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Abstract. As part of the GlobColour project, daily chloro-

phyll a observations, derived using remotely sensed ocean

colour data from the MERIS, MODIS and SeaWiFS sen-

sors, are produced. The ability of these products to be as-

similated into a pre-operational global coupled physical-

biogeochemical model has been tested, on both a hind-

cast and near-real-time basis, and the impact on the sys-

tem assessed. The assimilation was found to immediately

and considerably improve the bias, root mean square error

and correlation of modelled surface chlorophyll concentra-

tion compared to the GlobColour observations, an improve-

ment which was sustained throughout the year and in ev-

ery ocean basin. Errors against independent in situ chloro-

phyll observations were also reduced, both at and beneath the

ocean surface. However, the model fit to in situ observations

was not consistently better than that of climatology, due to er-

rors in the underlying model. The assimilation scheme used

is multivariate, updating all biogeochemical model state vari-

ables at all depths. The other variables were not degraded

by the assimilation, with annual mean surface fields of nu-

trients, alkalinity and carbon variables remaining of simi-

lar quality compared to climatology. There was evidence of

improved representation of zooplankton concentration, and

reduced errors were seen against in situ observations of ni-

trate and pCO2, but too few observations were available to

conclude about global model skill. The near-real-time Glob-

Colour products were found to be sufficiently reliable for op-

erational purposes, and of benefit to both operational-style

systems and reanalyses.

1 Introduction

Operational marine biogeochemical models are required for

a variety of purposes (Brasseur et al., 2009; Berx et al.,

2011). These include monitoring air–sea carbon fluxes and

plankton levels in a changing climate, forecasting algal

blooms which may be harmful to human health or to fish-

eries, providing information about the marine environment

to fisheries managers and policy makers, and predicting the

ocean state for naval customers. In this context, “operational”

is used to describe an automated system which runs in real-

time or near-real-time (NRT), and delivers products to end

users.

There is also the need for reanalyses, as these provide high

quality data sets that are also methodologically consistent.

Biogeochemical reanalyses are key to reconstruct past con-

ditions in the ocean, understand and differentiate natural vari-

ability and climate trends, improve the biases in models and

observations, and provide information for present and future

monitoring programmes.

In general, the most realistic representation of the ocean’s

biogeochemistry is required. Data assimilation, which is

widely used in numerical weather prediction (NWP; Kalnay,

2003) and operational physical oceanography (Cummings et

al., 2009), can help with this aim by combining the advan-

tages of models and observations. Models give full spatial

and temporal coverage of the ocean, but contain errors re-

sulting from inadequate approximations, parameterisations,

forcings and initial conditions. Observations are typically

more accurate, but are sparse and still contain sources of

error. Combining the two can produce results which have

full spatial and temporal coverage, that can be used for
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forecasting, and which are potentially more accurate than ei-

ther models or observations alone (Gregg et al., 2009; Cum-

mings et al., 2009).

Data assimilation can be used either for parameter esti-

mation or for state (or flux) estimation. In marine biogeo-

chemistry, much of the focus to date has been on parame-

ter estimation, usually with a zero-dimensional (0-D) or one-

dimensional (1-D) model (e.g. Matear, 1995; Hemmings et

al., 2004). This technique adjusts the internal parameters of

a model such that a subsequent model simulation will match

the observations as closely as possible. It is typically per-

formed as a tuning exercise, to decide the best values for pa-

rameters whose real-world values are unknown.

In this study data assimilation is used for state estima-

tion, employing a sequential (Talagrand, 1997) technique.

This technique adjusts a model field based on observations

in order to produce an analysis, which is the best estimate

of the ocean state at a given time. The process is stepped

through time to provide a series of analyses, each of which

can then act as the initial conditions for a forecast. The ma-

jority of applications of marine biogeochemical data assimi-

lation for state estimation have involved assimilating real or

simulated chlorophyll observations. These have been used to

update phytoplankton fields, typically in a univariate manner.

An overview of some of these efforts, with a focus on skill as-

sessment, is given in Gregg et al. (2009). Many of these have

used 0-D models (e.g. Losa et al., 2003), or 1-D models (e.g.

Eknes and Evensen, 2002; Allen et al., 2003; Hoteit et al.,

2003; Torres et al., 2006; Raick et al., 2007). Hemmings et

al. (2008) tested the assimilation scheme used in the present

study in a 1-D test bed in the North Atlantic. This test used

simulated chlorophyll and phytoplankton observations to di-

rectly update the model phytoplankton, zooplankton, nutri-

ent, detritus, dissolved inorganic carbon (DIC) and alkalinity

fields. The increments to each variable were calculated using

a principle of total nitrogen and carbon conservation. The

assimilation was found to be of overall benefit to both the

nitrogen and carbon variables, and produced more realistic

fields than if just the model phytoplankton was updated. In

this study the scheme has been extended to directly update

all biogeochemical state variables in a three-dimensional (3-

D) model based on remotely sensed surface chlorophyll ob-

servations.

A number of studies have assimilated biogeochemical data

into 3-D regional models (e.g. Ishizaka, 1990; Anderson

et al., 2000; Carmillet et al., 2001; Popava et al., 2002;

Beşiktepe et al., 2003; Triantafyllou et al., 2003; Hoteit et

al., 2005; Fontana et al., 2010). Natvik and Evensen (2003)

assimilated remotely sensed chlorophyll data into a model

of the North Atlantic. With respect to a control run, this re-

sulted in a qualitative improvement in surface phytoplankton

compared to the satellite data, and consistent changes in sub-

surface phytoplankton, zooplankton and nitrate. Ourmières

et al. (2009) assimilated nitrate climatology values into a

model of the North Atlantic, which improved the model’s

representation of nitrate compared to the climatology, and

led to an improved representation of chlorophyll compared

to satellite data. Ciavatta et al. (2011) assimilated chloro-

phyll data into a model of the western English Channel. This

resulted in improvements compared to the assimilated data,

and also an improved representation of other biogeochemical

variables, including a number of plankton functional types

and nutrients, compared to independent in situ observations.

Few studies have assimilated biogeochemical data into a

global model. Nerger and Gregg (2007) assimilated chloro-

phyll data into the NASA Ocean Biogeochemical Model

(NOBM), resulting in significantly improved globally aver-

aged modelled surface chlorophyll when compared to both

assimilated and independent observations. Primary produc-

tion was also improved when compared to satellite data,

however surface nitrate was slightly degraded compared to

a climatology. Nerger and Gregg (2008) extended the work

to include an online model bias correction scheme, which

further improved model surface chlorophyll concentrations.

Gregg (2008) also assimilated chlorophyll into NOBM, us-

ing a different method. The assimilation improved sur-

face chlorophyll compared to the assimilated data on daily,

monthly and annual timescales, at both regional and global

scales, and also when compared to independent data. Sim-

ulations were found to improve with assimilation frequency.

Primary production was also improved, but not by as much as

expected, with Gregg (2008) suggesting a need for multivari-

ate assimilation. While et al. (2012) assimilated in situ ob-

servations of the partial pressure of carbon dioxide (pCO2)

into the model used in this study, resulting in a significant

reduction in model pCO2 bias and root mean square error in

comparison to the assimilated observations. The assimilation

was found to have a long memory, with observations posi-

tively influencing results several months after assimilation.

Coupled physical-biogeochemical models are increasingly

being run operationally, as well as for research purposes. For

instance, as of January 2012, there are six on-line or off-line

coupled physical-biogeochemical models regularly provid-

ing products to the MyOcean project (http://www.myocean.

eu). Two of these assimilate biogeochemical data; the model

for the Mediterannean Sea (Teruzzi et al., 2011) and the

model for the Arctic Ocean (Samuelsen and Bertino, 2011;

Simon and Bertino, 2012). A discussion of progress and

challenges in developing operational biogeochemical mod-

els with data assimilation is given in Brasseur et al. (2009),

whilst a pre-operational coupled physical-biogeochemical

model has been run daily with biogeochemical data assim-

ilation since 2009, as part of this current study.

For observations to be assimilated operationally they must

be available in NRT (Le Traon et al., 2009), as this allows

models to run on a regular basis in a robust and reliable man-

ner. Using data which describe the current ocean state gives

maximum benefit, as the model can be effectively and realis-

tically constrained by the data assimilation. This operational

requirement is addressed by the GlobColour project (Fanton
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d’Andon et al., 2008), which provides a long time series of

calibrated and validated satellite ocean colour observations

for the global ocean, as well as a set of NRT products which

are updated daily. Surface chlorophyll concentrations are de-

rived from these, and it is this data set which is assimilated

in this study.

The study presented in this paper has two aims. The first is

to test whether the GlobColour observations can be assimi-

lated reliably into a global coupled physical-biogeochemical

model running on an operational basis. This includes assess-

ing the suitability, robustness and timeliness of the data and

their delivery. The second aim is to test the impact of the as-

similation on the model’s representation of chlorophyll con-

centration, the carbon cycle and other biogeochemical vari-

ables of interest.

The physical-biogeochemical model, observations and bi-

ological data assimilation scheme used in this study are de-

scribed in Sects. 2, 3 and 4, respectively. Experiments to

test the effectiveness of the data assimilation are described

in Sect. 5, and the results presented in Sect. 6. Conclusions

are drawn and the pre-operational running of the system dis-

cussed in Sect. 7.

2 Model description

This study uses a coupled physical-biogeochemical model,

the physical component of which is the Forecasting Ocean

Assimilation Model (FOAM). Details of the FOAM system

and its performance are not given here, but are described

in Storkey et al. (2010). The version used in this study is

based on version 3.2 of the Nucleus for European Mod-

elling of the Ocean (NEMO) hydrodynamic model (Madec,

2008), and the second version of the Louvain-le-Neuve sea

ice model (LIM2; Timmermann et al., 2005). At the surface

the model is forced by six-hourly mean fluxes from the Met

Office global NWP model. A key feature of FOAM is the

ability to assimilate remotely sensed and in situ observations

of temperature, salinity, sea-level anomaly (SLA) and sea ice

concentration. The data assimilation scheme is of optimal in-

terpolation (OI)-type, and is described in detail in Martin et

al. (2007) and Storkey et al. (2010). The FOAM system is run

operationally at the Met Office on a daily basis, producing

analyses and six-day forecasts. It is run globally at 1/4◦ res-

olution, and in three 1/12◦ regional configurations, covering

the North Atlantic Ocean, Indian Ocean and Mediterranean

Sea. However, due to the additional computational cost of the

biogeochemical model, for the purposes of this study a non-

operational version of the FOAM system is being run glob-

ally, using a 1◦ tripolar grid with 42 vertical levels, although

still including physical data assimilation.

The biogeochemical component of the coupled model is

the Hadley Centre Ocean Carbon Cycle Model (HadOCC;

Palmer and Totterdell, 2001). HadOCC is a relatively simple

nutrient, phytoplankton, zooplankton and detritus (NPZD)

model, which also includes dissolved inorganic carbon (DIC)

and alkalinity to complete the carbon cycle. The main nutri-

ent component in HadOCC is nitrate (ammonium is also de-

rived), so the NPZD variables are modelled in terms of their

nitrogen content. Conversion between carbon and nitrogen is

performed using fixed ratios, and a list of parameters used

within HadOCC is provided in Table A1. HadOCC has been

widely used for carbon cycle studies at the Met Office Hadley

Centre, and was the ocean biogeochemical component of the

first coupled climate-carbon model (Cox et al., 2000), which

examined future climate-carbon feedbacks. A development

of the model, Diat-HadOCC (Totterdell and Halloran, 2012),

which has a more complex ecosystem, has recently been used

in simulations that will form part of the Intergovernmental

Panel on Climate Change (IPCC) 5th Assessment Report.

HadOCC is shown schematically in Fig. 1, and the model

equations are given in Hemmings et al. (2008). The state vari-

ables are all treated as oceanic tracers, and are advected us-

ing the Monotonic Upstream Scheme for Conservation Laws

(MUSCL) scheme, which forms part of the NEMO code

(Lévy et al., 2001). Chlorophyll, which is assimilated in this

study, is not a state variable within the model, but is derived

from phytoplankton using nitrogen to carbon and carbon to

chlorophyll ratios. DIC and alkalinity are controlled by the

physical and NPZD variables, but have no influence on them.

Their inclusion allows the calculation of sea surface pCO2

and air–sea CO2 flux, which are in turn affected by atmo-

spheric pCO2. This is assumed to be spatially constant, with

a value of 389.30 ppm used for 2008.

Since Palmer and Totterdell (2001), the light penetra-

tion model of Anderson (1993) has been implemented in

HadOCC. Furthermore, a variable phytoplankton carbon to

chlorophyll ratio has been added, which is allowed to vary

between 20 and 200. The method used for the carbon to

chlorophyll ratio is that of Geider et al. (1996), with nutrient

and temperature effects implemented as suggested by Geider

et al. (1997). Using a variable ratio has been found to give

a more realistic conversion between phytoplankton biomass

and chlorophyll concentration. HadOCC also has the option

to allow phytoplankton growth rates to increase with temper-

ature through use of a Q10 parameter (Eppley, 1972; Palmer

and Totterdell, 2001), an option which is utilised in this study.

HadOCC is coupled on-line to NEMO, and is called at

every model time step (30 min). The coupling is one-way,

which means that the physical fields drive the biogeochemi-

cal variables, but there is no feedback from the biogeochem-

ical to the physical variables.

3 GlobColour data

A detailed description of the GlobColour products is

given in the GlobColour Product User Guide (http://www.

globcolour.info/CDR Docs/GlobCOLOUR PUG.pdf,

25 January 2011), and they can be accessed via

www.ocean-sci.net/8/751/2012/ Ocean Sci., 8, 751–771, 2012
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Fig. 1. Schematic of the HadOCC model.

http://www.globcolour.info or http://www.myocean.eu.

The data assimilated in this study are global chlorophyll

products derived using remotely sensed ocean colour obser-

vations from three different sensors. These are the Medium

Resolution Imaging Spectrometer (MERIS) on board the

Envisat satellite; the Moderate Resolution Imaging Spectro-

radiometer (MODIS) on board Aqua; and the Sea-viewing

Wide Field-of-view Sensor (SeaWiFS) on board SeaStar.

Information from the MODIS sensor on board Terra is not

used, and all references to MODIS in this paper refer to

MODIS-Aqua.

GlobColour offer an archive of merged daily average level

three (Blower et al., 2009) chlorophyll products dating back

to the launch of SeaWiFS in 1997, which are freely avail-

able and described in Sect. 3.1. NRT products are available a

day behind real-time, and will be discussed further in Sect. 7.

The GlobColour products are generated from level two radi-

ance data provided by the European Space Agency (ESA)

for MERIS, and the National Aeronautics and Space Admin-

istration (NASA) for MODIS and SeaWiFS. The products

assimilated in this study are based on the MERIS 2nd repro-

cessing (2006), and MODIS 1.1 and SeaWiFS 5.2 reprocess-

ings. However, more recent reprocessings are now available

(MERIS 3rd, MODIS R2009.1 and R2010.0, and SeaWiFS

R2010.0), and current NRT GlobColour products make use

of these. Furthermore, the full GlobColour archive will be

reprocessed during 2012, and the impact this might have is

discussed in Sect. 3.2.

3.1 Level three merged products

The products used in this study are daily averaged fields of

sea surface chlorophyll. These are gridded at a resolution of

1/24◦ (4.63 km at the equator), on an integerised sinusoidal

(ISIN) grid. There is global coverage, although there are no

data at high latitudes for the winter Hemisphere, and there are

also gaps where there is cloud. On average the products cover

25.22 % of the ocean each day, and 87.69 % of the ocean each

month (Maritorena et al., 2010), although this has decreased

with more recent SeaWiFS reprocessings. The coverage is

considerably greater than is achieved by in situ observations,

but satellites have the disadvantage of being unable to take

measurements beneath the ocean’s surface.

Chlorophyll is generated from the water-leaving radiances

using the Garver, Siegel, Maritorena (GSM) model, as de-

scribed in Maritorena et al. (2010), and data from the three

sensors are merged and gridded at this stage. During 2008

some problems were experienced with the SeaWiFS sensor,

which was later decommissioned in December 2010, result-

ing in periods of data being lost or deemed unreliable. There-

fore not all days in 2008 contain a contribution from SeaW-

iFS.

For the purposes of daily averaging, a so-called “data-day”

is defined. This means that some observations valid at around

00:00 UTC count towards the day before or after the day

they were observed. This is to avoid combining observations

made at the same point at significantly different times of day.

The day an observation counts towards depends on the ob-

servation time and longitude, and the satellite’s orbit. Whilst

the products are daily averages, it should be noted that the

three satellites are helio-synchronous, and all observations

are made within two hours of local noon.

For each observation there is an error estimate and a set

of confidence flags. The error estimates are generated by

the GSM model, and the confidence flags mark whether an

Ocean Sci., 8, 751–771, 2012 www.ocean-sci.net/8/751/2012/
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observation is, for instance, contaminated by cloud or land.

The way these flags are used in this study is detailed in

Sect. 4. The products are only accurate for clear case one

(Morel and Prieur, 1977) waters, as the GSM algorithm is not

designed to account for the increased amount of suspended

matter present in case two waters.

3.2 Product accuracy

The SeaWiFS pre-launch accuracy target for chlorophyll

was 35 % over the range 0.05–50.0 mg m−3 (Hooker et al.,

1992). This is the figure often quoted for the accuracy

of satellite chlorophyll products. The target for the water-

leaving radiances was 5 % (Hooker et al., 1992). Bailey

and Werdell (2006) conducted a comprehensive validation of

SeaWiFS data against in situ measurements of radiances and

surface chlorophyll. For chlorophyll derived using the OC4

algorithm (O’Reilly et al., 1998), they found the median per-

centage error compared to all available in situ measurements

to be 33.09 %, reducing to 25.96 % when comparing to ob-

servations taken in the open ocean (bottom depth greater than

1000 m).

The GlobColour Full Validation Report (http://www.

globcolour.info/validation/report/GlobCOLOUR FVR v1.1.

pdf, version 1.1, 14 December 2007) provides similar vali-

dation for the merged GlobColour products. This validation

compares the products to in situ data, to the operational

products of the three individual sensors, and to other merged

products. The median percentage error for the merged

GlobColour GSM chlorophyll product when compared to

in situ measurements taken in the open ocean was found

to be 29.53 %. For the operational MERIS, MODIS and

SeaWiFS products this figure was 53.04 %, 44.08 % and

35.77 %, respectively. This demonstrates the advantage of

using the merged product (along with increased coverage

and consistency).

An issue with the merged GlobColour data set is that

there are known biases between the sensors. Using NASA

products, Gregg and Casey (2010) found a 12.2 % differ-

ence between MODIS and SeaWiFS global annual median

chlorophyll concentrations over the period 2003–2007. Us-

ing GlobColour products, Maritorena et al. (2010) found

that since 2005, chlorophyll values derived from MERIS

and SeaWiFS have remained fairly steady, but values from

MODIS have decreased markedly. There was a reduction

of 16 % between the periods 2002–2005 and 2006–2009.

This is evident in the GlobColour products used in this

study. By comparing the merged product and the equiva-

lent individual sensor products, it was found that after the

quality control procedure described in Sect. 4 had been

performed, the mean daily global chlorophyll concentra-

tions for 2008 were 0.211 mg m−3 from the merged product,

0.270 mg m−3 from MERIS, 0.185 mg m−3 from MODIS

and 0.227 mg m−3 from SeaWiFS. SeaWiFS values are typi-

cally closer to those from MERIS than to those from MODIS,

which means that when SeaWiFS data are available, the av-

erage chlorophyll concentration from the three sensors, and

so in the merged product, increases, even though chlorophyll

levels in the ocean have not significantly changed.

These biases should be reduced in future versions of the

GlobColour archive, by making use of the most recent ESA

and NASA reprocessings. In the products used in this study

it can often be clearly seen where different satellite tracks,

with contrasting chlorophyll concentrations, cross over. An

example of this is shown in Fig. 2. This effect is consider-

ably reduced in the equivalent product generated using the

most recent reprocessings. The impact of these biases could

also be addressed by assimilating the individual sensor prod-

ucts, and developing a bias correction scheme such as that

used within FOAM for sea surface temperature (Martin et

al., 2007).

4 Biological assimilation

4.1 Quality control

Prior to assimilation, the GlobColour products are automat-

ically quality controlled and processed using the Met Office

Observation Processing System (OPS). This is the same pro-

cedure used for the physical variables assimilated by FOAM

(Storkey et al., 2010), and is outlined below. A Gaussian er-

ror distribution is assumed by both the OPS and the assim-

ilation scheme. This assumption is invalid for chlorophyll,

because phytoplankton biomass follows a logarithmic distri-

bution in nature (Barnes et al., 2011; Campbell, 1995). How-

ever, log-transforming the chlorophyll data normalises it, and

so makes the assumption of Gaussian errors a reasonable

approximation. Therefore both the OPS and the assimila-

tion use log10 (chlorophyll) rather than chlorophyll. Whilst a

good approximation, log-transformation does not guarantee a

Gaussian error distribution, potentially impacting on the opti-

mality of the assimilation (Bocquet et al., 2010). An alterna-

tive approach, which has been used in some biogeochemical

data assimilation studies, is to use anamorphic transforma-

tions (Brankart et al., 2012), and this or similar approaches

could be explored in the future.

As stated in Sect. 3.1, each observation comes with a set

of confidence flags, as described fully in the GlobColour

Product User Guide. The OPS rejects an observation if a

flag is set marking no measurement, invalid measurement

or a grid box which contains greater than 50 % land. Fur-

ther quality control is performed as described in Ingleby

and Huddleston (2007) and Ingleby and Lorenc (1993).

The main component of this is a background check, in

which each observation is compared to a background field

of log10 (chlorophyll). A probability of gross error (PGE)

given the background value is calculated following Eq. (1)

of Ingleby and Huddleston (2007):

www.ocean-sci.net/8/751/2012/ Ocean Sci., 8, 751–771, 2012
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Fig. 2. Merged GlobColour products for 52◦ W–32◦ W,48◦ S–28◦ S (South Atlantic) on 19 October 2008, generated using the ESA and

NASA reprocessings used for this paper (left-hand plot); and the most recent reprocessings (right-hand plot). This merges, from left to right,

a SeaWiFS swath at 16:41 UTC, a MODIS swath at 17:04 UTC, a SeaWiFS swath at 15:03 UTC, and a MERIS swath at 11:26 UTC.

P(G|O) = κP (G)/(κP (G)+ (2πV )−0.5

exp(−(o − b)2/2V )(1 − P(G))) (1)

where κ is the density of the probability distribution of gross

error due to instrument error, and is set here to be 0.1; P(G)

is the PGE due to instrument error, and is set here to be 0.04;

V is the sum of the background and observation error vari-

ances; o is the observation value and b is the background

value. If P(G|O) is greater than a specified threshold, set

here to be 0.5, then the observation is rejected. The back-

ground field used in this study is a monthly climatology pro-

duced by the authors from the GlobColour merged products.

Daily chlorophyll values were averaged onto a 1◦ grid, and

the mean for each month was taken over the period 1998–

2007. In an operational system, the previous day’s one-day

forecast could be used as the background, rather than the cli-

matology. The background error variances are the same as

those used in the assimilation scheme, and are described in

Sect. 5.2. The observation error variances are the square of

the observation errors specified in the GlobColour products.

These are used rather than those described in Sect. 5.2 (which

could alternatively be used), as this allows the quality control

to benefit from the exact error information that is provided

for each observation.

Once the quality control is completed, “super-obbing”

is performed. This groups together observations within a

13 km range, and takes the median to create a single “super-

observation”, which is used by the assimilation. This is

done because assimilating many high-resolution observa-

tions, which represent small-scale variability the model can-

not resolve, can introduce noise into the model and degrade

the solution. Furthermore, the assimilation scheme assumes

observation errors to be uncorrelated, and the super-obbing

process reduces any such correlations that might exist, as

well as reducing random error (Berger et al., 2011; Purser

et al., 2000).

4.2 Assimilation

There are three stages in producing a daily analysis, which

are the same for both the physical and biogeochemical vari-

ables. Firstly, the model is run for a day with the observation

operator applied. Secondly, the assimilation scheme is run

and the increments are calculated. Thirdly, the model is run

again for the same day, and the increments are applied.

In stage one, the observation operator performs a compari-

son between observation and model values using a first guess

at appropriate time (FGAT) technique (Martin et al., 2007).

This bilinearly interpolates model values to observation loca-

tions at the closest model time step to the observation time.

For the merged GlobColour products, in which no time in-

formation is supplied, the chlorophyll observations are taken

to be valid at 12:00 UTC. The model and observation values,

along with the observation location and time, are saved to a

file which is passed to the assimilation scheme. These files

are also used for validation purposes.

In the second stage, the assimilation scheme produces a set

of 2-D surface log10 (chlorophyll) increments using the same

method as for sea surface temperature (SST). A detailed de-

scription of the process is given in Martin et al. (2007), as

are the specific details for each of the physical variables as-

similated. The scheme uses a variant of OI known as analy-

sis correction (Lorenc et al., 1991), which uses an iterative

method to solve the generalised OI analysis equation:

xa = xb + BHT (HBHT + R)−1(y − h(xb)) (2)

where xa and xb are state vectors containing values of

log10 (chlorophyll) at each surface model grid point; xa is

the analysis, and xb is the background, which is the best es-

timate of the log10 (chlorophyll) field prior to assimilation,

in this case the one-day forecast produced by the initial run-

through of the model; y is a vector containing the observa-

tions, h is the observation operator, and H is the Jacobian of

the observation operator; B and R are matrices of model and
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observation error covariances respectively, and will be dis-

cussed in Sect. 5.2. The increments are given by xa minus

xb.

From the surface log10 (chlorophyll) increments, a set of 3-

D increments for each of the biogeochemical state variables

is calculated using the nitrogen balancing scheme described

in detail in Hemmings et al. (2008). This process is shown

schematically in Fig. 3. The surface log10 (chlorophyll) in-

crements are converted to surface phytoplankton increments

using the model’s nitrogen to chlorophyll ratio. This is cal-

culated from a fixed carbon to nitrogen ratio and the variable

carbon to chlorophyll ratio (see Table A1 and Sect. 2). The

phytoplankton increments are then used to determine sur-

face increments for the other nitrogen tracers (nitrate, zoo-

plankton and detritus). The nitrogen balancing scheme as-

sumes that phytoplankton errors result from a combination of

growth errors and loss errors, and uses the background state,

including the phytoplankton specific growth and loss rates,

to determine whether growth or loss errors dominate. Incre-

ments are then partitioned between nitrate, zooplankton and

detritus accordingly, to try and reduce these errors. This is

subject to the constraint that where possible, nitrogen should

be conserved at every grid point. The aim is to propagate the

changes in chlorophyll as realistically as possible to the rest

of the model, reducing not just the chlorophyll errors, but

also their causes. The surface increments are applied to each

model level above the mixed layer depth. Below this depth

the increments are a combination of “primary” and “sec-

ondary” increments. The primary increments are based on

the surface increments scaled to the background field at that

depth. The secondary increments, which are only applied if

the primary increments will create an unrealistic sub-surface

nitrate minimum, are based on the expectation that nitrate

concentrations increase monotonically with depth. The DIC

increments are derived from the phytoplankton, zooplankton

and detritus increments, using a set of constant carbon to ni-

trogen ratios (see Table A1). This conserves total carbon at

each grid point. The alkalinity increments are set to be oppo-

site in sign and equal in magnitude to the nitrate increments.

The same parameter set is used as in Hemmings et al. (2008).

Finally in stage three, the physical and biogeochemical in-

crements are applied evenly over the day using the incremen-

tal analysis update (IAU; Bloom et al., 1996) technique. This

applies an equal proportion of the increments at each time

step, rather than applying the entire increments at the first

time step, which reduces the likelihood of the increments

causing an instability in the model.

5 Hindcast experiments

In order to assess the impact of assimilating the GlobColour

products, two hindcasts have been performed. These hind-

casts, and the initialisation of the model and assimilation, are

described below.

5.1 Spin-up

The initial conditions for this study were taken from a pre-

vious FOAM-HadOCC hindcast, performed as part of a dif-

ferent study. Fields from the end of this run, valid for 31 De-

cember 2006, were used. However, the nitrate field differed

significantly from climatology, and so was replaced by the

World Ocean Atlas 2005 (Garcia et al., 2006) climatology

for January, interpolated to the model grid. A year-long spin-

up was then performed for 2007, in which no ocean colour

data were assimilated. Whilst shorter than ideal, this length

of spin-up was sufficient for “normal” model behaviour to

be reached, with imperfect initial conditions being one of the

sources of error that data assimilation aims to compensate

for.

All runs performed in this study, including the spin-up,

assimilated temperature, salinity and sea ice concentration

data, but not SLA data. There are two reasons for this. Firstly,

SLA data are used to give information about mesoscale ed-

dies, which the 1◦ resolution model is unable to resolve. Sec-

ondly, assimilating SLA data changes the position of isopy-

cnal levels in the model. A scheme has yet to be developed

to alter the biogeochemistry accordingly, so the physical and

biogeochemical fields can become inconsistent, causing mix-

ing which results in spurious sub-surface chlorophyll max-

ima.

In previous experiments, FOAM-HadOCC has shown sen-

sitivity to biogeochemical increments applied near sea ice.

This is because in regions where the ice has recently melted

there can be very low model chlorophyll values compared

to observations. The use of log10 (chlorophyll) in the assim-

ilation accentuates these differences, resulting in extremely

large increments. This information is propagated to nearby

grid squares where model chlorophyll values are higher, re-

sulting in anomalously high concentrations. Therefore in this

study no chlorophyll observations at latitudes higher than 60◦

north or south were assimilated, although biogeochemical in-

crements generated from observations at lower latitudes were

still applied in these regions, except in grid squares contain-

ing sea ice.

5.2 Calculation of error covariances

An important part of the data assimilation scheme is the

background and observation error covariances. These deter-

mine the magnitude of the increments, and how much they

are spread out onto the model grid. As detailed in Mar-

tin et al. (2007), FOAM requires sets of “mesoscale” and

“synoptic scale” background error variances for each model

grid point, which describe small- and large-scale model er-

ror variability respectively. For each, a correlation length

scale must be specified, which determines how much an in-

crement is spread to nearby grid points. A set of observa-

tion error variances is also needed. These contain both a

contribution from instrument error and a contribution from
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Fig. 3. Schematic of the chlorophyll assimilation scheme. 1 signifies increment, chl = chlorophyll, N = nutrients, P = phytoplankton,

Z = zooplankton, D = detritus, alk = alkalinity, DIC = dissolved inorganic carbon, Obs = chlorophyll observations.

“representativeness” error – error arising from small-scale

processes captured by the observations which the model is

unable to resolve. This means that the errors specified in the

GlobColour products cannot be directly used for this pur-

pose, as they do not indicate representativeness error.

For the FOAM assimilation scheme, the error covariances

must be specified a priori. However, to calculate these accu-

rately requires performing a run with assimilation (which re-

quires error covariances). Initial error variance estimates for

log10 (chlorophyll) were therefore produced by calculating

the standard deviation of the GlobColour merged products on

a 1◦ grid for the period 1998–2007, performed on a monthly

basis to account for seasonal variation. These standard de-

viations were converted to variances, and at each grid point

the observation error variance was set to 50 % of the vari-

ance in the GlobColour data, and the mesoscale and synoptic

scale error variances each set to 25 % of the variance in the

GlobColour data. This approach ensured that the highest er-

ror variances were in the regions with the highest chlorophyll

variability, as would be expected. Whilst imperfect, these er-

ror variances allowed an assimilative run to be performed,

producing more accurate chlorophyll fields than a run with-

out assimilation. The correlation length scales were chosen

to be the same as for SST (100 km for the mesoscale and

400 km for the synoptic scale). Changes in chlorophyll of-

ten occur on smaller scales than this, but it is undesirable

to set the mesoscale length scale to be much shorter than

100 km for a 1◦ model, as “mesoscale” refers here to small-

scale processes resolved by the model, and is not intended to

be a direct representation of the ocean mesoscale (Martin et

al., 2007). However, future improvements might be expected

through tuning of these length scales.

In order to calculate a more accurate set of observa-

tion and background error variances, a run was performed

for 2008 which assimilated the chlorophyll products us-

ing the initially specified error covariances, and which pro-

duced a two-day forecast each day. Using the results from

this run, a new set of monthly error variances were calcu-

lated using a combination of the National Meteorological

Center (NMC) method (Parrish and Derber, 1992) and the

Hollingsworth-Lönnberg (HL) method (Hollingsworth and

Lönnberg, 1986). The NMC method provides estimates of

the two (mesoscale and synoptic scale) components of the

background error by calculating the differences between one-

day and two-day forecasts valid for the same time. These are

given at every grid point, as is required. The HL method

uses observation minus model differences to calculate es-

timates of both the background and observation error vari-

ances. Being based on observations of the true ocean state,

this normally produces more accurate error values. However,

estimates can only be calculated at grid points where there

are sufficient observations. Therefore the two methods were

combined, with the NMC method used to give the spatial pat-

terns in the error variances, and the HL method used to give

the magnitudes. Mesoscale and synoptic scale background

error variances were first calculated with the NMC method.

To give a complete field, and to ensure consistency with the

background errors, these mesoscale error variances were also

used as a basis for the observation error variances. Each of

the three sets of error variances were then scaled so that their

global mean is identical to the global mean of the correspond-

ing HL estimates.

These newly calculated background and observation error

covariances are the ones used in the runs described below. To

ensure consistency with the assimilation, and the best possi-

ble quality control, the observations were reprocessed by the

OPS using the new background error variances, as described

in Sect. 4.1.

5.3 Main runs and experiment details

Two hindcasts have been performed for the year 2008, taking

initial conditions from the spin-up described in Sect. 5.1. One

hindcast (hereafter “Assim”) assimilated the GlobColour

chlorophyll data, and a control run (hereafter “Control”) as-

similated no chlorophyll data. These runs were identical in

every other respect, including the assimilation of physical

data, with the aim of assessing the impact of the assimila-

tion of chlorophyll data on the biogeochemical model.
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The statistics used to assess the results in this paper

are mean model minus observation error (bias), root mean

squared error (RMSE), Pearson’s correlation coefficient (r)

and normalised standard deviation (sn; model standard devi-

ation divided by observation standard deviation). Taylor plots

(Taylor, 2001) are also used. These summarise RMSE, cor-

relation and normalised standard deviation on a single dia-

gram. The unbiased (centred) RMSE, normalised by the ob-

servation standard deviation, is given by radial distance from

1.0 on the x-axis. The normalised standard deviation is given

by distance from the curved dashed line between 1.0 on the

x-axis and 1.0 on the y-axis. The correlation is obtained by

drawing a line from the origin through a plotted point, and

reading off where this meets the curved upper-axis. A perfect

match between model and observations would be plotted at

1.0 on the x-axis.

6 Results

When assessing the skill of a data assimilation scheme there

are three main things to check. First of all, that the assimi-

lation propagates the information from the observations cor-

rectly, so that the model results match the assimilated ob-

servations more closely, ideally within the observation error.

Individual observations can either be compared to the anal-

ysis after they have been assimilated, or to the background

field prior to assimilation. In this latter case the errors are

equivalent to one-day forecast errors, and the observations

can be considered to be semi-independent, as they have not

yet contributed to the model field. However, the assimilative

model run will still be intrinsically linked with these obser-

vations, because the observation errors are likely to be time-

correlated with those of observations assimilated on previous

days. Therefore, fully independent observations are required

in order to provide tangible evidence that the assimilation

has improved the model’s representation of the assimilated

variable. Finally, it must be checked that the non-assimilated

model variables are also improved by the assimilation, or at

least not degraded. Improvements in the assimilated variable

may be worthless if the rest of the system suffers as a result.

Maps of annual average surface chlorophyll for Control,

Assim and the GlobColour observations are shown in Fig. 4.

In this simple visual comparison it can be clearly seen that

Control is very different from the observations, whereas As-

sim matches them much more closely, in terms of both spatial

pattern and magnitudes. In this sense, the assimilation can be

considered a success.

Control has too much chlorophyll across most of the

ocean, but too little chlorophyll in the Brazil-Malvinas con-

fluence off the Patagonian coast, as well as north of about

50◦ N. This is accentuated in Fig. 4 because most of the

observations at high northern latitudes are taken during the

Northern Hemisphere summer. An in-depth discussion of the

reasons for these biases is outside the scope of this paper, but
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Fig. 4. Mean surface chlorophyll (mg m−3) for 2008.

the overestimation of chlorophyll in most regions is linked to

excess nutrient concentrations at the surface. A major contri-

bution to this problem comes from the physical data assimi-

lation. Equivalent simulations which do not include physical

data assimilation match the observations better (not shown).

This problem is not unique to the FOAM system (e.g. El

Moussaoui et al., 2011; Anderson et al., 2000; Ourmières

et al., 2009), and is related to excess mixing caused by

the physical assimilation creating spurious vertical veloci-

ties and altering the isopycnal levels in the model, which is

not accounted for by HadOCC. Despite these issues, physi-

cal data assimilation has been included in this study as it is

a fundamental component of the operational FOAM system.
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Furthermore, whilst the physical assimilation is currently a

source of error for the biogeochemistry, if these issues can

be fixed (which is being worked on), then the demonstrable

improvement the physical assimilation makes to the physical

fields should in turn result in more accurate biogeochemi-

cal fields than if physical data were not assimilated. As it is,

the chlorophyll assimilation is able to counteract these and

other errors somewhat, propagating the increments such that

model chlorophyll concentrations are either increased or de-

creased in a realistic manner. The chlorophyll errors in Assim

are much lower than those in both Control and an equivalent

hindcast with no data assimilation at all (not shown). Assim

is not a perfect match for the observations, but should not

be expected to be, as over-fitting to the observations can de-

stroy the relationships between variables in the model, thus

degrading forecast quality (Oke and Sakov, 2008). However,

chlorophyll patterns in regions such as the Brazil-Malvinas

confluence, which are not reproduced by Control, are cap-

tured well by Assim.

Figure 5 shows the model error for surface

log10 (chlorophyll) when compared to the assimilated

GlobColour observations. The model values have been in-

terpolated to the observation locations using the observation

operator to provide an exact like-for-like comparison. This

has been performed prior to assimilation, so in this case

the observations can be considered to be semi-independent,

and the errors are equivalent to one-day forecast errors

rather than analysis errors. Figure 5 shows time series of

daily mean global bias and RMSE for Control and Assim.

Included for comparison is the RMSE of the observations

themselves, calculated from the values given in the Glob-

Colour products. The signs of the observation errors are not

known, so the observation bias cannot be plotted. It is clear

that both model runs have too much chlorophyll compared

to the observations. However, both the bias and RMSE are

much lower for Assim than for Control, which indicates that

the assimilation is having a positive impact on the modelled

chlorophyll concentrations, as intended. The mean global

bias for 2008 is 0.398 log10 (mg m−3) for Control and 0.119

log10 (mg m−3) for Assim. The mean global RMSE is 0.586

log10 (mg m−3) for Control and 0.314 log10 (mg m−3) for

Assim. The correlation is also improved, from 0.261 for

Control to 0.619 for Assim. This improvement is immediate,

with the error considerably reduced after only a single day

of assimilation. The error for Assim remains lower, and

fairly constant, throughout the year, suggesting that Assim

is performing well at capturing the seasonal cycle. For

the initial hindcast used to calculate the error covariances,

described in Sect. 5.2, the mean global RMSE was 0.439

log10 (mg m−3), demonstrating the importance of using error

covariances designed specifically for use with the model

configuration.

Both the bias and RMSE of Control are higher than the

errors of the observations, as is the RMSE of Assim. How-

ever, the bias of Assim is lower than the RMSE of the

Fig. 5. Time series of global model and observation error for 2008.

The solid lines represent RMSE, the dotted lines represent bias. The

blue and red lines represent the error in Control and Assim respec-

tively when compared to the GlobColour observations on the obser-

vation operator step prior to assimilation each day. The black line

is the root mean squared of the observation errors specified in the

GlobColour files.

observations, which is what the assimilation would expect to

achieve. It would be hoped that this bias would be very close

to zero. Whilst not the case for log10 (chlorophyll), it is the

case for chlorophyll, for which the mean global bias for 2008

is 0.190 mg m−3 for Control and 0.008 mg m−3 for Assim.

It can be seen that the RMSE for the observations and for

both model runs follows a very similar pattern throughout

the year. In particular there are sudden decreases at the be-

ginning of April and in mid-August, corresponding to the

introduction of SeaWiFS data; and a peak in early Octo-

ber, corresponding to two days where there are no SeaW-

iFS data. As discussed in Sect. 3.2, the inclusion of SeaWiFS

data changes the mean daily global chlorophyll concentra-

tion in the merged observations. It is likely that the quality

of the model simulations have not significantly changed in

comparison to reality, it merely appears that way because the

measure of truth has changed.

A Taylor plot for log10 (chlorophyll), using the same

model-data comparisons as Fig. 5, is shown in Fig. 6. As well

as a global average, Fig. 6 provides a comparison for differ-

ent regions, to see how the assimilation affects the model in

each ocean basin. Across all regions, both unbiased RMSE

and correlation are improved in Assim, with similar values

obtained in each basin, indicating that Assim has comparable

skill across the entire model domain, which is less clearly the

case for Control. However, whilst the unbiased RMSE and

correlation are improved in all areas, the normalised standard

deviation generally remains similar, and is even made worse

in some regions, including for the global average. In all cases

the standard deviation is too low for Assim, suggesting that

the assimilation may be smoothing out too much of the vari-

ability in the model.
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Fig. 6. Taylor plot showing skill in each ocean basin for Control

and Assim when compared to the GlobColour observations on the

observation operator step prior to assimilation each day.

The assimilation has clearly improved the model’s simu-

lation of surface chlorophyll compared to the assimilated ob-

servations, throughout the year and across all ocean basins.

However, as previously stated, comparisons to independent

observations are required in order to have full confidence

in the assimilation’s impact. In situ observations of biogeo-

chemical properties are sparse, but there are some data sets

available for validation purposes. One of these is the Sea-

WiFS Bio-Optical Archive and Storage System (SeaBASS;

Werdell et al., 2003), developed by NASA to enable assess-

ment of SeaWiFS products. SeaBASS collects in situ chloro-

phyll and radiance observations, as well as associated mea-

surements, from a large range of cruises and time series sta-

tions. The SeaBASS chlorophyll data have been used as part

of the error characterisation for calibration of the GlobColour

products, so are not strictly independent, but the dependency

will be much lower than that on the assimilated observations.

Figure 7 shows quantile-quantile plots for Control and As-

sim against SeaBASS observations of log10 (chlorophyll) at

the surface of the ocean. A quantile-quantile plot is a measure

of how well the distribution of model values matches the dis-

tribution of observation values, with an exact fit lying on the

one-to-one line. Only those observations taken in 2008 in the

open ocean (bottom depth greater than 1000 m, chosen to be

consistent with Bailey and Werdell, 2006) were used in this

comparison, as neither the model nor the assimilated satellite

observations are valid for shallow waters. The daily averaged

model field for the date each observation was made has been

interpolated to the observation location, providing an exact

spatial comparison. Consistent with the comparisons to satel-

lite observations, Control generally has too much chloro-

phyll compared to the SeaBASS observations, whilst Assim

Fig. 7. Quantile-quantile plot versus surface SeaBASS

log10 (chlorophyll) for Control (blue), Assim (red) and clima-

tology (gold). A map of observations used for the comparison is

given in Fig. A1a.

matches the observations much better for the entire range

of chlorophyll concentrations. This demonstrates that the as-

similation has improved the model’s representation of sur-

face chlorophyll when compared to these independent ob-

servations. Figure 7 also shows the equivalent comparison

for the monthly chlorophyll climatology derived from Glob-

Colour observations described in Sect. 4.1. This provides a

better fit to the observations than Assim, except at high or

low observed concentrations, indicating that further improve-

ments are required to FOAM-HadOCC.

Assim’s improved representation of surface chlorophyll in

comparison to the SeaBASS observations is confirmed by

the statistics shown in Table 1, with the bias, RMSE, and

correlation all better for Assim than for Control. Climatol-

ogy matches the SeaBASS observations better than Assim

though, with a lower bias and RMSE, and higher correlation.

However, climatology also has a normalised standard devi-

ation of 0.597 which, in conjunction with Fig. 7, suggests

that it does not represent the variability in the observations

as well as Assim.

Assim not only does a better job than Control of repro-

ducing the SeaBASS chlorophyll observations at the sur-

face, but also improves the representation of chlorophyll be-

neath the surface, as shown by the statistics given in Table 1.

RMSE, correlation and normalised standard deviation are all

improved, and there is a slight reduction in bias. This demon-

strates that the assimilation is correctly propagating the

information from the assimilated observations down through

the water column, providing a more realistic representation
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Table 1. Statistics versus SeaBASS log10 (chlorophyll)

(log10 (mg m−3)) observations at open ocean points (bottom

deeper than 1000 m). A map of observations used for the surface

comparison is given in Fig. A1a, and for the all depths comparison

in Fig. A1b.

Surface All depths

(192 observations) (1867 observations)

Control Assim Climatology Control Assim

Bias 0.659 0.312 0.141 −0.301 −0.297

RMSE 0.885 0.536 0.366 0.938 0.812

r −0.137 0.249 0.473 0.512 0.599

sn 1.065 0.868 0.597 1.315 1.218

of the variable beneath the surface, even where there are no

satellite observations to assimilate.

A further source of in situ observations is the Hawaii

Ocean Time-series (HOT) data set, with approximately

monthly measurements made at the A Long-term Olig-

otrophic Habitat Assessment (ALOHA) site at 22.75◦ N,

158.00◦ W. These are fully independent from the model.

Comparisons between model results and these observations

have been made by horizontally and vertically interpolating

the model values to the observation locations. The statistics

in Table 2 show that the bias, RMSE and correlation for fluo-

rometrically derived log10 (chlorophyll) against all observa-

tions are improved for Assim compared to Control. The im-

pact is greatest when the comparison is restricted to the sur-

face 50 m, where the normalised standard deviation is also

positively affected by the assimilation, but is still seen be-

neath this depth, showing the assimilation to have a benefi-

cial effect throughout the water column.

Another source of independent in situ chlorophyll obser-

vations is the Atlantic Meridional Transect (AMT) cruises.

In 2008 a cruise left the United Kingdom on 3 October, trav-

elled south through the Atlantic, and reached the Falkland

Islands on 10 November, taking measurements at regular in-

tervals along the way. The statistics for log10 (chlorophyll),

at all depths, are shown in Table 2. Compared to Control, the

bias, RMSE, correlation and normalised standard deviation

are all improved in Assim. Separating out the top 50 m and

the remaining depths shows the greatest improvements to be

near the surface, with Control and Assim being of compara-

ble accuracy beneath 50 m.

The comparisons made to satellite and in situ chlorophyll

observations give a great deal of confidence that the assimila-

tion is improving the model’s representation of chlorophyll,

both at and beneath the surface of the ocean. Having estab-

lished this, the impact the assimilation has on the remaining

model variables must be assessed. This is an important check,

as it is desirable for the assimilation to improve all model

variables. Furthermore, data assimilation has the potential to

degrade other model variables, which would not only make

the model less useful for creating analyses of these, but could

also lead to less accurate forecasts of chlorophyll than if no

assimilation had occurred.

Figure 8 shows cross-sections of each of the model state

variables for Control and Assim, along with the correspond-

ing assimilation increments. The section plotted is the up-

per 100 m of the Atlantic Ocean from 77◦ S to 68◦ N at a

longitude of 30◦ W, and the data shown are mean values for

May 2008, at the height of the North Atlantic spring bloom.

This serves to demonstrate the impact the assimilation has

beneath the surface over a wide geographical domain, and

which changes are directly due to the increments, and which

result from the biogeochemical model dynamics adjusting to

the increments. As described in Hemmings et al. (2008) and

summarised in Sect. 4.2, the assimilation scheme creates in-

crements for the six biogeochemical state variables based on

a principle of conserving nitrogen and carbon at each grid

point. This is dependent on the background state and the phy-

toplankton growth and loss rates, which the scheme uses to

determine whether the phytoplankton error is primarily due

to errors in the growth rate or errors in the loss rate.

In Assim (Fig. 8b), phytoplankton concentration is re-

duced compared to Control (Fig. 8a) throughout the mixed

layer south of about 60◦ N, and is increased further north,

consistent with the changes in chlorophyll. Beneath the

mixed layer a sub-surface phytoplankton maximum is cre-

ated, which stretches from the Equator to approximately

45◦ N, and persists throughout much of the year. Without

any observations to compare against, it is difficult to know

whether this sub-surface maximum actually occurred in the

ocean, and thus whether the assimilation increments below

the mixed layer are large enough.

In Control (Fig. 8d) there is a region of high zooplank-

ton concentration between about 15◦ S and 40◦ N, down to

a depth of around 50 m. In Assim (Fig. 8e) this is reduced

equally at all depths, despite large positive zooplankton in-

crements (Fig. 8f) in this area, which are created to balance

the nitrogen lost by decreasing the phytoplankton concen-

tration. The model’s reaction to the reduced phytoplankton

outweighs the increases from the assimilation, which is de-

sirable as it means that the model is maintaining a consistent

relationship between phytoplankton and zooplankton. North

of 40◦ N, zooplankton concentrations are very low in Con-

trol, even where phytoplankton concentrations are high. It

would be expected that zooplankton concentrations would

also be high in this region, and these are considerably in-

creased in Assim. This indicates that the use of data assimi-

lation may be overcoming inadequacies in the chosen values

of tuneable parameters. The change in zooplankton is further

demonstrated in Fig. 9, which shows annual mean surface

zooplankton fields from Control and Assim, equivalent to the

chlorophyll fields shown in Fig. 4b–c. A very similar pattern

of changes can be seen in both zooplankton and chlorophyll

(and phytoplankton), as would be expected, indicating that

the assimilation is having a favourable effect on the model

zooplankton. A similar impact is seen on detritus (Fig. 8g–i).
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Fig. 8. Cross-sections down to 100 m depth for 77◦ S to 68◦ N along 30◦ W for May 2008. P = phytoplankton (mmol N m−3; a–c),
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between variables.

The nutrient field from Assim (Fig. 8k) is very similar to

that from Control (Fig. 8j), except that in Assim there are

fewer nutrients near the surface north of about 45◦ N. It might

be expected that the assimilation would produce large nutri-

ent increments to balance the loss of phytoplankton, thereby

accentuating nutrient biases. It is encouraging that this is not

the case. The scheme is intepreting the positive error in phy-

toplankton as being due primarily to negative error in the

loss rate rather than positive error in the growth rate, and

so is increasing zooplankton concentrations more than nu-

trient concentrations. Because the assimilation is conserving

nitrogen at each grid point, but the model has too much ni-

trogen at the surface, it can never properly correct the model

error. However, it can be argued that significant model biases

such as this should be addressed through model development,

rather than data assimilation. It is also clear that the model is

still able to produce zooplankton and detritus fields which

are consistent with the reduction in phytoplankton. The DIC

increments (Fig. 8o) follow a very similar pattern to the nutri-

ent increments (Fig. 8l), resulting in a reduction in DIC near

the surface north of about 45◦ N, and a slight increase near

the surface south of this latitude. This is consistent with the

changes to the other variables, and is to be expected. The al-

kalinity increments (Fig. 8r) are opposite in sign and equal

in magnitude to the nutrient increments, meaning that the

changes made to alkalinity are small in comparison to typ-

ical values, and little change to the field is seen.

Because observations of most biogeochemical variables

are sparse, comparisons to climatology are required in or-

der to gain an understanding of the large-scale abilities of
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Table 2. Statistics versus HOT ALOHA and AMT

log10 (chlorophyll) (log10 (mg m−3)) observations at open ocean

points (bottom deeper than 1000 m). For comparisons to AMT

data, model values have been rounded to two decimal places before

log-transformation, as this is the precision of the observations. A

map of AMT observations used for the comparison is given in

Fig. A1d.

HOT ALOHA AMT

Control Assim Control Assim

All depths 182 observations 16040 observations

Bias 0.105 0.040 0.41 0.38

RMSE 0.545 0.516 0.82 0.71

r 0.667 0.707 0.22 0.42

sn 2.385 2.365 1.39 1.35

0–50 m 58 observations 4393 observations

Bias 0.072 0.056 0.99 0.71

RMSE 0.416 0.317 1.14 0.83

r 0.335 0.358 −0.08 0.57

sn 1.945 1.432 0.42 0.82

>50 m 124 observations 11647 observations

Bias 0.120 0.033 0.19 0.25

RMSE 0.596 0.587 0.67 0.65

r 0.727 0.771 0.27 0.40

sn 2.507 2.576 1.30 1.41

the model. The 2009 World Ocean Atlas includes a climatol-

ogy for nitrate (Garcia et al., 2010), the Global Ocean Data

Analysis Project (GLODAP) provides climatologies for DIC

and alkalinity (Key et al., 2004), and pCO2 and air–sea CO2

flux climatologies are provided by Takahashi et al. (2009).

A Taylor plot summarising comparisons between annual av-

erage surface model fields and these annual climatologies is

shown in Fig. 10. The nitrate, DIC and alkalinity climatolo-

gies are complete fields at 1◦ resolution, and have been in-

terpolated to the model grid for the comparison. The pCO2

and air–sea CO2 flux climatologies are complete fields at 5◦

resolution and the model fields were regridded to match. In

all cases grid points with bottom depth less than 1000 m were

excluded. For DIC, alkalinity, and nitrate there is very little

difference between Control and Assim in terms of the overall

annual mean statistics. For both pCO2 and air–sea CO2 flux

Assim has a slightly increased unbiased RMSE, but also a

slightly increased correlation. From this, it can be concluded

that the data assimilation has resulted in no major changes to

the quality of these global annual mean fields.

A zooplankton climatology is available from the Coastal

and Oceanic Plankton Ecology, Production, and Observation

Database (COPEPOD; O’Brien, 2005). This is presented as

a 2-D field at 1◦ resolution, with zooplankton biomass val-

ues standardised to a 330 µm mesh with a sampling depth

interval of 0–200 m. The climatology therefore represents

b) Assim
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Fig. 9. Mean surface zooplankton concentration (mmol N m−3) for

2008.

mesozooplankton concentration, and does not directly cor-

respond to the zooplankton variable within HadOCC, which

represents total zooplankton concentration. However, a posi-

tive correlation between HadOCC and COPEPOD zooplank-

ton may still be expected, making the comparison worth-

while. Many grid points in the COPEPOD climatology con-

tain missing data values, and so the annual average model

field was interpolated to the climatology grid, summed over

the surface 200 m, and points with no corresponding values

in the COPEPOD data set, or with bottom depth less than

1000 m, excluded. The values in COPEPOD are given in

units of mg C m−3, and were converted to the model units

of mmol N m−3 using a carbon to nitrogen ratio of 5.625,

as used in HadOCC (see Table A1). The correlation be-

tween HadOCC and COPEPOD zooplankton was found to

be −0.254 for Control, and 0.112 for Assim. These correla-

tions are low for both model runs, possibly due to the afore-

mentioned differences between the model and climatology,

but suggest that the assimilation is at least not degrading the

model zooplankton.

Comparisons have also been made to in situ observations

of nitrate from the SeaBASS database. These were taken

in the North Atlantic in April and May 2008, as shown in

Fig. A1c. Figure 11 shows quantile-quantile plots comparing
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observations at all depths to nitrate from Control, Assim and

the World Ocean Atlas 2009 climatology. The distributions

of Control and Assim are both a poor fit to the distribution

of the observations, displaying a much smaller range of val-

ues and generally overestimating low nitrate concentrations.

However, the distribution of Assim is a better match to that of

the observations than the distribution of Control is, suggest-

ing that the assimilation has improved the model’s represen-

tation of nitrate compared to the SeaBASS observations. This

is supported by the statistics shown in Table 3. Assim has a

lower bias and RMSE than Control, and a standard deviation

which is a better match to that of the observations. Control

does, however, have a higher correlation, possibly because

Assim has more variability, but this does not always match

that of the observations. As shown in Figs. 8j–l and 10, the

impact of the assimilation on the model nitrate is generally

smaller than in the region where the SeaBASS observations

were taken. Therefore comparison to a wider set of observa-

tions is required before an improvement can be conclusively

demonstrated, although this would require validation over a

longer period than the model has been run for in this study.

It is interesting to note that whilst the climatology is clearly

a better match to the SeaBASS observations than the model

runs, it also suffers from the same bias and lack of variability

as the model. It is known that the representation of nitrate in

HadOCC is degraded by the physical data assimilation, and

so if these problems are addressed it is hoped that HadOCC

can provide better predictions of nitrate concentrations than

climatology.

Observed profiles of DIC and alkalinity are available at

the HOT ALOHA site. As demonstrated by the statistics in

Fig. 11. Quantile-quantile plot versus SeaBASS nitrate for Control

(blue), Assim (red) and climatology (gold). A map of observations

used for the comparison is given in Fig. A1c.

Table 3. Statistics versus SeaBASS nitrate (mmol N m−3), HOT

ALOHA alkalinity (meq m−3), HOT ALOHA DIC (mmol C m−3)

and CARBON-OPS pCO2 (µatm) observations at open ocean

points (bottom deeper than 1000 m). 1096 nitrate, 121 alkalinity,

127 DIC and 915 pCO2 observations were used in the comparisons,

and maps of the SeaBASS and CARBON-OPS data are given in

Fig. A1c and Fig. A1e, respectively.

Bias RMSE r sn

Nitrate Control 3.309 4.717 0.677 0.104

Assim 2.477 4.088 0.478 0.272

Climatology 2.469 3.580 0.751 0.449

DIC Control −34.608 38.132 0.996 0.948

Assim −34.708 38.166 0.996 0.949

Alkalinity Control −36.384 37.849 0.986 1.097

Assim −36.425 37.876 0.986 1.096

pCO2 Control 50.425 74.995 0.221 1.185

Assim 44.472 73.622 0.259 1.340

Table 3, for both variables there is very little difference be-

tween Control and Assim, showing the assimilation to have

little impact on the carbon cycle at this location. Assim has a

marginally higher bias and RMSE than Control, but this dif-

ference is negligible. In each case the model already provides

a very good fit to the observations with Control having a cor-

relation of 0.996 and a median percentage error of −1.653 %

for DIC, and a correlation of 0.986 and a median percentage

error of −1.510 % for alkalinity.
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In situ observations of sea surface pCO2 were obtained

from the British Oceanographic Data Centre (BODC) as part

of the CARBON-OPS project (Hardman-Mountford et al.,

2008). Table 3 shows statistics comparing each model run

to these observations, which were quality controlled and de-

livered in NRT from the RRS James Clark Ross, a novel

feature of the project. Although the observations have un-

dergone automatic rather than full quality control, a conser-

vative error estimate of 15 µatm (N. Hardman-Mountford,

personal communication, 2012) is within the model errors

shown in Table 3. Both Control and Assim show a poor rep-

resentation of pCO2, with values too high across most of the

ocean. However, compared to the CARBON-OPS observa-

tions, Assim shows an improved representation, with lower

bias and RMSE, and higher correlation (although a worsened

normalised standard deviation). This suggests that the assim-

ilation may be improving the carbon cycle within the model,

which would make it more suitable for monitoring air–sea

carbon fluxes.

7 Summary and discussion

The study presented here aimed to assess the impact of as-

similating GlobColour ocean colour data into the FOAM-

HadOCC coupled physical-biogeochemical model. Daily av-

eraged merged chlorophyll data were quality controlled and

assimilated using the analysis correction technique, with the

chlorophyll increments used to update all biogeochemical

state variables at all depths. The assimilation considerably

improved the bias, RMSE and correlation with the Glob-

Colour observations compared to a control run. This im-

provement was immediate, and sustained over the entire year

and in every ocean basin. Errors against independent in situ

observations were also reduced, although climatology pro-

vided a better representation. The improvement was great-

est at the surface, but also occurred at depth. Furthermore,

there were consistent changes in other biogeochemical vari-

ables, particularly phytoplankton, zooplankton and detritus.

The assimilation did not degrade the other model variables,

and there was evidence of improvement in some instances,

although an overall improvement was not demonstrated. An-

nual mean surface fields of nitrate, DIC, alkalinity, pCO2 and

air–sea CO2 flux were of similar quality compared to clima-

tology in both runs. There were also reduced errors against in

situ observations of nitrate and pCO2, but too few data were

used to be able to draw broader conclusions about model

skill.

The biological assimilation scheme (Hemmings et al.,

2008) is designed to be computationally efficient. The av-

erage time taken to run FOAM-HadOCC for a day was

306 s for the control run, and 318 s for the assimilation run

(both of which assimilated physical data). This represents

an increased computational cost of 4 %, which compares

favourably to commonly used techniques, such as the ensem-

ble Kalman filter (Evensen, 1994).

Since June 2009 FOAM-HadOCC has been running daily

on a pre-operational basis. This mimics the operational

FOAM suite (Storkey et al., 2010). Each day the latest Glob-

Colour merged product is downloaded and processed by the

OPS. This is assimilated by FOAM-HadOCC and an analysis

and six-day forecast produced. Verification of these forecasts

is outside the scope of this paper and will be addressed in

future publications.

The NRT GlobColour products are typically available by

14:00 UTC the day after the observations are valid, and the

system runs shortly after this time. The availability of these

products has been found to be sufficiently reliable for op-

erational purposes, with the products successfully down-

loaded on approximately 89 % of days over the period 1 Au-

gust 2009–31 July 2011. MyOcean implemented availabil-

ity monitoring in October 2010, and over the following year

the GlobColour products were found to be made available on

time on 95 % of days. This is comparable to the reliability

of remotely sensed SST products provided by the Group for

High Resolution Sea Surface Temperature (GHRSST). Don-

lon et al. (2012) found different GHRSST products to be suc-

cessfully delivered on 88–98 % of days over a four-year pe-

riod. On some of the days when the GlobColour products

were not successfully downloaded or assimilated, this was

due to technical problems inherent in the pre-operational na-

ture of the system. A fully operational system would be more

robust and this would not be an issue. On other occasions the

products were not made available on time by GlobColour.

Reasons for this include outages of the GlobColour servers

and delayed transmission of the satellite data by the data

providers.

During July 2009, products from FOAM-HadOCC were

automatically provided to the GlobColour team on a daily

basis via File Transfer Protocol (FTP). These products were

images of chlorophyll and primary productivity covering

the analysis and each day of the forecast. This successfully

demonstrated the full end-to-end capability of the system, us-

ing the GlobColour products to automatically provide prod-

ucts for a customer on an operational-style basis.

A number of conclusions and recommendations can be

drawn from this work. The assimilation of GlobColour data

has been demonstrated to improve the quality of a coupled

physical-biogeochemical model, and its use should be pro-

moted in the delivery of both NRT operational-style sys-

tems and reanalyses. Observations should continue to be pro-

duced in NRT and the sooner after the observation time these

are available the better. For example, the current operational

FOAM suite runs at 05:00 UTC each day and so, for full use

to be made of observations, they need to be available before

this time.

Whilst data assimilation has demonstrated the ability to

improve the quality of model output, significant focus must

still be given to developing the underlying model. As shown

Ocean Sci., 8, 751–771, 2012 www.ocean-sci.net/8/751/2012/



D. A. Ford et al.: Assimilating GlobColour ocean colour data 767

in Fig. 4, there are large biases which need to be addressed,

as these currently prevent the assimilative system from be-

ing consistently more accurate than climatology. Some of

these biases result from the physical data assimilation, which

demonstrably improves the physical variables, but can create

spurious mixing which degrades the biogeochemistry. Others

result from deficiencies with the biogeochemical model. It is

planned to address both these issues as a high priority. Poten-

tial improvements to the model could come from better pa-

rameterising the growth, mortality and grazing rates of phy-

toplankton and zooplankton, either through changes to the

model equations, or tuning of the current model parameters.

A more complex light model could be implemented, in or-

der to explicitly resolve the diurnal cycle, and the same light

model used for both the physics and biogeochemistry. The

effect of increasing horizontal and vertical resolution could

also be investigated, as well as changes to ecosystem model

complexity (for instance the inclusion of iron and oxygen).

The multivariate aspect of both this and other chlorophyll

assimilation schemes should be a priority for future assimila-

tion development. The scheme presented here has succeeded

in maintaining, and in some cases improving, the quality

of the other variables. However, greater success could come

from the use of data assimilation for simultaneous state and

parameter estimation. As well as updating the model vari-

ables, giving an improved representation of the current state,

the assimilation could also alter tuneable model parameters,

thereby changing the model trajectory in order to reduce bi-

ases. Furthermore, the assimilation could also be integrated

with the assimilation of other biogeochemical variables, such

as pCO2. It could also be fully integrated with the physical

assimilation, such that temperature and other factors directly

influence the chlorophyll increments, and potentially vice

versa, ensuring the physics and biogeochemistry are consis-

tent.

This study has made use of merged, daily averaged level

three chlorophyll observations. However, it is typically pre-

ferred to use level two (Blower et al., 2009) or level three

uncollated (GHRSST Science Team, 2010) observations for

data assimilation. These do not merge information from dif-

ferent sensors, and contain the exact time of each observa-

tion. This allows the observation operator to compare model

and observation values at the observed time, rather than an

arbitrary time, thus providing a more accurate comparison

which accounts for the diurnal cycle. Furthermore, the errors

of the different sensors are handled separately, so the error

characteristics of each observation should be known more

accurately. This is important for both data assimilation and

quality control, as well as allowing bias correction schemes

to be devised. A future publication will compare the assim-

ilation of the level three merged products to the equivalent

level three uncollated products in FOAM-HadOCC, and it is

suggested that the routine production of such products would

be potentially beneficial for data assimilation. If these were

produced in NRT, then they could also be made available

with less of a delay than the daily averaged products. How-

ever, better use of the merged data could also be made by

the data assimilation. For example, the observation operator

could compare the daily mean observations to a daily mean

model field, or perform the comparison at local noon rather

than model noon.

To extend the work presented here, multi-year reanalyses

will be performed with and without assimilation, and be used

to investigate inter-annual variability. Furthermore, biogeo-

chemical forecasts produced by the system will be assessed,

to investigate whether the assimilation allows forecasts to be

produced that are more skilful than persistence or climatol-

ogy.

Appendix A

Table A1. List of parameters used in the HadOCC model.

Parameter Value

C : N ratio for phytoplankton 6.625

C : N ratio for zooplankton 5.625

C : N ratio for detritus 7.5

Maximum photosynthetic rate 1.5 day−1

Initial slope of photosynthesis-irradiance curve 0.055 (W m−2)−1 day−1

Half-saturation concentration for nutrient up-

take

0.1 mmol N m−3

Phytoplankton specific respiration 0.05 day−1

Concentration-dependent phytoplankton spe-

cific mortality

0.05 day−1

(mmol N m−3)

Maximum grazing rate 0.8 day−1

Half-saturation concentration for grazing 0.5 mmol N m−3

Grazing threshold 0.01 mmol N m−3 day−1

Assimilation efficiency for zooplankton 0.9

Assimilation efficiency for detritus 0.65

Base zooplankton specific mortality 0.05 day−1

Concentration-dependent zooplankton specific

mortality

0.3 day−1

Remineralisation rate 0.1 day−1

(depth < 100 m)

8.58 depth−1 day−1

(depth > 100 m)

Detrital sinking velocity 10.0 m day−1

Carbonate precipitated per unit primary produc-

tion

0.013

Minimum carbon to chlorophyll ratio 20.0

Maximum carbon to chlorophyll ratio 200.0

Fraction of grazed material ingested 0.77
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Fig. A1. Locations and months of in situ observations used from SeaBASS, CARBON-OPS and AMT.
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Beşiktepe, Ş. T., Lermusiaux, P. F. J., and Robinson, A. R.: Coupled

physical and biogeochemical data-driven simulations of Mas-

sachusetts Bay in late summer: real-time and postcruise data as-

similation, J. Marine Syst., 40, 171–212, 2003.

Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data

assimilation using incremental analysis updates, Mon. Weather

Rev., 124, 1256–1271, 1996.

Blower, J. D., Blanc, F., Clancy, M., Cornillon, P., Donlon, C.,

Hacker, P., Haines, K., Hankin, S. C., Loubrieu, T., Pouliquen,

S., Price, M., Pugh, T. F., and Srinivasan, A.: Serving GODAE

data and products to the ocean community, Oceanography, 22,

70–79, 2009.

Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian statistical

modeling in geophysical data assimilation, Mon. Weather Rev.,

138, 2997–3023, 2010.

Brankart, J.-M., Testut, C.-E., Béal, D., Doron, M., Fontana, C.,
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