete C' into a tour Ρ2.

Figure 3.4 (Procedure 2) 7/8-approximation for metric-MAX-TSP.

C = {C1 , C2, • • • , C8 } and a maximum matching A. Next the procedure 1 and 2 as

presented are applied.

Let Τ be the the heavier of the two tours obtained from the two procedures.

Then the following theorem holds.

Next the weight of

the tour obtained in Procedure 1 is analyzed. By triangle inequality.
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Now,

This implies that the patching procedure is able to regain at least half of the

weight of the edges deleted from each cycle. Now let α be the weight of the edges that

were candidates for deletion. The expected weight of the edges that were actually

deleted is /2. But as explained above at least half of this weight can be regained.

Therefore the weight of the final tour is given by.

Next consider procedure 2. The expected weight of the edges added to A in

procedure 2 is (2) • (w (C)) . Consider a vertex v. If this vertex was incident to two

candidates chosen for deletion , then v S and if v was not incident to any candidate

then certainly v Ε S. And if, v was incident to one candidate then v Ε S with

probability 1/2.

Let Ι S = k + 1. For i Ε S, exactly one edge from { (i, j) j Ε S — i} is chosen

to Ms. Consider an edge (i, j) Ε Ε Π (S x S), the probability that this edge is

selected to Ms is 1/k. If (i, j) is selected, charge it's weight w (i, j) in the following

manner: Suppose that i is incident to edges e', e" Ε C. If none of these edges was

a candidate, charge w(, j) /4 to each of e' and e" (and nothing to e') . Note that

it cannot be that both e' and e" were candidates since in such a case i S. The

expected weight charged to an edge (g, h) Ε C that was not a candidate is then



Finally, the algorithm deletes edges from cycles in A U A5. Now the claim is

that S > n/3. the reason is that the perfect matching computed in Step 1 has all

the n vertices of V with degree 1. Then , one candidate from each cycle of C was

added to A. The number of added edges is equal to the number of cycles which is

at most n/3. Therefore, after the addition of these edges the degrees of at most 2n/3

vertices became 2, while at least n/3 vertices remained with degree 1. The latter

vertices are precisely the set S, and this proves that S Ι > n/3. Since A5 is a random

matching, the probability that an edge of A U A5 is contained in a cycle whose size

is smaller than is bounded from above by

(The j-th term in the left-hand side of this expression bounds the probability

that a cycle containing exactly j edges from Ms is created.) Therefore, the expected

weight of the edges deleted in this step is 0 (1 / ψ) w (A U Ms) and



CHAPTER 4

ASYMMETRIC MAX-TSP

4.1 Introduction

Given a directed graph G = (V, E, w), such that w is a weight function that associates

a non-negative weight with each edge in E; MAX-TSP (Asymmetric MAX-TSP)

is the problem of finding a maximum weight hamiltonian tour. As is the case with

MAX-TSP, the problem is MAX SNP — hard. The problem is also known to be

ΑΠ — hard and thus there is no ETAS (polynomial time approximation scheme) for

the problem unless P = NP. The first approximation algorithm for the problem is

due to Fisher, Nemhauser and Bosley [4]. They achieved a performance guarantee

of 1/2 using a simple algorithm. The algorithm finds a maximum cycle cover in

the graph and then deletes the cheapest edge from each cycle and then arbitrarily

patches the resulting paths to obtain a tour. Kosaraju, Park and Stein [14] gave the

first nontrivial algorithm achieving a performance guarantee of 38/63. A number

of recent improvements have been achieved on this result (see for eg. Blather [13]

and Lewenstien and Sviridenko [8]) . The best known result for this problem is the

2/3-approximation achieved by Kaplan et al. [3] .

MAX-TSP has received considerable attention because of it's applications in

solving the shortest — svperstrong problem. Specifically, Breslauer et al. [16] show

that a approximation for MAX-TSP implies a 3.3 — (1.3 . approximation to the

shortest — superstrong problem. The shortest-superstrong problem is; given a set of

strings s 1 , ski s3....sn , find the shortest superstring S that has each s ibas a substring.

The problem is MAX SNP — hard and has applications in DNA sequencing and

data compression.

20
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Figure 4.1 Double Oppositely Oriented reD-cycle and 3-D-cycles.

4.2 2/3-approximation for MAX-ATSP

In [3] Kaplan, Lewenstien, Sharer, and Sviridenko give an important procedure for

obtaining a path coloring of a reregular multigraph. This procedure yields a 2/3-

approximation when combined with the procedure presented in section 2.2. The

algorithm presented in section 2.2 gives a reregular multigraph that has weight at

least twice the weight of the optimal ASP tour. It is easy to see that one of the path

collections will have weight at least 2/3 . OPT. The procedure is presented next.

Consider a reregular multigraph G that is a combination of two cycles covers

Al and Ak such that.

1. A1 and Ak do not share a recycled, ie. if a recycled is a part of A 1 then Ak does

not contain at least one of the edges from that recycled.

2. The total weight of the two cycle covers is at least twice the weight of optimal

Pach connected component of G will be considered separately. First consider

the connected components that are double oppositely oriented cycles. Denote such a

pair of cycles of length 4 as 4-D-cycle. Any such cycle is a component by itself.

It is easy to see that there are no reD-cycles in G. Consider the 4-D-cycle in G.

Such a component cannot be three path colored. But the situation is easily handled

by reversing the cheaper cycle in this component and then three path coloring it.

Now the process for coloring a 3-D-cycles is given. The same process can be applied
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for any D-cycle where 4 > 3. Consider a D-cycle over the vertices (A 1 , Ak , A3 , A4 ).

The path coloring is done as follows. The first path collection contains the two edges

(Ak , A 1 ) and (A3 , A4 ). The second path collection contains a path from A 1 to Ak and the

third path collection contains a path from A4 to A3 .

Now consider a connected component of G that is not a Recycle. Such a

component is a combination of two cycle covers. The coloring is done using colors

from the set {Red, Blue, Green}. Color one cycle cover Red and the other one Blve.

The basic idea now is to break all the Red and Blue cycles in the two cycle covers

using Green while ensuring that no Green cycles are formed.

An alternatong path is defined as a path consisting of alternating red and blue

edges. An alternatong cycle is similarly defined. The algorithm tries to first find a

maximal alternating path such that only one edge is picked from any given cycle. Next

all the edges on this alternating path are colored green and all the cycles touching

this path are removed from the graph. Thus all the cycles on the path are broken.

Since the alternating path is maximal, therefore there are no edges in the remaining

graph that touch the edges that were colored green and so the edge coloring done

after this would not interfere with the edges already colored green. This is important

to ensure that no green cycles are formed. The process is repeated till all cycles are

broken. The only problem however is that the process to deliver alternating path

might deliver an alternating cycle. But an alternating cycles can also be dealt with.

Next the process to obtain an alternating path is given.

Start with any edge (v d , Ak ) such that if (v d , Ak ) is in G then it has the same

color as (v d , Ak ). Such an edge exists on every cycle A as otherwise there must be a

2-D-ecycle which is restricted. Mark such an edge and then extend the path greedily in

both directions. For example if (A d , Ak ) is colored red then next the outgoing blue edge

from A k is marked. Care should be taken when adding new edges to the alternating

path, as only edges from cycles that have not been marked can be considered. If the
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last edge in the path was colored let say blue and the outgoing red edge incident on

the vertex is from a cycle that is already marked, then the process is stopped. Note

that suppose there is an alternating path (Ad i Vk...Vk), then an edge is never added

from Aka to any vertex from (Ak , A3 ...Ak_ 1 ). This is because all these vertices have one

red edge incident on them and so adding another red edge is impossible since the red

cycle incident on this vertex is already marked. An edge can however be added from

Uk to A 1 and that gives an alternating cycle. An alternating cycle is a problem because

then this cycle cannot be colored green. But alternating cycles can be handled as

demonstrated next.

Consider an alternating cycle (A d , Ak ...k , v 1 ). An alternating cycle always has

length > 4. This is so because an alternating cycle always has even length and it

will never have length 2 since the algorithm forbids to start with an edge (v d , Ak ) if

(Ak , A d ) has a different color. Also note that all edges on the alternating cycle are

from different cycles in the two cycle covers.

The situation is handle based on the length of the cycles intersecting the alternating

cycle. The first case is when one of the cycles is a recycled. The next is if one of the

cycles has length > 4. The last case is when there are at least three consecutive cycles

of length 3. It is easy to see that one of these cases must exist.

Consider case 1, and let (vi , Aid), (vied, Aid) be the edges in the recycled. Assume

that the 2-cycle is colored Blue. Then all the edges except (v i , Aided) in the alternating

cycle are colored Green. The edge (A id, Aid) is colored Red. This coloring will not

conflict with the other Red edges since both the conflicting Red edges are colored

Green. Also this would not form a Red cycle since it joins two disjoint Red paths.

Next all the cycles on the original alternating cycle are removed.

Next consider case 2. Let (k, A d ) be the edge from the cycle of length > 4

that intersects the alternating cycle. Assume that the cycle is colored Blue. Let

(A d , u) and (u, w) be the next two edges on this cycle. Color Green all the edges on
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the alternating path except (A, , A 1 ) and remove all the corresponding cycles from the

graph. If (u, w) is opposite a Red edge (w, u) then (A 1 , 'Li) is colored Red and (w, u)

is colored Green. If (u, w) is not opposite a Red edge then a new alternating path

search is started using any edge from the cycle except (k , vd ). The procedure may

end in an alternating path which is good or it may end with an alternating cycle in

which case the same process is repeated until either an alternating path is found or

an alternating cycle with all cycles of length 3 is found.

Consider case 3, where there are three consecutive cycles of length three. Let

the three edges the intersect the alternating cycle be the path (A , A 1 , Ak , A3 ). Next

observe that either A 1 or Ak will not have a recycled incident on it.

4.3 10/13-approximation for metric-MAX-ATSP

Kaplan, Lewenstien, Sharer, and Sviridenko [5] obtained a 10/13-approximation for

metric-MAX-ATSP using a result proved by Serdyukov and Kostochka and the fact

they could obtain two cycle covers that weight more than twice the optimal ASP tour

and do not share a recycled (as presented earlier).

Given an directed graph G = (V, E, w), where w is a weight function associating

a non-negative weight with each edge and the weights obey the triangle inequality.

Let A be a maximum weight cycle cover in G. Let Wi be the weight of all the cycles

in C containing exactly o vertices. The following lemma is obtained from the result

by Serdyukov and Kostochka [11] .

Lemma 10 Given a haxihuh weight cycle cover A, a hamiltonian cycle H can be

obtained in tihe 0(nk ) such that
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Now let A1 and Ak be two cycle covers such that they do not share a recycled

Let W2 be the weight of all the 2-cycles in A 1 and Ak divided by 2 and let W3

be the weight of all the other cycles divided by 2. Then the following holds based on

the lemma presented above.

Now let G' be a graph obtained from the union of all the 2-cycles from A1 and Ak.

Since A1 and Ak don't share a 2-cycle therefore G' is a collection of chains consisting

of 2-cycles and therefore can be represented as a union of two path collections. If

G' contains two oppositely oriented cycles formed by joining 2-cycles , then it can

be reversed in the direction of the heavier cycle. Next the two path collections are

completed into hamiltonian tours and let B be the heavier of these tours. Then the

following holds.

Using (4.1) and (4.2), it is possible to obtain a Hamiltonian tour B such that
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SYMMETRIC MIN-TSP

5.1 Introduction

Let G = (V, E, w) be an undirected graph, where w is a weight function associating

a non-negative weight with each edge in E. Symmetric MIN-TSP is the classical

problem of finding a minimum weight hamiltonian tour. As was mentioned earlier the

problem is NP — hard to approximate and thus there is no approximation algorithm

for this problem unless P = NP. The problem does allow an approximation of

7/2 [2] when there is an added constraint that the edges in the graph obey triangle

inequality. Another important special case is when the edge weights in the graph

are drawn from the set {l, 2}. This special case of ASP was used by Karp [1] in his

reduction to show that the problem is NP — Aomplete. It is easy to see that the

edges automatically obey the triangle inequality and so a 3/reapproximation follows

directly. A well known technique of subtler patching can be used to obtain an easy

5/4-approximation for the problem. First find a minimum weight cycle cover in the

graph that has no cycles (see Hartvigsen [7]). There are at most n/4 cycles in the

graph. Pick any two cycles and combine them into one cycle with an increase of at

most 2 in the total cost. Now combine this cycle with another cycle with an increase

of at most 1 in the total cost. Continue in this fashion and obtain a tour with cost

at most 5/4 . OPT. This patching technique was modified by Papadimitriou and

Yannakakis [17] to obtain a 3/reapproximation for the problem. The algorithm is

presented.

5.2 3/6-approximation for MIN-TSP, 2}

Let G = (V, E, w) be an undirected graph, where w is a weight function associating a

non-negative weight from the set { 1, 2} with each edge in E; Assume for now that the

26
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graph has a hamiltonian tour of weight n = I VI . Using the algorithm developed by

Hartvigsen [7], find a minimum weight cycle cover that does not contain any cycles.

Let A = {c1 , Ck .. ..Cm } be the set of cycles in the cycle cover. Consider the two node

sets A and V and create a bipartite graph B such that an edge e = (u, v) Ε B if there

is an edge of weight 1 in the original graph from a node u in a cycle c and a node v

that does not belong to c. Since there is a hamiltonian cycle with all edges of weight

1, it is easy to see that there is a matching in B. Obtain such a matching in B and

then create a directed graph F = (A, A) where (c, c') Ε A if c is matched with a node

of c'.

Lemma 11 F has a spanning subgraph S consisting of only in-trees of depth 1 and

paths of length 2.

Proof. Any weakly connected component of F has a cycle and each node of the

cycle may have in-trees converging into it. Pick any node with an in-tree in the cycle

and let l be the leaf node farthest from it. If l's child sis not on the cycle then an

in-tree is created by s and all it's parents and then s is removed. Continuing in this

fashion, a cycle can be obtained with certain nodes having parent nodes outside the

cycle. Pick a node with a parent outside the cycle and remove it with the parent.

The parent of this node inside the cycle is included in it's in-tree if this leaves an even

number or zero node between this node and any previous such node. This process

leaves a cycle with no nodes outside the cycle and this can trivially be decomposed

into paths of length one and at most one path of length 2. ❑

Now consider the spanning subgraph S and the in-trees of depth one. Any such

in-tree has a root node which is a cycle, call it c and parent nodes that are also cycles,

let these be {c 1 , ck , ...c^.}. It is easy to to see that all these cycles are connected to

the root cycle c at different nodes in c. This is so because a directed edge from the

matching has different end nodes. Now consider the cycle c and traverse it's nodes in
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Figure 5.2 (CASP B) Merging cycles.

clockwise fashion. If a node v is connected to a cycle, then check the next node. If

this node is also connected to the cycle, then the three cycles are merged as shown

in figure A, else the two cycles are merged as shown in figure B. In case of paths

of length two, they are merged as shown in the figure A. The obtained cycles are

then merged together using standard subtler patching technique. Let the tour thus

obtained be T.

Lemma 12 T has weight at host 3/6. OPT.

Proof. The total cost of the tour is the cost of the cycle cover plus the cost of

merging the cycles. The cycle cover has cost n. Next it is shown that the cost of each
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Figure 5.3 (CASP C) Merging cycles.

of the merging is at most 1/6 per node. If the merging is done according to figure

A, then the cost is at most 1/10 per node, since 10 nodes are involved in the process

and the weight addition is at most 1. In case of figure B, it is easy to see that the

cost is at most 1/6 per node and so is the case with figure A. ❑

Next consider the case when the optimum tour has weight greater than n. Find

a cycle cover in the graph without any cycles as before. Merge all cycles that have

an edge of weight 2 without any additional cost. Call this cycle non-pure and the

remaining cycles pure. Let (u, v) be an edge of weight 2 in the non-pure cycle. If

there is an edge of weight 1 connecting either u or v to a pure cycle then this cycle is

merged with the non-pure cycle with no additional cost.

Now a bipartite graph B is constructed as before but the set A contains only

the pure cycles. Again a directed graph F is obtained as before, but the matching in

B may not be perfect this time. Some pure cycles may not have been matched. The

non-pure cycle may or may not have some incoming edges into it.

Next F is decomposed into paths of length at most 2 and in-trees of depth 1.

The decomposition may not be spanning this time. The components thus obtained
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are merged as before with a cost of at most 1/6 per node in these components. Next

the unmatched pure cycles are merged with a cost of 1 per cycle. Finally, the nonpure

cycle is merged with no additional cost (if this was not already merged). Let the tour

thus obtained be T'.

Lemma 13 T' has weight at host 7/6. OPT, and thus there is a 7/6-approximation

for MAX- TSP-{1, 2}.

Proof. Let the number of edge of weight 2 in the cycle cover be 4. Therefore the

optimal ASP tour has weight at least n + 4. Let the number of edges of weight 2

in the optimal tour be 4'. Therefore the optimal tour has weight n + 4'. Let rk be

the unmatched pure cycles in F. It is easy to see that rk < 4'. Let nk be the total

number of nodes in these cycles. The cost of merging the decomposed components in

F is at most 1/6 per node. The number of such nodes is at most n — 4 — n k . This is

so because the nonpure cycle has at least k edges of weight 2. And the end vertices

of these edges are never involved in the merging process because there cannot be a

weight one edge connecting such a vertex to a pure cycle.

Therefore the total cost of the tour is given by



CHAPTER 6

ASYMMETRIC MIN-TSP

6.1 Introduction

Given a directed graph G = (V, E, w), where w is a weight function associating a none-

negatived weight with each edge in E; ASP (Asymmetric MIN-TSP) is the problem

of finding a minimum weight hamiltonian tour. This chapter focuses on metric-

MIN-ATSP ie. the same problem with the added constraint that the edge weights

observe the triangle inequality. Frieze, Galbiati and Maffloli [18] gave the first non-

trivial approximation algorithm for the problem achieving a login)- approximation.

The result withstood any improvements for two decades until the recent paper by

Blather [19] that achieves a tiny but insightful improvement, giving a 0.999 • login)-

approximation. Kaplan et al. [5] then improved this result achieving a 0.841 login)-

approximation.

6.2 0.841 • login)-approximation for metric-MIN-ATSP

Presented here is the procedure developed by Kaplan et al. to achieve the above

mentioned approximation. The procedure assumes that a subgraph G, has been

obtained from G using the procedure presented in Section 2.2. Also that G, contains

two cycle covers A lb and Ak with the following properties.

1. Alb and Ak do not share a recycled, ie. if a recycled is a part of A1 then Ak does

not contain at least one of the edges from that recycled.

2. The total weight of the two cycle covers is at most twice the weight of optimal

Let NAG) denote the number of vertices, and AAG) the number of connected
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and Gib , choose the one that minimizes the value of win)/ log(Νin)/A(n)). Next

contract all the connected components in this graph into vertices and delete all the

self loops thus formed. Next find n, in the new graph, set Gk = n, and n2 = Alb

and n2 = Ck and apply the same procedure again. Proceed recursively till one single

supervertices is obtained. Next contract the supervertices and add the edges from

the corresponding connected components. Let the resulting graph be n o . This graph

contains a Puller cycle. Shortcut this cycle as in [2] to obtain the final tour T.

To analyze the performance of the algorithm, some properties are given in the

following lemma.

Lemma 14 At every recursive step o of the algorithm, w(n Z ) = win) + w(GZ') <

Next, a bound is obtained on the total number of connected components in the

graph at any recursive step in the algorithm.

Proof. A connected component has size 4, if there are 4 vertices in this component.

Let Lk denote the number of vertices and let 1k denote the number of components in

connected components of size 4 in graph C. Obviously, 1k = Lk /4. Next, it is proved

that total number of connected components in the three graphs n i , n and n^' is at

most ΣkLk .

The analysis is divided into two cases. First consider all components of size 4

in n i where 4 is odd. Since 4 is odd, therefore there is at least one cycle in Anti and

GZ' that has length > 3. Thus in the worst case both n i and n2' have one cycle of

length three and all other cycles are two cycles and so a total of at most (4 — 1)/2

cycles. Thus the total number of cycles in nib and n'' combined in components of

size k is at most k • 2. k 1 . Now total number of connected components of size 4
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in nib is nk/1k. Therefore total number of connected components of size k is at most

Next consider connected components in n ib where k is even. Now it is not

possible that all the cycles in the graphs GZ and no' are two cycles. Therefore, w.l.o.g.,

assume that nib has a cycle of length grater than 2. Now in the worst case Gib will

have either one cycle of length 4 or two cycles of length 3. In either case the total

number of cycles in Gib is at most k
 k
 . The maximum number of cycles in nod' could

11 n Ντ 'τ'r he k T+ is Aςcv +n cAΩ Mc h0 fnrA Eli - +n+c Ι ιιιmλΡor of 1'nnn oι'+o^ ι'nmτ'ιnr^on+c

Let the total number of steps in the algorithm be P + 1. Let Ni = Nisi ) be

the number of vertices and let wig denote the total weight of the chosen graph at the

Rothiteration. The total cost of the final Puller tour is obviously Bo =lPτυi.Bhich

implies

Let i be the iteration where the maximum of the right hand side is obtained.

Here Nie1 is equal to the number of connected components in the graph that was

chosen in the Roth iteration. This implies
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The last inequality follows from the fact that cif) • cif) • c(G) is maximized



CHAPTER 7

RELATIONSHIP BETWEEN TSP AND CONNECTIVITY

7.1 Introduction

Given a graph s = iV, E, w), such that w is a weight function that associates a

non-negative weight with each edge in Ε. Let s' be a subgraph of s. G' is said to be

reconnected, if the removal of any vertex and the corresponding incident edges from

s', still leaves it connected. n' is said to be reedge-connected if the removal of any

edge from s' still leaves it connected. If all the edges in the graph have equal weights,

then the problem of finding a minimum weight biconnected or reedge-connected

subgraphs has an efficient solution (Specifically, there are 9iV+E) algorithms for both

problems [20]) . However, if the edges have unequal weights, then the problems are

NP — complete [20] . The relationship between ASP and minimum weight biconnected

subgraph was fdrst studied by Frederickson and Baja [21]. They showed that when the

edges in the graph obey the triangle inequality, then the weight of an optimal TSP

tour is not greater than 3/2 times the weight of an optimal biconnected subgraph.

Now suppose that the weight function w assigns edges from the set {1, 2} to the

edges Ε. The connectivity problems still remain NP — complete. Next it is shown

that for this special class of graphs, the optimal TSP tour has weight exactly equal

to the optimal reedge connected subgraph. And thus the result by Papadimitriou

and Yannakakis [17] implies that there is a 7/reapproximation algorithm for finding

a minimum weight reedge-connected subgraph for this class of graphs.

7.2 reedge-connected subgraph and ASP

Let n = iV, E, w) be a complete undirected graph , such that w is a weight function

that associates a weight from the set { 1, 2} with each edge in Ε. A graph is reedge-

connected if there are at least two edge-disjoint paths between every pair of vertices in
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the graph. reedge-connected is equivalent to the existence of an ear decomposition

that is a partition of the edges of the graph into a sequence of ears isimple paths and

cycles) .

Let S be a minimum weight reedge-connected subgraph of n. Let T be the

optimal ASP tour in n. Let w (S) and w iT) denote the total weight of the edges in

the two subgraph. The following lemma holds.

Lemma 16 Let s = iV, E, w) be an undirected complete graph with edge weight in

{1, 2}. The weight of an optimal ASP tour Τ is exactly equal to the weight of a

minimum weight reedge-connected subgraph S.

Proof. Since T is a reedge-connected subgraph therefore it is obvious that w(T) >

45). Next, it is to be proved that w (T) < w iS) . Consider any reedge connected

subgraph S' in s. Then it is sufficient to show that TSP tour can be obtained from

S' without adding any additional weight.

Since S' is reedge-connected therefore S' has an ear decomposition. The first ear

in such a decomposition is a single vertex. The start and end of each successive ear

should be vertices occurring in previous ears, but all other vertices in an ear should

be new. Such a decomposition can be found one ear at a time. Start each ear by

any unused edge e from an already-explored vertex, and continue by a shortest path

back to another already-explored vertex (such a path must exist because e cannot

disconnect the graph). Therefore, the first ear in this decomposition is a vertex and

the next ear is a cycle. Let this cycle be A. Now the next ear will have it's start and

end vertices from this cycle. If it is possible to merge A and the next ear into a cycle

A', then the next ear would have it's start and end vertices from A'. Again these two

can be merged to obtain a cycle and then continuing in this fashion a tour can be

obtained.

There are three possible ways in which a cycle and an ear can be connected.

The first case iCASP A) is when the ear hits the cycle on consecutive vertices. Let



Figure 7.1 iCASP A) Merging two ears into a cycle.
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Figure 7.2 (CASP B) Merging two ears into a cycle.

Figure 7.3 iCASP C) Merging two ears into a cycle.
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these vertices be x and y . Then the edge joining x and y is deleted and a single cycle

is obtained. It is obvious that there is no loss of weight in this case. CASP B is when

the ear hits the cycle on any non-consecutive vertices. Once again let these vertices

be x and y . Give the cycle anticlockwise orientation and clockwise orientation to the

ear. Let vertex w be the successor to y on the cycle. Then the edge iy , w) is deleted.

Let vertex z be the successor to x on the ear. Then the edge (z, x) is deleted. Next

the edge (z, w) is added and a cycle is obtained. (Note that it is possible that there

are no vertices on the ear, which means that z and y are the same vertex) . Now to

obtain a single cycle, two edges were deleted and a single edge was added. Since the

edge weights are from the set { 1, 2}, therefore there is no loss of weight. The third

case, (CASE C) is when the two ear are connected at the same vertex. Let this vertex

be x. Give a clockwise orientation to one ear and anticlockwise orientation to the

other ear. Let vertex y be the successor to x in the ear with the clockwise orientation.

Then the edge ix, y ) is deleted. Let vertex z be the successor to x in the ear with

anticlockwise orientation. Then the edge iz, x) is deleted. Next the edge (z, y ) is

added. By similar argument as in CASP B, there is no loss of weight in this case. O



CHAPTER 8

CONCLUSION

Approximation algorithms first appeared as the computer science community's answer

to the impossibility of efficiently solving NP — hard problems. Classical ASP however,

belongs to the notorious class of problems that do not allow any approximation.

Christofides [2] with his celebrated result in 1976 showed that when the edge weights

in a graph obey triangle inequality, it is possible to obtain a 3/reapproximation. This

was followed by a series of approximation results for a number of variants of TSP. The

early results were mostly simple algorithms, whereas a lot of recent results have been

obtained with algorithms that are more involved. Also linear programming has been

used in addition to purely combinatorial techniques for some of the recent results. The

fact that improvements had been achieved on this front very recently motivated this

study. Alas, no results were obtained and it seems fair to conclude that nothing can be

trivially improved. The more complicated techniques that were applied also did not

yield any results or give any insights into how something could be improved. Recently

Chen, Bang, Nagoya and Okamoto achieved some improvements for MAX-TSP and

metric-MAX-TSP iThe papers are as yet unpublished) . The techniques applied to

get these improvements are fairly involved but it is encouraging to see that there is

still some hope for improvements on these results.
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APPENDIX A

GRAPH THEORY GLOSSARY

This appendix contains graph theory terminology that is largely standard and could

be useful in reading this thesis. Assume that G = iV, E, w) is an undirected weighted

graph, unless specified otherwise.

• Bipartite Graph - A graph n is bipartite if it's vertices can be partitioned

into two disjoint subsets U and V such that each edge connects a vertex from

U to one from V.

• Cycle Cover - A subgraph of n that is a collection of vertex disjoint cycles

and covers all vertices of n.

• Puler Circuit - A close trail in a graph that includes every edge of the graph

exactly once. The trail starts and end at the same vertex.

• Cycle - A cycle of length exactly 4.

• Cycle Cover - A cycle cover of n such that every cycle has length at least

k.

• k-Path Coloring - A k-coloring of s such that edges from any given color

form a collection of vertex disjoint paths.

• Triangle Inequality - If the edges in s observe the triangle inequality, then
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