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Balanced Truncation of Linear Time-Varying Systems
Henrik Sandberg, Student Member, IEEE, and Anders Rantzer, Fellow, IEEE

Abstract—In this paper, balanced truncation of linear
time-varying systems is studied in discrete and continuous time.
Based on relatively basic calculations with time-varying Lyapunov
equations/inequalities we are able to derive both upper and lower
error bounds for the truncated models. These results generalize
well-known time-invariant formulas. The case of time-varying
state dimension is considered. Input–output stability of all trun-
cated balanced realizations is also proven. The method is finally
successfully applied to a high-order model.

Index Terms—Balanced truncation, error bound, linear time-
varying systems, model reduction.

I. INTRODUCTION

T
HIS paper treats model reduction of time-varying linear

systems. Time-varying linear systems are of interest not

only for modeling of time-varying physical processes, but also

because of the fact that time-invariant nonlinear systems can

be well approximated by time-varying linear systems around

nominal trajectories. Linear time-varying systems have attained

much attention lately, see for example the survey over periodic

systems in [1] and the references therein.

A. Problem Statement

We will assume that a linear system is given, either in con-

tinuous or discrete time. The system should have a finite-di-

mensional realization with states. The objective is to find a

system with states that approximates well, where ide-

ally should be much smaller than . One objective is to find

simple candidates for given and . Another objective is to

find simple functions and , error bounds, such that

(1)

as this simplifies the selection of . The operator norm will

be the induced 2-norm. Notice that we can always compute

to any wanted degree of accuracy once is chosen.

However, this is computationally expensive and involves bisec-

tion algorithms and solving time-varying Riccati equations, see

for instance [2], which is hardly something we would like to

do for each candidate . So bounds of the type (1) are helpful.

Moreover, we would like essential properties of the original

system , such as stability, to be preserved for each candidate

.
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B. Previous Work

To reduce the order of linear time-invariant systems, balanced

truncation is often used. Balanced realizations were introduced

in [3], but were first used for the purpose of model reduction in

[4]. A sufficient condition for asymptotic stability of truncated

models was later given in [5]. Since then an error bound has been

proven [6], [7], which gives a simple bound on the worst case

error between the original and truncated model and justifies the

approximation. The bound was first derived for continuous-time

systems, but it also holds for discrete-time systems as proven in

[8]. The bound is a sum of truncated Hankel singular values and

the result is now considered to be standard and is included in

most courses on robust control and identification.

Balanced realizations for time-varying linear systems have

also received attention, see for example [9], [10], for some early

references. For the related class of linear parameter-varying

(LPV) systems, balanced truncation has been studied in for

example [11]. However, until recently no error bound has been

given for the time-variable case. To obtain bounds, methods

for uncertain systems could be utilized, see for example [12].

However, these bounds would be conservative as the known

time-variance is encapsulated in an uncertainty ball.

The first explicit error bound for balanced discrete

time-varying models, to the authors’ best knowledge, was

given in [13] and later refined in [14]. There, an operator-the-

oretic framework was used to give bounds similar to those

that apply to time-invariant models. For discrete time-periodic

linear systems bounds have been proven in [15], [16]. There, a

special form of lifting isomorphism was used.

C. Contributions of This Paper

In this paper, we will work directly with the time-varying ob-

servability and reachability Lyapunov inequalities [linear ma-

trix inequalities (LMIs)] in both continuous and discrete time. It

will be seen that it is natural to allow the state-space dimension

to vary in size over time. In fact, a time-varying state dimen-

sion may be required for a minimal realization as is shown and

used in for example [16] and [17]. The approach will give fairly

simple calculations and more general error bounds (1) than in

the previously mentioned references. In particular we will allow

for time-varying Gramians, which is not treated in [13] and

[14]. As special cases we will recover the known bounds for

both time-invariant and time-varying systems. Furthermore, the

method will give new results on input–output stability of the re-

duced models.

The ability to vary the state-space dimension over time is not

only of interest for technical reasons. In for example stiff prob-

lems, such as chemical reactions, it is frequent that in the initial

phase, many complex reactions take place and that the dynamics

then slows down. It is then reasonable to have a model with

0018-9286/04$20.00 © 2004 IEEE
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many states in the initial phase and then switch to a low-order

model after some time. The analysis presented will help to de-

cide when to switch the number of states and also how much

loss in accuracy a certain choice might give.

D. Organization

The organization of the paper is as follows. In Sections II and

III, notation for discrete and continuous-time systems will be

introduced, along with two lemmas on observability and reach-

ability. The lemmas will form the basis of the following anal-

ysis. In Section IV, we will define what a balanced system is and

how we, with the help of the lemmas, can attain simple upper

error bounds. In Section V, input–output stability of all trun-

cated models is proved. In Section VI, a lower error bound for

truncated models is given. In Section VII, an example of how

balanced model truncation works in practice is given. In Ap-

pendix II, it is shown how sampling of a continuous-time system

can be combined with model truncation.

II. DISCRETE-TIME SYSTEMS

As some aspects of the calculations are simpler for dis-

crete-time systems, we will start at that end. It should, however,

be pointed out that everything presented here will later also be

done for continuous-time systems.

A. Preliminaries and Notation

The linear systems that we consider are assumed to have a

finite-dimensional state-space realization

(2)

with inputs and outputs. It will be useful to utilize time-

varying state-space dimension as commented in the introduc-

tion. It is known that minimal realizations of linear systems in

general have this property; see [17]. However, it will also be a

useful technical tool for reducing the order of systems where the

state-space dimension originally is constant over time. Let the

state-space dimension at time be . The signals and ma-

trices then have the dimensions

We will assume that all the matrices are real, bounded, and de-

fined for . Sometimes we will have , and

then the system is assumed to be stable. Notice that as the model

order may vary with , is not necessarily a square matrix

but rather rectangular. We could also let the number of inputs

and outputs vary over time, but we avoid this for the sake of no-

tational simplicity.

The signals will belong to the Hilbert space . We will

utilize the weighted Euclidean norm as defined by

with a positive–definite matrix , and also

the weighted -norm

(3)

Discrete-time signals over a time interval belong to

iff the norm (3) is finite for with .

If we want to emphasize that the norm is taken over the interval

, we will write , but the interval will normally be

clear from the context. Linear systems as defined in (2) can be

identified with a linear operator . The

operator is bounded iff the induced norm

is bounded. Often we will make an upper estimate of by

finding a constant such that

for all admissible .

The system we would like to obtain, , will be called a re-

duced-order system. It will have the state-space dimension

where for all . We will construct from a trun-

cation of the realization of . The following partitions will be

used:

If the realization (2) is chosen such that the states are

“small” in some sense, a reasonable reduced-order candidate is

obtained by truncating the corresponding states

.
(4)

The auxiliary signal

(5)

will naturally show up later. It is not needed to evaluate the map

. has dimension and is defined when trun-

cation has occurred, i.e., . As is not necessarily

defined for all , it will be useful to collect the time points where

it does exist in a set

(6)

Furthermore, let us define if .

If the systems and are supposed to have a similar

input–output behavior when the above truncation scheme is

used, it is important that the coordinate system in the real-

ization of is well chosen. As we will see, such coordinate
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systems exist in many cases. A change in coordinate system,

, for invertible , will transform the

realization according to

(7)

B. The Observability Lyapunov Inequality

Consider the Lyapunov observability inequality

(8)

is often called an observability Gramian. The posi-

tive–semidefinite solutions , , bound the

amount of energy there will be in the output for a given initial

state of the system with zero input

The inequality can, however, also be used to calculate the

-norm of the difference in the outputs from and when

both systems are driven by the same input signal. To see this,

assume there is a positive–semidefinite solution to (8)

with the block-diagonal structure

(9)

for and scalar. Then rewrite (8) for each

in the following way:

(10)

If we apply the same input signal to (2) and (4) we obtain

the trajectories and . Use the trajectories to calculate the

difference

Multiply (10) for each from the right with the difference and

from the left with its transpose. We then obtain

which is the same as

(11)

using the structure (9) of . The forward difference operator

is defined as

on a scalar sequence . Now we can state the following

lemma:

Lemma 1 (Observability): If there is a solution with

the structure (9) to the Lyapunov inequality (8) on the interval

, then the solutions of (2) and (4) satisfy the following.

i)

(12)

where equality holds if (8) was solved with equality.

ii) For every nonincreasing positive scalar sequence

, we have

(13)

Proof:

i) Sum the inequalities (11) over the interval

and notice the cancelling terms.

ii) Multiply (11) with for each , and sum over

. For nonincreasing the partially cancelling

terms become nonnegative numbers. The sum over

is the only sign-indefinite term, which leads to the in-

equality (13).

As seen if the difference in output is zero, as .

All terms in (12) are necessarily nonnegative except the terms

. These terms are the price we pay for truncating

states. One might think that if the numbers are small for

, then will be small. Indeed, if the states

are unobservable there is a solution such that and

. Thus a small could indicate that should be

included in the set and that the corresponding states

should be truncated. However, we should remember that

is only a weight. A sufficient condition for a small is

that is small for all in . This can be seen by com-

pleting the squares in the sum (12). Then we see that

is bounded by . However, this is not a bound of

the type (1). To obtain such a bound we will make a dual anal-

ysis, which is the topic of Section II-C.

C. Reachability Lyapunov Inequality

Here, it will be seen how far away the states in and can

be forced with the input signal . The following inequality will

be called the Lyapunov reachability inequality:

(14)
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is often called a reachability Gramian. Assume there is a

positive–definite block-diagonal solution to (14)

(15)

with and scalar. Notice that (14) is equiv-

alent to

(16)

Now, assume we apply the same input signal to and . We

then obtain the system trajectories and . Multiply (16) for

each with

from the right and with its transpose from the left. This gives

(17)

if the structure of is used. Now, the following lemma can

be stated.

Lemma 2 (Reachability): If there is a solution to the

inequality (14) with the structure (15) on the interval

then the solutions to (2) and (4) satisfy the following.

i)

(18)

ii) For every positive nonincreasing scalar sequence

(19)

Proof: As in Lemma 1. Use (17) instead of (11).

The lemma gives boundaries on the reachable set in the

state–space for fixed amounts of input energy. Notice that when

(18) reduces to the well-known result

as for all . Also notice that the sum in (19) po-

tentially can cancel the sum in (13), namely if

(20)

for all . We have obtained a bound on the terms

and this will be utilized Section IV.

As we will utilize the truncation recursively in the

following it is convenient that the realization of ,

, fulfills the Lyapunov in-

equalities (8) and (14), with and respectively.

This can be seen from straightforward calculations.

III. CONTINUOUS-TIME SYSTEMS

The previous ideas in discrete time goes through in contin-

uous time without much alternation. However, we have to be

somewhat careful when the number of states change over time.

A. Preliminaries and Notation

The linear operator will now operate on the Hilbert space

, that is A measurable signal

belongs to iff the norm

is finite for . The norm is the standard induced

norm. We assume there is a finite-dimensional realization of

(21)

The matrices and signals have the same dimensions as in dis-

crete time, we will for now assume that the state dimension is

and is constant over time. We will assume that the

matrices are continuous and bounded over time in all their en-

tries. With these conditions existence and uniqueness of solu-

tions to (21) is guaranteed, see for example [18]. When the in-

finite time-horizon case is studied the system is assumed to be

stable.

If we use the same matrix partitions as before we can define

the th-order reduced-order system

(22)

The auxiliary error signal becomes

(23)

As we assume constant state dimension for now, the set is the

interval .

Coordinate transformations with a continu-

ously differentiable , nonsingular for all , gives

(24)

so that the input–output map is invariant.

B. Observability Lyapunov Inequality

The observability Lyapunov inequality takes the form

(25)

in continuous time. We can perform the same analysis as in Sec-

tion II-B by noting that (25) can be written as

(26)

As in Section II-B we get:

Lemma 3 (Observability): If there is a solution with

the structure (9) to the Lyapunov inequality (25) on the interval

, then the solutions of (21) and (22) satisfy the following.
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i)

(27)

where equality holds if (25) was solved with equality.

ii) For every nonincreasing positive continuous scalar

we have

(28)

Proof: As Lemma 1 but use (26) instead of (10). Replace

summation with integration.

C. Reachability Lyapunov Inequality

The reachability Lyaponov inequality takes the form

(29)

in continuous time. If there is a positive–definite solution ,

(29) is equivalent to

(30)

The analog to Lemma 2 becomes the following.

Lemma 4 (Reachability): If there is a solution to the

inequality (29) with the structure (15) on the interval then

the solutions to (21) and (22) satisfy the following.

i)

(31)

ii) For every positive nonincreasing continuous scalar

(32)

Proof: As Lemma 2. Use (30) instead of (16). Replace

summation with integration.

D. Continuous-Time Systems With Time-Varying State

Dimension

It is possible to analyze systems where the state dimension

varies over time, i.e., takes integer values but changes with

time. This will be useful in Section IV as we then do not need

to distinguish between discrete- and continuous-time systems.

Assume that has states and that has states until time

, and then switches to states at , i.e., an instant switch.

The question is what to do with new states and also with the ones

that disappear. Furthermore, are Lemmas 3 and 4 still valid?

From to , the control signal will not have time to

influence the states as the input energy becomes zero on this

interval of zero measure. The dynamics of the original system

becomes

i.e., nothing happens with the states. The truncated realizations

become

(33)

So, new states should just be initialized to zero. If there are con-

tinuous solutions and to the inequalities (25) and (29)

we can readily use them as solutions to the discrete-time Lya-

punov equations for the jump

(34)

which are fulfilled with and

. For each jump, we therefore get the

following addition to Lemma 3:

with and . The two first terms get

canceled by the boundary terms of the integrals from the con-

stant state modes before and after the switch in the lemma. So,

the only real contribution is the two last terms. For Lemma 4,

the additions become

Again, the only real contribution is the two last terms. The re-

maining sign-indefinite terms

can be canceled by proper choice of and as will be

discussed in Section IV.

The conclusion is that if the jump transitions (33) are used

there is no real change to the results in Lemmas 3 and 4 and the

set can be defined exactly as in the discrete-time case, (6),

and we may replace the integrals in Lemmas 3 and 4 by .

Remark 1 (Discontinuities in ): With the proposed scheme

we see that when new states are added, i.e., , will

be continuous at the switching instant as the new states are ini-

tialized to zero. Moreover is zero. In the other case when

, can be discontinuous at the switching instant as

states are thrown away, and then .

Remark 2 (Discontinuous State Transformations): The tech-

nique here can also be used when one, at some time instant,

would like to make an instantaneous state transformation, i.e.,

is discontinuous. Then the jump transition matrix be-

comes the solution to
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and all the calculations in this section can be redone with this

jump matrix . The corresponding Lyapunov equations to (34)

become

and denote matrices given in the coordinate systems

and , respectively. How the solutions and

are transformed is discussed in Section IV, (37).

IV. BALANCED REALIZATIONS AND ERROR BOUNDS

Sections II and III rely heavily on the ability to obtain block-

diagonal solutions to the inequalities (8), (14), (25), and (29), re-

spectively. Often this is possible to obtain. In particular, if there

are any solutions and for all time instants in

some realization of , then there exists a balanced realization

of where the Lyapunov inequalities take the form

(35)

in discrete time, and in continuous time with some extra regu-

larity conditions

(36)

with the diagonal solution (balanced Gramians)

A linear system with a realization fulfilling (35) or (36) with

a Gramian is called a balanced system. will be denoted as

the singular value corresponding to the state in a particular

balanced system. Notice that it is always possible to permute the

singular values in . Normally one chooses to put the elements

in descending order so that

As the singular values change in size over time it may be that

the ordering must be changed at some time instants to maintain

the aforementioned order. This can be done with an instanta-

neous coordinate transformation (permutation), see Remark 2

in Section III-D. However, as we will see, the ordering is not

critical to our discussion. But in general it makes good sense

to put small singular values last in the -matrix. By defining a

balanced realization with inequalities instead of equalities it be-

comes nonunique, and the singular values are nonunique. This

was introduced in [12] and [19], and has several appealing prop-

erties including the possibility of tighter error bounds and that

every truncated realization remains balanced.

If we have solutions and in a given coordinate

system we can obtain the needed coordinate transformation

to obtain a balanced realization. This is the topic of many papers

in discrete time; see, for example, [16], [20], and the references

therein. In continuous time, we need regularity conditions on

the realization to guarantee the existence of a well-behaved bal-

ancing transformation. In [10], for instance, analyticity of the

realization is assumed. In [9] and [21], uniform observability

and controllability is assumed. How in practice to obtain

in continuous time is not obvious, as we need and also

on an interval. Pointwise we can always obtain a as we will

see. An approximate approach to obtain over an interval is

presented in [22].

We will not go into much detail here, as this is done in the

references previously mentioned, let us just notice that under

the coordinate transformation (7) and (24) the solutions to the

Lyapunov inequalities transform as

(37)

so that the eigenvalues of their product is invariant. Therefore,

we can calculate the singular values for a realization with

Gramians and as

at each time-instant and also obtain a balancing coordinate

system .

As a first step toward error-bounds for truncated balanced

realizations let us note that from Lemmas 1 and 2 and Lemmas

3 and 4 we get the following bound:

Proposition 1 (Cancelling Condition): If the nonincreasing

weights and are chosen so that for all time-instants

or in

Discrete time

Continuous time (38)

then

(39)

Proof: Add Lemma 1 ii) with Lemma 2 ii) and notice that

the sign-indefinite terms are canceled if and fulfill the

previous condition. Analogous in continuous time.

A. Monotonically Balanced Systems

We will proceed by formulating an error bound for truncated

balanced realizations which looks familiar to the well-known

time-invariant result in [6] and [7]. We will first look at balanced

systems where the singular values are monotonic in time, as this

is the simplest nontime-invariant case. It is useful to group equal

singular values together as this makes the error bound sharper.

If there are unique singular values use the notation

where . Now, the following result is

easily obtained.

Theorem 1 (Monotonically Balanced Systems): Suppose the

system has a balanced realization on the interval with

where each singular value , is either non-

increasing or nondecreasing over time.
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The truncated -order system is then balanced

by and

(40)

Proof: Start by removing the states with the singular value

, and call this truncated system . Thus put .

By assumption there are two possibilities: is nonincreasing

or nondecreasing. First, consider the nonincreasing case. Then,

choose and in Proposition 1 ( ,

use and in discrete time) and notice that

the cancelling condition is fulfilled. In the nondecreasing case,

choose and . It follows that

which leads to . Next notice that

is still balanced with the rest of , . We proceed itera-

tively and remove from , and repeat the scheme until

the system is reached. Finally use the triangular in-

equality:

Remark 3 (Time-Invariant ): For time-invariant asymp-

totically stable systems we can find time-invariant solutions

to (35) and (36), which become algebraic Lyapunov

inequalities. We then recover the well-known error bound for

time-invariant systems. Also for time-varying systems we may

find time-invariant solutions. If we look for solutions to the

LMIs (35) and (36) with the constraint using

standard semi-definite programming techniques, we obtain the

error bound first shown in [13], [14]. In [14] it was shown that

there always exists a solution to (35), so that problem

is always feasible. However, if the time horizon of the

problem is large, the LMIs are of high dimension and become

computationally expensive to solve.

B. Nonmonotonically Balanced Systems

For many systems we expect the balanced Gramians

to be nonmonotonic in time. We might try to resolve this by

changing the boundary conditions to the Lyapunov equations

until a monotonic solution is found, and then use Theorem 1. Al-

ternatively we may search for time-invariant solutions, as com-

mented in Remark 3. In any case, we would still like to have a

bound for nonmonotonic solutions, and this will be derived in

this section. The following definition will be useful:

Definition 1 (The Max–Min Ratio of ): Let the singular

value be defined on the interval , and let it

have local maximums for , located at

. Then there will be local minimums so that

where is the local minimum immediately before

for . The max–min ratio of is defined as

Now, we can formulate a general error-bound that applies both

to monotonically and nonmonotonically balanced systems.

Theorem 2 (General Error Bound): Let be any function

that is defined for and takes integer values in the

range , where is the number of states in .

The error between the balanced system and its truncated

balanced realization , where the states have been trun-

cated on the time intervals , , is bounded by

(41)

and is balanced.

If the singular value for some other state , , coin-

cides with one in the sum (41), then can be truncated over

the same interval without inducing extra error.

Proof: Start to truncate all states with the singular

value over . Permute the states so that we can use

Proposition 1. Then . We need to find

nonincreasing and such that

If is initially nonincreasing put and

(use and in discrete time). If reaches

a local minimum at define and

for . A local maximum

will be reached, either at the end of the interval or before, so

exists. We can continue to define and as before,

i.e., one is always constant and the other decreasing. When the

whole interval is covered we have from Proposition 1

and, therefore

If is initially nondecreasing an analogous treatment is ap-

plicable.

Finally, we can continue recursively with and

use the triangular inequality to obtain the final result, just as in

Theorem 1.

Remark 4 (Large Max–Min Ratios): The max–min ratio may

in some cases be an unnecessarily conservative bound. This is

the case when is a large number. Then it is ad-

visable to split the interval into two intervals:

and , and truncate the state in two steps. We can

always divide every time interval into smaller ones so that
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Fig. 1. Singular values for Example 2. � and � are truncated in the example.

the singular value is monotonic in each subinterval, and remove

them recursively.

Example 1 (The Monotonic Case): Theorem 1 follows from

Theorem 2. Notice that for monotonic singular values ,

. So, we have

...
...

...

Example 2 (Continuous-Time System): Assume we have a

third-order balanced continuous-time system over the time

interval . The realization has the dimensions

and the balanced Gramian is ,

so that is the singular value of state . The singular values are

plotted in Fig. 1. If we truncate the state over we obtain

the system . As is monotonic, we can use Theorem 1

Alternatively, we use Theorem 2 and get the same value

If we then want to truncate over from , to get ,

we have the bound

as the only maximum is , and the minimum immedi-

ately before is . Therefore, the error between the first-order

system and is bounded by

As noted in Remark 4 it is important how the intervals

are chosen and how much the singular values varies over that

interval. It may very well be that we need to let the state dimen-

sion vary in order for the error to be smaller than some chosen

threshold. Finally, notice that the max–min ratio is just a bound

resulting from a particular choice of and . There are

other choices and bounds; see [23] for an entirely different but

more complex choice.

C. Periodic Systems

Periodic systems are very important special cases of time-

varying systems. For instance, we obtain such a system when

a nonlinear system is linearized around a limit cycle. Periodic

systems have realizations where

for some time period . These systems have received much at-

tention in the literature, see, for instance, [1], [24], and the refer-

ences therein. For stable balanced periodic systems we can find

periodic Gramians

which solves (35) and (36) with equality; see [16] and [25].

These solutions are clearly not monotonic. A problem with ap-

plying Theorem 2 directly to these solutions is that for each new

period included in , the bound grows. Still we would like to

let for many periodic systems. In [13], [15], and [16], a

bound for balanced discrete time-periodic systems is presented.

We can also derive this bound:

Corollary 1 (Balanced Discrete Time-Periodic Systems): If

the balanced system has a Gramian for all

and some , and is partitioned as in Theorem 1, then its

truncation is balanced with and

(42)

over the infinite horizon .

Proof: Use Proposition 1. Remove first the states with

the singular value . As the system is periodic we can si-

multaneously remove these states at . So,

. The constant values and

for all fulfills the cancelling condition. Con-

tinue then recursively over the whole period and use then the

triangular inequality.

This might seem to be a satisfactory error bound. However,

if the period is long ( large) this bound gets large very quickly

if states are removed over the whole period. In particular, if

we sample a continuous-time periodic system then the bound

gets less useful the faster we have sampled the system. In the

limit case, when we use the result directly on a continuous-time

system, the bound is always infinity. More on sampling is given

in Appendix II. A better technique to obtain a bound in this case

may be to utilize the inequalities in (35) and (36) and to look for

time-invariant diagonal solutions ; see Remark 3.

V. INPUT–OUTPUT STABILITY OF TRUNCATED SYSTEMS

One of the advantages of the analysis so far is that it has

not been necessary to worry about stability. The only thing we

need is a diagonal solution over some interval . We

could for instance reduce an unstable plant over a finite interval

and still get error bounds. Many balanced truncation schemes

in the literature requires asymptotic stability of the plants. Still,

in order for our methodology to be good, a truncated realization
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of a stable system should also be stable in some sense. That

this is indeed the case will be shown here in the continuous-time

case. The discrete-time case is analogous. Assume from now on

that there exist constants

(43)

for . From the reachability Lyapunov inequality, we

have

(44)

So for all both and will be bounded. Even if

the states in both and are bounded, it is not clear that if is

input–output stable (finite -gain), that will be input-output

stable. But with the results from Sections II–IV we have the

following theorem.

Theorem 3 (Input–Output Stability): If the balanced system

is input–output stable and there are constants and satis-

fying (43), then all states are bounded for all in ,

and every truncated system is also input–output stable and the

states are bounded.

Proof: See Appendix I.

This result might seem contradictory to the result in [5],

which says that we get guaranteed asymptotic stability on

if and have no entries in common. But in the theorem

above we concentrate on input–output stability. To see the

effects consider, the following example from [26].

Example 3 [26]: The continuous-time system with the

transfer function

is balanced with . The -truncated system

is clearly not asymptotically stable but the pole is neither ob-

servable nor controllable, and the system is input–output stable

and will be bounded, more precisely 0, for all . Theorem 3

says that this will always happen when truncating a balanced

system. (Obviously, in this case, a better approximation is just

to keep , as we then get a zero-order model and the same

error bound.)

The result may seem unnecessary as we can truncate states

that have equal singular values without extra cost. But the result

shows that we do not need to worry about singular values that

are equal for some time-instants, we will not lose input–output

stability. The example also shows that a truncated system may

have a nonminimal realization. The theorem, however, guaran-

tees it is well behaved.

VI. LOWER BOUND ON THE APPROXIMATION ERROR

When doing optimal Hankel-norm approximation of time-in-

variant systems a lower bound on the Hankel-norm for approx-

imations of different system order (McMillan degree) is ob-

tained; see [7] and [27]. As the Hankel-norm is always smaller

than or equal to the induced -norm we also get a bound on

the best possible approximation in this norm. We will see that a

similar analysis is possible for linear time-varying systems. Let

us consider finite-horizon linear systems in continuous time

and the following Lyapunov equations:

(45)

(46)

(47)

(48)

Inequalities (48) means that the realization of is completely

reachable and observable. Notice that we here have dropped the

Lyapunov inequalities for equalities. This is not a severe restric-

tion. In practice one often solves the equalities as a first step

anyhow, as it is less computationally expensive than solving the

strict inequalities with semidefinite programming, and because

it often gives good enough upper error bounds.

If we can balance the (45)–(48), the balanced Gramian will

have the interesting property . Balanced fi-

nite-horizon systems of this sort were throughly studied in [10].

Among other things it was shown that if are

analytic functions in , then the coordinate transformation

needed to obtain a balanced realization ex-

ists, and is a Lyapunov transformation in every compact subset

of . The entries of the balanced realization will tend to

infinity at the boundaries and . For practical computations

it seems to be reasonable to embed the interval of interest, ,

in a sufficiently large interval .

Let us look at the linear system on the time interval ,

and divide the interval into two parts: and . If we

have a solution to the observability Lyapunov (45) we can

compute the norm simply if for and

is known. Then

Analogously, we have results for the reachability (46) and from

linear optimal control theory. There is a minimum control signal

(in -sense) that takes the state from to any

that fulfills

see, for example, [27]. Now, define the Hankel-norm at

time and calculate it as
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where for . As and we

can find a balancing coordinate transformation at time from

(37), so we have , because

the Hankel-norm is invariant under coordinate transformations.

Also, notice that and that

(49)

for all in . Next, define the Hankel-operator of at time

, , as the past to future restriction of

We see that . The operator has finite

rank, namely . We here only consider constant-state-dimen-

sional systems as full-order systems often come in this form.

For each choice of there is a singular-value decomposition

(Schmidt decomposition; see [27] and [28]) of

where is a set of orthonormal functions in and

is a set of orthonormal functions in .

are the singular values. is the standard

scalar product on

We can now state the following theorem:

Theorem 4 (Lower Error-Bound): Suppose is a linear

system with a finite-horizon th-order realization with

Gramians that fulfill (45)–(48). Let the singular values be

ordered so that for each . Then for

any linear system of order it holds that

(50)

for all . Furthermore

(51)

Proof: The operator has rank . If we use the

Schmidt vectors from as basis there exist numbers

such that the signal gives .

Now

This gives (50), and (49), then gives (51).

If we make a one-step truncation of a finite-horizon

balanced system and truncate the states with the singular

value , we get

where depends upon the monotonicity conditions as dis-

cussed in Theorem 2. Therefore we can often expect a very good

approximation in this type of one-step reductions. For multistep

reductions , the approximation may be much less close

to an optimal approximation, just as for standard balanced trun-

cation for time-invariant systems. However, notice that we have

not proven that there exists an approximation that really obtains

the lower bound, so we do not know exactly how far away the op-

timum is. In [14], a sufficient and necessary condition for the ex-

istence of a system of order for a given approximation error

is given. The condition is however nonconvex and hard to check.

The discussion here only justifies the balanced truncation proce-

dure when the lower and upper bounds are close to each other.

VII. EXAMPLE: REDUCTION OF DIESEL EXHAUST

CATALYST MODEL

Until now there has been no computations that show that the

suggested methods really give rise to good low-order approxi-

mations in practice. In fact, there has been a fair amount of the-

oretical work done in the literature on time-varying balancing,

but the authors have not found many real examples. Here we

will give a brief overview of the results for an example, just to

show that the computations are feasible.

We will look at a model taken from [29]. This is a model of

a diesel exhaust catalyst. In one end of the catalyst the exhausts

from the diesel engine comes in. The exhausts are blended with

some extra diesel fuel (HC). The amount of added diesel fuel is

the control input in this example. In the catalyst the exhausts and

the diesel react and at the other end the concentration of

will have decayed.

The given model consists of 28 nonlinear stiff differential

equations which describe concentrations and temperatures

throughout the catalyst. To get a single-input–single-output

system we choose the added amount of HC at the inlet as input,

and the concentration of at the outlet as output. If we

are only interested in these aspects of the system, then we can

directly drop four of the states in the nonlinear model. To apply

the methods of this paper we need to linearize the system. In

order to get a time-varying system we linearize the system

around a pulsating input signal (three pulses) over a finite

horizon, so that the system does not reach steady-state. We

then get a time-varying linear system with 24 states around a

nominal trajectory.

To find a balanced realization and the singular values we need

to solve two time-varying Lyapunov inequalities. As this

involves rather heavy computations. We choose to first find solu-

tions to the system (45)–(47), with and .

The singular values, , are plotted in

Fig. 2. The plot is in logarithmic scale and we notice that one sin-

gular value is dominating. The three pulses in the nom-

inal solution can be seen as three drops in the singular values.
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Fig. 2. Singular values for the linear time-varying system G, which
approximates the diesel exhaust catalyst over the time interval �10–450 s.
One singular value is dominating, which predicts that one state is needed to
make the approximation.

Fig. 3. Step responses for the 24th-order linear time-varying systemG and its

first-order approximation Ĝ.

To reduce the computation time we have chosen the ODE-solver

tolerance (for in MATLAB) so that only the two largest

singular values have good accuracy. To find a balanced coordi-

nate system we use the relation (37) on a time grid . As the

eigenvectors of typically give a badly conditioned

coordinate transformation, we have chosen to use the numeri-

cally sound Schur method developed for time-invariant systems

in [30] at each grid point to obtain a well-behaved coordinate

transformation . Linear interpolation is used between the

grid points.

We have shown in this paper that we can truncate states that

have a small singular value without inducing large errors. For

a first-order approximation , the upper error bound is

essentially , if we assume that the other much

smaller singular values also really only have four maximums.

Now, as and we get

that .

This is an overly conservative bound. Instead, one should divide

into time intervals as suggested in Remark 4. So another, and

better, bound is given by

. As we derived a lower

bound in Section VI, we can say

(52)

for the first-order approximation . In Fig. 3 we see a step

response test for and . The error in this particular case

is 7.2 , which shows that a typical error is in the same

order of magnitude as the worst-case bounds in (52). Notice

that the step responses here are very different from what is ob-

tained from time-invariant linear systems. If we instead use a

second-order approximation, , there is no visible error in

the step response test.

We have succeeded in finding a low-order approximation for

a nontrivial high-order linear time-varying system. The draw-

back is that solving for and is computationally heavy,

although it is feasible for of this order of magnitude.

VIII. CONCLUSION

In this paper, we have from basic analysis of the reachability

and observability Lyapunov inequalities analyzed the effects of

truncation of states for linear systems, in both continuous and

discrete time. The analysis also covers the case when the state

dimension varies over time. This is valuable as systems may

need a different amount of states for different time intervals to

be well approximated.

In particular, we have studied balancing of time-varying sys-

tems. From the solutions to the two Lyapunov inequalities, the

Gramians, we obtain a balanced coordinate system, often well

suited for truncation, and singular values. The singular values

give an upper bound on the -induced error for truncated

models. Furthermore, we obtain a lower error bound also ex-

pressed in the singular values. Both bounds are generalizations

of well-known results for time-invariant systems.

Stability was not a main issue in the paper, as we can make

approximations over a finite time horizon. Nevertheless, we

proved that if a full-order system is input–output stable, then

every truncated balanced realization of it will also be input–
output stable.

Finally, a brief example showed that the methods are possible

to use in practice. A 24th-order linear time-varying approxima-

tion of a diesel exhaust catalyst was truncated to a first-order

system with almost no error.

Future work should include finding sharper error bounds. Es-

pecially in the infinite time-horizon case with nonmonotonic

singular values. Furthermore, numerical issues should be con-

sidered. The method requires knowledge of the Gramians of the

system, which restricts the use of the method. The Gramians

may be too computationally expensive to obtain for high-order

systems.

APPENDIX I

Proof of Theorem 3

We will prove that input–output stability is maintained every

time Proposition 1 is used to truncate a system. Under the given

assumptions there are constants so that
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for all . The calculations will be made in continuous time, but

they are very similar in discrete time. Upon adding Lemma 3 ii)

and Lemma 4 ii) we obtain

Using the inequality , we get

If and is input–output stable, we know that the

terms and are bounded. Because of the relations (44)

and for all we see that

the terms involving , and are bounded for all

. Therefore we conclude that .

APPENDIX II

Sampled Lyapunov Equations

In this paper, we have treated systems in both discrete and

continuous time. Models from physics and engineering often

come in the form of differential equations. For control purposes,

however, systems have to at some point be transformed into dis-

crete time if implementation on computers is intended. We will

see that this discretization can be done at the same time as the

model reduction is performed.

The first step toward discretization in time is to find a different

system representation. We will use so-called lifting, see for in-

stance [31]. This transformation is an isomorphic isometry, i.e.,

the transformation preserves the system structure and norm. We

will call the discretization time points . The inputs and

the outputs of the lifted system belong to the signal spaces

The lifted -state continuous-time system is given by

where

(53)

(54)

(55)

(56)

and is the fundamental solution of . The

operators act on the following spaces:

We will need the adjoint operators. These act on the dual spaces.

As all involved spaces are Hilbert spaces we can represent all

elements in the dual space with elements in the primal space.

The adjoints we need are given by

(57)

(58)

(59)

We will now see that if we have solutions to the continuous-

time Lyapunov equations, and , we can use them

at the sampling instants for the lifted system. Consider the

observability Lyapunov equation in continuous time for

and its solution

(60)

Using the lifting operators putting , the solution (60)

can be written as a discrete Lyapunov equation with the solution

(61)

We get analogous results for the reachability Lyapunov equation

with the solution

(62)

which with the lifting operators becomes

(63)

So, we can first compute continuous-time solutions and

, and then choose suitable sampling instants and

compute the pointwise balancing transformation to bal-

ance (61) and (63). Then we can truncate the lifted system and

obtain error bounds as we have done before with discrete Lya-

punov equations. Finally, finite-dimensional bases should be
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chosen to approximate the infinite-dimensional signal spaces.

For instance, zero-order hold could be used for the signals .

As an alternative, we could for instance first do zero-order

hold sampling of the continuous-time system and then bal-

ance the resulting discrete-time system. We would then not ob-

tain the same approximation as above and the error bound will

be in induced -sense, not in induced -sense as in the lifting

approach.
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