
What is dependence? 

In the study of random processes, dependence is the rule rather than the exception. To facilitate the 
related statistical analysis, it is necessary to quantify the dependence between observations. In the talk I 
will briefly review the history of this fundamental problem. By interpreting random processes as physical 
systems, I will introduce physical and predictive dependence coefficients that quantify the degree of 
dependence of outputs on inputs.  
 
Relations with nonlinear system theory and riskmetrics will be discussed.  
Such dependence measures provide a new framework for the study of random processes and shed new 
light on a variety of problems including robust estimation of linear models with dependent errors, 
nonparametric inference of time series, representations of sample quantiles, bootstrap for time series, 
spectral estimation among others. 
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Text Box
  TWO papers provide background:1. Asymptotic theory for stationary processes  2. Nonlinear system theory: Another look at dependence (starting on p22)
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Asymptotic theory for stationary processes

Wei Biao Wu

We present a systematic asymptotic theory for statistics
of stationary time series. In particular, we consider proper-
ties of sample means, sample covariance functions, covari-
ance matrix estimates, periodograms, spectral density esti-
mates, U -statistics, kernel density and regression estimates
of linear and nonlinear processes. The asymptotic theory
is built upon physical and predictive dependence measures,
a new measure of dependence which is based on nonlinear
system theory. Our dependence measures are particularly
useful for dealing with complicated statistics of time series
such as eigenvalues of sample covariance matrices and max-
imum deviations of nonparametric curve estimates.

Keywords and phrases: Dependence, Covariance func-
tion, Covariance matrix estimation, Periodogram, Spectral
density estimation, U-statistics, Kernel estimation, Invari-
ance principle, Nonlinear time series.

1. INTRODUCTION

The exact probability distributions of statistics of time se-
ries can be too complicated to be useful and they are known
only in very special situations. It can be impossible to derive
close forms for exact finite-sample distributions of statistics
of time series. Therefore it is necessary to resort to large
sample theory. Asymptotics of linear time series have been
discussed in many classical time series books; see for ex-
ample Anderson (1971), Hannan (1970), Brillinger (1981),
Brockwell and Davis (1991) and Hannan and Deistler (1988)
among others. Since the pioneering work of Howell Tong
on threshold processes, various nonlinear time series mod-
els have been proposed. It is more challenging to develop
an asymptotic theory for such processes since one no longer
assumes linearity.

This paper presents a systematic asymptotic theory for
stationary processes of the form

Xi = H(. . . , εi−1, εi),(1)

where εi, i ∈ Z, are independent and identically distributed
(iid) random variables and H is a measurable function such
that Xi is well-defined. In (1), (Xi) is causal in the sense that
Xi does not depend on the future innovations εj , j > i. The
causality is a reasonable assumption in the study of time
series. As argued in Section 2, (1) provides a very general
framework for stationary ergodic processes. Sections 3 and 4

present examples of linear and nonlinear processes that are
of form (1).

In the past half century, following the influential work of
Rosenblatt (1956b), there have been a substantial amount
of results on limit theory for processes which are a strong
mixing of various types, such as α−, β−, ρ−, φ−mixing
and related concepts. See Ibragimov and Linnik (1971), the
monograph edited by Eberlein and Taqqu (1986), Doukhan
(1994) and Bradley (2007). Recently Doukhan and Louhichi
(1999) and Dedecker and Prieur (2005) have proposed some
new types of dependence measures which in a certain de-
gree overcome some drawbacks of strong mixing conditions.
In many cases it is not easy to compute strong mixing coef-
ficients and verify strong mixing conditions.

In this paper we shall present a large-sample theory for
statistics of stationary time series of form (1). In particu-
lar we shall discuss asymptotic properties of sample means,
sample auto-covariances, covariance matrix estimates, peri-
odograms, spectral density estimates, U -statistics and ker-
nel density and regression estimates. Instead of using strong
mixing conditions and their variants, we adopt physical and
predictive dependence measure (Wu, 2005b) for our asymp-
totic theory. The framework, tools and results presented
here can be useful for other time series asymptotic prob-
lems.

The rest of the paper is organized as follows. In Section 2
we shall review two types of representation theory for sta-
tionary processes: the Wold representation and (1), func-
tionals of iid random variables. We argue that the latter
representation is actually quite general. It can be viewed as a
nonlinear analogue of the Wold representation. Based on (1),
Section 3 defines physical and predictive dependence mea-
sures which in many situations are easy to work with. Exam-
ples of linear and nonlinear processes are given in Sections 3
and 4, respectively. Based on the physical and predictive de-
pendence measures, we survey in Sections 5–12 asymptotic
results for various statistics. Section 13 concludes the paper.
Our dependence measures are particularly useful for dealing
with complicated statistics of time series such as eigenvalues
of sample covariance matrices, maxima of periodograms and
maximum deviations of nonparametric curve estimates. In
such problems it is difficult to apply the traditional strong
mixing type of conditions. It would not be possible to in-
clude in this paper proofs of all surveyed results. We only
present a few proofs so that readers can get a feeling of
the techniques used. Nonetheless we shall provide detailed
background information and references where proofs can be
found.
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2. REPRESENTATION THEORY OF
STATIONARY PROCESSES

In 1938 Herman Wold proved a fundamental result which
asserts that any weakly stationary process can be decom-
posed into a regular process (a moving average sum of white
noises) and a singular process (a linearly deterministic com-
ponent). The latter result, called Wold representation or de-
composition theorem, reveals deep insights into structures
of weakly stationary processes. On the other hand, however,
one cannot apply the Wold representation theorem to ob-
tain asymptotic distributions of statistics of time series since
the white noises in the moving average process do not have
properties other than being uncorrelated. The joint distri-
butions of the white noises can be too complicated to be
useful. Recently Volný, Woodroofe and Zhao (2011) proved
that stationary processes can be represented as super-linear
processes of martingale differences. Their useful and inter-
esting decomposition reveals a finer structure than the one
in Wold decomposition.

Here we shall adopt a different framework. It is based on
quantile transformation. For a random vector (X1, . . . , Xn),
let Xm = (X1, . . . , Xm) and define Gn(x, u) = inf{y ∈
R : FXn|Xn−1(y|x) ≥ u}, x ∈ R

n−1, u ∈ (0, 1). Here
FXn|Xn−1(·|·) is the conditional distribution function of Xn

given Xn−1. So Gn is the conditional quantile function of Xn

given Xn−1. In the theory of risk management, Gn(Xn−1, u)
is the value-at-risk (VaR) at level u [cf. J. P. Morgan (1996)].
Then we have the distributional equality

Xn =D (Xn−1, Gn(Xn−1, Un)),(2)

where Un ∼uniform(0, 1) and Un is independent of Xn−1.
Let Uj = (U1, . . . , Uj). Iterating (2), we can find measurable
functions H1, . . . , Hn such that⎛

⎜⎜⎝
X1

X2

· · ·
Xn

⎞
⎟⎟⎠ =D

⎛
⎜⎜⎝

X1

G2(X1, U2)
· · ·

Gn(Xn−1, Un)

⎞
⎟⎟⎠ =D

⎛
⎜⎜⎝

H1(U1)
H2(U2)

· · ·
Hn(Un)

⎞
⎟⎟⎠ .(3)

In other words, we have the important and useful fact that
any finite dimensional random vector can be expressed in
distribution as functions of iid uniforms. The above con-
struction was known for a long time; see for example Rosen-
blatt (1952), Wiener (1958) and Arjas and Lehtonen (1978).
It can be used to simulate multivariate distributions (see e.g.
Deák (1990), chapter 5) and Arjas and Lehtonen (1978).
For more background see Wu and Mielniczuk (2010). They
also discussed connections of their dependence concept with
experimental design, reliability theory and risk measures.
If (Xi)i∈Z is a stationary ergodic process, one may expect
that there exists a function H and iid standard uniform
random variables Ui such that (1) holds. In Wiener (1958)
it is called coding problem. The latter claim, however, is
generally not true; see Rosenblatt (1959, 2009), Ornstein

(1973) and Kalikow (1982). Nonetheless the above construc-
tion suggests that the class of processes that (1) represents
can be very wide. For a more comprehensive account for
representing stationary processes as functions of iid ran-
dom variables see Wiener (1958), Kallianpur (1981), Priest-
ley (1988), Tong (1990, p. 204), Borkar (1993) and Wu
(2005b).

With the representation (1), together with the depen-
dence measures that will be introduced in Section 3, we can
establish a systematic asymptotic distributional theory for
statistics of stationary time series. Such a theory would not
be possible if one just applies the Wold representation theo-
rem. On the other hand we note that in Wold decomposition
one only needs weak stationarity while here we require strict
stationarity.

3. DEPENDENCE MEASURES

To facilitate an asymptotic theory for processes of form
(1), we need to introduce appropriate dependence measures.
Here, based on the nonlinear system theory, we shall adopt
dependence measures which quantify the degree of depen-
dence of outputs on inputs in physical systems. Let the shift
process

Fi = (. . . , εi−1, εi).(4)

Let (ε′i)i∈Z be an iid copy of (εi)i∈Z. Hence ε′i, εj , i, j ∈ Z,
are iid. For a random variable X, we say X ∈ Lp (p > 0) if
‖X‖p := (E|X|p)1/p < ∞. Write the L2 norm ‖X‖ = ‖X‖2.

Definition 1 (Functional or physical dependence measure).
Let Xi ∈ Lp, p > 0. For j ≥ 0 define the physical depen-
dence measure

δp(j) = ‖Xj − X∗
j ‖p,(5)

where X∗
j is a coupled version of Xj with ε0 in the latter

being replaced by ε′0:

X∗
j = H(F∗

j ), F∗
j = (. . . , ε−1, ε

′
0, ε1, . . . , εj−1, εj).

Definition 2 (Predictive dependence measure). For j ∈ Z,
define the projection operator

Pj · = E(·|Fj) − E(·|Fj−1).(6)

Let Xi ∈ Lp, p ≥ 1. Define the predictive dependence mea-
sure θp(i) = ‖P0Xi‖p.

Lemma 1 (Wu, 2005). For (Xi)i∈Z given in (1), assume
Xi ∈ Lp, p ≥ 1. For j ≥ 0 let gj be a Borel function on
R × R × · · · �→ R such that gj(F0) = E(Xj |F0). Let

ωp(j) = ‖gj(F0) − gj(F∗
0 )‖p.(7)

Then θp(i) ≤ ωp(i) ≤ 2θp(i).
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Definition 3 (Stability and weak stability). We say that
the process (Xi) is p-stable if

Δp :=
∞∑

j=0

δp(j) < ∞.(8)

We say that it is weakly p-stable if Ωp :=
∑∞

j=0 θp(i) < ∞.

In Definition 1 the pair (Xj , X
∗
j ) is exchangeable. Namely

(Xj , X
∗
j ) and (X∗

j , Xj) have the same distribution. This in-
teresting property is useful in applying our dependence mea-
sures. In Definition 2, the projection operators Pj , j ∈ Z,
naturally lead to martingale differences. The function gj(F0)
in Lemma 1 can be viewed as a nonlinear analogue of Kol-
mogorov’s (1941) linear predictor which results from tail
terms in the Wold decomposition. When p = 2, we write
δ(j) = δ2(j), ω(j) = ω2(j) and θ(i) = θ2(i). The weak sta-
bility with p = 2 guarantees an invariance principle for the
partial sum process Sn =

∑n
i=1 Xi; see Theorem 3 in Sec-

tion 5.

Remark 1. The above dependence measures are defined
for the one-sided process Xi given in (1). Clearly similar
definitions can be given for the two-sided process

Xi = H(. . . , εi−1, εi, εi+1, . . .)(9)

as well. We can show that with non-essential modifications,
the majority of the results in the following sections re-
main valid. Since many processes encountered in practice
are causal, we decide to use the one-sided representation.

Note that (9) can be naturally generalized to the spatial
process Xi = H(εi−j, j ∈ Z

d), i ∈ Z
d, d ≥ 2. Hallin, Lu

and Tran (2001, 2004) considered kernel density estimation
of such linear and non-linear random fields. Surgailis (1982)
dealt with long-memory linear fields. El Machkouri, Volný
and Wu (2010) established a very general central limit the-
orem for random fields of this type.

Remark 2. In Ibragimov (1962), Billingsley (1968), Bierens
(1983), Andrews (1995) and Lu (2001), the following type of
stationary processes has been considered: Xi = H(Vi−j , j ∈
Z) or Xi = H(. . . , Vi−1, Vi), where Vi is another stationary
process which can be α− or φ− mixing, and near-epoch de-
pendence conditions are imposed. This framework and ours
have different ranges of application. On one hand, our (1)
does not seem to lose too much generality in view of (3) and
Wiener’s (1958) construction. On the other hand, the prop-
erty that εi are independent greatly facilitates asymptotic
studies of time series. For example, in Section 11, we re-
view Liu and Wu’s (2010a) asymptotic distributional theory
for maximum deviations of nonparametric curve estimates
for time series which can be possibly long-memory. It can
be very difficult to establish results of such type by using
the framework of functions of strong mixing processes un-
der near-epoch dependence. In nonparametric inference it is
important to have such an asymptotic distributional theory

since one can use that to construct simultaneous, instead of
point-wise, confidence bands. The simultaneous confidence
bands are useful for assessing the overall variability of the
estimated curves. Recently Lu and Linton (2007) and Li,
Lu and Linton (2010) obtained asymptotic normality and
uniform bounds for local linear estimates under near-epoch
dependence. It seems not easy to apply their framework to
establish the Gumbel type of convergence for maximum de-
viations of local linear estimates.

We interpret (1) as a physical system with Fi and Xi

being the input and output, respectively, and H being a
transform. With this interpretation, δp(j) quantifies the de-
pendence of Xj = H(Fj) on ε0 by measuring the distance
between Xj and its coupled process X∗

j = H(F∗
j ). The sta-

bility condition
∑∞

j=0 δp(j) < ∞ indicates that Δp, the cu-
mulative impact of ε0 on the future values (Xi)i≥0, is finite.
Hence it can be interpreted as a short-range dependence con-
dition. For the predictive dependence measure ωp(j), since
gj(F0) = E(Xj |F0) is the jth step ahead predicted mean,
ωp(j) measures the contribution of ε0 in predicting Xj . Re-
cently Escanciano and Hualde (2009) established a link be-
tween the persistence measure proposed by Granger (1995),
the nonlinear impulse response (Koop et al. (1996)), and our
predictive dependence measures.

Physical and predictive dependence measures provide a
convenient way for a large-sample theory for stationary pro-
cesses and they are directly related to the underlying data-
generating mechanism H. The obtained results based on
those dependence measures are often optimal or nearly op-
timal. The results in this paper extend to many previous
theorems in classical textbooks which are mostly for the
special case of linear processes.

In the rest of this section we present examples of linear
processes and Volterra processes, a polynomial-type nonlin-
ear process. We shall compute their physical and predictive
dependence measures. Section 4 deals with nonlinear time
series.

Example 1 (Linear Processes). Let εi be iid random vari-
ables with εi ∈ Lp, p > 0; let (ai) be real coefficients such
that

∞∑
i=0

|ai|min(2,p) < ∞.(10)

By Kolmogorov’s Three Series Theorem (Chow and Teicher,
1988), the linear process

Xt =
∞∑

i=0

aiεt−i(11)

exists and is well-defined. Then (11) is of form (1) with a lin-
ear functional H. We can view the linear process (Xt) in (11)
as the output from a linear filter and the input (. . . , εt−1, εt)
is a series of shocks that drive the system (Box, Jenkins and
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Reinsel (1994), p. 8–9). Clearly ωp(n) = δp(n) = |an|c0,
where c0 = ‖ε0 − ε′0‖p < ∞. Let p = 2. If

∞∑
i=0

|ai| < ∞,(12)

then the filter is said to be stable (Box, Jenkins and Rein-
sel, 1994) and the preceding inequality implies short-range
dependence since the covariances are absolutely summable.
In this sense Definition 3 extends the notion of stability to
nonlinear processes.

Example 2 (Autoregressive Moving Average Process,
ARMA). An important special class of linear process (11)
is the ARMA model which is of the form

Xt −
p∑

j=1

ϕjXt−j = εt +
q∑

l=1

θlεt−l,(13)

where (ϕj)
p
j=1 (resp. (θl)

q
l=1) are autoregressive (resp. mov-

ing average) parameters. Note that ai is the coefficient of zi

of the infinite series (1+
∑q

l=1 θlz
l)/(1−

∑p
j=1 ϕjz

j). In the
special case in which q = 0, we call (13) an AR (autoregres-
sive) process. Let λ1, . . . , λp be the roots of the equation
λp −

∑p
j=1 ϕjλ

p−j = 0. Assume λ∗ = maxm≤p |λm| < 1.
Then |ai| = O(ri) for all r ∈ (λ∗, 1) and (10) holds.

Example 3 (Volterra Series). Intuitively, if we perform
first-order Taylor expansion of H in (1), then the corre-
sponding linear process can viewed as a first-order approx-
imation of Xi. To model nonlinearity, we can apply higher-
order Taylor expansions. Suppose that H is sufficiently well-
behaved so that it has the stationary and causal represen-
tation

H(. . . , εn−1, εn)(14)

=
∞∑

k=1

∞∑
u1,...,uk=0

gk(u1, . . . , uk)εn−u1 . . . εn−uk
,

where functions gk are called the Volterra kernel. The right-
hand side of (14) is called the Volterra expansion and it plays
an important role in the nonlinear system theory (Schetzen
1980, Rugh 1981, Casti 1985, Priestley 1988, Bendat 1990,
Mathews 2000). Assume that εt are iid with mean 0, vari-
ance 1 and gk(u1, . . . , uk) is symmetric in u1, . . . , uk and it
equals zero if ui = uj for some 1 ≤ i < j ≤ k, and

∞∑
k=1

∞∑
u1,...,uk=0

g2
k(u1, . . . , uk) < ∞.

Then Xn exists and Xn ∈ L2. Wu (2005) computed the
predictive dependence measure

θ2(n) =
∞∑

k=1

∑
min(u1,...uk)=n

g2
k(u1, . . . , uk)

=
∞∑

k=1

k
∞∑

u2,...uk=n+1

g2
k(n, u2, . . . , uk)

and the physical dependence measure

δ2(n)
2

=
∞∑

k=1

k

∞∑
u2,...uk=0

g2
k(n, u2, . . . , uk).

4. NONLINEAR TIME SERIES

A wide class of nonlinear time series can be expressed as

Xi = G(Xi−1, ξi) = Gξi(Xi−1),(15)

where ξ, ξi, i ∈ Z, are iid random variables taking values
in Ξ with distribution μ and G : X × Ξ �→ X is a measur-
able function. Here (X , ρ) is a complete and separable metric
space. We can view (15) as an iterated random function. The
problem of existence of stationary distributions of iterated
random functions and the related convergence issues has
been extensively studied (Barnsley and Elton (1988), Elton
(1990), Duflo (1997), Arnold (1998), Diaconis and Freedman
(1999), Steinsaltz (1999), Alsmeyer and Fuh (2001), Jarner
and Tweedie (2001), Wu and Shao (2004)). Here we shall
present a sufficient condition for (15) so that the represen-
tation (1) holds.

Define the forward iteration function

Xn(x) = Gξn ◦ Gξn−1 ◦ · · ·◦ Gξ1(x),(16)

where n ∈ N, and the backward iteration function

Zn(x) = Gξ1 ◦ Gξ2 ◦ · · ·◦ Gξn(x).(17)

Observe that, for all x ∈ X , by independence of ξi, Xn(x) D=
Zn(x). Note that the joint distributions (Xn(x))n≥1 and
(Zn(x))n≥1 are not the same. If Zn(x) converges almost
surely to a random variable Z∞ (say), then Xn(x) converges
in distribution to Z∞.

Condition 1. There exist y0 ∈ X and α > 0 such that

I(α, y0) := E{ρα[y0, Gξ(y0)]} =
∫

Ξ

ρα[y0, Gθ(y0)]μ(dθ) < ∞.

(18)

Condition 2. There exist x0 ∈ X , α > 0 and r(α) ∈ (0, 1)
such that, for all x ∈ X ,

E{ρα[X1(x), X1(x0)]} ≤ r(α)ρα(x, x0).(19)

Theorem 1 (Wu and Shao, 2004). Suppose that Conditions
1 and 2 hold. Then there exists a random variable Z∞ such
that for all x ∈ X , Zn(x) → Z∞ almost surely. The limit
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Z∞ is σ(ξ1, ξ2, . . .)-measurable and does not depend on x.
Moreover, for every n ∈ N,

E{ρα[Zn(x), Z∞]} ≤ Crn(α),(20)

where C > 0 depends only on x, x0, y0, α and r(α) ∈
(0, 1). In addition, we have the geometric-moment contract-
ing (GMC) property:

E{ρα[Zn(X ′
0), Z∞]} ≤ Crn(α),(21)

where X ′
0 ∼ π is independent of ξ1, ξ2, . . ..

Remark 3. In applying Theorem 1, a useful sufficient con-
dition for (19) is

E(Kα
θ ) =

∫
Ξ

Kα
θ μ(dθ) < 1,(22)

where Kθ = sup
x′ �=x

ρ[Gθ(x′), Gθ(x)]
ρ(x′, x)

.

To see this, by Fatou’s lemma, we have (19) with r(α) =
E(Kα

θ ) in view of

1 > E(Kα
θ ) =

∫
Θ

sup
x′ �=x

ρα[Gθ(x′), Gθ(x)]
ρα(x′, x)

μ{dθ}

≥ sup
x′ �=x

∫
Θ

ρα[Gθ(x′), Gθ(x)]
ρα(x′, x)

μ{dθ}.

Remark 4. Assume that Kθ has an algebraic tail. If there
exists an α such that (19) holds, then E(log Kθ) < 0. The
converse is also true. The latter is a key condition in Dia-
conis and Freedman (1999). Our Theorem 1 is an improved
version of Theorem 1 in Diaconis and Freedman (1999) in
that it states stronger results under weaker conditions.

The GMC property (21) asserts that Xi, i ≥ 0, forgets
the history F0 = (. . . , ε−1, ε0) geometrically quickly. It is
equivalent to the following: the physical dependence mea-
sure δα(n) = O(rn(α)).

Theorem 1 can be generalized to nonlinear AR(p) models
(Shao and Wu, 2007). Let ε, εn be iid, p, d ≥ 1; let Xn ∈ R

d

be recursively defined by

Xn+1 = R(Xn, . . . , Xn−p+1; εn+1),(23)

where R is a measurable function. Suitable conditions on R
implies GMC.

Theorem 2 (Shao and Wu, 2007). Let α > 0 and α′ =
min(1, α). Assume that R(y0; ε) ∈ Lα for some y0 and that
there exist constants a1, . . . , ap ≥ 0 such that

∑p
j=1 aj < 1

and

‖R(y; ε) − R(y′; ε)‖α′

α ≤
p∑

j=1

aj |xj − x′
j |α

′
(24)

holds for all y = (x1, . . . , xp) and y′ = (x′
1, . . . , x

′
p). Then

[i] (23) admits a stationary solution of the form (1) and [ii]
Xn satisfies GMC(α). In particular, if there exist functions
Hj such that |R(y; ε) − R(y′; ε)| ≤

∑p
j=1 Hj(ε)|xj − x′

j | for
all y and y′ and

∑p
j=1 ‖Hj(ε)‖α′

α < 1, then we can let aj =
‖Hj(ε)‖α′

α .

Duflo (1997) assumed α ≥ 1 and called (24) Lipschitz
mixing condition. Here we allow α < 1. Similar conditions
are given in Götze and Hipp (1994).

Doukhan and Wintenberger (2008) considered the
AR(∞) or chain with infinite memory model

Xk+1 = R(Xk, Xk−1, . . . ; εk+1),(25)

where εk are iid innovations. Assume that there exists a
non-negative sequence (wj)j≥1 such that, for some α ≥ 1,

‖R(x−1, x−2, . . . ; ε0) − R(x′
−1, x

′
−2, . . . ; ε0)‖α(26)

≤
∞∑

j=1

wj |x−j − x′
−j |.

Under suitable conditions on (ωj)j≥1, iterations of (25) lead
to a stationary solution Xk of form (1). We now compute its
physical dependence measure. Let δα(k) = ‖Xk −H(F∗

k )‖α.
For k ≥ 0, by (25) and (26), we have

δα(k + 1) ≤
k+1∑
i=1

wiδα(k + 1 − i).(27)

Define recursively the sequence (ak)k≥0 by a0 = δα(0) and

ak+1 =
k+1∑
i=1

wiak+1−i.(28)

Let A(s) =
∑∞

k=0 aksk and W (s) =
∑∞

i=1 wis
i, |s| ≤ 1. By

(28), we have A(s) = a0 + A(s)W (s). Hence A(s) = a0(1 −
W (s))−1. Assume that, as s ↑ 1, 1 − W (s) ∼ (1 − s)d with
d ∈ (0, 1/2). Then δα(k) ≤ ak ∼ a0k

d−1/Γ(d), where Γ(·) is
the Gamma function. The latter is the fractional integration
model (1 − B)dXk+1 = εk+1. For a nonlinear functional R,
(25) generates a nonlinear long-memory process.

Note that in our setting W (1) =
∑∞

j=1 wj = 1, while
W (1) < 1 is required in Doukhan and Wintenberger (2008).
Hence we can allow stronger dependence. If, as in Doukhan
and Wintenberger (2008), W (1) < 1, then ak = O(rk) for
some r ∈ (0, 1). This is analogous to Theorem 2 which en-
sures the GMC property.

Example 4 (Amplitude-dependent Exponential Autore-
gressive (EXPAR) Model). Jones (1976) studied the follow-
ing EXPAR model: let εj ∈ Lα be iid and recursively define

Xn = [α + β exp(−aX2
n−1)]Xn−1 + εn,
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where α, β, a > 0 are real parameters. Then H1(ε) = |α| +
|β|. By Theorem 1 (cf Remark 3), Xn is GMC(α) if |α| +
|β| < 1.

Example 5 (Nonlinear AR Process Based on the Clayton
Copula). Let α > 0 and Ui, i ∈ Z, be iid uniform(0, 1).
Consider the model

Yi = (U−α/(1+α)
i − 1)Yi−1 + 1.

Then Yi has the stationary distribution with Y
−1/α
i ∼

uniform(0, 1). The above Markov process is generated by
the Clayton copula (Chen and Fan, 2006) which is used to
model tail dependence behavior of time series.

Example 6 (Bilinear time series). Let ε, εi, i ∈ Z, be iid
and consider the recursion

Xi = (a + bεi)Xi−1 + cεi,(29)

where a, b and c are real parameters. When b = 0, then (29)
reduces to an AR(1) process. The bilinear time series was
first proposed by Tong (1981) to model sudden jumps in
time series. Quinn (1982) derived the moment stability. By
Theorem 1, if ε ∈ Lα, α > 0, and E(|a + bε|α) < 1, then
(29) admits a stationary solution. Consider the subdiagonal
bilinear model [Granger and Anderson (1978), Subba Rao
and Gabr (1984)]:

Xt =
p∑

j=1

ajXt−j +
q∑

j=0

cjεt−j +
P∑

j=0

Q∑
k=1

bjkXt−j−kεt−k.

(30)

Let s = max(p, P +q, P +Q), r = s−max(q, Q) and ap+j =
0 = cq+j = bP+k,Q+j = 0, k, j ≥ 1; let H be a 1 × s
vector with the (r + 1)-th element 1 and all others 0, c be
an s × 1 vector with the first r − 1 elements 0 followed by
1, a1 + c1, . . . , as−r + cs−r, and d be an s × 1 vector with
the first r elements 0 followed by b01, . . . , b0,s−r. Define the
s × s matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

. . . 0
0 1 0

0 0 a1

. . . 0
... 1

as · · · · · · as−r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0

br1 · · · b01 0 · · · 0
...

...
...

...
...

...
br,s−r · · · b0,s−r 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let Zt be an s × 1 vector with the j-th entry Xt−r+j

if 1 ≤ j ≤ r and
∑r

k=j akXt+j−k +
∑s−r

k=j(ck +

∑P
l=0 blkXt+j−k−l)εt+j−k if 1 + r ≤ j ≤ s. Pham (1985,

1993) discovered the representation

Xt = HZt−1 + εt, Zt = (A + Bεt)Zt−1 + cεt + dε2
t .

(31)

By (31), Xt is GMC(α), α ≥ 1 if ε1 ∈ L2α and E(|A +
Bε1|α) < 1. By (39), Zt admits a causal representation and
so does Xt.

Example 7 (Threshold AR model, TAR (Tong, 1990)). For
x ∈ R let x+ = max(x, 0) and x− = min(x, 0). Tong (1990)
considered the threshold autoregressive model (TAR)

Xi = θ1X
+
i−1 + θ2X

−
i−1 + εi,(32)

where θ1, θ2 are real parameters and ε, εi, i ∈ Z, are iid. The
above model suggests the regime switching phenomenon: if
Xi−1 > 0, then (32) becomes Xi = θ1Xi−1 + εi, while if
Xi−1 < 0, then Xi follows a different AR(1) process Xi =
θ2Xi−1+εi. By Theorem 1, if max(|θ1|, |θ2|) < 1 and ε ∈ Lα,
α > 0, then (32) admits a stationary solution.

Example 8 (Autoregressive Conditional Heteroscedastic
Models, ARCH (Engle, 1982)). Let ε, εi, i ∈ Z, be iid. The
ARCH with order 1 is defined by the recursion

Xi = εi

√
a2 + b2X2

i−1,(33)

where a and b are real parameters. If Eεi = 0 and Eε2
i = 1,

then the conditional variance of Xi given Xi−1 is a2 +
b2X2

i−1, which depends on Xi−1 and hence suggesting het-
eroscedasticity. The latter property is useful for modeling
financial time series that exhibit time-varying volatility clus-
tering. A sufficient condition for stationarity is E log |bε| < 0.
If there exists α > 0 such that E(|bε|α) < 1, then Xi has a
stationary solution with αth moment.

Example 9 (Generalized Autoregressive Conditional Het-
eroskedastic models, GARCH (Bollerslev, 1986)). Let εt, t ∈
Z, be iid random variables with mean 0 and variance 1; let

Xt =
√

htεt,(34)

where the conditional variance function follows the ARMA
model

ht = α0 + α1X
2
t−1 + · · · + αqX

2
t−q + β1ht−1 + · · · + βpht−p,

(35)

where α0 > 0, αj ≥ 0 for 1 ≤ j ≤ q and βi ≥ 0 for
1 ≤ i ≤ p. Here (Xt) is called the generalized autore-
gressive conditional heteroscedastic model GARCH(p, q). A
sufficient condition for (Xt) being stationary is (Bollerslev,
1986):

q∑
j=1

αj +
p∑

i=1

βi < 1.(36)
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The existence of moments for GARCH models has been
widely studied; see Chen and An (1998), He and Teräsvirta
(1999), Ling (1999), and Ling and McAleer (2002) among
others. Let Yt = (X2

t , . . . , X2
t−q+1, ht, . . . , ht−p+1)T , bt =

(α0ε
2
t , 0, . . . , 0, α0, 0, . . . , 0)T and θ = (α1, . . . , αq, β1, . . . ,

βp)T ; let ei = (0, . . . , 0, 1, 0, . . . , 0)T be the unit column vec-
tor with ith element being 1, 1 ≤ i ≤ p + q. Then (34) ad-
mits the following autoregressive representation (Bougerol
and Picard, 1992):

Yt = MtYt−1 + bt,

(37)

where Mt = (θε2t , e1, . . . , eq−1, θ, eq+1, . . . , ep+q−1)	.

For a square matrix M let ρ(M) be its largest eigenvalue
of (MT M)1/2. Let ⊗ be the usual Kronecker product; let
|Y | be the Euclidean length of a vector Y . Assume E(ε4

t ) <
∞. Ling (1999) shows that if ρ[E(M⊗2

t )] < 1, then (Xt)
has a stationary distribution and E(X4

t ) < ∞. Ling and
McAleer (2002) argue that the condition ρ[E(M⊗2

t )] < 1
is also necessary for the finiteness of the fourth moment.
Our Proposition 1 asserts that the same condition actually
implies (21) as well.

Proposition 1 (Wu and Min, 2005). For the GARCH
model (34), assume that εt are iid with mean 0 and variance
1, E(ε4

t ) < ∞ and ρ[E(M⊗2
t )] < 1. Then E(|Xn − X ′

n|4) ≤
Crn for some C < ∞ and r ∈ (0, 1). Therefore (21) holds.

Shao and Wu (2007) showed that (21) holds for the asym-
metric GARCH processes of Ding, Granger and Engle (1993)
and Ling and McAleer (2002).

Example 10 (Random Coefficients Model). Let Ak be p×p
random matrices and Bk be p×1 random vectors, p ∈ N. Let
(Ak, Bk), k ∈ Z, be iid. The generalized random coefficient
autoregressive process (Xi) is defined by

Xi = AiXi−1 + Bi, i ∈ Z.(38)

Bilinear and GARCH models fall within the framework of
(38). The stationarity, geometric ergodicity and β-mixing
properties have been studied by Pham (1986), Mokkadem
(1990) and Carrasco and Chen (2002). Their results require
that innovations have a density, which is not needed in our
setting.

For a p× p matrix A, let |A|α = supz �=0 |Az|α/|z|α, α ≥ 1
be the matrix norm induced by the vector norm |z|α =
(
∑p

j=1 |zj |α)1/α. Then Xi is GMC(α), α ≥ 1 if E(|A0|α) <
1 and E(|B0|α) < ∞. By Jensen’s inequality, we have
E(log |A0|α) < 0. By Theorem 1.1 of Bougerol and Picard
(1992),

Xn =
∞∑

k=0

AnAn−1 . . . An−k+1Bn−k(39)

converges almost surely.

Example 11 (Nonlinear Heteroskedastic AR Models). Let
μ(·) and σ(·) ≥ 0 be real valued functions; let ε, εi, i ∈ Z, be
iid random variables with εi ∈ Lα, α > 0. Consider

Xi = μ(Xi−1) + σ(Xi−1)εi(40)

If σ(·) is not a constant function, then (40) defines a het-
eroskedastic process. If εi is Gaussian, then we can view (40)
as a discretized version of the stochastic diffusion model

dYt = μ(Yt)dt + σ(Yt)dIB(t)(41)

where IB is the standard Brownian motion. Many well-
known financial models are special cases of (41); see Fan
(2005) and references therein. For (40), assume that

sup
x

‖μ′(x) + σ′(x)ε‖α < 1,(42)

then by Theorem 1 it has a stationary solution.

5. CENTRAL LIMIT THEORY

This section presents a central limit theorem for the pro-
cess (1). Let the mean E(Xi) = 0 and γk = cov(X0, Xk)
the covariance function. Let Sn =

∑n
i=1 Xi and define the

process

St = S�t� + (t − t�)X�t�+1, t ≥ 0,(43)

where the floor function t� = max{k ∈ Z : k ≤ t}. Note
that St is continuous in t. We shall show that, under suitable
weak dependence conditions, the central limit theorem

Sn√
n
⇒ N(0, σ2)(44)

holds for some σ2 < ∞. Here ⇒ denotes weak convergence
(Billingsley, 1968). Central limit theorems of type (44) has
a substantial history. The classical Lindeberg-Feller (cf Sec-
tion 9.1 in Chow and Teicher (1988)) concerns independent
random variables. Hoeffding and Robbins (1948) proved
a central limit theorem under m-dependence. Rosenblatt
(1956) introduced strong mixing processes, while Gänssler
and Häeusler (1979) and Hall and Heyde (1980) consid-
ered martingales. For central limit theorems for station-
ary processes see Ibragimov (1962), Gordin (1969), Ibrag-
imov and Linnik (1971), Gordin and Lifsic (1978), Peligrad
(1996), Doukhan (1999), Maxwell and Woodroofe (2000),
Rio (2000), Peligrad and Utev (2005), Dedecker et al (2007)
and Bradley (2007).

Here we shall use the predictive dependence measure. It
turns out that under a weak stability condition, one can
actually have an invariance principle concerning the weak
convergence of the re-scaled process of {Snu, 0 ≤ u ≤ 1}
to a Brownian motion {IB(u), 0 ≤ u ≤ 1}. The latter auto-
matically entails (44). Recall (6) for the projection operator
Pi.
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Theorem 3. Let θp(i) = ‖P0Xi‖p, p > 1. Assume EXi = 0
and

Θp :=
∞∑

i=0

θp(i) < ∞.(45)

Then (i) we have the moment inequality

‖Sn‖p ≤
{

(p − 1)1/2n1/2Θp, p > 2,

(p − 1)−1n1/pΘp, 1 < p ≤ 2.
(46)

(ii) Assume (45) holds with p = 2. Then the invariance
principle holds:

{Snu/
√

n, 0 ≤ u ≤ 1} ⇒ {σIB(u), 0 ≤ u ≤ 1},(47)

where the long-run variance σ2 is given by

σ2 =

∥∥∥∥∥
∞∑

i=0

P0Xi

∥∥∥∥∥
2

=
∑
k∈Z

γk.(48)

Theorem 3(ii) follows from Hannan (1979) and Dedecker
and Merlevéde (2003). See also Woodroofe (1992) and Volný
(1993). A useful feature of Theorem 3 is that it provides an
explicit probabilistic representation for the long-run vari-
ance σ2 = ‖

∑∞
i=0 P0Xi‖2. The latter is also called a time-

average variance constant or asymptotic variance. The in-
equality (46) is quite sharp if p = 2. Suppose we have a lin-
ear process Xi =

∑∞
j=0 ajεi−j , where εj are iid with mean

0 and variance 1, and aj ≥ 0 for all j. Then both σ and Θ2

equal to
∑∞

j=0 aj and limn→∞ ‖Sn‖/
√

n = Θ2. In Theorem
3, (45) asserts that the cumulative contribution of ε0 in pre-
dicting (Xi)i≥0 is finite by noting that (45) is equivalent to∑∞

i=0 ω(i) < ∞ in view of Lemma 1. If the latter condition
is violated, then one may have long-range dependence and
there is no

√
n-central limit theorem.

A basic problem in the inference of stationary processes
is to estimate their means. Let (Xi)i∈Z be a stationary
process with unknown mean μ = E(Xi). With observa-
tions X1, . . . , Xn, one can estimate μ by the sample average
X̄n =

∑n
i=1 Xi/n. Let σ̂n be a weak consistent estimate of

σ. Namely σ̂n → σ in probability. By Theorem 3(ii), we can
construct the (1 − α)th confidence interval for μ as

X̄n ± σ̂n√
n

z1−α/2,

where z1−α/2 is the up (α/2)th quantile of the standard
Gaussian distribution. The estimation of σ2 will be discussed
in Section 10.

5.1 Proof of Theorem 3

By the triangle inequality, since Xi =
∑

l∈Z
Pi−lXi, we

have

‖Sn‖p =

∥∥∥∥∥
n∑

i=1

∑
l∈Z

Pi−lXi

∥∥∥∥∥
p

≤
∑
l∈Z

∥∥∥∥∥
n∑

i=1

Pi−lXi

∥∥∥∥∥
p

.(49)

Note that Pi−lXi, i = 1, . . . , n, are stationary martingale
differences. If p > 2, by Theorem 2.1 in Rio’s (2009), we
have ∥∥∥∥∥

n∑
i=1

Pi−lXi

∥∥∥∥∥
2

p

≤ (p − 1)n‖P0Xl‖2
p.(50)

If 1 < p ≤ 2, by Burkholder’s (1988) moment inequality for
martingale differences,

∥∥∥∥∥
n∑

i=1

Pi−lXi

∥∥∥∥∥
p

p

≤ E{[
∑n

i=1(Pi−lXi)2]p/2}
(p − 1)p

≤
n‖P0Xl‖p

p

(p − 1)p
,

(51)

where we applied the elementary inequality (|a1| + · · · +
|an|)p/2 ≤ |a1|p/2 + · · ·+ |an|p/2. Combining these two cases,
we have (46).

Now we prove (ii). For m ∈ N let S̃n =∑n
i=1[Xi − E(Xi|Fi−m)]. Let l.i.m. denote the double limit

lim supm→∞ lim supn→∞. By Doob’s inequality,

l.i.m.
‖maxi≤n |Si − S̃i|‖√

n
(52)

≤ l.i.m.

∑∞
k=m ‖maxi≤n |

∑n
j=1 Pj−kXj |‖√

n

≤ lim sup
m→∞

2
∞∑

k=m

‖P0Xk‖ = 0.

For fixed m, write Xi −E(Xi|Fi−m) =
∑m−1

k=0 Pi−kXi, since
(Pi−kXi)n

i=1 is a stationary martingale difference sequence,
it is easily seen that the finite dimensional convergence and
the tightness for the process {S̃nu/

√
n, 0 ≤ u ≤ 1} hold.

Hence it satisfies the invariance principle. By (52), (ii) fol-
lows.

6. GAUSSIAN APPROXIMATIONS WITH
RATES

The invariance principle Theorem 3(ii) does not have
a convergence rate. With stronger moment conditions and
faster decay rates of physical or predictive dependence mea-
sures, we can approximate the partial sum process Sn by a
Brownian motion with nearly optimal rates. Such approxi-
mations are very useful in statistical inference of time series
since Brownian motions have many attractive properties. In
Wu and Zhao (2007) we applied Wu’s (2007) Gaussian ap-
proximation (see Theorem 5 below) to perform statistical
inference of trends in time series.

The celebrated strong invariance principle by Komlós,
Major and Tusnady (1975, 1976) gives an optimal rate; see
(53). The rate in (55) is optimal up to a multiplicative log-
arithmic factor. Theorem 2.1 in Liu and Lin’s (2009a) leads
to Theorem 6 which provides a strong invariance principle
for vector-valued processes.
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Theorem 4 (Komlós, Major and Tusnady, 1975, 1976). As-
sume that Xi, i ∈ Z, are iid with mean 0 and Xi ∈ Lp, p > 2.
Let σ = ‖Xi‖. Then on a richer probability space there exists
a Brownian motion {IB(u), u ≥ 0} and a process (X�

i )i∈Z

such that (Xi)i∈Z

D= (X�
i )i∈Z and, for S�

n =
∑n

i=1 X�
i , we

have

max
0≤u≤n

|S�
u − σIB(u)| = oa.s.(n1/p).(53)

Theorem 5 (Wu, 2007). Let (Xi)i∈Z be of the form (1)
with mean 0 and Xi ∈ Lp, 2 < p ≤ 4. Assume that

∞∑
i=1

[δp(i) + iωp(i)] < ∞.(54)

Then on a richer probability space there exists a Brown-
ian motion {IB(u), u ≥ 0} and a process (X�

i )i∈Z such that
(Xi)i≥0

D= (X�
i )i≥0 and

max
0≤u≤n

|S◦
u − σIB(u)| = oa.s.(n1/p(log n)1/2+1/p(log log n)2/p),

(55)

where σ = ‖
∑∞

i=0 P0Xi‖ is given in Theorem 3. A sufficient
condition for (54) is

∞∑
i=1

iδp(i) < ∞.(56)

In the literature strong invariance principles obtained for
dependent random variables typically have rates of the form
oa.s.(n1/2−δ), where δ > 0 can be very small. See for example
Philipp and Stout (1975) and Eberlein (1986). As pointed
out in Wu and Zhao (2007), in nonparametric simultaneous
inference of trends of time series, such error bounds are too
crude to be useful.

Theorem 6 (Liu and Lin, 2009a). Let (Xi)i∈Z be a d-
dimensional stationary vector process of the form (1) with
H taking values in R

d, d ≥ 2. Let 2 < p < 4 and assume
that, for some τ > 0,

Δp(m) =
∞∑

j=m

δp(j) = O(m−(p−2)/(8−2p)−τ )(57)

as m → ∞. Let Dk =
∑∞

i=k PkXi. Further assume that
the covariance matrix Γ = E(DkDT

k ) is positive definite.
Then on a richer probability space, there exists an R

d valued
Brownian motion IBd(t) such that

max
0≤u≤n

|Su − Γ1/2IBd(u)| = oa.s.(n1/p).(58)

7. SAMPLE COVARIANCE FUNCTIONS

Covariance functions characterize second order properties
of stochastic processes and they play a fundamental role in
the theory of time series. They are critical quantities that
are needed in various inference problems including param-
eter estimation and hypothesis testing. Asymptotic proper-
ties of sample covariances have been studied in many classi-
cal time series textbooks; see for example Priestley (1981),
Brockwell and Davis (1991), Hannan (1970) and Anderson
(1971). For other contributions see Hall and Heyde (1980),
Hannan (1976), Hosking (1996), Phillips and Solo (1992)
and Wu and Min (2005). However, many of those results
require that the underlying processes are linear.

Here we present an asymptotic theory for sample covari-
ances for processes which can be nonlinear. Given observa-
tions X1, . . . , Xn, we estimate γk by the sample covariance

γ̂k =
1
n

n∑
i=k+1

(Xi − X̄n)(Xi−k − X̄n), 0 ≤ k < n(59)

and γ̂−k = γ̂k. If we know μ = 0, then we use the estimate
γ̌k = n−1

∑n
i=k+1 XiXi−k.

Theorem 7. Let k ∈ N be fixed and E(Xi) = 0; let
Yi = (Xi, Xi−1, . . . , Xi−k)T and Γk = (γ0, γ1, . . . , γk)T .
(i) Assume Xi ∈ Lp, 2 < p ≤ 4, and

Δp :=
∞∑

i=0

δp(i) < ∞.(60)

Then for all 0 ≤ k ≤ n − 1, we have

‖γ̂k − (1 − k/n)γk‖p/2 ≤ 3p − 3
n

Θ2
p +

4n2/p−1‖X1‖pΔp

p − 2
.

(61)

(ii) Assume Xi ∈ L4 and (60) holds with p = 4. Then as
n → ∞,

√
n(γ̂0 − γ0, γ̂1 − γ1, . . . , γ̂k − γk) ⇒ N [0, E(D0D

T
0 )](62)

where D0 =
∑∞

i=0 P0(XiYi) ∈ L2 and P0 is the projection
operator defined by (6).

Proof of Theorem 7. Write Tn =
∑n

i=1 XiXi+j − nγj . First
we show that for all j ∈ Z,

‖Tn‖p/2 ≤ 4n2/p‖X1‖pΔp

p − 2
.(63)

Let q = p/2 and assume j ≥ 0. Recall that X ′
i = g(ξ′i)

and, for i < 0, we have X ′
i = Xi and E(XiXi+j |ξ−1) =

E(X ′
iX

′
i+j |ξ−1) = E(X ′

iX
′
i+j |ξ0). By Jensen’s and Schwarz’s

inequalities,
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‖P0(XiXi+j)‖q(64)
= ‖E(XiXi+j − X ′

iX
′
i+j |ξ0)‖q

≤ ‖XiXi+j − X ′
iX

′
i+j‖q

≤ ‖Xi(Xi+j − X ′
i+j)‖q + ‖(Xi − X ′

i)X
′
i+j‖q

≤ ‖Xi‖pδp(i + j) + δp(i)‖X ′
i+j‖p.

By the triangle inequality,

‖Tn‖q =

∥∥∥∥∥
n∑

i=1

∑
l∈Z

Pi−lXiXi+j

∥∥∥∥∥
q

≤
∑
l∈Z

∥∥∥∥∥
n∑

i=1

Pi−lXiXi+j

∥∥∥∥∥
q

.

(65)

Note that Pi−lXiXi+j , i = 1, . . . , n, form stationary martin-
gale differences. By Burkholder’s (1988) moment inequality
for martingale differences, we have∥∥∥∥∥

n∑
i=1

Pi−lXiXi+j

∥∥∥∥∥
q

q

(66)

≤ E{[
∑n

i=1(Pi−lXiXi+j)2]q/2}
(q − 1)q

≤
n‖P0XlXl+j‖q

q

(q − 1)q

since q/2 ≤ 1. By (64) and (65), since δp(i) = 0 if i < 0, we
have (63). Write

γ̂n − n − k

n
γk =

1
n

n∑
i=k+1

(XiXi−k − γk)

− X̄n

n

n∑
i=k+1

(Xi−k + Xi+k) +
n − k

n
X̄2

n

By Theorem 3(i), the inequality ‖X̄n

∑n
i=k+1 Xi−k‖q ≤

‖X̄n‖p‖
∑n

i=k+1 Xi−k‖p and (63), (61) follows via elemen-
tary manipulations.

By Theorem 3, (ii) follows from the Crámer-Wold device
and (64) with p = 4.

Theorem 7 provides a CLT for
√

n(γ̂k−γk) with bounded
k. It turns out that, for unbounded k, the asymptotic be-
havior is quite different in that the asymptotic distribution
does not depend on the speed of kn → ∞; see (67). By
Theorem 3.1 in Keenan (1997), one can have a CLT for
strong mixing processes with kn = o(log n). An open prob-
lem was posed in the latter paper on whether the severe re-
striction kn = o(log n) can be relaxed. The latter restriction
excludes many important applications. Harris, McCabe and
Leybourne (2003) considered linear processes with larger
ranges of kn. Theorem 8(ii) gives a CLT for short-range de-
pendent nonlinear processes under a natural and mild con-
dition on kn: kn → ∞ and kn/n → 0.

Theorem 8 (Wu, 2008). Let Zi = (Xi, Xi−1, . . . ,
Xi−h+1)T , where h ∈ N is fixed. Let kn → ∞, E(Xi) = 0

and assume (60). Then we have (i)

1√
n

n∑
i=1

[XiZi−kn − E(XknZ0)] ⇒ N(0, Σh),(67)

where Σh is an h × h matrix with entries

σab =
∑
j∈Z

γj+aγj+b =
∑
j∈Z

γjγj+b−a =: σ0,a−b, 1 ≤ a, b ≤ h,

(68)

and (ii) if additionally kn/n → 0, then

√
n[(γ̂kn , . . . , γ̂kn−h+1)T − (γkn , . . . , γkn−h+1)T ] ⇒ N(0, Σh).

(69)

Theorem 8 can be extended to long-memory linear pro-
cesses. Wu, Huang and Zheng (2010) proved central and
noncentral limit theorems for sample covariances of long-
memory heavy-tailed linear processes with bounded as well
as unbounded lags. They showed that the limiting distribu-
tion depends in an interesting way on the strength of de-
pendence, the heavy-tailedness of the innovations, and the
magnitude of the lags.

Remark 5. Bartlett (1946) derived approximate expres-
sions of covariances of estimated covariances: for fixed
k, l ≥ 0,

ncov(γ̂k, γ̂k+l) ∼
∞∑

m=−∞
(γmγm+l + γm+k+lγm−k).(70)

If k → ∞, then the above quantity converges to∑∞
m=−∞ γmγm+l = σ0,l. Theorem 8 provides an asymptotic

distributional result. For large k,
√

n(γ̂k − Eγ̂k) behaves as∑
j∈Z

γjηk−j , where ηj are iid standard normal random vari-
ables.

Remark 6. Theorem 8 suggests that the sample covariance
γ̂k is not a good estimate of γk if k is large, a folklore result
in time series analysis. For example, if k = kn → ∞ with
kn/n → 0 satisfies

√
nγkn → 0. The mean squared error

(MSE) E(γ̂kn − γkn)2 ∼ σ00/n. However for such kn the
estimate γ̂o

kn
≡ 0 has a smaller MSE γ2

kn
= o(n−1). The

estimate γ̂kn is too noisy. The shrinkage estimate γ̂k1|γ̂k|≥cn

with a carefully chosen threshold cn → 0 can have a better
performance in the sense that it can reduce the asymptotic
MSE.

8. ESTIMATION OF COVARIANCE
MATRICES

Theorems 7 and 8 provide asymptotic normality for sam-
ple covariances. This section deals with the estimation of
the covariance matrix

Σn = (γi−j)1≤i,j≤n(71)
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based on the observations X1, . . . , Xn. Estimation of covari-
ance matrices or their inverses is important in the study
of prediction and various inference problems in time series.
The entry-wise convergence results of Theorems 7 and 8 do
not automatically lead to matrix convergence properties of
estimates of Σn.

For an n×n matrix A with real entries the operator norm
ρ(A) is defined by

ρ(A) = max
x∈Rn: |x|=1

|Ax|,(72)

where, for an n-dimensional real vector x = (x1, . . . , xn)′,
|x| = (

∑n
i=1 x2

i )
1/2. Hence ρ2(A) is the largest eigenvalue of

A	A, where 	 denotes matrix transpose.
Wu and Pourahmadi (2009) studied convergence of co-

variance matrix estimates. Theorem 9 shows that, under the
operator norm ρ(·), the sample covariance matrix estimate

Σ̂n = (γ̂i−j)1≤i,j≤n(73)

is not a consistent estimate of Σn; see Theorem 9(i). Case
(ii) asserts that ρ(Σ̂n − Σn) has order log n. We conjec-
ture that, with proper centering and scaling, ρ(Σ̂n − Σn)
converges to Gumbel distribution. Geman (1980) and Yin,
Bai and Krishnaiah (1988) considered the convergence prob-
lem of largest eigenvalues of sample covariance matrices of
iid random vectors which has independent entries; see also
Johnstone (2001), El Karoui (2007) and Bai and Silverstein
(2010). Their techniques are not applicable here since, in
time series analysis, we have only one realization with de-
pendent observations, while they require multiple iid copies
of vectors with independent entries.

The inconsistency of Σ̂n is due to the fact that γ̂k is not
a good estimate of γk if k is large; see Remark 6. Hence,
to obtain a consistent covariance matrix estimate, we shall
use the truncation technique by shrinking the unreliable es-
timates γ̂k to 0. Namely we can use the banded covariance
matrix estimate

Σ̂n,ln = (γ̂i−j1|i−j|≤ln)1≤i,j≤n,(74)

where ln is called the banding parameter. Under suitable
conditions on ln, Σ̂n,ln is consistent. Theorem 10 provides
an explicit upper bound for ρ(Σ̂n,ln − Σn).

The estimate Σ̂n,ln in (74) is not guaranteed to be non-
negative definite. This can be a serious shortcoming in ap-
plications. To rectify the latter issue, we propose to use the
tapered estimate:

Σ̃n,ln = (γ̂i−jw(|i − j|/ln))1≤i,j≤n = Σ̂n � Wn,(75)

where � is the Hadamard (or Schur) product, which is
formed by element-wise multiplication of elements of matri-
ces, and w(·) is a lag window function satisfying (i) w(·) is
even and piecewise continuous; (ii) w(0) = 1, supu |w(u)| ≤

1 and (iii) w(u) = 0 if |u| > 1. Note that Σ̂n is non-
negative definite. If Wn is also non-negative definite, then
by the Schur Product Theorem in matrix theory (Horn
and Johnson, 1990), their Schur product Σ̃n,ln is also non-
negative definite. The truncated or rectangular window with
w(u) = 1|u|≤1 is, unfortunately, not non-negative definite.
The Bartlett or triangular window wB(u) = max(0, 1 − |u|)
leads to a positive definite weight matrix Wn in view of

wB(u) =
∫

R

w(x)w(x + u)dx,(76)

where w is the rectangular window. To see this, let ci, ui ∈
R, i = 1, . . . , n. By (76),

∑
1≤i,j≤n

ciwB(ui − uj)cj =
∫

R

[
n∑

i=1

ciw(v − ui)

]2

dv ≥ 0.

Replacing w(·) in (76) by
√

3wB(·), we obtain the Parzen
window:

wP (u) =
∫

R

wB(x)wB(x + u)dx(77)

=

{
1 − 6u2 + 6|u|3, |u| < 1/2,

max[0, 2(1 − |u|)3], |u| ≥ 1/2.

Theorem 9. (i) (Wu and Pourahmadi (2009)) Assume that
the process (Xt) in (1) is weakly stable, namely (45) holds
with p = 2. If ‖

∑∞
i=0 P0Xi‖ > 0, then, ρ(Σ̂n − Σn) �→ 0

in probability. (ii) (Xiao and Wu (2010b)) Let conditions in
Theorem 13 be satisfied. Then there exists a constant c > 0
such that

lim
n→∞

P[c−1 log n ≤ ρ(Σ̂n − Σn) ≤ c log n] = 1.(78)

Theorem 10. Assume that (Xt) in (1) satisfies EXi = 0.
Let γ̂k = n−1

∑n
i=|k|+1 XiXi−|k|, |k| < n, wk = w(k/l), and

bn =
∑l

k=1 |1−wk+kwk/n||γk|+
∑n

j=l+1 |γj |. (i) If (8) holds
with 2 < p ≤ 4, then for Σ̃n,l = (γ̂i−jw(|i − j|/l))1≤i,j≤n,
we have

‖ρ(Σ̃n,l − Σn)‖q ≤ 2bn + (l + 1)
4‖X1‖pΔp

n1−1/q(p − 2)
, 0 ≤ l < n,

(79)

where q = p/2. Hence if l = ln → ∞ and lnn1/q−1 → 0,
then

‖ρ(Σ̃n,l − Σn)‖q → 0.(80)

(ii) (Xiao and Wu (2010b)) Assume Xi ∈ Lp, p > 4, and
Θp(m) = O(m−α), α > 0. Let ln � nλ, where λ ∈ (0, 1)
satisfies λ < pα/2 and (1 − 2α)λ < 1 − 4/p. Then

ρ(Σ̃n,l − Σn) = O(bn) + OP[(n−1ln log ln)1/2].(81)
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Additionally assume that X0 ∈ Lp, p > max(4, 2/(1 − λ)),∑∞
t=0 min(δt,p, Ψn+1,p) = O(n−T1) with T1 > max[1/2−(p−

4)/(2pλ), 2λ/p] and Θn,p = O(n−T2), T2 > max[0, 1 − (p −
4)/(2pλ)]. Then there exists a constant c > 0 such that

lim
n→∞

P[c−1(n−1ln log ln)1/2 − 2bn ≤ ρ(Σ̃n,l − Σn)] = 1.

(82)

Proof. (i) We shall use the argument in Wu and Pourahmadi
(2009). Since Σ̃n,l−Σn is a symmetric Toeplitz matrix, from
Golub and Van Loan (1989), we have

ρ(Σ̃n,l − Σn)

≤ max
1≤j≤n

n∑
i=1

|γ̂i−jw|i−j| − γi−j |

≤
n−1∑

i=1−n

|γ̂iwi − γi| ≤ 2
l∑

i=0

|γ̂iwi − γi| + 2
n∑

i=1+l

|γi|.

By Theorem 7(i), we have (79) since the bias |Eγ̂i − γi| ≤
i|γi|/n. (ii) Here we shall apply Theorem 3 in Liu and Wu
(2010b). For details see Xiao and Wu (2010b).

The bound in (79) is non-asymptotic in that it holds for
all l < n. If EXi is unknown, then we should estimate γk by
γ̂k defined in (59). By Theorem 7(i), the bound in (79) still
holds with 4‖X1‖pΔp/n1−1/q(p − 2) therein replaced by the
slightly bigger one in (61). Relations (81) and (82) imply
the sharp and elegant result: if bn = o[(n−1ln log ln)1/2],
then the exact order of magnitude of the operator norm
ρ(Σ̃n,l − Σn) is (n−1ln log ln)1/2.

Note that our setting is different from the one in Bickel
and Levina (2008) and Wu and Pourahmadi (2003), where
it is assumed that there exist multiple iid copies of (Xi)n

i=1.
In time series applications, however, oftentimes one has only
one realization.

We now discuss some interesting special cases. Assume
p = 4 and γk = O(ρk) for some 0 < ρ < 1. Choose l = ln =
(log n)/ log ρ−2�. Then for the rectangle window with wk =
1, |k| ≤ l, by (79), we have ‖ρ(Σ̃n,l−Σn)‖ = O(n−1/2 log n),
an optimal bound up to a multiplicative logarithmic factor.
The drawback is that the estimated covariance matrix Σ̃n,l

may not be non-negative definite. For the Bartlett window,
choosing l � n1/4, we have

‖ρ(Σ̃n,l − Σn)‖ = O(1)
l∑

k=1

(1 − wk)|γk| + O(ln−1/2 + ρl)

(83)

= O(l−1 + ln−1/2 + ρl) = O(n−1/4)

Using the Parzen window, since 1−wP (u) = O(u2), letting
l � n1/6, we have

‖ρ(Σ̃n,l − Σn)‖ = O(l−2 + ln−1/2 + ρl) = O(n−1/3).(84)

Example 12. In (76) if we let w(x) =
√

30x(1 − x)1|x|≤1,
then the window

∫
R

w(x)w(x + u)dx = (1 − |u|)3(1 + 3|u| + u2), |u| ≤ 1,

(85)

also leads to a positive-definite weight matrix.

As an application of our covariance matrix estimates,
we can apply the bound (79) to the celebrated problem
of prediction and filtering of stationary time series. Kol-
mogorov (1939) and Wiener (1949) considered the funda-
mental problem of predicting unknown future values of a
time series based on past observations. Their theory is one
of the great achievements in time series analysis. For a de-
tailed account see Doob (1953), Whittle (1963), Priestley
(1981) and Pourahmadi (2001) among others. In many of
such works, it is assumed that the covariances γk are known.
For example, to predict Xn based on past observations, Kol-
mogorov and Wiener assumed that the whole past (Xi)n−1

i=−∞
is known and in this case by the ergodic theorem γk can
be accurately estimated. In practice, however, one has only
finitely many past observations, and thus γk should be re-
placed by its estimates. Then the question naturally ap-
pears as to whether a prediction theory can be obtained
for finite samples. Jones (1964) and Bhansali (1974, 1977)
investigated this problem by factorizing estimated spectral
densities. The bound (79) enables us to establish a finite
sample version of the Wiener-Kolmogorov prediction the-
ory by using the asymptotic theory for sample covariances
and covariance matrix estimates. Also, an asymptotic the-
ory for estimates of coefficients in the Wold decomposition
theorem and in the discrete Wiener-Hopf equations can be
established.

9. PERIODOGRAMS

In spectral or frequency domain analysis of time series,
the primary subjects of interest are periodograms and spec-
tral density functions. Periodograms can be used to test the
existence of hidden periodicities or seasonal components.
Spectral density, power spectral density, or spectrum de-
scribes how the energy of a time series varies with frequency.

Definition 4 (Periodogram). Let ı =
√
−1 be the imagi-

nary unit. Let x1, . . . , xn be a sequence of real numbers. Its
periodogram is define as

In(φ) =
|Sn(φ)|2

n
, φ ∈ R,(86)

where Sn(φ) is the Fourier transform of {x1, . . . , xn}:

Sn(φ) =
n∑

t=1

xte
ıtφ.(87)
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Definition 5 (Spectral density function). Let (Xk) be a sta-
tionary process with covariance function γk = cov(X0, Xk).
We say that F is a spectral distribution function if it is right-
continuous, non-decreasing and bounded on [0, 2π] such that
γk =

∫ 2π

0
eıkφdF (φ). If F is absolutely continuous, then its

derivative f = F ′ is called the spectral density.

Note that the process (1) is regular in the sense that
E(Xj |F−∞) = E(Xj) since the sigma algebra σ(F−∞) =
∩i∈Zσ(Fi) = {∅, Ω} is trivial. Theorem 1 in Peligrad and
Wu (2010) asserts that, for a regular process, its spectral
density function exists almost surely over φ ∈ [0, 2π] with
respect to the Lebesgue measure. If∑

k∈Z

|γk| < ∞,(88)

then spectral density function has the form

f(φ) =
1
2π

∑
k∈Z

γkeıkφ =
1
2π

∑
k∈Z

γk cos(kφ),(89)

which exists at all φ ∈ R and is continuous. The spectral
density function is even and has period 2π. Its continuity
property is related to the decay rate of the covariances γk.
If

∑∞
k=1 kp|γk| < ∞, p > 0, then f ∈ Cp(R). If the former

holds for all p > 0, for example if γk → 0 geometrically
quickly, then f is an analytic function.

Let (Xk) be a stationary second order process with mean
0; let In(φ) be the periodogram of X1, . . . , Xn. Assume (88).
Then as n → ∞, elementary manipulations show that

EIn(φ) =
n−1∑

k=1−n

(1 − |k|/n)γk cos(kφ) → 2πf(φ).

Hence In(φ) is an asymptotically unbiased estimate of
2πf(φ). However, by Theorem 11 or Proposition 2, In(φ)
is not consistent.

The central limit problem of Sn(φ) has been studied
by Rosenblatt (Theorem 5.3, p 131, 1985) for mixing pro-
cesses, Brockwell and Davis (Theorem 10.3.2., p 347, 1991),
Walker (1965) and Terrin and Hurvich (1994) for linear pro-
cesses. For other contributions see Olshen (1967), Rootzén
(1976), Yajima (1989) and Walker (2000). Theorem 11 is
very general and it allows nonlinear, non-strong mixing
and/or even long-memory processes. It follows from The-
orem 1 in Peligrad and Wu (2010). Proposition 2 concerns
a fixed frequency ϑ ∈ (0, 2π) and it is established in Wu
(2005). Note that the case in which ϑ = 0 is covered by
Theorem 3 since Sn(0) = Sn. Theorem 12 is for Fourier
transforms at Fourier frequencies ϑk = 2πk/n, k = 1, . . . , n,
where ϑ1 = 2π/n is called the fundamental frequency. Cen-
tral limit theorem of this type is a key ingredient in the
Whittle likelihood method. For a complex number z, let �z
(resp. �z) denote the real (resp. imaginary) part of z.

Theorem 11. Assume EX2
k < ∞. (i) For almost all ϑ ∈ R

(Lebesgue), we have(
�
�

)
Sn(ϑ)√

n
⇒ N [0, πf(ϑ)Id2](90)

and consequently In(ϑ)/(2πf(ϑ)) ⇒ Exp(1), the standard
exponential distribution with scale parameter 1. (ii) More-
over, for almost all pairs (ϑ, ϕ) (Lebesgue), Sn(ϑ)/

√
n and

Sn(ϕ)/
√

n are asymptotically independent.

Proposition 2. Assume that

∞∑
i=0

‖P0Xi − P0Xi+1‖ < ∞.(91)

Then (90) holds for all 0 < ϑ < 2π. A sufficient condition
for (91) is (45).

By the celebrated Fast Fourier Transform algorithm, one
can compute Sn(ϑj), j = 0, . . . , n − 1, in a very efficient
way with computational complexity O(n log n) and memory
complexity O(n). Historically this computational advantage
fuels the development of spectral analysis. Theorem 12 con-
cerns asymptotic distribution of Sn(ϑj). In the special case
in which Xi are iid standard Gaussian random variables,
I(ϑj)/2, j = 1, . . . , (n − 1)/2�, are iid standard exponen-
tials.

Theorem 12. Assume that (Xi) defined in (1) satisfies (45)
and minϑ f(ϑ) > 0. Let q ∈ N, m = (n − 1)/2� and let Yk,
1 ≤ k ≤ 2q, be iid standard normals. Then

{
Sn(ϑlj )√
nπf(ϑlj )

, 1 ≤ j ≤ q

}
⇒ {Y2j−1 + ıY2j , 1 ≤ j ≤ q}

(92)

for integers 1 ≤ l1 < l2 < · · · < lq ≤ m, where the indices lj
may depend on n. Consequently, for Ĩn(ϑ) := In(ϑ)/f(ϑ),

{Ĩn(ϑlj ), 1 ≤ j ≤ q} ⇒ {Ej , 1 ≤ j ≤ q},(93)

where Ej are iid standard exponential random variables
(exp(1)).

By (93) of Theorem 12 and the continuous mapping the-
orem, if q is fixed, we have maxj≤q Ĩn(θlj ) ⇒ maxj≤q Ej .
Lin and Liu (2009b) proved a deep result that the latter
convergence still holds by letting q = m = (n − 1)/2� in
the sense of (95). Note that maxj≤m Ej − log m converges
to the standard Gumbel distribution since, for fixed u ∈ R,
as m → ∞,

P

(
max

1≤l≤m
Ej − log m ≤ u

)
= P

m(Ej ≤ u + log m)

= (1 − e−u/m)m → e−e−u

.
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Theorem 13 (Lin and Liu, 2009b). Assume that (Xi) de-
fined in (1) satisfies minϑ f(ϑ) > 0, E(Xi) = 0, Xi ∈ Lp,
p > 2 and, as j → ∞,

∞∑
i=j

δp(i) = o(1/ log j).(94)

Recall Theorem 12 for Ĩn(θ) and m = (n − 1)/2�. Then

P

(
max

1≤l≤m
Ĩn(θl) − log m ≤ u

)
= e−e−u

, u ∈ R.(95)

10. ESTIMATION OF SPECTRAL
DENSITIES

A fundamental problem in spectral analysis of time se-
ries is the estimation of spectral density functions. Section 9
demonstrates that In(ϑ) is an asymptotically unbiased, but
inconsistent estimate of f(θ). To obtain a consistent esti-
mate, one can introduce a taper, data window or convergence
factor K and propose

fn(θ) =
1
2π

n−1∑
k=1−n

K(k/Bn)γ̂keıkθ,(96)

where Bn satisfies Bn → ∞ and Bn/n → 0, and the function
K is symmetric, bounded, K(0) = 1 and K is continuous
at 0. If K has bounded support, since Bn/n → 0, the sum-
mands for large k in (96) are zero. Here fn is called the lag
window estimate.

Properties of spectral density estimates have been dis-
cussed in many classical textbooks on time series; see Ander-
son (1971), Brillinger (1975), Brockwell and Davis (1991),
Grenander and Rosenblatt (1984), Priestley (1981) and
Rosenblatt (1985) among others. A classical problem in
spectral analysis is to develop an asymptotic distributional
theory for the spectral density estimate fn(θ). With the
latter results one can perform statistical inference such as
hypothesis testing and construction of confidence intervals.
However, it turns out that the central limit problem for
fn(θ) is highly nontrivial. Many of the previous results re-
quire that the underlying processes are linear or strong mix-
ing, or satisfy stringent cumulant summability conditions
that are not easily verifiable.

Here we shall present a central limit theorem for fn(λ)
under very mild and natural conditions, thus substantially
extending the applicability of spectral analysis to nonlinear
and/or non-strong mixing processes. Let �(u) = 2 if u/π ∈
Z and �(u) = 1 if u/π �∈ Z.

Theorem 14 (Liu and Wu, 2010b). Assume E(Xk) = 0,
E(X4

k) < ∞ and the 4-stability condition Δ4 < ∞. Let
Bn → ∞ and Bn = o(n) as n → ∞. Further assume
that K is symmetric, bounded, limu→0 K(u) = K(0) = 1,

κ :=
∫ ∞
−∞ K2(x)dx < ∞, K is continuous at all but a fi-

nite number of points and sup0<w≤1

∑
j≥c/w K2(jw) → 0

as c → ∞. Then for any fixed 0 ≤ θ < 2π,√
n

Bn
{fn(θ) − E[fn(θ)]} ⇒ N [0, s2(θ)],(97)

where s2(θ) = �(θ)f2(θ)κ.

In Theorem 14, the short-range dependence condition
Δ4 < ∞ is natural, since otherwise the process (Xj) may
be long-range dependent and the spectral density function
may not be well-defined. The bandwidth condition Bn → ∞
and Bn = o(n) is also natural.

A particularly interesting special case of Theorem 14 is
θ = 0. In this case 2πf(0) = σ2 is the long-run variance.
Estimation of long-run variance is needed in the inference
of means of stationary processes; see Theorems 3 and 5. By
(97), we have

√
n

Bn
{fn(0) − f(0)} ⇒ N(0, s2), where s2 = 2f2(0)κ,

(98)

if the bandwidth bn = 1/Bn satisfies

2π{E[fn(0)] − f(0)}

=
n−1∑

k=1−n

K(kbn)(1 − |k|/n)γk −
∞∑

k=−∞
γk = O((nbn)−1/2).

If K is the rectangle kernel K(u) = 1|u|≤1, then the above
condition is reduced to

1
n

Bn∑
k=1

kγk +
∞∑

k=1+Bn

γk = O((nbn)−1/2).

Hence, taking a logarithmic transformation of (98), we can
stabilize the variance via√

n

Bn
{log fn(0) − log f(0)} ⇒ N(0, 4).(99)

Therefore the (1 − α)th, 0 < α < 1, confidence interval for
log f(0) can be constructed by

log fn(0) ±
2z1−α/2√

nbn

,

where z1−α/2 is the (1 − α/2)th quantile of the standard
normal distribution.

The spectral density estimate (96) is non-recursive in the
sense that it cannot be updated within O(1) computation
once a new observation arrives. Xiao and Wu (2010a) pro-
posed a recursive or single-pass algorithm which is compu-
tationally fast in that the update can be performed within
O(1) computation, and the required memory complexity
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is also only O(1). The computational advantage becomes
highly attractive for efficient and fast processing for extra
long time series. Xiao and Wu (2010a) proved a central limit
theorem for their recursive estimates by using physical de-
pendence measures.

11. KERNEL ESTIMATION OF TIME
SERIES

Kernel method is an important nonparametric approach
in the inference of the data-generating mechanisms of time
series. It is useful in situations in which the functional or
parametric forms are unknown. Asymptotic properties for
kernel estimates of iid observations have been studied in
Silverman (1986), Devroye and Györfi (1985), Wand and
Jones (1995), Prakasa Rao (1983), Nadaraya (1989) and
Eubank (1999) among others, and for strong mixing pro-
cesses in Robinson (1983), Singh and Ullah (1985), Castel-
lana and Leadbetter (1986), Györfi et al (1989) and Bosq
(1996), Yu (1993), Neumann (1998), Kreiss and Neumann
(1998), Härdle et al (1997), Tjostheim (1994) and Fan and
Yao (2003). Wu and Mielniczuk (2002) and Ho and Hsing
(1996) considered long-memory processes.

Here we shall present an asymptotic theory for kernel
estimates with predictive dependence measures. Consider
the model

Yi = G(Xi, ηi), Xi = H(. . . , εi−1, εi),(100)

where ηi, i ∈ Z, are also iid and ηi is independent of Fi−1 =
(. . . , εi−2, εi−1). An important special example of (100) is
the autoregressive model

Xi+1 = R(Xi, εi+1)(101)

by letting ηi = εi+1 and Yi = Xi+1. Given the data (Xi, Yi),
0 ≤ i ≤ n, let

Tn(x) =
1
n

n∑
t=1

YtKbn(x − Xt),(102)

where Kb(x) = K(x/b)/b, the kernel K is symmetric and
bounded on R: supu∈R

|K(u)| ≤ K0,
∫

R
K(u)du = 1 and K

has bounded support; namely, K(x) = 0 if |x| ≥ c for some
c > 0, and b = bn is a sequence of bandwidths satisfying the
natural condition

bn → 0 and nbn → ∞.(103)

The Nadaraya-Watson estimator of the regression function

g(x0) = E(Yn|Xn = x0) = E[G(x0, η0)](104)

has the form

gn(x0) =
Tn(x0)
fn(x0)

,(105)

where fn is Rosenblatt’s (1956) kernel density estimate

fn(x0) =
1

nbn

n∑
t=1

K(
x0 − Xt

bn
) =

1
n

n∑
t=1

Kbn(x0 − Xt).

(106)

For i ∈ Z, l ∈ N, let Fl(x|Fi) = P(Xi+l ≤ x|Fi) be the
l-step ahead conditional distribution function of Xi+l given
Fi and fl(x|Fi) = d

dxFl(x|Fi) be the conditional density.

Theorem 15 (Wu (2005), Wu, Huang and Huang (2010)).
Assume that exists a constant c0 < ∞ such that
supx∈R

f1(x|F0) ≤ c0 almost surely, and

∞∑
i=1

sup
x

‖P0f1(x|Fi)‖ < ∞.(107)

Let κ =
∫

R
K2(u)du. Assume (103). (i) The central limit

theorem
√

nbn[fn(x0)−Efn(x0)] ⇒ N(0, f(x0)κ) holds. (ii)
Let Vp(x) = E[|G(x, ηn)|p] and σ2(x) = V2(x) − g2(x). If
f(x0) > 0, V2, g ∈ C(R) and that Vp(x) is bounded on a
neighborhood of x0, then

√
nbn

{
gn(x0) −

ETn(x0)
Efn(x0)

}
⇒ N [0, σ2(x0)κ/f(x0)].

(108)

Using the Crámer-Wold device, we can have a multi-
variate version of (108). Liu and Wu (2010a) developed an
asymptotic distributional theory for the maximum deviation

Δn := sup
l≤x≤u

√
nb√

κf(x)
|fn(x) − Efn(x)|,(109)

where l and u are fixed bounds. Similar asymptotic distri-
butions hold for maximum deviations of the regression es-
timates as well. Such results can be used to construct uni-
form or simultaneous confidence bands for unknown density
and regression functions. Liu and Wu’s theorem substan-
tially generalize earlier results which were obtained under
independence (Bickel and Rosenblatt, 1973) or restrictive
beta mixing assumptions (Neumann, 1998). The problem
of generalizing Bickel and Rosenblatt’s theorem to station-
ary processes is very challenging and it has been open for a
long time. Fan and Yao (2003, p. 208) conjectured that sim-
ilar results hold for stationary processes under certain mix-
ing conditions. Using physical dependence measure, Liu and
Wu solved this open problem and established an asymptotic
theory for both short- and long-range dependent processes.

Theorem 16 (Liu and Wu (2010a)). Assume Xn = a0εn +
g(. . . , εn−2, εn−1) ∈ Lp for some p > 0, where g is a mea-
surable function, a0 �= 0, and the density function fε of ε1 is
positive and supx∈R

[fε(x) + |f ′
ε(x)| + |f ′′

ε (x)|] < ∞. For the
bandwidth bn, assume that there exists 0 < δ2 ≤ δ1 < 1 such
that n−δ1 = O(bn) and bn = O(n−δ2). Let p′ = min(p, 2) and
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Θn =
∑n

i=0 δp′(i)p′/2. Assume Ψn,p′ = O(n−γ) for some
γ > δ1/(1 − δ1) and

∞∑
k=−n

(Θn+k − Θk)2 = o(b−1
n n log n).(110)

Let the kernel K ∈ C1[−1, 1] with K(±1) = 0; let l = 0 and
u = 1. Then

P

(
(2 log b−1)1/2Δn − 2 log b−1 − log K

1/2
3 ≤ z

)
→ e−2e−z

(111)

holds for every z ∈ R, where K3 =
∫ 1

−1
(K ′(t))2dt/

(4π2
∫ 1

−1
K2(t)dt).

For the short-range dependent linear process Xn =∑∞
j=0 ajεn−j with Eε1 = 0 and Eε2

1 = 1, (110) is satis-
fied if

∑∞
j=0 |aj | < ∞ and

∑∞
j=n a2

j = O(n−γ) for some
γ > 2δ1/(1 − δ1). The latter condition can be weaker than∑∞

j=0 |aj | < ∞ if δ1 < 1/3. Interestingly, (110) also holds
for some long-range dependent processes. Let aj = j−β�(j),
1/2 < β < 1, where �(·) is a slowly varying function. If
δ1/(1 − δ1) < β − 1/2 and b

1/2
n n1−β�(n) = o(log−1/2 n).

then (111) holds. If log1/2 n = o(b1/2
n n1−β�(n)), Liu and Wu

showed that the limiting distribution of Δn is no longer
Gumbel.

12. U -STATISTICS

Given a sample X1, . . . , Xn, consider the weighted U -
statistic

Un =
∑

1≤i,j≤n

wi−jK(Xi, Xj),(112)

where wi are weights with wi = w−i and K is a symmet-
ric measurable function. Many statistics can be expressed in
the form of Un. Hoeffding (1961), O’Neil and Redner (1993),
Major (1994) and Rifi and Utzet (2000) considered proper-
ties of Un for iid observations. Yoshihara (1976), Denker and
Keller (1983, 1986), Borovkova, Burton and Dehling (1999,
2001, 2002) and Dehling, Wendler (2010) dealt with strong
mixing processes. Hsing and Wu (2004) developed general
results for processes satisfying (1) for both summable and
non-summable weights. In the context of U -statistics, it is
natural to define the predictive dependence measure

θi,j = ‖P0K(Xi, Xj)‖.(113)

Theorem 17 (Hsing and Wu, 2004). (i) (Summable
weights) Assume that

∞∑
k=0

∞∑
i=0

|wk|θi,i−k < ∞.(114)

Then there exists σ2 < ∞ such that (Un−EUn)/
√

n ⇒ N(0,
σ2). (ii) (Non-summable weights) Let Wn(i) =

∑n
j=1 wi−j

and Wn = [
∑n

i=1 W 2
n(i)/n]1/2. Assume

∑∞
i=1 |wi| = ∞,∑n

k=0(n−k)w2
k = o(nW 2

n), lim infn→∞ Wn/(
∑n

i=0 |wi|) > 0
and

∞∑
�=0

sup
j∈Z

‖K(X0, Xj) − K(X̃0, X̃j)‖ < ∞,(115)

where X̃j = E(Xj |εj−�, . . . , εj).

Then there exists σ2
U < ∞ such that (Un−EUn)/(Wn

√
n) ⇒

N(0, σ2
U ).

Hsing and Wu (2004) applied Theorem 17(ii) with wi ≡ 1
and derived a central limit theorem for the correlation in-
tegral U =

∑n
i,j=1 1|Xi−Xj |≤b, which measures the number

of pairs (Xi, Xj) such that their distance is less than b > 0.
Correlation integral is of critical importance in the study
of dynamical systems (Grassberger and Procaccia (1983a,
1983b), Wolff (1990), Serinko (1994), Denker and Keller
(1986), Borovkova et al (1999)). The central limit theorem
is useful for the related statistical inference. A non-central
limit theorem is also developed in Hsing and Wu (2004) for
long memory linear processes.

13. CONCLUSION

Physical and predictive dependence measures shed new
light on the asymptotic theory of time series. They are di-
rectly related to the underlying physical mechanisms of the
processes and have the attractive input-output interpreta-
tion. In many cases they are easy to compute and results
built upon them are often optimal and nearly optimal. They
are particularly useful for dealing with complicated statistics
of time series such as eigenvalues of sample covariance ma-
trices and maxima of periodograms, where it is difficult to
apply the traditional strong mixing type of conditions. We
expect that our framework, tools and results can be useful
for other asymptotic problems in the study of stationary
time series.
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Dedecker, J. and Merlevède, F., (2003). The conditional central
limit theorem in Hilbert spaces. Stochastic Process. Appl. 108 229–
262. MR2019054

Dedecker, J., Merlevède, F. and Volný, D. (2007). On the weak
invariance principle for non-adapted sequences under projective cri-
teria. J. Theoret. Probab. 20 971–1004. MR2359065

Dedecker, J. and Prieur, C. (2005). New dependence coefficients.
Examples and applications to statistics. Probability Theory and Re-
lated Fields 132 203–236. MR2199291

Dehling, H. and Wendler, M. (2010). Central limit theorem and the
bootstrap for U-statistics of strongly mixing data. Journal Multi-
variate Anal. 101 126–137. MR2557623

Denker, M. and Keller, G. (1983). On U-statistics and von Mises’
statistic for weakly dependent processes. Z. Wahrsch. verw. Gebiete
64 505–552. MR0717756

Denker, M. and Keller, G. (1986). Rigorous statistical procedures
for data from dynamical systems. Journal of Statistical Physics 44
67–93. MR0854400

Devroye, L. and Györfi, L. (1984). Nonparametric Density Estima-
tion: The L1 View. Wiley, New York. MR0780746

Diaconis, P. and Freedman, D. (1999). Iterated random functions.
SIAM Rev. 41 45–76. MR1669737

Ding, Z., Granger, C. and Engle, R. (1993). A long memory prop-
erty of stock market returns and a new model. J. Empirical Finance
1 83–106.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
MR0058896

Doukhan, P. and Louhichi, S. (1999). A new weak dependence con-
dition and applications to moment inequalities. Stochastic Process.
Appl. 84 313–342. MR1719345

Doukhan, P. (1994). Mixing: Properties and Examples. Springer, New
York. MR1312160

Doukhan, P. and Wintenberger, O. (2008). Weakly dependent
chains with infinite memory. Stochastic Process. Appl. 118 1997–
2013. MR2462284

Duflo, M. (1997). Random Iterative Models. Springer-Verlag, Heidel-
berg Germany. MR1485774

Eberlein, E. (1986). On strong invariance principles under depen-
dence assumptions. Ann. Probab. 14 260–270. MR0815969

Eberlein, E. and Taqqu, M. (ed.) (1986). Dependence in Probabil-
ity and Statistics: A Survey of Recent Results. Birkhauser, Boston.
MR0899982

sii139.tex; 2/03/2011; 8:48 p. 17

Asymptotic theory for stationary processes 17

http://www.ams.org/mathscinet-getitem?mr=0165602
http://www.ams.org/mathscinet-getitem?mr=1349935
http://www.ams.org/mathscinet-getitem?mr=0506659
http://www.ams.org/mathscinet-getitem?mr=1723992
http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=0932532
http://www.ams.org/mathscinet-getitem?mr=0018393
http://www.ams.org/mathscinet-getitem?mr=0368365
http://www.ams.org/mathscinet-getitem?mr=0445748
http://www.ams.org/mathscinet-getitem?mr=0348906
http://www.ams.org/mathscinet-getitem?mr=2387969
http://www.ams.org/mathscinet-getitem?mr=0721221
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=0853051
http://www.ams.org/mathscinet-getitem?mr=1687339
http://www.ams.org/mathscinet-getitem?mr=1851171
http://www.ams.org/mathscinet-getitem?mr=1979966
http://www.ams.org/mathscinet-getitem?mr=1233993
http://www.ams.org/mathscinet-getitem?mr=1441072
http://www.ams.org/mathscinet-getitem?mr=1165646
http://www.ams.org/mathscinet-getitem?mr=1312604
http://www.ams.org/mathscinet-getitem?mr=0595684
http://www.ams.org/mathscinet-getitem?mr=1093459
http://www.ams.org/mathscinet-getitem?mr=0976214
http://www.ams.org/mathscinet-getitem?mr=1885348
http://www.ams.org/mathscinet-getitem?mr=0833950
http://www.ams.org/mathscinet-getitem?mr=1851668
http://www.ams.org/mathscinet-getitem?mr=1624371
http://www.ams.org/mathscinet-getitem?mr=2328398
http://www.ams.org/mathscinet-getitem?mr=0953964
http://www.ams.org/mathscinet-getitem?mr=1080965
http://www.ams.org/mathscinet-getitem?mr=2338725
http://www.ams.org/mathscinet-getitem?mr=1920101
http://www.ams.org/mathscinet-getitem?mr=2019054
http://www.ams.org/mathscinet-getitem?mr=2359065
http://www.ams.org/mathscinet-getitem?mr=2199291
http://www.ams.org/mathscinet-getitem?mr=2557623
http://www.ams.org/mathscinet-getitem?mr=0717756
http://www.ams.org/mathscinet-getitem?mr=0854400
http://www.ams.org/mathscinet-getitem?mr=0780746
http://www.ams.org/mathscinet-getitem?mr=1669737
http://www.ams.org/mathscinet-getitem?mr=0058896
http://www.ams.org/mathscinet-getitem?mr=1719345
http://www.ams.org/mathscinet-getitem?mr=1312160
http://www.ams.org/mathscinet-getitem?mr=2462284
http://www.ams.org/mathscinet-getitem?mr=1485774
http://www.ams.org/mathscinet-getitem?mr=0815969
http://www.ams.org/mathscinet-getitem?mr=0899982


1 57

2 58

3 59

4 60

5 61

6 62

7 63

8 64

9 65

10 66

11 67

12 68

13 69

14 70

15 71

16 72

17 73

18 74

19 75

20 76

21 77

22 78

23 79

24 80

25 81

26 82

27 83

28 84

29 85

30 86

31 87

32 88

33 89

34 90

35 91

36 92

37 93

38 94

39 95

40 96

41 97

42 98

43 99

44 100

45 101

46 102

47 103

48 104

49 105

50 106

51 107

52 108

53 109

54 110

55 111

56 112

El Karoui, N. (2007). Tracy-Widom limit for the largest eigenvalue of
a large class of complex sample covariance matrices. Ann. Probab.
35 663–714. MR2308592
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Volný, D., Woodroofe, M. and Zhao, O. (2011). Central limit theo-
rems for superlinear processes. Stochastics and Dynamics 11 71–80
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Based on the nonlinear system theory, we introduce previously
undescribed dependence measures for stationary causal processes.
Our physical and predictive dependence measures quantify the
degree of dependence of outputs on inputs in physical systems.
The proposed dependence measures provide a natural framework
for a limit theory for stationary processes. In particular, under
conditions with quite simple forms, we present limit theorems for
partial sums, empirical processes, and kernel density estimates. The
conditions are mild and easily verifiable because they are directly
related to the data-generating mechanisms.

nonlinear time series � limit theory � kernel estimation � weak convergence

Let �i, i � �, be independent and identically distributed (iid)
random variables and g be a measurable function such that

Xi � g� . . . , �i�1, �i�, [1]

is a properly defined random variable. Then (Xi) is a stationary
process, and it is causal or nonanticipative in the sense that Xi
does not depend on the future innovations �j, j � i. The causality
assumption is quite reasonable in the study of time series. Wiener
(1) considered the fundamental coding and decoding problem of
representing stationary and ergodic processes in terms of the
form Eq. 1. In particular, Wiener studied the construction of �i
based on Xk, k � i. The class of processes that Eq. 1 represents
is huge and it includes linear processes, Volterra processes, and
many time series models. In certain situations, Eq. 1 is also called
the nonlinear Wold representation. See refs. 2–4 for other deep
contributions of representing stationary and ergodic processes
by Eq. 1. To conduct statistical inference of such processes, it is
necessary to consider the asymptotic properties of the partial
sum Sn � ¥i�1

n Xi and the empirical distribution function Fn(x) �
n�1 ¥i�1

n 1Xi�x.
In probability theory, many limit theorems have been estab-

lished for independent random variables. Those limit theorems
play an important role in the related statistical inference. In the
study of stochastic processes, however, independence usually
does not hold, and the dependence is an intrinsic feature. In an
influential paper, Rosenblatt (5) introduced the strong mixing
condition. For a stationary process (Xi), let the sigma algebra
Am

n � �(Xm, . . . , Xn), m � n, and define the strong mixing
coefficients

�n � sup� ���A � B� � ��A���B� � : A � A��
0 , B � An

�� .

[2]

If �n3 0, then we say that (Xi) is strong mixing. Variants of the
strong mixing condition include �, �, and 	-mixing conditions
among others (6). A central limit theorem (CLT) based on the
strong mixing condition is proved in ref. 5. Since then, as basic
assumptions on the dependence structures, the strong mixing
condition and its variants have been widely used and various limit
theorems have been obtained; see the extensive treatment in
ref. 6.

Since the quantity ��(A � B) � �(A)�(B)� in Eq. 2 measures
the dependence between events A and B and it is zero if A and
B are independent, it is sensible to call �n and its variants
‘‘probabilistic dependence measures.’’ For stationary causal
processes, the calculation of probabilistic dependence measures

is generally not easy because it involves the complicated manip-
ulation of taking the supremum over two sigma algebras (7–9).
Additionally, many well-known processes are not strong mixing.
A prominent example is the Bernoulli shift process. Consider the
simple AR(1) process Xn � (Xn�1 	 �n)�2, where �i are iid
Bernoulli random variables with success probability 1�2 (see
refs. 10 and 11). Then Xn is a causal process with the represen-
tation Xn � ¥i�0

� 2�i�n�i and the innovations �n, �n�1, . . . ,
correspond to the dyadic expansion of Xn. The process Xn is not
strong mixing since �n 
 1�4 for all n (12). Some alternative
ways have been proposed to overcome the disadvantages of
strong mixing conditions (8,9).

Dependence Measures
In this work, we shall provide another look at the fundamental
issue of dependence. Our primary goal is to introduce ‘‘physical
or functional’’ and ‘‘predictive dependence measures’’ a previ-
ously undescribed type of dependence measures that are quite
different from strong mixing conditions. In particular, following
refs. 1 and 13, we shall interpret Eq. 1 as an input�output system
and then introduce dependence coefficients by measuring the
degree of dependence of outputs on inputs. Specifically, we view
Eq. 1 as a physical system

xi � g� . . . , ei�1, ei�, [3]

where ei, ei�1, . . . are inputs, g is a filter or a transform, and xi
is the output. Then, the process Xi is the output of the physical
system 3 with random inputs. It is clearly not a good way to assess
the dependence just by taking the partial derivatives 
g�
ej,
which may not exist if g is not well-behaved. Nonetheless,
because the inputs are random and iid, the dependence of the
output on the inputs can be simply measured by applying the idea
of coupling. Let (��i) by an iid copy of (�i); let the shift process
�i � (. . . , �i�1, �i), ��i � (. . . , ��i�1, ��i). For a set I � �, let �j,I �
��j if j � I and �j,I � �j if j � I; let �i,I � (. . . , �i�1,I, �i,I) and
�*i � �i,{0}. Then �i,I is a coupled version of �i with �j replaced
by ��j if j � I. For p � 0 write X � Lp if �X�p :� [�(�X�p)]1/p �
� and �X� � �X�2.

Definition 1 (Functional or physical dependence measure): For
p � 0 and I � � let �p(I, n) � �g(�n) � g(�n,I)�p and �p(n) �
�g(�n) � g(�*n)�p. Write �(n) � �2(n).

Definition 2 (Predictive dependence measure): Let p  1 and gn
be a Borel function on �  �  . . . � � such that gn(�0) �
�(Xn��0), n  0. Let �p(I, n) � �gn(�0) � gn(�0,I)�p and �p(n) �
�gn(�0) � gn(�*0)�p. Write �(n) � �2(n).

Definition 3 (p-stability): Let p  1. The process (Xn) is said to
be p-stable if �p :� ¥n�0

� �p(n) � �, and p-strong stable if �p :�
¥n�0

� �p(n) � �. If � � �2 � �, we say that (Xn) is stable.
By the causal representation in Eq. 1, if min{i : i � I} � n,

then �p(I, n) � 0. Apparently, �p(I, n) quantifies the dependence
of Xn � g(�n) on {�i, i � I} by measuring the distance between
g(�n) and its coupled version g(�n,I). In Definition 2, �(Xn��0) is
the n-step ahead predicated mean, and �p(n) measures the
contribution of �0 in predicting future expected values. In the

Abbreviation: iid, independent and identically distributed.
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classical prediction theory (14), the conditional expectation of
the form �(Xn�X0, X�1, . . .) is studied. The one �(Xn��0) used in
Definition 2 has a different form. It turns out that, in studying
asymptotic properties and moment inequalities of Sn, it is
convenient to use �(Xn��0) and predictive dependence measure
(cf. Theorems 2 and 3), while the other version �(Xn�X0, X�1, . . .)
is generally difficult to work with. In the special case in which Xn

are martingale differences with respect to the filter �(�n), gn �
0 almost surely and consequently �(n) � 0, n  1.

Roughly speaking, since gn(�0) � �(Xn��0), the p-stability in
Definition 3 indicates that the cumulative contribution of �0 in
predicting future expected values {�(Xn��0)}n0 is finite. Inter-
estingly, the stability condition �2 � � implies invariance
principles with �n-norming in a natural way (Theorem 3). By (i)
of Theorem 1, p-strong stability implies p-stability since �p(n) 
�p(n).

Our dependence measures provide a very convenient and
simple way for a large-sample theory for stationary causal
processes (see Theorems 2–5 below). In many applications,
functional and predictive dependence measures are easy to use
because they are directly related to data-generating mechanisms
and because the construction of the coupled process g(�n,I) is
simple and explicit. Additionally, limit theorems with those
dependence measures have easily verifiable conditions and are
often optimal or nearly optimal. On the other hand, however, our
dependence measures rely on the representation 1, whereas the
strong mixing coefficients can be defined in more general
situations (6).

Theorem 1. (i) Let p  1 and n  0. Then �p(n)  �p(n). (ii) Let
p  1 and the projection operator PkZ � �(Z��k) � �(Z��k�1),
Z � Lp. Then for n  0,

�P0Xn�p � �p�n� � 2�P0Xn�p . [4]

(iii) Let p � 1, Cp � 18p3/2(p � 1)�1/2 if 1 � p � 2, Cp � �2p
if p  2; let I � �. Then

�p
p��I, n� � 2p�Cp

p� �
i�I

�p
p��n � i�, where p� � min�p , 2� . [5]

Proof: (i) Since �*n � (��1, ��0, �1, . . . , �n),

��g��n� � g��*n����1, ��0, �0�

� ��g��n����1, �0� � ��g��*n����1, ��0�

� gn��0� � gn��*0�,

which by Jensen’s inequality implies �p(n)  �p(n). (ii) Since
�[g(�n)���1] � �[gn(�0)���1] and ��0 and (�i) are independent, we
have �[gn(�0)���1] � �[gn(�*0)��0] and inequality 4 follows from

�P0Xn�p � ���gn��0� � gn��*0���0��p

� �gn��0� � gn��*0��p

� �gn��0� � ��gn��0����1��p

� ���gn��0����1� � gn��*0��p

� 2�P0Xn�p.

(iii) For presentational clarity, let I � {. . . , �1, 0}. For i � 0
let

Di � Di,n � ��Xn��i	1, �i	2, . . . , �n� � ��Xn��i, . . . , �n�

� ��g��n,�i�� � g��n���i, . . . , �n�.

Then D0, D�1, . . . are martingale differences with respect to the
sigma algebras �(�i, . . . , �n), i � 0, �1, . . . . By Jensen’s
inequality, �Di�p � �p(n � i). Let V � ¥i���

0 Di
2, M � ¥i���

0

Di and X̃n � �(Xn��1, . . . , �n). Then Xn � X̃n � �M and

�p�I, n� � �Xn � X̃n�p � �X̃n � g��n,I��p � 2�M�p .

To show Eq. 5, we shall deal with the two cases 1 � p � 2 and
p  2 separately. If 1 � p � 2, then Vp/2 � ¥i���

0 �Di�p. By
Burkholder’s inequality (15)

�M�p
p � Cp

p�V1/2�p
p � Cp

p �
i���

0

�p
p�n � i�.

If p  2, by proposition 4 in ref. 16, �M�p
2 � 2p ¥i���

0 �Di�p
2. So

Eq. 5 follows.
Inequality 5 suggests the interesting reduction property: the

degree of dependence of Xn on {�i, i � I} can be bounded in an
element-wise manner, and it suffices to consider the dependence
of Xn on individual �i. Indeed, our limit theorems and moment
inequalities in Theorems 2–5 involve conditions only on �p(n) and
�p(n).

Linear Processes. Let �i be iid random variables with �i � Lp, p 
1; let (ai) be real coefficients such that

Xt � �
i�0

�

ai�t�i, [6]

is a proper random variable. The existence of Xt can be checked
by Kolmogorov’s three series theorem. The linear process (Xt)
can be viewed as the output from a linear filter and the input
(. . . , �t�1, �t) is a series of shocks that drive the system (ref. 17,
pp. 8–9). Clearly, �p(n) � �p(n) � �an�c0, where c0 � ��0 �
��0�p � �. Let p � 2. If

�
i�0

�

�ai� � �, [7]

then the filter is said to be stable (17) and the preceding
inequality implies short-range dependence since the covariances
are absolutely summable. Definition 3 extends the notion of
stability to nonlinear processes.

Volterra Series. Analysis of nonlinear systems is a notoriously
difficult problem, and the available tools are very limited (18).
Oftentimes it would be unsatisfactory to linearize or approxi-
mate nonlinear systems by linear ones. The Volterra represen-
tation provides a reasonably simple and general way. The idea is
to represent Eq. 3 as a power series of inputs. In particular,
suppose that g in Eq. 3 is sufficiently well-behaved so that it has
the stationary and causal representation

g� . . . , en�1, en�

� �
k�1

� �
u1, . . . ,uk�0

�

gk�u1, . . . , uk�en�u1
. . . en�uk

, [8]

where functions gk are called the Volterra kernel. The right-hand
side of Eq. 8 is generically called the Volterra expansion, and it
plays an important role in the nonlinear system theory (13,18–
22). There is a continuous-time version of Eq. 8 with summations
replaced by integrals. Because the series involved has infinitely
many terms, to guarantee the meaningfulness of the represen-
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tation, there is a convergence issue that is often difficult to deal
with, and the imposed conditions can be quite restrictive (18).
Fortunately, in our setting, the difficulty can be circumvented
because we are dealing with iid random inputs. Indeed, assume
that et are iid with mean 0, variance 1 and gk(u1, . . . , uk) is
symmetric in u1, . . . , uk and it equals zero if ui � uj for some
1 � i � j � k, and

�
k�1

� �
u1, . . . ,uk�0

�

gk
2�u1, . . . , uk� � �.

Then Xn exists and is in L2. Simple calculations show that

�2�n�

2
� �

k�1

� �
min�u1, . . . uk��n

gk
2�u1, . . . , uk�

� �
k�1

�

k �
u2, . . . uk�n	1

�

gk
2�n , u2, . . . , uk� ,

and

�2�n�

2
� �

k�1

�

k �
u2, . . . uk�0

�

gk
2�n, u2, . . . , uk�.

The Volterra process is stable if ¥i�1
� �(i) � �.

Nonlinear Transforms of Linear Processes. Let (Xt) be the linear
process defined in Eq. 6 and consider the transformed process
Yt � K(Xt), where K is a possibly nonlinear filter. Let �(n, Y)
be the predictive dependence measure of (Yt). Assume that �i
have mean 0 and finite variance. Under mild conditions on K, we
have �P0Yn� � O(�an�) (cf. theorem 2 in ref. 23). By Theorem 1,
�(n, Y) � O(�an�). In this case, if (Xt) is stable, namely Eq. 7
holds, then (Yt) is also stable.

Quite interesting phenomena happen if (Xn) is unstable.
Under appropriate conditions on K, (Yn) could possibly be
stable. With a nonlinear transform, the dependence structure of
(Yt) can be quite different from that of (Xn) (24–27). The
asymptotic problem of Sn(K) � ¥t�1

n K(Xt) has a long history
(see refs. 23 and 27 and references therein). Let K�(w) �
�[K(w 	 Xt)] and assume K� � C� (�) for some � � �. Consider
the remainder of the �-th order Volterra expansion of Yn

L�����n� � Yn � �
r�0

�

�rUn,r, [9]

where �r � K�
(r)(0), r � 0, . . . , �, and

Un,r � �
0�j1� . . . �jr��

�
s�1

r

ajs�n�js.

Let �n � �an�1�[�an�1� 	 An
1/2 (4) 	 An

�/2 (2)] and An(j) � ¥t�n
�

�at�j. Under mild regularity conditions on K and �n, by theorem
5 in ref. 23, �P0L(�)(�n)� � O(�n	1). By Theorem 1, the predictive
dependence measure �(�)(n) of the remainder L(�)(�n) satisfies

�����n� � O��n	1�. [10]

It is possible that ¥n�1
� �n � � while ¥n�1

� �an� � �. Consider the
special case an � n�	l(n), where 1�2 � 	 � 1 and l is a slowly
varying function, namely, for any c � 0. l(cn)�l(n) 3 1 as n 3
�. By Karamata’s Theorem (28) for j  2, An( j) � O[n1�	jlj(n)].

If � � (2	 � 1)�1 � 1, then �n � O[n�(1/2�	)l�(n)] is summable.
Therefore, if the function K satisfies �r � 0 for r � 0, . . . , � and
(� 	 1)(2	 � 1) � 1, then Yt � K(Xt) is stable even though Xt
is not. Appell polynomials (29) satisfy such conditions. For
example, let K(x) � x2 � �(Xn

2), then K�(w) � w2 and �1 � 0,
�2 � 2. If 	 � (3�4, 1), then the process Xt

2 � �(Xt
2) is stable. If

1�2 � 	 � 3�4, then Sn(K)��Sn(K)� converges to the Rosenblatt
distribution.

Uniform Volterra expansions for Fn(x) over x � � are
established in refs. 30 and 31. Wu (32) considered nonlinear
transforms of linear processes with infinite variance innovations.

Nonlinear Time Series. Let �t be iid random variables and consider
the recursion

Xt � R�Xt�1, �t�, [11]

where R is a measurable function. The framework 11 is quite
general, and it includes many popular nonlinear time series
models, such as threshold autoregressive models (33), exponen-
tial autoregressive models (34), bilinear autoregressive models,
autoregressive models with conditional heteroscedasticity (35),
among others. If there exists � � 0 and x0 such that

��log L�� � 0 and L�0
� �R�x0, �0� � � L�, [12]

where

L� � sup
x�x�

�R�x , �� � R�x� , �� �
�x � x� � ,

then Eq. 11 admits a unique stationary distribution (36), and
iterations of Eq. 11 give rise to Eq. 1. By theorem 2 in ref. 37, Eq.
12 implies that there exists p � 0 and r � (0, 1) such that

�Xn � g��n,I��p � O�rn�, [13]

where I � {. . . , �1, 0}. Recall �*n � �n,{0}. By stationarity,
�g(�*n) � g(�n,I)�p � �g(�n	1) � g(�n	1,I)�p. So Eq. 13 implies
�p(n) � �g(�*n) � Xn�p � O(rn). On the other hand, by Theorem
1 (iii), if �p(n) � O(rn) holds for some p � 1 and for some r �
(0,1), then Eq. 13 also holds. So they are equivalent if p � 1. In
refs. 37 and 38, the property 13 is called geometric-moment
contraction, and it is very useful in studying asymptotic prop-
erties of nonlinear time series.

Inequalities and Limit Theorems
For (Xi) defined in Eq. 1, let Su � Sn 	 (u � n)Xn	1, n � u �
n 	 1, n � 0, 1, . . . , be the partial sum process. Let Rn(s) �
�n[Fn(s) � F(s)], where F(s) � �(X0 � s) is the distribution
function of X0. Primary goals in the limit theory of stationary
processes include obtaining asymptotic properties of {Su, 0 �
u � n} and {Rn(s), s � �}. Such results are needed in the related
statistical inference. The physical and predictive dependence
measures provide a natural vehicle for an asymptotic theory for
Sn and Rn.

Partial Sums. Let S*n � maxi�n �Si�, Zn � S*n��n and Bp �
p�2p�(p � 1), p � 1. Recall �p � ¥k�0

� �p(k) and let

�p � �
k�0

�

�P0Xk�p.

By Theorem 1, �p � �p � 2�p. Moment inequalities and limit
theorems of Sn are given in Theorems 2 and 3, respectively.
Denote by IB the standard Brownian motion. An interesting
feature in the large deviation result in Theorem 2(ii) is that �p
and Xk do not need to be bounded.
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Theorem 2. Let p  2. (i) We have �Zn�p � Bp�p � Bp�p. (ii) Let
0 � � � 2 and assume

� : � lim sup
p3�

p1/2�1/��p � � . [14]

Then m(t) :� supn���[exp(tZn
�)] � � for 0 � t � t0, where t0 �

(e���)�12��/2. Consequently, for u � 0, �(Zn � u) �
exp(�tu�)m(t).

Proof: (i) It follows from W.B.W. (unpublished results) and
theorem 2.5 in ref. 39. For completeness we present the proof
here. Let Mk, j � ¥i�1

j Pi�kXi, k, j  0 and M*k,n � maxj�n�Mk, j�.
Then Sn � ¥k�0

� Mk,n. By Doob’s maximal inequality and
theorem 2.5 in ref. 39 (or proposition 4 in ref. 16),

�M*k,n�p � p�p � 1��1�Mk,n�p � Bp�n�Mk,1�p.

Since S*n � ¥k�0
� M*k,n, (i) follows. (ii) Let Z � Zn and p0 � [2��]

	 1. By Stirling’s formula and Eq. 14

lim sup
p3�

tB�p
� ��p

�

�p!�1/p � lim sup
p3�

tB�p
� ��p

�

�2�p�1/�2p�p�e

� te���2�/2 � 1.

By (i), since ev � ¥p�0
� vp�(p!), (ii) follows from

�
p�p0

�
���tZ��p�

p!
� �

p�p0

� tp�B�p��p�
�p

p!
� �.

Example 1: For the linear process 6, assume that

#�i:�ai� � �� � O���1/2� as �20, [15]

and A :� �(e��0�) � �. We now apply (ii) of Theorem 2 to the sum
n[Fn(u) � F(u)] � ¥i�1

n g̃(�i), where g̃(�i) � 1Xi�u � F(u). To
this end, we need to calculate the predictive dependence mea-
sure �p(n, g̃) (say) of the process g̃(�n). Without loss of generality
let a0 � 1. Let F� and f� be the distribution and density functions
of �0 and assume c :� supuf�(u) � �. Then Eq. 14 holds with � �
1. To see this, let Yn�1 � Xn � �n, Zn�1 � Yn�1 � an�0 and
Y*n�1 � Zn�1 	 an��0. Let n  1. Then �(1Xn�u��0) � �[F�(u �
Yn�1)��0] and �[F�(u � Zn�1)��*0] � �[F�(u � Zn�1)��0]. By the
triangle inequality,

Qn :� ���F��u � Yn�1���0� � ��F��u � Y*n�1���*0��

� ���F��u � Yn�1���0� � ��F��u � Zn�1���0��

� ���F��u � Zn�1���*0� � ��F��u � Y*n�1���*0��

� ��c�Yn�1 � Zn�1��0� � ��c�Zn�1 � Y*n�1���*0]

� c�an����0� � ���0��.

Hence, �p(n, g̃) � �Qn�p � 2c�an���0�p. Since A � �(e��0�), we
have �(��0�p) � p!A, ��0�p � pA1/p. Clearly, 0 � Qn � 1. So �p(n,
g̃) � min(1, C�an�p), where C � 2cA. For � � 0 let the set J(�) �
{i  0 : ��2 � �ai� � �}. By Eq. 15

�p � �
i�0

�

min�1, C �ai�p�

� �
i:�ai�p�1

min�1, C �ai�p�

� �
k�0

� �
i�J��p2k��1�

min�1, C �ai�p�

� O��p� � �
k�0

�

O��p2k	1�1/2�p2k��1Cp�

� O��p� .

Condition 15 holds if ai � O(i�2).

Theorem 3. (i) Assume that �2 � �. Then

�Snt��n, 0 � t � 1�f ��IB�t�, 0 � t � 1�, [16]

where � � �¥i�0
� P0Xi� � �2. (ii) Let 2 � p � 4 and assume that

¥i�0
� i�p(i) � �. Then on a possibly richer probability space, there

exists a Brownian motion IB such that

sup
u��0,n�

�Su � �IB�u� � � O�n1/pl�n�� almost surely, [17]

where l(n) � (log n)1/2	1/p(log log n)2/p.
The proof of the strong invariance principle (ii) is given by

W.B.W. (unpublished results). Theorem 3(i) follows from cor-
ollary 3 in ref. 40, and the expression � � �¥i�0

� P0Xi� is
a consequence of the martingale approximation: let Dk �
¥i�k

� PkXi and Mn � D1 	 . . . 	 Dn, then �Sn � Mn� � o(�n)
and �Sn���n � � 	 o(1) (see theorem 6 in ref. 41). Theorem
3(i) also can be proved by using the argument in ref. 42. The
invariance principle in the latter paper has a slightly different
form. We omit the details. See refs. 43 and 44 for some related
works.

Empirical Distribution Functions. Let Hi(u��0) � �(Xi � u��0), u �
�, be the conditional distribution function of Xi given �0. By
Definition 2, the predictive dependence measure for g̃(�i) �
1Xi�u � F(u), at a fixed u, is �Hi(u��0) � Hi(u��*0)�p. To study the
asymptotic properties of Rn, it is certainly necessary to consider
the whole range u � (��, �). To this end, we introduce the
integrated predictive dependence measure

�p
�j��i� � ��

�

�Hi
�j��u��0� � Hi

�j��u��*0��p
pdu	1/p

, [18]

and the uniform predictive dependence measure

�p
�j��i� � sup

u
�Hi

�j��u ��0� � Hi
�j��u ��*0��p, [19]

where Hi
(j)(u��0) � 
j Hi(u��0)�
uj, j � 0, 1, . . . , i  1. Let hi(t��0) �

Hi
(1)(t��0). Theorem 4 below concerns the weak convergence of Rn

based on �2
(j)(i). It follows from corollary 1 by W.B.W. (unpublished

results).

Theorem 4. Assume that X1 � L� and supuh1(u��0) � c0 for some
positive constants �, c0 � �. Further assume that

�
i�1

�

��2
�0��i� � �2

�1��i� � �2
�2��i�� � �. [20]

Then Rn f {W(s), s � �}, where W is a centered Gaussian
process.

Kernel Density Estimation. An important problem in nonparamet-
ric inference of stochastic processes is to estimate the marginal
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density function f (say) given the data X1, . . . , Xn. A popular
method is the kernel density estimation (45,46). Let K be a
bounded kernel function for which ��K(u)du � 1 and bn � 1 be
a sequence of bandwidths satisfying

bn 3 0 and nbn 3 � . [21]

Let Kb(x) � K(x�b). Then f can be estimated by

fn�x� �
1

nbn
�
i�1

n

Kbn
�x � Xi�. [22]

If Xi are iid, Parzen (46) proved a central limit theorem for
fn(x) � �[fn(x)] under the natural condition 21. There has been
a substantial literature on generalizing Parzen’s result to time
series (47,48). Wu and Mielniczuk (49) solved the open problem
that, for short-range dependent linear processes, Parzen’s central
limit theorem holds under Eq. 21. See references therein for
historical developments. Here, we shall generalize the result in
ref. 49 to nonlinear processes. To this end, we shall adopt the
uniform predictive dependence measure 19. The asymptotic
normality of fn requires a summability condition of �(1)(k) �
supt�hk(t��0) � hk(t��*0)�.

Theorem 5. Assume that supu h1(u��0) � c0 for some constant c0 �
� and that f � F� is continuous. Let � :� �� K2(u)du � �. Then
under Eq. 21 and

�
k�1

�

��1��k� � �, [23]

we have �nbn{fn(x) � �[fn(x)]} f N[0, f(x)�] for every x � �.
Proof: Let m be a nonnegative integer. By the identity

�[�(Xm	1 � u��m)��0] � �(Xm	1 � u��0) and the Lebesgue
dominated convergence theorem, we have �[h1(u��m)��0� �
hm	1(u��0) and hm	1 is also bounded by c0. By Theorem 1(ii),
�P0h1(u��m)� � �(1)(m	1). Let An(u) � ¥i�1

n h1(u��i�1) �
nf(u). By Theorem 2(i) and Eq. 23

supu�An�u��
B2�n

� sup
u

�
m�0

�

�P0h1�u ��m�� � � .

Let Mn � ¥i�1
n PiKbn

(x � Xi) and Nn � �� K(v)An(x � bnv)dv.
Observe that

��Kbn
�x � Xi���i�1� � bn�

�

K�v�h1�x � bnv��i�1�dv.

Then nbn{fn(x) � �[fn(x)]} � Mn 	 bnNn. Following the
argument of lemma 2 in ref. 49, Mn��nbnf N[0, f(x)�], which
finishes the proof since ��Nn� � O(n1/2) and bn 3 0.
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