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Bayesian Sequential Inference for Stochastic Kinetic
Biochemical Network Models
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ABSTRACT

As postgenomic biology becomes more predictive, the ability to infer rate parameters of
genetic and biochemical networks will become increasingly important. In this paper, we ex-
plore the Bayesian estimation of stochastic kinetic rate constants governing dynamic models
of intracellular processes. The underlying model is replaced by a diffusion approximation
where a noise term represents intrinsic stochastic behavior and the model is identified using
discrete-time (and often incomplete) data that is subject to measurement error. Sequential
MCMC methods are then used to sample the model parameters on-line in several data-poor
contexts. The methodology is illustrated by applying it to the estimation of parameters in a
simple prokaryotic auto-regulatory gene network.

Key words: Bayesian inference, particle filter, missing data, nonlinear diffusion, stochastic
differential equation.

1. INTRODUCTION

Traditionally, the time evolution of a biochemical network is described by a set of coupled
differential equations derived using the law of mass action and the concentrations of each species. This

widely used approach, however, assumes that the system is both continuous and deterministic. In reality,
chemical reactions are intrinsically stochastic and occur as discrete events resulting from random molecular
collisions (Gillespie, 1977). Although relatively little work has addressed the stochasticity of biochemical
networks (Arkin et al., 1998; McAdams and Arkin, 1999), it is clear that many important intracellular
processes, such as signal transduction and gene expression, can be effectively described only by stochastic
processes. Stochastic effects at this level can have large significance even on high-level outcomes, such as
an organism’s aging (Finch and Kirkwood, 2000).

In order to perform analysis on a stochastic biochemical network model, it is essential that each network
parameter is obtained (Kitano, 2001). The resulting problem is known as reverse engineering (Bower and
Bolouri, 2000) and presents the challenge of how to estimate key rate parameters given observed time
course data. Although inference for “exact” stochastic kinetic models is possible, it is computationally
problematic for models of realistic size and complexity (Boys et al., 2004). We therefore work with the
diffusion approximation which, though often inadequate for simulation, can be satisfactory for inferential
purposes (Golightly and Wilkinson, 2005a).

Typically, since biochemical data arrive at discrete times, yet the model is formulated in continuous time,
it is natural to work with the first-order Euler discretization. As interobservation times are usually too large
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to be used as a time step in the Euler scheme, we follow Pedersen (1995) and augment the observed low
frequency data by introducing m−1 latent data points in between each pair of observations. Markov chain
Monte Carlo (MCMC) methods, which sample the posterior distribution of model parameters, have been
proposed independently by Jones (1997), Elerian et al. (2001), and Eraker (2001). Unfortunately, inference
can be complicated if the amount of augmentation is large. It is well known that high dependence between
the parameters and missing data results in slow rates of convergence of basic algorithms such as Gibbs
samplers (Roberts and Stramer, 2001).

In this paper, we utilize recently developed simulation-based sequential algorithms (Golightly and Wilkin-
son, 2005b) to conduct inference for a partially and discretely observed stochastic kinetic model. Our
proposed simulation filter does not break down as either the degree of augmentation or the number of
observations increases and can be implemented for multiple, partially observed datasets.

The structure of this paper is organized as follows. In Section 2, methods for modeling stochastic
kinetics are described, Section 2.1 describes the continuous time Markov process model, and Section 2.2
gives the diffusion approximation. Inference for nonlinear, partially observed diffusion models is outlined
in Section 3 before an application is presented in Section 4. Conclusions are drawn in Section 5.

2. STOCHASTIC KINETICS

2.1. Continuous time Markov process model

We typically consider a system of reactions involving k species Y1, Y2, . . . , Yk and r reactions R1,

R2, . . . , Rr in thermal equilibrium inside some fixed volume. The system will take the form

R1: u11Y1 + u12Y2 + · · · + u1kYk −→ q11Y1 + q12Y2 + · · · + q1kYk

R2: u21Y1 + u22Y2 + · · · + u2kYk −→ q21Y1 + q22Y2 + · · · + q2kYk

...
...

...
...

Rr : ur1Y1 + ur2Y2 + · · · + urkYk −→ qr1Y1 + qr2Y2 + · · · + qrkYk

(1)

where uij is the stoichiometry associated with the j th reactant of the ith reaction and qij is the stoichiometry
associated with the j th product of the ith reaction. Each reaction, Ri , has a stochastic rate constant, ci ,
and a rate law or hazard, hi(Y, ci), where Y = (Y1, Y2, . . . , Yk)

′
is the current state of the system and

each hazard is determined by the order of reaction Ri under an assumption of mass action kinetics. Note
that for transparency, we denote by Yi both the species and the number of molecules it represents in the
system. We may represent (1) somewhat more compactly as

UY −→ QY,

where U = (uij ) and Q = (qij ) are r × k dimensional matrices (obtained from the stoichiometry of
the system). As the net effect of reaction i is a change of aij = qij − uij , the reaction network can be
represented by the (net effect reaction) matrix A = Q − U.

Stochastic models of cellular processes are reasonably well developed and are commonly based on
techniques for solving the “chemical master equation.” The main element of the master equation is the
function P(Y1, Y2, . . . , Yk; t), which gives the probability that there will be at time t , Y1, Y2, . . . , Yk
molecules of each respective species. We write this function as the sum of the probabilities of the number
of ways in which the network can arrive in state Y = (Y1, Y2, . . . , Yk)

′
at time t +�t to give

P(Y ; t +�t) =
r∑
i=1

hi(Y − Ai , ci)P (Y − Ai; t)�t

+
{

1 −
r∑
i=1

hi(Y, ci)�t

}
P(Y ; t)+ o(�t) (2)
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where Ai denotes the ith row of the net effect matrix A. Rearrangement of (2) and taking �t → 0 leads
to the master equation,

∂

∂t
P (Y ; t) =

r∑
i=1

{hi(Y − Ai , ci)P (Y − Ai; t)− hi(Y, ci)P (Y ; t)} , (3)

further details of which have been given by van Kampen (2001) and Doraiswamy and Kulkarni (1987)
among others. Although the master equation is exact, it is only tractable for a handful of cases, and
those exactly solvable cases have been summarized by McQuarrie (1967). Therefore, stochastic models
are typically examined using a discrete event simulation algorithm known in the physical sciences as
the “Gillespie algorithm” (Gillespie, 1977). Although using the latter algorithm is straightforward for
simulation, inference for “exact” stochastic-kinetic models is computationally problematic for models of
realistic size and complexity (Boys et al., 2004). We therefore use a continuous approximation of (3)—the
diffusion approximation.

2.2. The diffusion approximation

By assuming that the jumps of the Markov process governed by (3) are “small” and that the solution,
P(Y ; t), varies slowly with Y , we can expand the first term in (3) by means of a second-order Taylor
expansion to give the Fokker–Planck equation (van Kampen, 2001). Formally, for a k dimensional process
Y (t) with components Y1(t), . . . , Yk(t), the nonlinear Fokker–Planck equation is given by

∂

∂t
P (Y ; t) = −

k∑
i=1

∂

∂Yi
{µi(Y )P (Y ; t)} + 1

2

k∑
i=1

k∑
j=1

∂2

∂Yi∂Yj
{βij (Y )P (Y ; t)}, (4)

where we define the infinitesimal means for i = 1, . . . , k by

µi(Y ) = lim
�t→0

1

�t
E[{Yi(t +�t)− Yi(t)}|Y (t) = Y ] (5)

and the infinitesimal second moments for i, j = 1, . . . , k by

βij (Y ) = lim
�t→0

1

�t
Cov[{Yi(t +�t)− Yi(t)}, {Yj (t +�t)− Yj (t)}|Y (t) = Y ]. (6)

Now suppose at time t , the state of the system is Y (t) = (Y1(t), . . . , Yk(t))
′ = Y so that the hazards

of R1, R2, . . . , Rr are h1(Y, c1), h2(Y, c2), . . . , hr (Y, cr ). Let Ni denote the number of type i reactions
occurring in the interval (t, t + �t]. Then for “small” time �t , Ni ≈ Poisson(hi(Y, ci)�t) (due to the
assunption of constant reaction hazard), and the change in the number of molecules of Yj is given by

Yj (t +�t)− Yj (t) = a1jN1 + a2jN2 + · · · + arjNr . (7)

For each increment Yj (t+�t)−Yj (t), j = 1, . . . , k given by (7), we calculate the infinitesimal means and
variances through straightforward application of (5) and (6). It can be shown under certain conditions (see
Kloeden and Platen [1992]) that the solution of (4) satisfies an Itô stochastic differential equation (SDE),

dY (t) = µ(Y,�) dt + β
1
2 (Y,�) dW(t) (8)

where µ(Y,�) is the column vector of µi(Y ) (known as drift), β
1
2 (Y,�) is any matrix satisfying β

1
2 (β

1
2 )

′ =
[βij (Y )] = β(Y ) (known as the diffusion matrix), and we let both functions depend explicity on the
parameter vector � = (c1, c2, . . . , cr )

′
. Finally, dW(t) = (dW1(t), . . . , dWk(t))

′
is the increment of

(standard, k dimensional) Brownian motion. For a reaction network with net effect matrix A, we may
compute

µ(Y,�) = A
′
h(Y,�), β(Y,�) = A

′
diag{h(Y,�)}A (9)

where h(Y,�) is the column vector of hazards hi(Y, ci). Further details of the diffusion approximation
can be found in Allen (2002).
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2.3. Example: Prokaryotic auto-regulatory gene network

Transcriptional regulation has been studied extensively in both prokaryotic and eukaryotic organisms
(see, for example, McAdams and Arkin [1999], Latchman [2002], and Ng et al. [2004]). In a simple
model of prokaryotic auto regulation, a protein (I) coded for by a gene (i) represses its own transcription
and also the transcription of another gene, (g), by binding to a regulatory region upstream of the gene.
The transcription of a gene into mRNA is facilitated by an enzyme, RNA-polymerase, and this process
begins with the binding of this enzyme to a site on the gene called a promoter. After the initial binding,
RNA-polymerase travels away from the promoter along the gene, synthesizing mRNA as it moves. In our
model, transcription is repressed by a repressor protein, I, which can bind to sites on the DNA known as
operators. We simplify the repression mechanisms with the following reactions.

R1: I + i −→ I· i
R2: I· i −→ I + i
R3: I + g −→ I· g
R4: I· g −→ I + g

(10)

We represent the transcription of i, the binding of a ribosome to mRNA, the translation of mRNA, and the
folding of the resulting polypetide chain into a folding protein, I, by

R5: i −→ i + ri, R6: ri −→ ri + I. (11)

Similarly, we represent the transcription of g and translation mechanism by

R7: g −→ g + rg, R8: rg −→ rg + G. (12)

Finally, the model is completed by mRNA degradation,

R9: ri −→ ∅, R10: rg −→ ∅ (13)

and protein degradation,

R11: I −→ ∅, R12: G −→ ∅. (14)

Although the model offers a simplistic view of the mechanisms involved in gene regulation, it will
provide insight into how inference might be done in more complex networks. For a detailed discussion of
gene regulation, see Ptashne (1992) and Latchman (2002).

We now turn our attention to calculating the diffusion approximation for the model given by (10)–(14).
We order the species by setting Y = (I,G, I· i, I· g, i, g, ri, rg)

′
and use the stoichiometry of the system to

obtain the net effect matrix,

A
′ =




−1 1 −1 1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1
1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0



. (15)

Now assume for reaction i a stochastic rate constant of ci , and consider the time evolution of the system as
a Markov process with state Y (t) = Y at time t . Reactions R1 and R3 are second order and their hazards
can be computed (using the law of mass action) as h1(Y,�) = c1Ii and h3(Y,�) = c3Ig. As the remaining
reactions are first order, their hazards are straight forward to compute; for example, h12(Y,�) = c12G.

Before calculation of µ(Y,�) and β(Y,�), it should be noted that the net effect matrix A is not of
full rank (as the number of molecules of I· i and I· g are related to the number of molecules of i and g,
respectively). Inspection of (15) reveals that adding row 3 of A

′
to row 5 implies

I· i + i = K1 (16)
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and similarly, adding row 4 to row 6 yields

I· g + g = K2 (17)

where K1 and K2 are conservation constants. As this rank degeneracy will cause problems for the inference
method considered in Section 3, we remove rows 3 and 4 from A

′
to obtain A of full rank. We then use

(16) and (17) to substitute K1 − i and K2 − g for I· i and I· g respectively to reduce our model to one
involving just six chemical species, Y = (I,G, i, g, ri, rg)

′
. The full diffusion approximation can then be

computed using (9), for example,

µ(Y,�) =




c2(K1 − i)+ c4(K2 − g)+ c6ri − c1Ii − c3Ig − c11I
c8rg − c12G

c2(K1 − i)− c1Ii
c4(K2 − g)− c3Ig

c5i − c9ri
c7g − c10rg



.

Note that our parameter vector � consists of all stochastic rate constants and is given by � = (c1, c2, . . . ,

c12)
′
. For a further discussion of how to calculate the diffusion approximation for a given reaction network,

see Golightly and Wilkinson (2005a).

3. INFERENCE FOR NONLINEAR DIFFUSION MODELS

3.1. Models

We consider inference for a d-dimensional Itô diffusion that satisfies a stochastic differential equation
of the form given by (8) and assume that the conditions under which the SDE can be solved for Y (t) are
satisfied (Øksendal, 1995).

Often, Y (t) will consist of both observable and unobservable components. To deal with this, we define
Y (t) = (X(t), Z(t))

′
, where X(t) defines the observable part and Z(t) the unobservable part of the system.

Note that X(t) and Z(t) have dimensions d1 and d2 respectively such that Y (t) has dimension d = d1 +d2.
We assume further that the process X(t) is subject to measurement error such that we actually observe

V (t) = X(t)+ ε(t), (18)

where ε(t) ∼ N(0, #) and # = diag{σ 2
i } for i = 1, . . . , d1. Note that for unknown #, we have � =

(θ1, . . . , θp, σ1, . . . , σd1)
′
. The process V (t) will be observed at a finite number of times and the objective

is to conduct inference for the (unknown) parameter vector � on the basis of these noisy, partial, and
discrete observations.

In practice, it is necessary to work with the discretized version of (8), given by the Euler approximation,

�Y(t) = µ(Y (t),�)�t + β
1
2 (Y (t),�)�W(t), (19)

where �W(t) is a d dimensional iid N(0, I�t) random vector. Now suppose we have measurements v(τi)
at evenly spaced times τ0, τ1, . . . , τT with intervals of length �∗ = τi+1 − τi . As �∗ is often too large to
be used as a time step in (19), we put �t = �∗/m for some positive integer m > 1. By choosing m to
be sufficiently large, we can ensure that the discretization bias is arbitrarily small, but this also introduces
the problem of m− 1 missing values in between every pair of observations.

We deal with these missing values by dividing the entire time interval [τ0, τT ] into mT + 1 equidistant
points τ0 = t0 < t1 < · · · < tn = τT such that V (t) is observed at times t0, tm, . . . , tn. Altogether we
have d(nm+ 1) missing values which we substitute with simulations Y (ti). We refer to the collection of
simulated data as the augmented data. Eraker (2001) denotes by Ŷ the d × (n + 1) matrix obtained by
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stacking all elements of the augmented data, that is,

Ŷ =




X1(t0) X1(t1) · · · X1(tm) X1(tm+1) · · · X1(tn)

X2(t0) X2(t1) · · · X2(tm) X2(tm+1) · · · X2(tn)
...

...
...

...
...

Xd1(t0) Xd1(t1) · · · Xd1(tm) Xd1(tm+1) · · · Xd1(tn)

Z1(t0) Z1(t1) · · · Z1(tm) Z1(tm+1) · · · Z1(tn)
...

...
...

...
...

Zd2(t0) Zd2(t1) · · · Zd2(tm) Zd2(tm+1) · · · Zd2(tn)



.

We now let Y i = (Xi, hzi) denote the ith column of Ŷ. By adopting a fully Bayesian approach, we
summarize our a priori beliefs about � and Y 0 via the prior distributions π(�) and π(Y 0), respectively.
Then the joint posterior density for parameters and augmented data is given by

π(Ŷ,�|vobs) ∝ π(�)π(Y 0)

[
n−1∏
i=0

π(Y i+1|Y i,�)
] 

 ∏
i∈{0,m,...,n}

π(vi |Xi,�)

 , (20)

where vi denotes vti , vobs = (v0, vm, . . . vn),

π(Y i+1|Y i,�) = φ(Y i+1;Y i + µi�t, βi�t) (21)

and

π(vi |Xi,�) = φ(vi;Xi,#). (22)

Here, µi = µ(Y i,�), βi = β(Y i,�), and φ(·;ψ, γ ) denotes the Gaussian density with mean ψ and
variance matrix γ . Note that π(Y i+1|Y i,�) is the one step ahead transition density obtained from the
Euler discretization.

As discussed in Tanner and Wong (1987), inference may proceed by alternating between simulation of
parameters conditional on augmented data and simulation of the missing data given the observed data and
the current state of the model parameters. As the joint posterior (20) is usually high dimensional, a Gibbs
sampler is a particularly convenient way of sampling from it (Golightly and Wilkinson, 2005a). However,
as the augmentation increases, high dependence between missing data and parameters results in arbitrarily
slow rates of convergence. Although a solution to this problem is known in the case of univariate diffusions
(Roberts and Stramer, 2001), it is not possible to extend this technique to the multivariate diffusions
considered here (Wilkinson, 2003).

As each new observation arrives, our proposed simulation filter samples a new (�∗, Ŷ∗) in two stages:
first �∗ is sampled from a suitable proposal, and then Ŷ∗ is sampled from a tractable approximation to
(Ŷ|�∗, vobs). By simulating the latent data to be consistent with �∗, the dependence between them is
overcome (Golightly and Wilkinson, 2005b). For further discussions on the use of MCMC methods for the
Bayesian analysis of diffusions, see Roberts and Stramer (2001), Elerian et al. (2001), and Eraker (2001).

3.2. Simulation filter

In the context of discrete time series with unobserved state variables, Bayesian sequential filtering has
been discussed extensively, e.g., Berzuini et al. (1997), Pitt and Shephard (1999), and Doucet et al. (2000).
Filtering for both parameters and state has been discussed by Liu and West (2001) among others.

We consider data Dj = (v0, vm, . . . , vj ), (where j is an integer multiple of m) arriving at times
t0, tm, . . . , tj such that at time tj+m, new data vj+m are accompanied by m missing columns, Y j+1, . . . ,

Y j+m. As each observation becomes available, we are interested in the on-line estimation of the unknown
parameter vector, �.

We assume that we have an equally weighted sample of size S, {(�(s), Y j(s)), s = 1, . . . , S} (with weights

w
j

(s) = 1/S), from the distribution π(�, Y j |Dj), which we will denote by πj (�, Y
j ). At time tj+m,
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we observe vj+m, which we will refer to as vM (putting M = j+m). Assimilation of the information con-
tained in vM consists of generating a sample, {(�(s), YM(s)), s = 1, . . . , S} from the posterior πM(�, YM),
which can be found by formulating the posterior for parameters and augmented data, then integrating out
the latent data. Using (20), we have

πM(�, Y
M) ∝

∫
ŶM

π(�)π(Y 0)

M−1∏
i=0

π(Y i+1|Y i,�)
∏

i∈{0,m,...,M}
π(vi |Xi,�) (23)

where we define ŶM = (Y 0, Y 1, . . . , YM−1) and is simply the vector of latent values up to time tM . Hence,
✄

✂

�

✁AU1
our target is

πM(�, Y
M) ∝ πj (�, Y

j )π(vM |XM,�)
M−1∏
i=j

π(Y i+1|Y i,�) (24)

with Y j , . . . , YM−1 integrated out. We sample (24) by drawing (Y j , Y j+1, . . . , YM,�), via MCMC, then
discarding all components except (�, YM).

3.3. Filtering for parameters and state

As πj (�, Y j ) has no analytic form, we recursively approximate�,Y j |Dj by the “particles” {(�(s), Y j(s)),
s = 1, . . . , S} with each �(s), Y

j

(s) having a discrete probablity mass of wj(s) = 1/S. We assume that as

S → ∞, the particles approximate the filtering density, πj (�, Y j ), increasingly well. The class of filters
which treat the discrete support generated by the particles as the true (filtering) density are known as
particle filters. Various implementations of particle filters have been proposed in the literature including
sampling/importance resampling (Doucet et al., 2000) and MCMC (Pitt and Shephard, 1999). Here we
focus on an MCMC approach which we refer to as the simulation filter.

In the first step of our MCMC scheme, propose (�∗, Y j∗ ) from πj (�, Y
j ) using the kernel density

estimate of πj (·, ·). First select an integer, u, uniformly from the set {1, . . . , S}, and then put

(�∗, Y j∗ )
′ ∼ N{(�(u), Y j(u))

′
, ω2B} (25)

where B is the Monte Carlo posterior variance and the overall scale of the kernel is a function of the
smoothing parameter, ω2, usually around 0.02. For large datasets, however, Liu and West (2001) suggest
that the random disturbances add up to give “information loss” over time (as the kernel density function
is always overdispersed relative to the posterior sample by a factor 1 + ω2). To correct this, Liu and West
(2001) employ a kernel shrinkage method by setting

(�∗, Y j∗ )
′ ∼ N{a(�(u), Y j(u))

′ + (1 − a)(�̄, Ȳ j )
′
, ω2B} (26)

where a2 = 1 − ω2, ω2 = 1 − ((3δ − 1)/2δ)2, δ is a discount factor usually around 0.99, and (�̄, Ȳ j )
′

is
the Monte Carlo posterior mean of πj (�, Y j ). For the data considered in Section 4, we found that using
(25) works sufficiently well. See Liu and West (2001) and also West (1993) for further discussions on
kernel smoothing.

Given XM∗ ∼ π(·|vM,�∗), we are then tasked with simulating Y j+1∗ , . . . , YM−1∗ , ZM∗ conditional on

�∗, Y j∗ and XM∗ . However, obtaining the conditional density of missing values between two “observations”
that are m steps apart, under the nonlinear structure of the diffusion process, is not trivial. We deal with
this problem by adopting a “modified bridge” construct proposed by Durham and Gallant (2002). That
is, treating Y j∗ and XM∗ fixed, we draw Y i+1∗ , for i = j, . . . ,M − 2, from a Gaussian approximation to
π(Y i+1∗ |Y i∗, XM∗ ,�∗) for which we denote the approximate density by π̃(Y i+1∗ |Y i∗, XM∗ ,�∗) (see Golightly
and Wilkinson [2005b], Durham and Gallant [2002], and Elerian et al. [2001] for a review).
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The final step in our MCMC scheme is to draw ZM∗ ∼ π(·|YM−1∗ , XM∗ ,�∗), that is, from the one step
ahead Euler density further conditioned on XM∗ . Hence, if at some iteration, s, of our sampler we have

current value, <(s) = (Y j , . . . , YM,�), then at iteration s+1 we accept a move to <∗ = (Y
j∗ , . . . , YM∗ ,�∗)

with probability min{1, α}, where

α =
π(ZM |YM−1, XM,�)

M−2∏
i=j

π̃(Y i+1|Y i,XM,�)
M−1∏
i=j

π(Y i+1∗ |Y i∗,�∗)

π(ZM∗ |YM−1∗ , XM∗ ,�∗)
M−2∏
i=j

π̃(Y i+1∗ |Y i∗, XM∗ ,�∗)
M−1∏
i=j

π(Y i+1|Y i,�)
, (27)

and store (�(s+1), Y
M
(s+1)), ready for the next time point. The Markov chain generated in this way has the

posterior distribution of interest, πM(�, YM), as its invariant distribution. The simulation filter then has
the following algorithmic form:

1. Set j = 0. For s = 1, . . . , S draw �(s) ∼ π(�), X0
(s) ∼ π(X0|v0,�(s)) and Z0

(s) ∼ π(Z0).
2. Set M = j +m. For s = 1, . . . , S,

• Propose (�∗, Y j∗ ) using (25)
• Draw XM∗ ∼ π(·|vM,�∗).• For i = j, . . . ,M − 2 simulate Y i+1∗ ∼ π̃(·|Y i∗, XM∗ ,�∗).• Draw ZM∗ ∼ π(·|YM−1∗ , XM∗ ,�∗).
• Set <∗ = (Y

j∗ , . . . , YM∗ ,�∗) and put <(s+1) = <∗ with probability min{1, α} (where α is given by
(27)) else put <(s+1) = <(s).• Store (�(s), YM(s)).

3. Set j = j +m.
4. Return to step 2.

Thus step 2 performs the update for a given time point. As with any MCMC sampler, this scheme can
be modified by allowing a number of iterations to be discarded as “burn-in.” A further S iterations may
then be performed to generate the desired sample, {(�(s), YM(s)), s = 1, . . . , S}, from πM(�, Y

M). Further
modifications may be made by thinning the MCMC output at the expense of running the sampler longer.
This is done seperately for each time point, with our final posterior sample used as the prior for the next
time point.

4. SIMULATION STUDY: PROKARYOTIC AUTO-REGULATORY
GENE NETWORK

To illustrate the methodology of Section 3.2, the simulation filter is applied to the diffusion approximation
of the regulatory gene network characterized by the reactions (10)–(14).

As well as exploring the fully observed case, we report results for several data-poor contexts; for example,
measuring only protein and RNA levels leads to a model with observable partX(t) = (I(t),G(t), ri(t), rg(t))

′

and unobservable part of the reduced system, Z(t) = (i(t), g(t))
′
. Note that formulating the partially ob-

served model in this way implies that we know only the conservation constants, K1 and K2 (see (16) and
(17)), and not the split into I· i and i or I· g and g. In practice, it is reasonable to observe K1 and K2 as
they correspond to the number of copies of each gene on the genome. In Section 4.2, we assume that both
K1 and K2 are known, but we do not observe I· i(t) and i(t) or I· g(t) and g(t) at any time t .

Realistically, we may have two (or more) independent experimental datasets, one consisting of measure-
ments only on the proteins, I(t),G(t) and another on RNA levels, ri(t), rg(t). Here, we take advantage of
the sequential nature of the simulation filter, running the algorithm for each dataset in turn and using the
posterior sample obtained from the first dataset as the prior sample for the second.
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FIG. 1. D1: 30 (noisy) observations on (I(t),G(t), i(t), g(t), ri(t), rg(t)).

4.1. Results: Fully observed model

We first implement the MCMC scheme given in Section 3.3 for the fully observed case; we assume
that we observe Y (t) = (I(t),G(t), i(t), g(t), ri(t), rg(t))

′
at all times t . We consider equispaced data, D1,

consisting of 30 observations on [0, 29], simulated exactly using the Gillespie algorithm (see Fig. 1). Each
✄

✂

�

✁F1
data point is subjected to measurement error by adding a Gaussian random variable with zero mean and
variance σ 2 = 3 (so that # = σ 2I in (18)), which we assume to be unknown. True values for (c1, . . . , c12)

are chosen to be 0.08, 0.82, 0.09, 0.9, 0.25, 0.1, 0.35, 0.3, 0.1, 0.1, 0.12, 0.1, and we place Uniform
U(−5, 1) priors on each log(ci), for i = 1, . . . , 12 and σ . Note that K1 and K2 (the number of copies of
each gene) are set to be 10.

The simulation filter is run for five million iterations with a thin of 250, giving a final sample of size
S = 20,000. Discretization is set by running the MCMC algorithm with m = 5, 8, 16, 20. Figure 2 and
Table 1 summarize the posterior distributions; trace, density, and autocorrelation plots can be seen in Fig. 2

✞

✝

�

✆
F2, T1
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FIG. 2.
✞

✝

�

✆
AU2/QU2Trace, density and autocorrelation plots for c6, c7, c10, c11, c12 and σ for the fully observed model using

30 observations and m = 20. Results are based on a final sample of size 20,000, thinned from 5,000,000 MCMC
iterations.

for a selection of parameters with m = 20. Table 1 reports posterior means and standard deviations for �,
based on the output from the simulation filter for each choice of m.

As the estimated MCMC error is related to the autocorrelations within the chains, the relative performance
of the simulation filter can be assessed by studying the sample autocorrelation functions for each parameter.
Figure 2 shows that autocorrelations die down very quickly despite large m. We also see that the sampler
produces estimates close to the true values that generated the data.
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Table 1. Posterior Means and Standard Deviations for � Estimated on
30 Observations (D1) from the Fully Observed Modela

Mean (standard deviation)

Parameter True value m = 5 m = 8 m = 16 m = 20

c1 0.08 0.010 (0.003) 0.034 (0.030) 0.038 (0.033) 0.029 (0.017)
c2 0.82 0.112 (0.093) 0.455 (0.427) 0.431 (0.447) 0.443 (0.321)
c1/c2 0.096 0.119 (0.115) 0.102 (0.087) 0.088 (0.058) 0.088 (0.048)
c3 0.09 0.010 (0.002) 0.012 (0.006) 0.027 (0.021) 0.043 (0.021)
c4 0.9 0.070 (0.050) 0.130 (0.112) 0.268 (0.256) 0.374 (0.209)
c3/c4 0.1 0.115 (0.115) 0.107 (0.349) 0.138 (0.069) 0.129 (0.057)
c5 0.25 0.341 (0.208) 0.336 (0.294) 0.325 (0.281) 0.304 (0.218)
c6 0.1 0.302 (0.168) 0.299 (0.377) 0.276 (0.196) 0.189 (0.085)
c7 0.35 0.121 (0.071) 0.222 (0.159) 0.267 (0.194) 0.275 (0.112)
c8 0.3 0.056 (0.031) 0.146 (0.058) 0.149 (0.023) 0.163 (0.074)
c9 0.1 0.048 (0.037) 0.099 (0.094) 0.069 (0.030) 0.078 (0.061)
c10 0.1 0.031 (0.023) 0.080 (0.059) 0.081 (0.042) 0.084 (0.038)
c11 0.12 0.369 (0.238) 0.321 (0.473) 0.285 (0.125) 0.258 (0.126)
c12 0.1 0.023 (0.015) 0.060 (0.027) 0.064 (0.015) 0.076 (0.040)
σ 1.732 1.846 (0.205) 1.799 (0.250) 1.697 (0.223) 1.647 (0.195)

aEstimation results are based on a final sample of size 20,000, thinned from 5,000,000 MCMC iterations.

Inspection of Table 1 reveals the advantage of including latent variables in the estimation framework.
For large m, there is a notable decrease in discretization error; for example, c10 (the stochastic rate constant
for mRNA degradation) has a true value of 0.1 while it was estimated to be 0.031 with m = 5 and 0.084
with m = 20. Similarly the standard deviation of the measurement error, σ , was estimated to be 1.846
with m = 5, 1.697 with m = 16, and 1.647 with m = 20, and has a true value of 1.732. Note also that
although estimates of c1, c2, c3, and c4 appear imprecise (perhaps due to the small number of observations),
estimates of c1/c2 and c3/c4 (corresponding to the propensities of reactions R1 and R3 respectively) are
fairly accurate for all choices of m.

4.2. Results: Partially observed model

We now apply the MCMC algorithm to the partially observed model. We consider three equispaced
datasets, D2, D3, and D4, each independently simulated using the Gillespie algorithm with stochas-
tic rate constants, c1, . . . , c12 as in Section 4.1. Dataset D2 consists of 30 observations on X(t) =
(I(t),G(t), ri(t), rg(t))

′
with each data point subject to measurement error with variance σ 2 = 3.0. Dataset

D3 contains 40 observations on protein levels only; X(t) = (I(t),G(t))
′

and the variance of the measure-
ment error is σ 2 = 3.0. Finally, D4 contains 20 observations on RNA levels; X(t) = (ri(t), rg(t))

′
with

σ 2 = 2.0. For each dataset, we assume that the variance of the measurement error is known and that the
number of copies of each gene is known to be K1 = K2 = 10. As in Section 4.1, we place uniform priors
on each log(ci) and also on log(Z0).

The simulation filter is run for each dataset for four million iterations with a thin of 200, giving a final
sample of size S = 20,000. Discretization is set by running the algorithm with m = 20. Table 2 summarizes

✄

✂

�

✁T2
the posterior distribution for each dataset. In addition, we provide summaries of π(�|D3,D4), obtained
by using the posterior sample from π(�|D3) as the prior sample for data D4. Figure 3 shows posterior

✄

✂

�

✁F3
densities of c5, c7, c11, and c12 given data D3, D4 and (D3,D4).

Intuitively, when observing just two species, estimates are generally more accurate for rate constants
governing reactions involving those species. For example, c9 and c10 (pertaining to RNA degradation
reactions given by (13)), both with true values of 0.1, are estimated to be 0.148 and 0.201 respectively
when using 40 observations on protein levels (D3). However, when using just 20 observations on RNA
levels (D4), we see an increase in accuracy with estimates of 0.099 and 0.097, respectively. Similarly,
c1/c2 and c3/c4, the propensities of repression reactions R1 and R2 have true values of 0.096 and 0.1.
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Table 2. Posterior Means and Standard Deviations for Parameters Estimated
Using Datasets D2, D3, and D4 from the Partially Observed Modela

Mean (standard deviation)

Parameter True value D2 D3 D4 (D3,D4)

c1 0.08 0.024 (0.019) 0.051 (0.050) 0.049 (0.057) 0.067 (0.065)
c2 0.82 0.254 (0.231) 0.391 (0.356) 0.357 (0.364) 0.496 (0.367)
c1/c2 0.096 0.176 (0.224) 0.241 (0.305) 0.414 (0.916) 0.227 (0.339)
c3 0.09 0.031 (0.022) 0.032 (0.031) 0.037 (0.057) 0.023 (0.023)
c4 0.9 0.214 (0.244) 0.255 (0.299) 0.225 (0.292) 0.186 (0.238)
c3/c4 0.1 0.204 (0.319) 0.290 (0.361) 0.507 (0.951) 0.345 (0.467)
c5 0.25 0.418 (0.296) 0.232 (0.303) 0.478 (0.285) 0.426 (0.237)
c6 0.1 0.072 (0.066) 0.058 (0.087) 0.140 (0.230) 0.038 (0.060)
c7 0.35 0.228 (0.159) 0.211 (0.281) 0.637 (0.353) 0.608 (0.327)
c8 0.3 0.275 (0.100) 0.526 (0.283) 0.262 (0.341) 0.425 (0.295)
c9 0.1 0.133 (0.081) 0.148 (0.192) 0.099 (0.089) 0.091 (0.068)
c10 0.1 0.046 (0.037) 0.201 (0.250) 0.097 (0.087) 0.112 (0.090)
c11 0.12 0.076 (0.083) 0.047 (0.047) 0.203 (0.279) 0.057 (0.083)
c12 0.1 0.103 (0.041) 0.093 (0.037) 0.148 (0.226) 0.086 (0.044)

aDiscretization is set at m = 20 and the estimation results are based on a final sample of size 20,000, thinned from
4,000,000 MCMC iterations.

FIG. 3. Posterior density plots for c5, c7, c11, and c12 obtained from D3 (dotted line), D4 (dashed line), and
(D3,D4) (solid line). Results are based on a final sample of size 20,000, thinned from 4,000,000 MCMC iterations.
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Using the protein data (D3) we see estimates of 0.241 and 0.290 respectively, whilst using just RNA levels,
estimates are very poor (0.414 and 0.507).

Running our algorithm for the RNA data with a prior, π(�) given by the posterior sample for parameters
given protein data, π(�|D3) yields, in general, fairly precise estimates of those parameters governing
RNA reactions and also of parameters governing protein reactions. For example, c1/c2 and c3/c4 are now
estimated to be 0.227 and 0.345 whilst posterior means for c9 and c10 are 0.091 and 0.112, respectively.
As we would expect, for those parameters governing protein-only reactions, π(�|D3,D4) is dominated by
the prior, π(�|D3), as this is in fact the posterior obtained when using only protein data, D3 (see Fig. 3).

Finally, it appears that we gain the most information by observing as many species as possible in a
single experiment rather than combining datasets on a few species obtained from multiple independent
experiments. This can be seen by comparing the columns in Table 2 corresponding to D2 (30 observations
on RNA and protein levels) and (D3,D4).

5. DISCUSSION

We have implemented a sequential Bayesian approach to conduct rigorous inference for rate constants
governing biochemical reactions. By adopting a diffusion approximation, the solution to the problem of
reverse engineering rate constants from noisy time course data corresponds to the estimation of nonlinear,
discretely (and perhaps partially) observed stochastic differential equations. However, the task of inferring
parameters in SDEs is not trivial. The estimation framework necessarily introduces missing values and
high dependence between these latent values and parameters results in poor mixing properties of MCMC
schemes such as the Gibbs sampler (Roberts and Stramer, 2001). The utility of the simulation filter is
two-fold; first, by performing a joint update of the parameters and missing values at each time point, we
can overcome the dependence between them (Golightly and Wilkinson, 2005b). Also, as the method is
sequential, we can use a posterior sample obtained form one dataset as the prior for the next, allowing us
to handle multiple datasets from different experiments.

The methodology was applied to synthetic data generated from a prokaryotic auto regulatory gene
network model. Naturally, the integration of actual measurements into the modeling framework remains of
great interest and is the subject of ongoing research.
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